
Is Public-Key Encryption Based on LPN

Practical?

Ivan Damg̊ard∗ Sunoo Park†

Abstract

We conduct a study of the cryptosystem suggested by Alekhnovich based on
the Learning Parity with Noise (LPN) problem. We consider several improvements
to the scheme, inspired by similar existing variants of Regev’s LWE-based cryp-
tosystem, and compute which parameters one would need for various security levels,
given the currently best known attacks. Our conclusion is that LPN-based public-
key cryptography is in several respects not competitive with existing schemes, as
both public key, ciphertext and encryption time become very large already for 80-
bit security. There are ways to overcome some of these problems, but we do not
know how to make both public key and ciphertext be small at the same time. On the
other hand, decryption time seems to be competitive with existing schemes that use
exponentiation to decrypt, if more than 128-bit security is desired. Thus LPN based
public key encryption only seems attractive if one has a very specialized application
where the time spent on decryption can be considered the only bottleneck.

1 Introduction

The decisional LPN problem is that of distinguishing from random a set of samples,
each of the form (a, 〈a, s〉 ⊕ e), where a ∈ Zn2 is uniformly random (for some parameter
n ∈ N), e ← Berτ where Berτ denotes the Bernoulli distribution (with some parameter
τ ∈ R), and s ∈ Zn2 is a random secret fixed over all samples. In the search version
of the problem, the goal is to find the secret vector s. A more detailed definition of
the problem is given in Section 2. Note that adding the “Bernoulli noise” is essential to
make the problem non-trivial, since otherwise the secret can be easily found by Gaussian
elimination given O(n) samples.

LPN samples are computationally very simple to generate, but the problem nev-
ertheless seems to be very hard. The two main types of non-trivial attack on LPN
are exhaustive search over possible error vectors, and series of attacks based on the
Blum-Kalai-Wasserman (BKW) algorithm [BKW03]. The original BKW algorithm was
estimated to have slightly subexponential time complexity of 2O(n/ logn) for 2O(n/ logn)

∗Department of Computer Science, Aarhus University, Aarhus, Denmark.
†Computer Laboratory, University of Cambridge, Cambridge, UK.

1

samples. Subsequent work by Lyubashevsky gave a variant algorithm with runtime
2O(n/ log logn) for n1+ε samples [Lyu05]. A further modification proposed more recently
by Kirchner [Kir11] achieved similar runtimes with O(n) samples. Practical implemen-
tations of optimised variants of the above algorithms were done by Levieil and Fouque
[LF06] and Bernstein and Lange [BL12].

The computational simplicity of LPN make it very attractive for cryptographic ap-
plications, and indeed, many applications of the “symmetric crypto” type have been
suggested [GRS08; JW05]. Doing public-key cryptography based on LPN seems to be
much harder; however, in [Ale03], Alekhnovich suggested a public-key cryptosystem
based on a variant of decisional LPN, where τ is not constant as in standard LPN but
decreases with increasing n – in fact, τ ≈ 1/

√
n. This problem might be easier than

LPN with constant τ , but no separation between the problems in the sense of asymptotic
complexity is known.

In this paper we study a variant of Alekhnovich’s original cryptosystem, which is
favourable for analysis as well as practical efficiency reasons. A basic version of this
scheme was first communicated to us by Cash [Cas12], and seems to be folklore, at least
in some parts of the community, but we were not able to find any published record of it.
It is similar in structure to Regev’s cryptosystem based on the hardness of the Learning
With Errors (LWE) problem [Reg05]. We are therefore able to improve it to get a better
plaintext to ciphertext size ratio in a way similar to a corresponding improvement by
Peikert et al. of Regev’s scheme [PVW07]. Finally, we add a further slight optimisation
to the improved scheme by the use of all-or-nothing transforms, which yields a noticeable
advantage in terms of practical parameters. The idea behind the proofs of security we
give can be traced to an invited talk given by Micciancio [Mic10] (although the reader
should be aware that the talk was primarily about encryption based on LWE).

The question we ask ourselves in this paper is as follows: given what we know about
LPN, how (un)attractive is public-key cryptography based on LPN as an alternative to
more well known cryptosystems in practice?

We are not aware of any previous attempts to figure out a precise answer to this.
It seems that the general perception among cryptographers has been that LPN-based
public-key must “of course” be totally impractical: Alekhnovich’s version of the LPN
problem seems to be easier than standard LPN (due to the limitation on the noise rate)
so to ensure security would require huge values of n that would render the whole scheme
impracticable. However, it is important to consider that for a practical application of an
LPN-based scheme, one must choose concrete values of parameters n and τ , and what
then matters is not the asymptotic complexity of solving the underlying problem, but
whether those concrete values are vulnerable to attack by state-of-the-art algorithms.

In the final part of this paper, we consider how the most recent attacks known would
perform against the LPN instances used in the LPN-based cryptosystem we propose.
We set as a goal to have a 25% probability of incorrect decryption of a bit sent, which
means that we would need error correction with an expansion factor of about 5 to correct
these errors. As examples we find that for 80-bit security we need n = 9000 whereas for
128 bit security we need n = 29000.

2

This means that public keys will be very large, several megabyte already for 80-bit
security, and in the basic scheme, a single bit of ciphertext is expanded to a ciphetext
of length n (essentially). There are partial ways of getting around these problems: in
the basic scheme, the largest part of the public key is a matrix of size (essentially) n
by 2n bits, this matrix is random and could therefore be pseudorandomly generated on
the fly instead of being stored, furthermore it does not have to user specific. As for the
ciphertext to plaintext ratio, this can be reduced by going to the improved scheme. In
this scheme, however, the public key consists of two large matrices, of which only one is
random and non user-specific. Therefore, unfortunately, we do not know how to reduce
public-key size and ciphertext size at the same time.

As for computing time, the big theoretical advantage of LPN is that the time spent
per bit decrypted is linear in n, in contrast to well-known factoring and discrete log based
schemes where this time is quadratic. Of course, it is not clear that this advantage will
actually materialize for practical values of the parameters. To get a feeling for this,
we compared LPN performance to RSA for various security levels and computed the
time one would need for a typical application, where for k bits of security, one wants to
send a k-bit symmetric key using public-key encryption. For instance, for k = 128 the
decryption time for our LPN implementation would be 50 msec. We found that RSA
outperforms LPN for the security levels we considered, but there was a clear tendency
to the advantage of LPN for increasing levels of security. Namely, for 80, 112 and 128
bits of security, LPN was slower than RSA by factors of 43, 22 and 5.7 respectively. So
if one wants to go above 128 bits of security, it seems that LPN would be competitive,
but of course only if decryption time was the only bottleneck.

LPN encryption is slower than decryption because one needs a full scale matrix with
vector product. So of course RSA encryption is dramatically faster than LPN. On the
other hand, if preprocessing is possible, then the encryption time for LPN can be reduced
to essentially the same time as decryption.

We did not compare to times for elliptic curve cryptography (ECC). We expect,
however, that LPN decryption will be less competitive here because keys for ECC do
not have to grow as fast with increasing security as in RSA.

Finally, one should note that if one desires security against quantum attacks, then
neither RSA nor ECC are secure, and one should instead compare to LWE based cryp-
tosystems, but this is not in scope of this paper.

2 The Cryptosystem

We begin by establishing some notational conventions that shall be used in this paper,
and providing a more formal definition of the LPN problem.

Notation. Berτ denotes the Bernoulli distribution with parameter τ . Berkτ denotes the
distribution of vectors in Zk2 where each entry of the vector is drawn independently from
Berτ . Binn,τ denotes the binomial distribution with n trials, each with success probability
τ . Where it is clear from context, we sometimes use the term “indistinguishable” in lieu
of “computationally indistinguishable”. ⊕ denotes the exclusive-or operation.

3

Definition 2.1. (Decisional LPN problem)
Take parameters n ∈ N and τ ∈ R with 0 < τ < 0.5 (the noise rate). A distinguisher D
is said to (q, t, ε)-solve the decisional LPNn,τ problem if∣∣∣∣ Pr

s,A,e
[D(A,As⊕ e) = 1]− Pr

r,A
[D(A, r) = 1]

∣∣∣∣ ≥ ε
where s ∈R Zn2 , A ∈R Zq×n2 , and r ∈R Zq2 are uniformly random and e← Berqτ , and the
distinguisher runs in time at most t.

Somewhat unusually, the decisional and search variants of the LPN problem are
polynomially equivalent, meaning that the existence of an attack requiring q samples
against decisional LPN implies the existence of an attack against search LPN requiring
polynomial in q samples. More precisely:

Lemma 2.2. (Lemma 1 from [KSS10]) If there exists a distinguisher D that (q, t, ε)-
solves the decisional LPNn,τ problem, then there exists a distinguisher D′ that (q′, t′, ε′)-
solves the search LPNn,τ problem where q′ = O(q log n/ε2), t′ = O(tn log n/ε2), and
ε′ = ε/4.

The hardness assumptions used in this paper are based on the decisional LPN prob-
lem; henceforth, the term “LPN problem” shall refer to the decisional variant.

As usual, a probability ε(n) is said to be negligible if ε(n) ≤ 1/p(n) for any polynomial
p and all large enough n. Using this, we can state the computational assumption we will
base the cryptosystem on:

Definition 2.3. (Decisional LPN assumption, DLPN)
Assume probabilistic algorithm D (q, t, ε)-solves the decisional LPNn,τ problem for all
large enough n, where τ is Θ(1/

√
n), t is polynomial in n and q is O(n). Then ε is

negligible as a function of n.

Adopting the standard notion of computational indistinguishability, this can be
equivalently stated as the assumption that (A,As⊕ e) is computationally indstinguish-
able from (A, r) with the choices of τ and q we made above.

We define the basic LPN cryptosystem as follows.

Definition 2.4. (Basic LPN cryptosystem)
The key generation, encryption, and decryption functions of the basic LPN cryptosystem
are given below. The parameters are n ∈ N, the length of the secret, and τ ∈ R, the
noise rate. All operations are performed over Z2.

• BasicLPNKeyGen(): Choose a secret key s ∈ Zn2 uniformly at random. For the

public key, choose a matrix A ∈ Z(2n+2)×n
2 uniformly at random, and choose an

error vector e ∈ Z2n+2
2 according to Ber2n+2

τ . Then the public key is the pair (A,b),
where b = As + e.

4

• BasicLPNEnc(pk = (A,b), v): To encrypt a message bit v ∈ Z2, choose a vector
f ∈ Z2n+2

2 according to Ber2n+2
τ . Then the ciphertext is the pair (u, c) where u =

fTA and c = fTb + v.

• BasicLPNDec(sk = s, (u, c)): The decryption is d = c+ 〈u, s〉.

Remark. In [DMQN12], Döttling, Müller-Quade, and Nascimento present an LPN-
based CPA-secure public key encryption scheme similar to the above. The difference is
that their encryption process outputs a pair of the form (u + e1, c+ e2), where u and c
are defined as above, and e1 ∼ Bernτ and e2 ∼ Berτ are chosen during encryption. This
yields a higher decryption error than for the scheme presented in this paper and so,
considering that the hardness assumption upon which the two cryptosystems are based
is the same (that of the LPN problem), the scheme presented here seems to compare
favourably.

We now prove correctness and security for the basic LPN cryptosystem. Some sup-
porting lemmas are needed.

Lemma 2.5. Let X ∼ Binn,τ . Then the probability that X is even is 1
2 + (1−2τ)n

2 .

Proof. The probability generating function of X is

GX(z) =
n∑
k=0

zk Pr[X = k] = ((1− τ) + τz)n.

Define G(z) = 1
2(GX(z) +GX(−z)). Then since terms with odd powers cancel out,

G(z) =

n∑
k=0

z2k Pr[X = 2k],

so G(1) is equal to the total probability that X takes an even value:

Pr[X is even] = G(1) =
1

2
(GC(1) +GC(−1)) =

1

2
+

(1− 2τ)n

2
.

Lemma 2.6. For any k such that limn→∞
n
k =∞, it holds that limn→∞(1 + k

n)n = ek.

Proof. Take any k such that limn→∞
n
k =∞. Then:

lim
n→∞

(1 +
k

n
)n = lim

n
k
→∞

(1 +
k

n
)
n
k
·k = lim

n′→∞
(1 +

1

n′
)n
′·k = ek.

Lemma 2.7. (Correctness) For any constant ε > 0, it holds that τ can be chosen
with τ = Θ(1√

n
) such that the probability of correct decryption by BasicLPNDec is at least

1− ε.

5

Proof. The decrypted bit d is equal to the correct plaintext v if and only if fTe = 0,
since

d = c+ sTu = fTb + v + sT fTA = fT (As + e) + v + sT fTA = fTe + v.

Let ei and fi denote the entries of e and f respectively. Define Ci = ei · fi. These Ci
are independent and identically distributed with the distribution Berτ2 . Let C =

∑
iCi.

Then C ∼ Bin2n+2,τ2 .
Observe that fTe = 0 if and only if C takes an even value. From Lemma 2.5, then,

Pr[fTe = 0] = 1
2 + (1−2τ2)2n+2

2 . Take 0 < τ ≤ O(1√
n

): for τ in this range, τ2n = O(1), so

limn→∞
n
τ2n

=∞. Applying Lemma 2.6 yields:

lim
n→∞

(1− 2τ2)2n+2 = lim
n→∞

(1− 2τ2(2n+ 2)

2n+ 2
)2n+2 = e−2τ

2(2n+2).

Hence, for large n,

Pr[fTe = 0] =
1

2
+

(1− 2τ2)2n+2

2
≈ 1 + e−2τ

2(2n+2)

2
.

If τ = c√
n

for some constant c, then the exponent −2τ2(2n+ 2) of the above equation is

constant. Observe that limc→0−2τ2(2n+ 2) = 0, so limc→0
1+e−2τ2(2n+2)

2 = 1. It follows
that for τ = Θ(1√

n
), for any constant ε > 0, the probability of correct decryption by

BasicLPNDec is at least 1− ε provided that c is chosen sufficiently close to 0.

Remark. Provided that the decryption error rate is low enough, error correcting codes
may be employed to essentially eliminate the possibility of incorrectly received bits (in
the case that we consider messages of multiple bits).

Lemma 2.8. (Pseudorandom public keys) Under the DLPN assumption, the dis-
tribution of the public keys (A,b) generated by BasicLPNKeyGen is computationally in-

distinguishable from uniform over Z(2n+2)×n
2 × Z2n+2

2 .

Proof. The public keys generated by BasicLPNKeyGen are of the form (A,As⊕e), where
A, s, and e are chosen as in Definition 2.1. Since furthermore q and τ are chosen as in
the DLPN assumption, the required indistinguishability follows immediately.

Notation. For a vector w, let wi denote its ith entry; and for a matrix W, let wi denote
its ith column, and let wi,j denote the jth entry of its ith row.

Lemma 2.9. For m ≥ dn for a constant d > 1, let χm,n be the distribution of matrices
M ∈ Zm×n2 which are sampled by choosing the columns to be a uniformly random linearly
independent set. For large n, χm,n is statistically indistinguishable from the uniform
distribution over Zm×n2 .

6

Proof. A matrix sampled from the uniform distribution over Zm×n2 is (perfectly) indis-
tinguishable from one constructed by taking n column vectors of m bits drawn uniformly
from Zm2 , since matrix columns are independent in the former distribution. For m ≥ dn,
consider generating a matrix by drawing the columns one by one. Each time a new col-
umn is drawn, it lies outside the subspace spanned by the column vectors already drawn,
except with probability exponentially small in n. Therefore, with all but negligible prob-
ability, a matrix sampled from Zm×n will have full rank, and the result follows.

Lemma 2.10. Under the DLPN assumption, for any c ∈ N, (R, fTR) is compu-

tationally indistinguishable from (R, r), where f ∈ Z2(n+c)
2 is drawn from Ber

2(n+c)
τ ,

R ∈R Z2(n+c)×(n+2c)
2 and r ∈R Zn+2c.

Proof. Take an LPN sample of the form (A,As ⊕ e) constructed as detailed in Defini-
tion 2.1, with q = 2(n+c). By Lemma 2.9, this is computationally indistinguishable from

(A′,A′s⊕ e) where A′ ∼ χ2(n+c),n. Let H ∈ Z2(n+c)×(n+2c)
2 be sampled by choosing the

column vectors as a uniformly random basis for the orthogonal complement C ⊆ Z2(n+c)
2

of the columns of A′. C is determined uniformly randomly by the choice of A′, so the
distribution of H is computationally indistinguishable from χ2(n+c),n+2c. It follows, by
Lemma 2.9, that H is indistinguishable from uniformly random.

By construction, HTA = 0, so HT (As ⊕ e) = HTAs ⊕HTe = HTe. This means
that since, under DLPN, (A,As⊕ e) is indistinguishable from random, so is (H,HTe).
The lemma then finally follows from noting that indistinguishability from random still
holds if we transpose the last component.

Theorem 2.11. Under the DLPN assumption, the basic LPN cryptosystem is secure
against chosen plaintext attack.

Proof. Consider an instance of the basic LPN cryptosystem with parameters n and
τ , where the public key is (A,b). Given the public key, one can construct a matrix

R ∈ Z(n+1)×(2n+2)
2 with entries as follows:

ri,j =

ai,j for 1 ≤ i ≤ 2n+ 2, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2n+ 2, j = n+ 1

uniformly random otherwise

By Lemma 2.8, (A,b) is indistinguishable from random. It follows that R is also
indistinguishable from random.

A ciphertext of the message 0 is of the form (fTA, fTb) as defined by LPNEnc.
By Lemma 2.10, r = fTR is indistinguishable from random. Observe that the first
n entries of r are exactly the entries of fTA, and that rn+1 = fTb. Therefore, if
(fTA, fTb) were distinguishable from random, then r would be distinguishable from
random – but this would contradict Lemma 2.10. Therefore, a ciphertext of the message
0 is indistinguishable from random.

7

For any ciphertext κ = (fTA, fTb + 1) of the message 1, there is a corresponding
ciphertext of the message 0, κ′ = (fTA, fTb), that differs from κ only in that one bit
is flipped. Furthermore, Pr[LPNEnc(1) = κ] = Pr[LPNEnc(0) = κ′], so a ciphertext of 1
has exactly the same distribution as a ciphertext of 0, except that the final ciphertext
bit is flipped. Inverting a uniformly random bit yields a uniformly random output, and
we have already established that a ciphertext of the message 0 is indistinguishable from
random. Hence, a ciphertext of the message 1 is also indistinguishable from random.

Therefore, ciphertexts produced by LPNEnc are indistinguishable from random.

The basic LPN cryptosystem can be significantly improved in efficiency by a relatively
simple modification reducing the ciphertext expansion factor (the ratio of ciphertext
to plaintext length) from Õ(n) to as low as O(1). This is achieved by re-using the
encryption randomness over up to ` = O(n) public key rows. To allow for this, we
require ` independent secret keys si and ` independent error vectors ei – thus, the secret
key size increases from O(n) to O(n2), while the public key size remains asymptotically
unchanged. The efficacy of the modification is based on the fact that a large part of the
time taken by the original cryptosystem’s operations is due to the large matrix A.

This modification to the LPN cryptosystem is very similar in structure to the modi-
fication to Regev’s LWE-based cryptosystem proposed by Peikert, Vaikuntanathan, and
Waters [PVW07]. The modified cryptosystem is presented below.

Definition 2.12. (Improved LPN cryptosystem)
Parameters n and τ below are as in Definition 2.4. Additionally, we introduce ` = O(n),
the length of plaintext that can be encrypted in a single operation. All operations are, as
before, performed over Z2.

• LPNKeyGen(): Choose a secret key S ∈ Zn×`2 uniformly at random. For the public

key, choose a matrix A ∈ Z2(n+`)×n
2 uniformly at random, and choose an error

matrix E ∈ Z2(n+`)×`
2 according to Ber

2(n+`)×`
τ . Then the public key is the pair

(A,B), where B = AS + E.

• LPNEnc(pk = (A,B),v): To encrypt a message v ∈ Z`2, choose a vector f ∈
Z2(n+`)
2 according to Ber

2(n+`)
τ . Then the ciphertext is the pair (u, c) where u =

fTA and c = fTB + vT .

• LPNDec(sk = S, (u, c)): The decryption is d such that dT = c + STu.

We now prove correctness and security for the improved cryptosystem.

Lemma 2.13. (Correctness) For each fixed choice of f , encryption followed by de-
cryption of a message v in the improved LPN cryptosystem is equivalent to sending each
bit of v through a binary symmetric channel with some error probability ρ. Furthermore,
for any constant ε > 0, τ can be chosen with τ = Θ(1√

n
) such that, except with negligible

probability, ρ ≤ ε.

8

Proof. The decryption is equal to the correct plaintext v if and only if fTE = 0 (where
0 denotes the zero vector in Z`2), since

dT = c + STu = fTB + vT + ST fTA = fT (AS + E) + vT + ST fTA = fTE + vT .

Let |f | denote the Hamming weight of f . For any given f , the independence of the
columns ei of E implies that the transmitted bits do indeed go independently through
a noisy channel, which has error probability determined by |f |. By Lemma 2.5, for any

given weight |f |, it holds that Pr[fTei = 0] = 1
2 + (1−2τ)|f |

2 . Observe that this probability
increases as |f | decreases.

Let A denote the event that |f | ≤ 3(n+`)τ . |f | is distributed according to Bin2(n+`),τ .
By a Chernoff bound,

Pr[A] < 1−
(√

e

1.5
√

1.5

)2(n+`)τ

.

Note that
(√

e

1.5
√
1.5

)2(n+`)τ
is exponentially small in (n+ `)τ , and that (n+ `)τ →∞ as

n→∞, so A occurs with overwhelming probability.
If A occurs, then the encryption followed by decryption of ` bits in the improved

LPN cryptosystem is equivalent to sending the bits through a binary symmetric channel
with error probability ρ which is at most that of the case where |f | = b3(n+ `)τc. From
Lemma 2.7, it follows that for any constant ε > 0, τ can be chosen subject to τ = Θ(1√

n
)

such that ρ ≤ ε.

Lemma 2.14. (Pseudorandom public keys) If the LPN problem is hard, then the
distribution of the public keys (A,B) generated by LPNKeyGen is computationally indis-

tinguishable from uniform over Z2(n+`)×n
2 × Z2(n+`)×`

2 .

Proof. We define hybrid distributions H0, · · · , H` over matrices (A,B) ∈ Z2(n+`)×n
2 ×

Z2(n+`)×`
2 such that in distribution Hk, the matrix A and the first k columns of B are

uniformly randomly chosen, and the other columns of B are chosen according to the
procedure for generating a column of B given by LPNKeyGen (for parameters n and τ).
Then H0 is exactly the distribution of the public keys generated by LPNKeyGen, and H`

is completely uniform over Z2(n+`)×n
2 × Z2(n+`)×`

2 .
For any k ∈ {0, · · · , `− 1}, we define a simulator Sk which has access to an oracle O

that returns samples in Z2(n+`)×n
2 ×Z2(n+`)

2 that are either chosen uniformly at random,
or are of the form (A,As ⊕ e) as specified in the LPN problem (in Definition 2.1). Sk
outputs a pair (A,B) ∈ Z2(n+`)×n

2 ×Z2(n+`)×`
2 constructed as follows. First, O is queried,

yielding a sample (A′,b′). Then, Sk sets the output matrix A equal to A′; uniformly
randomly chooses the first k columns of the output matrix B; sets the column bk+1 equal
to b′; and for all k < j ≤ `, Sk chooses independent secret vectors sj ∈ Zn2 uniformly

at random, and independent error vectors ej ∈ Z2(n+`)
2 according to Ber

2(n+`)
τ , and sets

bj = Asj + ej .
Observe that if O samples from the uniform distribution, then the output of Sk has

distribution Hk, and otherwise, O samples from the LPN distribution, so the output of

9

Sk has distribution Hk+1. It follows that if LPNn,τ is hard, then Hk and Hk+1 are com-
putationally indistinguishable for all j ∈ {0, · · · , `−1}. Therefore, H` is computationally
indistinguishable from uniformly random H0.

Theorem 2.15. If the LPN problem is hard, then the improved LPN cryptosystem is
secure against chosen plaintext attack.

Proof. Consider an instance of the improved LPN cryptosystem with parameters n and
τ , with ` = O(n), where the public key is (A,B). Given the public key, one can construct

a matrix R ∈ Z2(n+`)×(n+`)
2 with entries as follows:

ri,j =

ai,j for 1 ≤ i ≤ 2n+ `, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2n+ `, n+ 1 ≤ j ≤ n+ `

uniformly random otherwise

By Lemma 2.14, (A,B) is indistinguishable from random. Therefore, R is also indistin-
guishable from random.

A ciphertext in the improved LPN cryptosystem is of the form (fTA, fTB + v) as
specified in Definition 2.12. By Lemma 2.10, r = fTR is indistinguishable from random.
Observe that the first n entries of r are exactly the entries of fTA, and that the re-
maining entries of r are exactly those of fTB. Hence, if (fTA, fTB) were distinguishable
from random, then r would be distinguishable from random – but this would contradict
Lemma 2.10. It follows that ciphertexts are indistinguishable from (A′,b′ + v) where
A′ ∈R Zn2 ,b′ ∈R Z`2 are uniformly random.

Now for any v,v′ ∈ Z`2, given any ciphertext (u, c) of the improved LPN cryptosys-
tem:

Pr[(u, c) is an encryption of v] = Pr[b′ = v + c]

Pr[(u, c) is an encryption of v′] = Pr[b′ = v′ + c]

Since b′ is uniformly random, then, for any ciphertext and any pair of possible corre-
sponding plaintexts v,v′, it is the case that to an adversary v and v′ are equally likely
to be the correct decryption. Therefore, the improved LPN cryptosystem is secure under
chosen plaintext attack.

Finally, to increase the security of the improved LPN cryptosystem for practical
purposes, we propose an additional encryption/decryption step based on all-or-nothing
transforms (AONTs). Intuitively, these are invertible transforms that are difficult to
invert unless (almost) all transformed bits are known. They were introduced and for-
malised in [Riv97; Boy99]; a formal definition suitable for our purposes is provided below.

Definition 2.16. (All-or-nothing transform)
A transformation f : Zs2 → Zs′2 is called an all-or-nothing transform for ` missing bits if
the following properties hold:

• f is invertible.

10

• Both f and its inverse f−1 are efficiently computable (i.e. in polynomial time).

• Given up to s′− ` bits of f(x), for any x, it is computationally infeasible to deter-
mine x.

In the improved LPN cryptosystem as defined above, note that an attacker may
learn one bit of plaintext by discovering just n bits of secret. By applying an AONT
to the message prior to encryption, we may take advantage of the many independent
n-bit secrets in parallel use in the improved cryptosystem. An adversary must, in the
modified system, learn almost all transmitted bits in order to gain knowledge of any bit
of the plaintext message, and thus the security level of the cryptosystem is increased
by a factor of roughly the message length. This comes at the cost of a slightly larger
payload to transmit, as AONTs incur a small message expansion factor, as well as the
time taken to perform the AONT and inverse.

Concretely, we take Optimal Asymmetric Encryption Padding (OAEP) [BR94] as
the AONT for the improved LPN cryptosystem. Originally introduced by Bellare and
Rogaway for unrelated purposes, OAEP was shown by Boyko to be a provably secure
AONT in [Boy99].

Definition 2.17. (Optimal Asymmetric Encryption Padding)
For parameters n and k0, generator G : Zk02 → Zn2 , and hash function H : Zn2 → Zk02 ,
the transform OAEP : Zn2 × Zk02 → Zn+k02 is defined as follows:

OAEPG,H(x, r) = x⊕G(r) || r ⊕H(x⊕G(r)),

where || denotes concatenation.

For appropriate parameter choices for the OAEP1, it turns out that the increase in
the security level of the cryptosystem allows for significantly smaller public/private key
sizes, and thus the additional AONT step is found to be worthwhile with the benefits
outweighing the costs.

3 Parameters

In this section we provide an overview of the methodology and efficiency of known
practical attacks on LPN, with a focus on those that led to the current state-of-the-art
algorithm. This will provide context for our choice of parameters for a secure cryptosys-
tem. We note that though some known attacks on LPN focus on breaking particular
LPN-based (symmetric-key) systems, there has not been, as far as we know, significant
attention given thus far to the specific challenges of breaking LPN-based public key en-
cryption such as this paper discusses. Accordingly, we analyse general applicable attacks
on the LPN problem. Given the absence of known algorithms targeting the decisional
LPN problem, we consider it reasonable to base our parameter estimates on the existing
attacks against search LPN.

1Note, in particular, that the security level k0 of the OAEP must be at least equal to the number of
bits of security we hope to gain for the cryptosystem.

11

3.1 Known Attacks

The earliest notable attack on LPN was the Blum-Kalai-Wasserman (BKW) algorithm
[BKW03]. The BKW method is based on the idea that by carefully choosing small sets
of vectors from a large set of samples and computing their exclusive-or, we may create
“new” LPN samples where a single coordinate is set and all the other coordinates are null
(which are slightly noisier than the original samples). With a sufficient number of such
“new” samples, the secret may be computed correctly with high probability, by taking
a majority vote over the “new” samples for the value of each bit in the secret vector.
The BKW algorithm is estimated to have time complexity 2O(n/ logn) for 2O(n/ logn)

samples. A subsequent variant algorithm by Lyubashevsky [Lyu05] had time complexity
2(n/ log logn) for n1+ε samples.

Levieil and Fouque’s LF1 and LF2 algorithms [LF06] practically but not asymptot-
ically improve upon the above, and furthermore are the first BKW-style LPN attacks
with a documented implementation. Their modification is to the final step of the BKW
algorithm, where instead of solving equations over one bit as in the original version, they
solve equations over b > 1 bits at a time, with the help of Walsh-Hadamard transforms.
LF2, unlike LF1, makes use of heuristics in this final step, which invalidate the upper
bound on the probability of failure which is proven for LF1; however, the implementation
of [LF06] did not show a difference in the success rate of the two algorithms.

More recently, Kirchner proposed a modified algorithm [Kir11] using ideas from all
the prior work, that greatly decreases (to O(n)) the number of samples needed for a
successful attack. The insight of Kirchner was to essentially reduce a standard LPN
problem to an easier one, in the following way. Given a set of q LPN samples of the form
(ai, 〈ai, s〉 ⊕ ei) for i ∈ {1, . . . , q}, we may choose a set T containing n elements each in
{1, . . . , q}, and assemble the vectors at for t ∈ T into the rows of an n × n matrix AT .
Let ẽT denote the vector whose entries are the bits bt = 〈at, s〉 ⊕ et for t ∈ T .

Suppose we choose some random set S and hope that AS is invertible. This happens
with about 30% probability; as long as there are enough samples, we may re-sample S
until invertibility holds. Then for any T 6= S we may compute the following:

(ATA−1S , (ATA−1S)(ASs⊕ ẽS)⊕ (AT s⊕ ẽT)) = (ATA−1S , (ATA−1S)ẽS ⊕ ẽT).

Notice that such newly computed pairs will have exactly the distribution of LPN samples
with secret ej . The original secret s has been eliminated from the new samples, but if ej
is discovered, then s can be deduced. We have effectively converted the LPN oracle for
secret s into one for secret ej – and the new problem is much easier to solve, provided
that ej has low weight, as is the case in many LPN-based systems.

Bernstein and Lange’s yet more recent attack [BL12] targeting the Lapin authen-
tication protocol [Hey+12] is in fact applicable to many LPN-based systems, and is a
version of Kirchner’s algorithm optimised and modified for the fact that Lapin is based
on ring-LPN (a variant of the LPN problem). A slight modification, mentioned briefly
in [BL12], can make the attack apply also to standard LPN; this comes at a relatively
minor cost in time, but the number of queries required is actually less for the LPN
version.

12

This last attack has the best performance currently known, and therefore we shall
use its timings as reference for the purposes of our parameter choices. We take the
attack timings of the ring-LPN version, both because the standard LPN version is only
cursorily documented in [BL12], and because we aim to take conservative parameters
with a reasonable security margin against slight optimisations to the algorithm (we
estimate that the timings will differ by a factor of less than 210).

3.2 Parameter Choices

The number of bit operations required for a successful run of the state-of-the-art attack,
according to the analysis of [BL12], is equal to 2f(n,τ,a,b,l,W,q), where f is a function of
the cryptosystem parameters n, τ and the algorithm parameters a, b, l,W, q, as follows:

f(n, τ, a, b, l,W, q) =
∑
w≥2

(
n

w

)
τw(1− τ)n−w

+ log2

 12q(n2 + n) + a(q − 1)n2+

(
(q − 1)n− 2ba

) ∑
w≤W

((
n− ab− l

w

)
w

)
+ l2l

∑
w≤W

(
n− ab− l

w

) .

We choose that the probability of incorrect decryption of a bit should be 25%, in
order to allow for error correction using codes with a reasonably low expansion factor of
about 5; that is, we impose that

1

2
− (1− 2τ2)2n+2

2
= 0.25.

Given the low values of τ relative to n that result from the above condition, the
expected number of nonzero bits in an error vector is very low, and therefore we consider
it a reasonable choice to set l = 1 and W = 1 for a good attack. (Intuitively, the
attack algorithm “hopes” that in a set of W error bits, l or fewer bits will be nonzero.)
The parameter q can be a small integer, and does not greatly influence the algorithm’s
performance (note that in the ring-LPN version, q matters more), so we simply set it at
a generous value of 20.

Having determined reasonable values for W , l, and q, we find the values of a and b
that minimise n for a range of security levels. (Note that a and b are subject to a few
additional restrictions detailed in [BL12]; we take these restrictions into account.) The
results are given in the table below.

Security level (bits) n τ a b

80 9000 0.0044 7 14
112 21000 0.0029 7 14
128 29000 0.0024 8 16
196 80000 0.0015 8 16
256 145000 0.0011 7 17

13

We have taken slightly conservative parameters rather than aiming for exact security
levels, since we only expect our parameter choices to be close to optimal2. For the same
reason, we conservatively omitted from our calculation the several extra bits of security
gained for the improved cryptosystem in the case that all-or-nothing transforms are
used. We expect that all together, the conservative measures that we have taken give
our parameter estimates a margin of safety of between 7 and 14 bits of security.

4 Implementation

We compare the performance of the basic and improved LPN cryptosystems and RSA
in implementation, for different security levels. The LPN cryptosystems primarily entail
manipulation of bit matrices and bit vectors of dimension O(n). Our implementation
of the improved system performs w operations in the parallel where w, the word size,
is in our case equal to 64. Thus, one encryption/decryption operation for that scheme
handles 64 plaintext bits in one go.

The implementation was written in C++. The implementations and all programs
used for comparison purposes were run on the same machine, with a 2.6GHz Intel Core
i5 processor with 8GB of RAM.

Mean time per encryption (s) Mean time per decryption (s)
Security level (bits) 80 112 128 80 112 128

Basic LPN 0.428000 2.232500 4.195000 0.000050 0.000110 0.000150
Improved LPN 24.275000 129.780000 248.470000 0.001400 0.003200 0.005000

RSA 0.000020 0.000040 0.00012 0.000200 0.001250 0.008733

For security levels 80, 112 and 128, we chose for RSA modulus sizes 1024, 2048 and 4096,
respectively. The RSA decryption time assumes that the standard chinese remainder
optimisation is used to reduce decryption to two exponentiations on half-size numbers.
The RSA encryption time assumes the public exponent is 216 + 1, a de facto standard in
practice. In comparison, naive usage of the basic LPN scheme is much slower. On the
other hand, the encryption time for the LPN scheme can also be reduced in several ways:
for example, we expect that our implementation can be significantly optimised by more
intensive parallelisation, such as multi-threading, asynchronous I/O to reduce memory
requirements while maintaining efficiency, and use of SIMD instructions. Furthermore,
in a practical implementation scenario, there may be idle time that can be allotted to
preprocessing. In this case, since fTA and fTb (or fTB, in the improved system) do not
depend on the message to be encrypted, they could be precomputed offline. We found
that more than 99% of encryption time is comprised of matrix multiplication, so such
preprocessing would reduce the online encryption time to something similar to the time
needed for decryption. Such preprocessing can also be done for some discrete-log based
schemes, but not for RSA as far as we are aware.

2It may be of interest and reassurance that by using our method to find near-optimal parameters, we
find attacks that are slightly better than the concrete examples given in [BL12] itself.

14

We see that the basic LPN scheme uses smaller time per operation than the improved
scheme. However, correcting for the fact that the improved scheme does 64 plaintext
bits at a time, the improved scheme is faster, but only slightly so.

To get a reasonable comparison between the LPN and RSA schemes, one may con-
sider a typical application, namely for k-bit security to encrypt and decrypt a k-bit
symmetric key. This can be done with one RSA operation. For LPN we need to con-
sider that because of the 25% decryption error per bit we need to expand the plaintext
by a factor of about 1/(1− h(25%)) ≈ 5 where h is the binary entropy function. So for
instance for k = 128 the decryption time needed in the basic scheme is 0.00015 · 128 · 5.
In this way, one finds that decryption in the improved scheme is slower than RSA by
factors of 42, 22 and 5.7 for 80, 112 and 128-bit security.

5 Conclusion

We have seen that LPN based public key encryption currently seems impractical in
standard applications due to the fact that either public key or ciphertext will be very
large for reasonable levels of security. Only if decryption time can be considered the
only bottleneck will LPN be an alternative to consider in practice.

6 Acknowledgement

We are grateful to Dan Bernstein and Tanja Lange for information about recent attacks
on LPN.

References

[Ale03] Michael Alekhnovich. “More on Average Case vs Approximation Complex-
ity”. In: FOCS. IEEE Computer Society, 2003, pp. 298–307. isbn: 0-7695-
2040-5.

[BR94] Mihir Bellare and Phillip Rogaway. “Optimal Asymmetric Encryption”.
In: EUROCRYPT. Ed. by Alfredo De Santis. Vol. 950. Lecture Notes in
Computer Science. Springer, 1994, pp. 92–111. isbn: 3-540-60176-7.

[BL12] Daniel J. Bernstein and Tanja Lange. “Never Trust a Bunny”. In: RFIDSec.
Ed. by Jaap-Henk Hoepman and Ingrid Verbauwhede. Vol. 7739. Lecture
Notes in Computer Science. Springer, 2012, pp. 137–148. isbn: 978-3-642-
36139-5.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-tolerant learning,
the parity problem, and the statistical query model”. In: J. ACM 50.4
(2003), pp. 506–519.

15

[Boy99] Victor Boyko. “On the Security Properties of OAEP as an All-or-Nothing
Transform”. In: CRYPTO. Ed. by Michael J. Wiener. Vol. 1666. Lecture
Notes in Computer Science. Springer, 1999, pp. 503–518. isbn: 3-540-66347-
9.

[Cas12] David Cash. Private communication. 2012.

[DMQN12] Nico Döttling, Jörn Müller-Quade, and Anderson C. A. Nascimento. “IND-
CCA secure Cryptography based on a variant of the LPN Problem”. To
appear at AsiaCrypt 2012. 2012.

[GRS08] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. “How to En-
crypt with the LPN Problem”. In: ICALP (2). Ed. by Luca Aceto et al.
Vol. 5126. Lecture Notes in Computer Science. Springer, 2008, pp. 679–690.
isbn: 978-3-540-70582-6.

[Hey+12] Stefan Heyse et al. “Lapin: An Efficient Authentication Protocol Based on
Ring-LPN”. In: FSE. Ed. by Anne Canteaut. Vol. 7549. Lecture Notes in
Computer Science. Springer, 2012, pp. 346–365. isbn: 978-3-642-34046-8.

[JW05] Ari Juels and Stephen A. Weis. “Authenticating Pervasive Devices with
Human Protocols”. In: CRYPTO. Ed. by Victor Shoup. Vol. 3621. Lecture
Notes in Computer Science. Springer, 2005, pp. 293–308. isbn: 3-540-28114-
2.

[KKS95] Jeff Kahn, János Komlós, and Endre Szemerédi. “On the Probability That
a Random ±1-Matrix Is Singular”. In: J. American Mathematical Society
8.1 (1995), pp. 223–240.

[KSS10] Jonathan Katz, Ji Sun Shin, and Adam Smith. “Parallel and Concurrent
Security of the HB and HB+ Protocols”. In: J. Cryptology 23.3 (2010),
pp. 402–421.

[Kir11] Paul Kirchner. Improved Generalized Birthday Attack. Cryptology ePrint
Archive, Report 2011/377. http://eprint.iacr.org/. 2011.

[LF06] Éric Levieil and Pierre-Alain Fouque. “An Improved LPN Algorithm”. In:
SCN. Ed. by Roberto De Prisco and Moti Yung. Vol. 4116. Lecture Notes
in Computer Science. Springer, 2006, pp. 348–359. isbn: 3-540-38080-9.

[Lyu05] Vadim Lyubashevsky. “The Parity Problem in the Presence of Noise, De-
coding Random Linear Codes, and the Subset Sum Problem”. In: APPROX-
RANDOM. Ed. by Chandra Chekuri et al. Vol. 3624. Lecture Notes in
Computer Science. Springer, 2005, pp. 378–389. isbn: 3-540-28239-4.

[Mic10] Daniele Micciancio. Invited talk given at PKC ’10. Slides available at
http://cseweb.ucsd.edu/ daniele/papers/DualitySlides.pdf. 2010.

[PVW07] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A Framework
for Efficient and Composable Oblivious Transfer”. In: IACR Cryptology
ePrint Archive 2007 (2007), p. 348.

16

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: STOC. Ed. by Harold N. Gabow and Ronald Fagin.
ACM, 2005, pp. 84–93. isbn: 1-58113-960-8.

[Riv97] Ronald L. Rivest. “All-or-Nothing Encryption and the Package Transform”.
In: FSE. Ed. by Eli Biham. Vol. 1267. Lecture Notes in Computer Science.
Springer, 1997, pp. 210–218. isbn: 3-540-63247-6.

17

	Introduction
	The Cryptosystem
	Parameters
	Known Attacks
	Parameter Choices

	Implementation
	Conclusion
	Acknowledgement

