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Abstract

In this work we construct an algorithm for sampling Discrete Gaussians efficiently and obliviously.
Previously discrete Gaussian samplers have been constructed in [GPV08, Pei10], where the algorithms
take as input a “high quality” basis and produce an output whose quality depends on the input basis
quality. Our algorithm produces a discrete Gaussian of somewhat worse quality than [GPV08, Pei10]
but with the advantage that it does not require access to an explicit description of the underlying lattice,
for example it suffices for our purposes to have encryptions of lattice vectors under an additively ho-
momorphic encryption scheme. At the heart of our work is the fundamental question how do sums of
discrete Gaussians behave? Unlike their continuous counterparts, discrete Gaussians are not that well
understood. We believe that our work fills in some important gaps of this understanding. Our results
are already important in enabling the exciting new work on multilinear maps [GGH12], and since the
questions we resolve arise naturally, we believe that our work will find application in other areas as well.
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1 Introduction

Lattice based cryptography has recently acquired a great deal of attention and interest due to several at-
tractive features – worst case guarantees, resistance to quantum attacks and suitability for constructing rich
and exciting cryptographic primitives such as fully homomorphic encryption [Gen09, Gen10, vDGHV10,
BV11a, BV11b, BGV12], functional encryption [GPV08, CHKP10, ABB10, AFV11, ABV+12], digital
signatures [GPV08, Boy10], PRFs [BPR12] and many more. At the heart of many of these schemes lies a
discrete Gaussian sampler – an algorithm that samples points on a lattice, with probability proportional to a
Gaussian distribution. Discrete Gaussian distributions show up frequently in the techniques of lattice based
cryptography, most notably in the famous “Learning with Errors” assumption, but also often simplifying
proofs and yielding better analysis [MR04, Reg09]. The first Gaussian sampler was proposed by Gentry et
al, which immediately enabled numerous important applications [GPV08]. Subsequently, Peikert described
a different sampler, which is more efficient than GPV’s sampler and can be parallelized easily at the price
of producing a slightly “lower-quality” Gaussian distribution. Both these samplers take as input an explicit
description of a “high quality basis” of the relevant lattice, and the quality of their output distribution is
related to the quality of the input basis.

In this work we describe yet another Gaussian sampler, one that can get by with having only an implicit
description of the input lattice. For example, suppose we are given a set of lattice vectors, encrypted under
an additively homomorphic scheme. Then, our sampler can be use to sample (encryptions of) well behaved
discrete Gaussian on the underlying lattice.

1.1 Fundamental Questions

At the core of our new sampling algorithm lies the fundamental question: how do sums of discrete Gaussians
behave? Formally, the discrete Gaussian distribution DL,s,~c over a lattice L, with standard deviation s and
center ~c, assigns a point ~x ∈ L probability proportional to e−π‖~x−~c‖

2/s2 , and for ~x /∈ L, assigns probability
0. Despite their utility and our excellent understanding of continuous Gaussians, there are curious gaps in
our understanding of discrete Gaussians.

We know that, if x and y are two independent random variables that are normally distributed, then x+ y
is also normally distributed, with its mean being the sum of the two means, and its variance being the sum
of the two variances. However, things become more complicated when the distributions are discrete. It is
natural to ask: if x and y are chosen according to discrete Gaussian distributions, is the distribution of x+ y
statistically close to a discrete Gaussian? This is not true in general. Consider for example, the sum of two
discrete Gaussians DZ,5 and D100·Z,500. Clearly, in this distribution, the numbers 100 and 200 have a good
chance of being chosen, while 150 does not. The “shape” of the sum of two discrete Gaussian distributions
looks very non-Gaussian in general.

More generally, given an n dimensional lattice L, and vectors X = [~x1|~x2| . . . |~xm]> where ~xi ∈ L,
we can ask the following fundamental questions: If ~z ∼ DZm,s′ , then under what conditions (on X and
s′) is X>~z statistically close to a discrete Gaussian over L? Can we control the “shape” of the resultant
discrete Gaussian, and make it spherical, or close to spherical? The first question has not been answered
satisfactorily even in the one-dimensional setting: given fixed ~y ∈ Zm, how large does s′ need to be for
〈~y, ~z〉 to be statistically close to a (one-dimensional) Gaussian over Z when ~z ∼ DZm,s′?
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1.2 Sampling Discrete Gaussians Efficiently and Obliviously

The above questions are interesting not just from the theoretical perspective but also have great relevance
from the application standpoint. One application is the construction of efficient spherical Gaussian samplers
[GPV08, Pei10]. Peikert’s sampler [Pei10] is elegant and its complexity is difficult to beat: the only online
computation is to compute ~c−B1bB−1

1 (~c− ~x2)e, where ~c is the center of the Gaussian, B1 is the sampler’s
basis for its lattice L, and ~x2 is a vector that is generated in an offline phase (freshly for each sampling) in a
way designed to “cancel” the covariance of B1 so as to induce a purely spherical Gaussian. However, it is
conceivable that a faster and even more natural sampler Gaussian exists, at least when ~c = 0. Specifically,
consider the following sampler. In an offline phase, for m > n, the sampler samples a set of short vectors
X = [~x1|~x2| . . . |~xm]> from L – e.g., using GPV or Peikert’s algorithm. Then, in the online phase, the
sampler generates ~z ∈ Zm per the Gaussians zi ∼ DZ,si , and simply outputs X>~z. Conceivably, since
this sampler just directly takes an integer linear combination of lattice vectors, and does not require extra
precision for handling the inverse B−1

1 , it might outperform Peikert’s in some situations. But does this
simpler sampler work – i.e., can we say anything about its output distribution? Also, how small can we
make the dimension m of ~z and how small can we make the entries of ~z? Ideally m would be not much
larger than the dimension of the lattice and the entries of ~z have small variance – e.g., Õ(

√
n).

As another natural cryptographic application, suppose you want to sample a lattice point according to
a canonical near-spherical Gaussian, without explicit access to a good quality basis of the lattice? For ex-
ample, suppose you are given lattice points encrypted under an additively homomorphic encryption scheme
and wish to use them to generate an encrypted well behaved Gaussian on the underlying lattice. Previous
samplers [GPV08, Pei10] are too complicated to use within an additively homomorphic encryption scheme.
As noted by [Pei10], one can indeed generate an ellipsoidal Gaussian distribution over the lattice given a
basis B by just outputting ~y ← B · ~z where ~z ∼ DZn,s, but this ellipsoidal Gaussian distribution would
typically be very skewed. So, it seems natural to ask: can we get a “more spherical” Gaussian by using a
slightly larger set X = [~x1|~x2| . . . |~xm]> of lattice vectors?

The generation and randomization of ciphertexts in certain lattice-based homomorphic encryption schemes
[Gen09, Gen10, vDGHV10, BV11a, BV11b, BGV12] also raise questions about the sum of discrete Gaus-
sians. A common strategy in these schemes is to encrypt a plaintext m by taking the sum of m with a
random linear combination of encryptions of 0 that are provided in the public key. Similarly, a common way
to “randomize” a ciphertext so as to provide “function privacy” (to hide what function was evaluated on the
plaintexts) is to add a random encryption of 0 that “drowns” the original ciphertext. In most of these schemes
[Gen09, Gen10, BV11a, BV11b, BGV12], ciphertexts live in a finite ring, and arguing security involves a
straightforward application of the leftover hash lemma [ILL89, HILL99]. However, in the integer-based
fully homomorphic encryption scheme [vDGHV10], ciphertexts live in Z. van Dijk et al. still manage to
apply the left-over hash lemma in this setting, but awkwardly; they complicate the encryption procedure by
reducing the linear combination of ciphertexts modulo a large ciphertext, so as to bring the scheme back in to
the realm of finite rings where the leftover hash lemma is naturally applied. Rothblum [Rot11] proves a nice
information theoretic lemma (incomparable, but in a similar spirit, to our results here) and uses this lemma to
show that the complication in [vDGHV10] can be eliminated by restricting plaintexts to bits. However, this
and other previous results do not answer whether the integer-based fully homomorphic encryption scheme
can use the “natural” sum-of-ciphertexts encryption procedure without restricting its plaintext space to bits.1

Can we use the sum-of-ciphertexts approach when the sum is a Gaussian linear combination? To answer
this, we need to resolve basic questions about sums of discrete Gaussians in the one-dimensional setting.

1The security proof in [vDGHV10] relies on plaintext space being bits, but can be adapted easily to larger spaces.
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Finally, a recent construction of (lattice-based) cryptographic multilinear maps [GGH12] requires an
efficient procedure for randomizing encodings. In their scheme, encodings are somewhat like encryptions,
but are not semantically secure by design (the encodings permit an equality test). For security, they need to
argue that the encodings generated by legitimate parties have nice distributions, even though the encodings
are generated via a fast sum-of-encodings procedure that is oblivious to the underlying lattice structure. Our
theorem allows them to argue this.

1.3 Our Results

Consider an n dimensional lattice L and vectors X = [~x1|~x2| . . . |~xm]> where ~xi ← DL,S for some matrix
S. Let ~z ← DZm,s′ . We analyze the conditions under which the vector X>~z is statistically close to a
“near-spherical” discrete Gaussian. Formally, consider:

EX,s′
def
= {X>~z : ~z ← DZm,s′}.

Then, we prove that EX,s′ is close to a discrete Gaussian over L of moderate “width”. Specifically, we
show that for large enough s′, with overwhelming probability over the choice of X:

1. The distribution EX,s′ is statistically close to the ellipsoid Gaussian DL,s′X , over L.

2. The singular values of the matrix X are of size roughly s
√
m, hence the shape of DL,s′X is “roughly

spherical”. Moreover, the “width” of DL,s′X is roughly s′s
√
m = poly(n).

We emphasize that it is straightforward to show that the covariance matrix of EX,s′ is exactly s′2X>X .
However, the technical challenge lies in showing that EX,s′ is close to a discrete Gaussian for a non-
square X . Also note that for a square X , the shape of the covariance matrix X>X will typically be very
“skewed” (i.e., the least singular value of X is typically much smaller than the largest singular value).

Another way to view our result is as an extension of the leftover hash lemma to infinite rings – that is,
to a setting where we are not permitted to perform modular reduction on the final result.

1.4 Our Techniques

Our main result can be argued along the following broad outline. Our first theorem (Theorem 2) says that
the distribution of X>~z ← EX,s′ is indeed statistically close to a discrete Gaussian over L, as long as s′

exceeds the smoothing parameter of the “orthogonal lattice” of X (denoted A). Next, theorem 3 clarifies
that A will have a small smoothing parameter as long as X is “regularly shaped” in a certain sense. Finally,
we argue in Lemma 8 that when the columns of X are chosen from a discrete Gaussian, ~xi ← DL,S , then
X is “regularly shaped,” i.e. has singular values all close to σn(S)

√
m.

The analysis of the smoothing parameter of X’s “orthogonal lattice” A is particularly challenging and
requires careful analysis of a certain “dual lattice” related to A. Specifically, we proceed by first embedding
A into a full rank lattice Aq and then move to study Mq – the (scaled) dual of Aq. Here we obtain a lower
bound on λn+1(Mq), i.e. the n+ 1th minima of Mq. Next, we use a theorem by Banasczcyk to convert the
lower bound on λn+1(Mq) to an upper bound on λm−n(Aq), obtainingm−n linearly independent, bounded
vectors inAq. We argue that these vectors belong to A, thus obtaining an upper bound on λm−n(A). Relating
λm−n(A) to ηε(A) using a lemma by Micciancio and Regev completes the analysis.

To argue that X is regularly shaped, we begin with the literature of random matrices which establishes
that for a matrix H ∈ Rm×n, where each row of H is distributed as ~hi ∼ N (0, s2) and m is sufficiently
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greater than n, then the singular values of H are all of size roughly s
√
m. We extend this result to discrete

Gaussians – showing that as long as each row ~xi ← DL,S where S is “not too small” and “not too skewed”,
then with high probability the singular values of X are all of size roughly s

√
m.

1.5 Related Work

Discrete Gaussian samplers have been studied by [GPV08] and [Pei10]. Both these works describe a discrete
Gaussian sampling algorithm that takes as input a ‘high quality’ basis B for an n dimensional lattice L and
output a sample from DL,s,~c. In [GPV08], s ≥ ‖B̃‖ · ω(

√
log n), and B̃ = maxi ‖b̃i‖ is the Gram Schmidt

orthogonalization of B. In contrast, the algorithm of [Pei10] requires s ≥ σ1(B), i.e. the largest singular
value of B, but is fully parallelizable. In contrast, our sampler produces a Gaussian with worse width –
roughly ss′

√
m where s ≥ ηε(L), s′ ≥ 4mn ln(1/ε), but has the advantage of being linearly computable,

thus making it possible to sample from the required distribution given only encryptions (under an additively
homomorphic encryption scheme) of lattice vectors.

More recently, Boneh and Freeman [BF11] observed that, under certain conditions, a sum of two discrete
Gaussian distribution over different lattices may be a discrete Gaussian over the sum of the two lattices.
However, the deviations of the Gaussians needed to achieve this are quite large.

2 Preliminaries

We begin by defining some notation that will be used throughout the paper. We say that a function f : R+ →
R+ is negligible if for all d > d0 we have f(λ) < 1/λd for sufficiently large λ. We write f(λ) < negl(λ).
For two distributions D1 and D2 over some set Ω we define the statistical distance SD(D1,D2) as

SD(D1,D2)
def
=

1

2

∑
x∈Ω

∣∣Pr
D1

[x]− Pr
D2

[x]
∣∣

We say that two distribution ensemblesD1(λ) andD2(λ) are statistically close or statistically indistinguish-
able if SD

(
D1(λ),D2(λ)

)
is a negligible function of λ.

2.1 Gaussian Distributions

For any real s > 0 and vector ~c ∈ Rn, define the (spherical) Gaussian function on Rn centered at ~c
with parameter s as ρs,~c(~x) = exp(−π‖~x − ~c‖2/s2) for all ~x ∈ Rn. The normal distribution with
mean µ and deviation σ, denoted N (µ, σ2), assigns to each real number x ∈ R the probability density
f(x) = 1

σ
√

2π
· ρσ√2π,µ(x). The n-dimensional (spherical) continuous Gaussian distribution with center

~c and uniform deviation σ2, denoted N n(~c, σ2), just chooses each entry of a dimension-n vector indepen-
dently from N (ci, σ

2).
The n-dimensional spherical Gaussian function generalizes naturally to ellipsoid Gaussians, where the

different coordinates are jointly Gaussian but are neither identical nor independent. In this case we replace
the single variance parameter s2 ∈ R by the covariance matrix Σ ∈ Rn×n (which must be positive-definite
and symmetric). To maintain consistency of notations between the spherical and ellipsoid cases, below we
let S be a matrix such that S> × S = Σ. Such a matrix S always exists for a symmetric Σ, but it is not
unique. (In fact there exist such S’es that are not even n-by-n matrices, below we often work with such
rectangular S’es.)
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For a rank-n matrix S ∈ Rm×n and a vector ~c ∈ Rn, the ellipsoid Gaussian function on Rn centered at
~c with parameter S is defined by

ρS,~c(~x) = exp
(
− π(~x− ~c)>(S>S)−1(~x− ~c)

)
∀~x ∈ Rn.

Obviously this function only depends on Σ = S>S and not on the particular choice of S. It is also clear
that the spherical case can be obtained by setting S = sIn, with In the n-by-n identity matrix. Below we
use the shorthand ρs(·) (or ρS(·)) when the center of the distribution is ~0.

2.2 Matrices and Singular Values

In this note we often use properties of rectangular (non-square) matrices. For m ≥ n and a rank-n matrix
X ∈ Rm×n, the pseudoinverse of X is the (unique) m-by-n matrix Y such that X>Y = Y >X = In and
the columns of Y span the same linear space as the columns of X . It is easy to see that Y can be expressed
as Y = X(X>X)−1 (note that X>X is invertible since X has rank n).

For a rank-n matrix X ∈ Rm×n, denote UX = {‖X~u‖ : ~u ∈ Rn, ‖~u‖ = 1}. The least singular value of
X is then defined as σn(X) = inf(UX) and similarly the largest singular value of X is σ1(X) = sup(UX).
Some properties of singular values that we use later in the text are stated in Fact 1.

Fact 1. For rank-n matrices X,Y ∈ Rm×n with m ≥ n, the following holds:

1. If X>X = Y >Y then X,Y have the same singular values.

2. If Y is the (pseudo)inverse of X then the singular values of X,Y are reciprocals.

3. If X is a square matrix (i.e., m = n) then X , XT have the same singular values.

4. If σ1(Y ) ≤ δσn(X) for some constant δ < 1, then σ1(X+Y ) ∈ [1−δ, 1+δ]σ1(X) and σn(X+Y ) ∈
[1− δ, 1 + δ]σn(X).

It is well known that when m is sufficiently larger than n, then the singular values of a “random matrix”
X ∈ Rm×n are all of size roughly

√
m. For example, Lemma 1 below is a special case of [LPRTJ05,

Thm 3.1], and Lemma 2 can be proven along the same lines of (but much simpler than) the proof of [Tao12,
Corollary 2.3.5].

Lemma 1. There exists a universal constant C > 1 such that for any m > 2n, if the entries of X ∈ Rm×n
are drawn independently from N (0, 1) then Pr[σn(X) <

√
m/C] < exp(−O(m)).

Lemma 2. There exists a universal constant C > 1 such that for any m > 2n, if the entries of X ∈ Rm×n
are drawn independently from N (0, 1) then Pr[σ1(X) > C

√
m] < exp(−O(m)).

Corollary 1. There exists a universal constant C > 1 such that for any m > 2n and s > 0, if the entries of
X ∈ Rm×n are drawn independently from N (0, s2) then

Pr
[
s
√
m/C < σn(X) ≤ σ1(X) < sC

√
m
]
> 1− exp(−O(m)).

Remark. The literature on random matrices is mostly focused on analyzing the “hard cases” of more
general distributions and m which is very close to n (e.g., m = (1 + o(1))n or even m = n). For our
purposes, however, we only need the “easy case” where all the distributions are Gaussian and m� n (e.g.,
m = n2), in which case all the proofs are much easier (and the universal constant from Corollary 1 get
closer to one).
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2.3 Lattices and their Dual

A lattice L ⊂ Rn is an additive discrete sub-group of Rn. We denote by span(L) the linear subspace of Rn,
spanned by the points in L. The rank of L ⊂ Rn is the dimension of span(L), and we say that L has full
rank if its rank is n. In this work we often consider lattices of less than full rank.

Every (nontrivial) lattice has bases: a basis for a rank-k lattice L is a set of k linearly independent points
~b1, . . . ,~bk ∈ L such that L = {

∑k
i=1 zi

~bi : zi ∈ Z ∀i}. If we arrange the vectors ~bi as the columns of a
matrix B ∈ Rn×k then we can write L = {B~z : ~z ∈ Zk}. If B is a basis for L then we say that B spans L.

Definition 1 (Dual of a Lattice). For a lattice L ⊂ Rn, its dual lattice consists of all the points in span(L)
that are orthogonal to L modulo one, namely:

L∗ = {~y ∈ span(L) : ∀~x ∈ L, 〈~x, ~y〉 ∈ Z}

Clearly, if L is spanned by the columns of some rank-k matrix X ∈ Rn×k then L∗ is spanned by the
columns of the pseudoinverse of X . It follows from the definition that for two lattices L ⊆ M we have
M∗ ∩ span(L) ⊆ L∗.

Banasczcyk provided strong transference theorems that relate the size of short vectors in L to the size
of short vectors in L∗. Recall that λi(L) denotes the i-th minimum of L (i.e., the smallest s such that L
contains i linearly independent vectors of size at most s).

Theorem 1 (Banasczcyk [Ban93]). For any rank-n lattice L ⊂ Rm, and for all i ∈ [n],

1 ≤ λi(L) · λn−i+1(L∗) ≤ n.

2.4 Gaussian Distributions over Lattices

The ellipsoid discrete Gaussian distribution over lattice L with parameter S, centered around ~c, is

∀ ~x ∈ L,DL,S,~c(~x) =
ρS,~c(~x)

ρS,~c(L)
,

where ρS,~c(A) for set A denotes
∑

~x∈A ρS,~c(~x). In other words, the probability DL,S,~c(~x) is simply propor-
tional to ρS,~c(~x), the denominator being a normalization factor. The same definitions apply to the spherical
case, which is denoted by DL,s,~c(·) (with lowercase s). As before, when ~c = ~0 we use the shorthand DL,S
(or DL,s). The following useful fact that follows directly from the definition, relates the ellipsoid Gaussian
distributions over different lattices:

Fact 2. Let L ⊂ Rn be a full-rank lattice, ~c ∈ Rn a vector, and S ∈ Rm×n,B ∈ Rn×n two rank-nmatrices,
and denote L′ = {B−1~v : ~v ∈ L}, ~c′ = B−1~c, and S′ = S × (B>)−1. Then the distribution DL,S,~c is
identical to the distribution induced by drawing a vector ~v ← D

L′,S′,~c′
and outputting ~u = B~v.

A useful special case of Fact 2 is when L′ is the integer lattice, L′ = Zn, in which case L is just the
lattice spanned by the basis B. In other words, the ellipsoid Gaussian distribution on L(B), ~v ← DL(B),S,~c,
is induced by drawing an integer vector according to ~z ← DZn,S′,~c′

and outputting ~v = B~z, where S′ =

S(B−1)> and ~c′ = B−1~c.
Another useful special case is where S = sB>, so S is a square matrix and S′ = sIn. In this case

the ellipsoid Gaussian distribution ~v ← DL,S,~c is induced by drawing a vector according to the spherical
Gaussian ~u← D

L′,s,~c′
and outputting ~v = 1

sS
>~u, where ~c′ = s(S>)−1~c and L′ = {s(S>)−1~v : ~v ∈ L}.
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Smoothing parameter. As in [MR07], for lattice L and real ε > 0, the smoothing parameter of L, de-
noted ηε(L), is defined as the smallest s such that ρ1/s(L

∗ \ {~0}) ≤ ε. Intuitively, for a small enough
ε, the number ηε(L) is sufficiently larger than L’s fundamental parallelepiped so that sampling from the
corresponding Gaussian “wipes out the internal structure” of L. Thus, the sparser the lattice, the larger its
smoothing parameter.

It is well known that for a spherical Gaussian with parameter s > ηε(L), the size of vectors drawn from
DL,s is bounded by s

√
n whp (cf. [MR07, Lemma 4.4]). The following lemma (that follows easily from the

spherical case and Fact 2) is a generalization to ellipsoid Gaussians.

Lemma 3. For a rank-n lattice L, vector ~c ∈ Rn, constant 0 < ε < 1 and matrix S s.t. σn(S) ≥ ηε(L), we
have that for ~v ← DL,S,~c,

Pr
~v←DL,S,~c

(
‖~v − ~c‖ ≥ σ1(S)

√
n
)
≤ 1 + ε

1− ε
· 2−n

Proof. We can assume w.l.o.g. that S is a square matrix (since DL,S,c depends only on S>S, and all the
matrices that agree on S>S have the same singular values). Letting s = σn(S), we apply Fact 2 with
B = 1

sS
>, so we have S′ = sIn, ~c′ = s(S>)−1~c, and L′ = {s(S>)−1~v : ~v ∈ L}). Namely the ellipsoid

Gaussian distribution ~v ← DL,S,~c is induced by drawing a vector according to the spherical Gaussian
~u← D

L′,s,~c′
and outputting ~v = 1

sS
>~u.

We recall that the largest singular value of (S>)−1 is the reciprocal of the least singular value of S>

(which is σn(S>) = σn(S) = s), namely σ1((S>)−1) = 1/s. Hence the singular values of the matrix
s(S>)−1 are all at most one, which means that multiplying by s(S>)−1 is “shrinking”, ‖s(S>)−1~v‖ ≤ ‖~v‖
for all ~v. Since the lattice L′ is obtained from L by “shrinking” all the vectors ~v ∈ L as above, it follows
that the smoothing parameter of L′ is no larger than that of L, so s = σn(S) ≥ ηε(L) ≥ ηε(L′).

Applying now [MR07, Lemma 4.4] for the spherical case, when drawing a vector ~u ← D
L′,s,~c′

we get
‖~u‖ ≤ s

√
n except with probability at most 1+ε

1−ε · 2
−n. Hence we can bound whp the norm of ~v by

‖~v‖ = ‖1
sS
>~u‖ ≤ 1

s · σ1(S>) · ‖~u‖ = 1
s · σ1(S) · s

√
n = σ1(S)

√
n.

The next lemma says that the Gaussian distribution with parameter s ≥ ηε(L) is so smooth and “spread
out” that it covers the approximately the same number of L-points regardless of where the Gaussian is cen-
tered. This is again well known for spherical distributions (cf. [GPV08, Lemma 2.7]) and the generalization
to ellipsoid distributions is immediate using Fact 2.

Lemma 4. For any rank-n lattice L, real ε ∈ (0, 1), vector c ∈ Rn, and rank-n matrix S ∈ Rm×n such that
σn(S) ≥ ηε(L), we have ρS,~c(L) ∈ [1−ε

1+ε , 1] · ρS(L).

Regev also proved that drawing a point from L according to a spherical discrete Gaussian and adding to
it a spherical continuous Gaussian, yields a probability distribution close to a continuous Gaussian (indepen-
dent of the lattice), provided that both distributions have parameters sufficiently larger than the smoothing
parameter of L.

Lemma 5 (Claim 3.9 of [Reg09]). Fix any n-dimensional lattice L ⊂ Rn, real ε ∈ (0, 1/2), and two reals
s, r such that rs√

r2+s2
≥ ηε(L), and denote t =

√
r2 + s2.

Let RL,r,s be a distribution induced by choosing ~x ← DL,s from the spherical discrete Gaussian on L
and ~y ← N n(0, r2/2π) from a continuous Gaussian, and outputting ~z = ~x+~y. Then for any point ~u ∈ Rn,
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the probability densityRL,r,s(~u) is close to the probability density under the spherical continuous Gaussian
N n(0, t2/2π) upto a factor of 1−ε

1+ε :

1−ε
1+εN

n(0, t2/2π)(~u) ≤ RL,r,s(~u) ≤ 1+ε
1−εN

n(0, t2/2π)(~u)

In particular, the statistical distance betweenRL,r,s and N n(0, t2/2π) is at most 4ε.

More broadly, Lemma 5 implies that for any event E(~u), we have

Pr
~u←N (0,t2/2π)

[E(~u)] · 1−ε
1+ε ≤ Pr

~u←RL,r,s

[E(~u)] ≤ Pr
~u←N (0,t2/2π)

[E(~u)] · 1+ε
1−ε

Another useful property of “wide” discrete Gaussian distributions is that they do not change much by
short shifts. Specifically, if we have an arbitrary subset of the lattice, T ⊆ L, and an arbitrary short vector
~v ∈ L, then the probability mass of T is not very different than the probability mass of T − ~v = {~u − ~v :
~u ∈ T}. Below let erf(·) denote the Gauss error function.

Lemma 6. Fix a lattice L ⊂ Rn, a positive real ε > 0, and two parameters s, c such that c > 2 and
s ≥ (1 + c)ηε(L). Then for any subset T ⊂ L and any additional vector ~v ∈ L, it holds that DL,s(T ) −
DL,s(T − ~v) ≤ erf(q(1+4/c)/2)

erf(2q) · 1+ε
1−ε , where q = ‖v‖

√
π/s.

Proof. Clearly for any fixed ~v, the set that maximizes DL,s(T ) − DL,s(T − ~v) is the set of all vectors

~u ∈ L for which DL,s(~u) > DL,s(~u − ~v), which we denote by T~v
def
= {~u ∈ L : DL,s(~u) > DL,s(~u − ~v)}.

Observe that for any ~u ∈ L we have DL,s(~u) > DL,s(~u− ~v) iff ρs(~u) > ρs(~u− ~v), which is equivalent to
‖~u‖ < ‖~u − ~v‖. That is, ~u must lie in the half-space whose projection on ~v is less than half of ~v, namely
〈~u,~v〉 < ‖~v‖2/2. In other words we have

T~v = {~u ∈ L : 〈~u,~v〉 < ‖~v‖2/2},

which also means that T~v−~v = {~u ∈ L : 〈~u,~v〉 < −‖~v‖2/2} ⊆ T~v. We can therefore express the difference
in probability mass asDL,s(T~v)−DL,s(T~v−~v) = DL,s(T~v \ (T~v−~v)). Below we denote this set-difference
by

H~v
def
= T~v \ (T~v − ~v) =

{
~u ∈ L : 〈~u,~v〉 ∈ (−‖~v‖

2

2 , ‖~v‖
2

2 ]
}
.

That is, H~v is the “slice” in space of width ‖~v‖ in the direction of ~v, which is symmetric around the origin.
The arguments above imply that for any set T we haveDL,s(T )−DL,s(T −~v) ≤ DL,s(H~v). The rest of the
proof is devoted to upper-bounding the probability mass of that slice, i.e., DL,s(H~v) = Pr~u←DL,s

[~u ∈ H~v].
To this end we consider the slightly thicker slice, say H ′~v = (1 + 4

c )H~v, and the random variable ~w,
which is obtained by drawing ~u ← DL,s and adding to it a continuous Gaussian variable of “width” s/c.
We argue that ~w is somewhat likely to fall outside of the thick slice H ′~v, but coditioning on ~u ∈ H~v we have
that ~w is very unlikely to fall outside of H ′~v. Putting these two arguments together, we get that ~u must have
significant probability of falling outside H~v, thereby getting our upper bound.

In more detail, denoting r = s/c we consider drawing ~u ← DL,s and ~z ← N n(0, r2/2π), and setting
~w = ~u + ~z. Denoting t =

√
r2 + s2, we have that s ≤ t ≤ s(1 + 1

c ) and rs/t ≥ s/(c + 1) ≥ ηε(L).
Thus the conditions of Lemma 5 are met, and we get that ~w is distributed close to a normal random variable
N n(0, t2/2π), upto a factor of at most 1+ε

1−ε .
Since the continuous Gaussian distribution is spherical, we can consider expressing it in an orthonor-

mal basis with one vector in the direction of ~v. When expressed in this basis, we get the event ~z ∈ H ′~v
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exactly when the coefficient in the direction of ~v (which is distributed close to the 1-diemsnional Gaussian
N (0, t2/2π)) exceeds ‖~v(1 + 4

c )/2‖ in magnitude. Hence we have

Pr[~w ∈ H ′~v] ≤ Pr
α←N (0,t2/2π)

[|α| ≤ ‖~v‖] · 1 + ε

1− ε

= erf

(
‖~v‖
√
π(1 + 4

c )

2t

)
· 1 + ε

1− ε
≤ erf

(
‖~v‖
√
π(1 + 4

c )

2s

)
· 1 + ε

1− ε

On the other hand, consider the conditional probability Pr[~w ∈ H ′~v|~u ∈ H~v]: Let H ′′~v = 4
cH~v, then

if ~u ∈ H~v and ~z ∈ H ′′~v , then it must be the case that ~w = ~u + ~z ∈ H ′~v. As before, we can consider the
continuous Gaussian on ~z in an orthonormal basis with one vector in the direction of ~v, and we get

Pr[~w ∈ H ′~v|~u ∈ H~v] ≥ Pr[~z ∈ H ′′~v |~u ∈ H~v] = Pr[~z ∈ H ′′~v ]

= Pr
β←N (0,r2/2π)

[|β| ≤ 2‖~v‖/c] = erf(‖~v‖2
√
π/cr) = erf(2‖~v‖

√
π/s)

Putting the last two bounds together, we get

erf

(
‖~v‖
√
π(1 + 4

c )

2s

)
· 1 + ε

1− ε
≥ Pr[~w ∈ H ′~v] ≥ Pr[~u ∈ H~v] · Pr[~w /∈ H ′~v|~u ∈ H~v]

≥ Pr[~u ∈ H~v] · erf
(
‖~v‖2

√
π

s

)

from which we conclude that Pr[~u ∈ H~v] ≤
erf(‖~v‖

√
π(1+4/c)/2s)

erf(‖~v‖2
√
π/s)

· 1+ε
1−ε , as needed.

One useful special case of Lemma 6 is when c = 100 (say) and ‖~v‖ ≈ s, where we get a bound
DL,s(T )−DL,s(T −~v) ≤ erf(0.52

√
π)

erf(2
√
π)
· 1+ε

1−ε ≈ 0.81. We note that when ‖~v‖s → 0, the bound from Lemma 6
tends to (just over) 1/4, but we note that we can make it tend to zero with a different choice of parameters
in the proof (namely making H ′~v and H ′′~v thicker, e.g. H ′′~v = H~v and H ′~v = 2H~v). Lemma 6 extends easily
also to the ellipsoid Gaussian case, using Fact 2:

Corollary 2. Fix a lattice L ⊂ Rn, a positive real ε > 0, a parameter c > 2 and a rank-n matrix S such
that s def

= σn(S) ≥ (1 + c)ηε(L). Then for any subset T ⊂ L and any additional vector ~v ∈ L, it holds that
DL,S(T )−DL,S(T − ~v) ≤ erf(q(1+4/c)/2)

erf(2q) · 1+ε
1−ε , where q = ‖v‖

√
π/s.

Micciancio and Regev give the following bound on the smoothing parameter in terms of the primal
lattice.

Lemma 7. [Lemma 3.3 of [MR07]] For any n-dimensional lattice L and positive real ε > 0,

ηε(L) ≤ λn(L) ·
√

ln(2n(1 + 1/ε))

π
.

In particular, for any superlogarithmic function ω(log n), there exists a negligible function ε(n) such that
ηε(L) ≤

√
ω(log n) · λn(L).
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3 Sums of Discrete Gaussians

Consider a full rank lattice L ⊆ Zn, some negligible ε = ε(n), the corresponding smoothing parameter
η = ηε(L) and parameters s > Ω(η), m > Ω(n log n), and s′ > Ω(poly(n) log(1/ε)). The process that we
analyze begins by choosing “once and for all” m points in L, drawn independently from a discrete Gaussian
with parameter s, ~xi ← DL,s.2

Once the ~xi’s are fixed, we arrange them as the rows of an m-by-n matrix X = (~x1|~x2| . . . |~xm)>, and
consider the distribution EX,s′ , induced by choosing an integer vector ~v from a discrete spherical Gaussian
with parameter s′ and outputting ~y = X>~v:

EX,s′
def
= {X>~v : ~v ← DZm,s′}. (1)

Our goal is to prove that EX,s′ is close to the ellipsoid Gaussian DL,s′X , over L. We begin by proving
that the singular values of X are all roughly of the size s

√
m.

Lemma 8. There exists a universal constant K > 1 such that for all m ≥ 2n, ε > 0 and every n-
dimensional real lattice L ⊂ Rn, the following holds: Choosing the rows of an m-by-n matrix X indepen-
dently at random from a spherical discrete Gaussian on L with parameter s > 2Kηε(L), X ← (DL,s)m,
we have

Pr
[
s
√

2πm/K < σn(X) ≤ σ1(X) < sK
√

2πm
]
> 1− (4mε+O(exp(−m/K))).

Proof. LetC be the universal constant from Corollary 1, and we setK = max(3C, 2C2). Denote r = s/K,
and consider the process of first choosingX as in the lemma statement, then choosing the rows of anm-by-n
matrix Y independently from the continuous n-dimensional Normal distribution N (0, r2/2π), then setting
Z = X + Y . Note that for these parameters r, s we have

rs√
r2 + s2

=
s(s/K)√
s2 + (s/K)2

=
s√

1 +K2
> s/2K > ηε(L).

Thus the conditions of Lemma 5 are met, hence setting t =
√
s2 + r2 we conclude that the statistical dis-

tance between the rows of Z and a continues n-dimensional Gaussian N n(0, t2/2π) is at most 4ε. Namely
we can bound by 4mε the statistical distance between Z and a matrix whose entries are all chosen indepen-
dently from N (0, t2/2π). Therefore, by Corollary 1 we have that

Pr
[
t
√

2πm/C < σn(Z) ≤ σ1(Z) < tC
√

2πm
]
> 1− (4mε+O(exp(−m/C))),

and since s < t < 2s then with at least the same probability we have s
√

2πm/C < σn(Z) ≤ σ1(Z) <
2sC
√

2πm. At the same time, again by Corollary 1 we have that Pr[σn(Y ) > Cr
√

2πm] < O(exp(−m/C)),
and our parameters choice imply that

Cr
√

2πm = s/K · C
√

2πm ≤ Cs
√

2πm

2C2
= s
√

2πm/2C.

We conclude that except with probability 4mε+O(exp(−m/C)), we have both σn(Z) ≥ s
√

2πm/C and
σ1(−Y ) = σ1(Y ) ≤ s

√
2πm/2C. In this case, since X = Z − Y , we can apply Fact 1 (with δ = 1/2) to

2More generally, we can consider drawing the vectors ~xi from an ellipsoid discrete Gaussian, ~xi ← DL,S , so long as the least
singular value of S is at least s.
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conclude that σn(X) ≥ (1− 1
2)s
√

2πm/C > s
√

2πm/K and σn(X) ≤ (1 + 1
2)2sC

√
2πm ≤ sK

√
2πm.

In summary, we have

Pr
[
s
√

2πm/K < σn(X) ≤ σ1(X) < sK
√

2πm
]

≥ Pr
[
2σ1(Y ) < s

√
2πm/C < σn(Z) ≤ σ1(Z) < sC

√
2πm

]
≥ 1− (4mε+O(exp(−m/C))) ≥ 1− (4mε+O(exp(−m/K))),

as needed.

3.1 The Distribution EX,s′ Over Zn

We next move to show that with high probability over the choice of X , the distribution EX,s′ is statistically
close to the ellipsoid discrete Gaussian DL,s′X . We first prove this for the special case of the integer lattice,
L = Zn, and then use that special case to prove the same statement for general lattices. In either case, we
analyze the setting where the rows of X are chosen from an ellipsoid Gaussian which is “not too small” and
“not too skewed.”

Parameters. Below n is the security parameters and ε = negligible(n). Let S be an n-by-n matrix
such that σn(S) ≥ 2Kηε(Zn), and denote s1 = σ1(S), sn = σn(S), and w = s1/sn. (We consider
w to be a measure for the “skewness” of S.) Also let m, q, s′ be parameters satisfying m ≥ 10n log q,
q > 8(mn)1.5s1w, and s′ ≥ 4mnw ln(1/ε). An example setting of parameters to keep in mind is m = n2,
sn =

√
n (which implies ε ≈ 2−

√
n), s1 = n (so w =

√
n), q = 8n6, and s′ = 4n4.

Theorem 2. For ε negligible in n, let S ∈ Rn×n be a matrix such that sn = σn(S) ≥ 18Kηε(Zn), and
denote s1 = σ1(S) and w = s1/sn. Also let m, s′ be parameters such that m ≥ 10n log(8(mn)1.5s1w)
and s′ ≥ 4mnw ln(1/ε).

Then, when choosing the rows of an m-by-n matrix X from the ellipsoid Gaussian over Zn, X ←
(DZn,S)m, we have with all but probability 2−O(m) over the choice ofX , that the statistical distance between
EX,s′ and the ellipsoid Gaussian DZn,s′X is bounded by 2ε.

The rest of this subsection is devoted to proving Theorem 2. We begin by showing that with over-
whelming probability, the rows of X span all of Zn, which means also that the support of EX,s′ includes all
of Zn.

Lemma 9. With parameters as above, when drawing the rows of an m-by-n matrix X independently at
random from DZn,S we get X>Zm = Zn with all but probability 2−O(m).

Proof. Consider choosing the rows one by one, and we show that (a) as long as the current rows only R-span
a subspace of Rn then it is likely that the next row falls outside that subspace, and (b) once the current matrix
has full rank, as long as the current rows only Z-span a sub-lattice of Zn, it is likely that the next one falls
outside that sub-lattice. Combining these two arguments, the lemma follows.

For i = 1, 2, . . . ,m, consider the binary random variable χi, which is defined as follows over the choice
of the rows ~xi of X: At any step i we consider only the “short vectors” among the previous ~xi’s, namely
Xi−1

def
= {~xj : j < i, ‖~xj‖ ≤ s

√
n}.

1. If the vectors in Xi−1 only R-span a proper linear subspace of Rn, then we define χi = 1 if ‖~xi‖ ≤
s
√
n and ~xi falls outside that linear subspace, and χi = 0 otherwise;
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2. If the vectors inXi−1 only Z-span a sub-lattice of Zn but R-span the entire Rn, then we define χi = 1
if ‖~xi‖ ≤ s

√
n and ~xi falls outside that sub-lattice, and χi = 0 otherwise;

3. Else (if ~x1, . . . , ~xi−1 Z-span the entire Zn), we defined χi = 1.

It is clear from the definition of the χi’s that
∑m

i=1 χi ≥ n implies that the ~xi’s R-span all of of Rn.
Moreover we claim that if

∑m
i=1 χi ≥ n(log(s

√
n) + 1) then the ~xi’s must Z-span the entire lattice Zn. To

see this, consider the first n vectors ~xi for which χi = 1: they must be linearly independent and they are
all shorter than s

√
n, hence they Z-span a full-rank sub-lattice of Zn of determinant less than (s

√
n)n. As

long as the ~xi do not yet Z-span the entire integer lattice, any subsequent ~xi for which χi = 1 corresponds
to a refinement of the current sub-lattice, which must reduce the determinant by at least a factor of 2. Hence
after at most log((s

√
n)n) = n log(s

√
n) such vectors the determinant is reduced to 1, which means that

the ~xi’s must Z-span the entire integer lattice. We therefore have

Pr[X>Zm = Zn] ≥ Pr

[∑
i

χi ≥ n(log(s
√
n) + 1)

]
.

It is left to lower-bound the last expression. We claim that regardless of the previous ~xi′’s for i′ < i, we
always have Pr[χi = 1] ≥ 1/4. This is obvious if χi is assigned according to the third rule above, so we
only need to prove it for the first two rules. To see why this is true for the first rule, note that as long as the
vectors in Xi−1 only R-span a proper sub-space of Rn, there must exists at least one standard unit vector ~ej
outside that sub-space. Letting Ti−1 ⊂ Zn be the sub-lattice of Zn that lies in the sub-space of Xi−1, we
have that Ti−1 − ~ej is disjoint from Ti−1. Since ‖~ej‖ = 1 and s > ηε(Zn) ≥

√
n, then Corollary 2 (with

c = 9) says that

Pr[~xi ∈ Ti−1]− Pr[~xi ∈ Ti−1 − ~ej ] ≤
erf(0.75

√
π/n)

erf(2
√
π/n)︸ ︷︷ ︸

≈0.75/2=0.375

·1 + ε

1− ε
< 0.4,

which means that Pr[~xi ∈ Ti−1] < 1+0.4
2 = 0.7. Hence

Pr[χi = 1] ≥ Pr[~xi /∈ Ti−1 and ‖~xi‖ ≤
√
n] ≥ Pr[~xi /∈ Ti−1]− 1 + ε

1− ε
· 2−n

≥ 0.3− 1 + ε

1− ε
· 2−n > 0.25

The argument for the second rule is nearly identical, using the fact that for any proper sub-lattice of Zn there
must be at least one standard unit vector ~ej outside that sub-lattice.

It follows that Pr[
∑

i χi < n(log(s
√
n) + 1)] is upper-bounded by the same probability expression

applied to m Bernoulli-1
4 variables, which is 2−O(m/4−n(log(s

√
n)+1)) = 2−O(m).

From now on we assume that the rows of X indeed span all of Zn. Now let A = A(X) be the (m− n)-
dimensional lattice in Zm orthogonal to all the columns ofX , and for any ~z ∈ Zn we denote byA~z = A~z(X)
the ~z coset of A:

A = A(X)
def
= {~v ∈ Zm : X>~v = 0} and A~z = A~z(X)

def
= {~v ∈ Zm : X>~v = ~z}.

Since the rows of X span all of Zn then A~z is nonempty for every ~z ∈ Zn, and we have A~z = ~v~z + A for
any arbitrary point ~v~z ∈ A~z .
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Below we prove that the smoothing parameter of A is small (whp), and use that to bound the distance
between EX,s′ andDZn,s′X . First we show that if the smoothing parameter ofA is indeed small (i.e., smaller
than the parameter s′ used to sample the coefficient vector ~v), then EX,s′ and DZn,s′X must be close.

Lemma 10. Fix X and A = A(X) as above. If s′ ≥ ηε(A), then for any point ~z ∈ Zn, the probability mass
assigned to ~z by EX,s′ differs from that assigned by DZn,s′X by at most a factor of (1− ε)/(1 + ε), namely

EX,s′(~z) ∈
[

1−ε
1+ε , 1

]
· DZn,s′X(~z).

In particular, if ε < 1/3 then the statistical distance between EX,s′ and DZn,s′X is at most 2ε.

Proof. Fix some ~z ∈ Zn. The probability mass assigned to ~z by EX,s′ is the probability of drawing a random
vector according to the discrete Gaussian DZm,s′ and hitting some ~v ∈ Zm for which X>~v = ~z. In other
words, this is exactly the probability mass assigned by DZm,s′ to the coset A~z . Below let T = T (X) ⊆ Rm
be the linear subspace containing the lattice A, and T~z = T~z(X) ⊆ Rm be the affine subspace containing
the coset A~z:

T = T (X) = {~v ∈ Rm : X>~v = 0}, and T~z = T~z(X) = {~v ∈ Rm : X>~v = ~z}.

Let Y be the pseudoinverse of X (i.e. Y >X = In and the columns of Y span the same linear sub-space as
the columns of X). Let ~u~z = Y ~z, and we note that ~u~z is the point in the affine space T~z closest to the origin:
To see this, note that ~u~z ∈ T~z since X>~u~z = X> × Y ~z = ~z. In addition, ~u~z belongs to the column space
of Y , so also to the column space of X , and hence it is orthogonal to T .

Since ~u~z is the point in the affine space T~z closest to the origin, it follows that for every point in the
coset ~v ∈ A~z we have ‖~v‖2 = ‖~u~z‖2 + ‖~v − ~u~z‖2, and therefore

ρs′(~v) = e−π(‖~v‖/s′)2 = e−π(‖~u~z‖/s′)2 · e−π(‖~v−~u~z‖/s′)2 = ρs′(~u~z) · ρs′(~v − ~u~z).

This, in turn, implies that the total mass assigned to A~z by ρs′ is

ρs′
(
A~z
)

=
∑
~v∈A~z

ρs′(~v) = ρs′(~u~z) ·
∑
~v∈A~z

ρs′(~v − ~u~z) = ρs′(~u~z) · ρs′
(
A~z − ~u~z

)
. (2)

Fix one arbitrary point ~w~z ∈ A~z , and let ~δ~z be the distance from ~u~z to that point, ~δ~z = ~u~z − ~w~z . Since
A~z = ~w~z +A, we get A~z − ~u~z = A− ~δ~z , and together with the equation above we have:

ρs′
(
A~z
)

= ρs′(~u~z) · ρs′
(
A~z − ~u~z

)
= ρs′(~u~z) · ρs′

(
A− ~δ~z

)
= ρs′(~u~z) · ρs′,~δ~z

(
A
) Lemma 4

= ρs′(~u~z) · ρs′
(
A
)
·
[

1−ε
1+ε , 1

]
. (3)

As a last step, recall that ~u~z = Y ~z where Y is the pseudoinverse of X (which implies that Y >Y =
(X>X)−1). Thus we have

ρs′(~u~z) = ρs′(Y ~z) = exp(−π|~z>Y >Y ~z|/s′2) = exp
(
−π
∣∣~z>((s′X)>(s′X)

)−1
~z
∣∣) = ρ(s′X)(~z)

Putting everything together we get

EX,s′(~z) = DZm,s′
(
A~z
)

=
ρs′
(
A~z
)

ρs′(Zm)
∈ ρ(s′X)(~z) ·

ρs′
(
A
)

ρs′(Zm)
·
[

1−ε
1+ε , 1

]
The term ρs′ (A)

ρs′ (Zm) is a normalization factor independent of ~z, hence the probability mass EX,s′(~z) is propor-

tional to ρ(s′X)(~z), upto some “deviation factor” in [1−ε
1+ε , 1].
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3.1.1 The smoothing parameter of A

We now turn our attention to proving that A is “smooth enough”. Specifically, for the parameters above we
prove that with high probability over the choice of X , the smoothing parameter ηε(A) is bounded below
s′ = 4mnw ln(1/ε).

Recall again that A = A(X) is the rank-(m−n) lattice containing all the integer vectors in Zm orthog-
onal to the columns of X . We extend A to a full-rank lattice as follows: First we extend the columns space
of X , by throwing in also the scaled standard unit vectors q~ei for the integer parameter q mentioned above
(q ≥ 8(mn)1.5s1w). That is, we let Mq = Mq(X) be the full-rank m-dimensional lattice spanned by the
columns of X and the vectors q~ei,

Mq = {X~z + q~y : ~z ∈ Zn, ~y ∈ Zm} = {~u ∈ Zm : ∃~z ∈ Znq s.t. ~u ≡ X>~z (mod q)}

(where we identify Zq above with the set [−q/2, q/2) ∩ Z). Next, let Aq be the dual of Mq, scaled up by a
factor of q, i.e.,

Aq = qM∗q = {~v ∈ Rm : ∀~u ∈Mq, 〈~v, ~u〉 ∈ qZ}
= {~v ∈ Rm : ∀~z ∈ Znq , ~y ∈ Zm, ~z>X>~v + q 〈~v, ~y〉 ∈ qZ}

It is easy to see that A ⊂ Aq, since any ~v ∈ A is an integer vector (so q 〈~v, ~y〉 ∈ qZ for all ~y ∈ Zm) and
orthogonal to the columns of X (so ~z>X>~v = 0 for all ~z ∈ Znq ).

Obviously all the columns of X belong to Mq, and whp they are linearly independent and relatively
short (i.e., of size roughly s1

√
m). In Lemma 11 below we show, however, that whp over the choice of X’s,

these are essentially the only short vectors in Mq.

Lemma 11. Recall that we choose X as X ← (DZn,S)m, and let w = σ1(S)/σn(S) be a measure of the
“skewness” of S. The n+ 1’st minima of the lattice Mq = Mq(X) is at least q/4nw, except with negligible
probability over the choice of X . Namely, PrX←(DZn,S)m [λn+1(Mq) < q/4nw] < 2−O(m).

Proof. We prove that with high probability over the choice of X , every vector in Mq which is not in the
linear span of the columns of X is of size at least q/4nw.

Recall that every vector in Mq is of the form X~z + q~y for some ~z ∈ Znq and ~y ∈ Zm. Let us denote by
[~v]q the modular reduction of all the entries in ~v into the interval [−q/2, q/2), then clearly for every ~z ∈ Znq

‖[X~z]q‖ = inf{‖X~z + q~y‖ : ~y ∈ Zm}.

Moreover, for every ~z ∈ Znq , ~y ∈ Zm, if X~z+ q~y 6= [X~z]q then ‖X~z+ q~y‖ ≥ q/2. Thus it suffices to show
that every vector of the form [X~z]q which is not in the linear span of the columns of X has size at least
q/4nw (whp over the choice of X).

Fix a particular vector ~z ∈ Znq (i.e. an integer vector with entries in [−q/2, q/2)). For this fixed
vector ~z, let imax be the index of the largest entry in ~z (in absolute value), and let zmax be the value of
that entry. Considering the vector ~v = [X~z]q for a random matrix X whose rows are drawn independently
from the distribution DZn,S , each entry of ~v is the inner product of the fixed vector ~z with a random vector
~xi ← DZn,S , reduced modulo q into the interval [−q/2,+q/2).

We now have two cases, either ~z is “small”, i.e., |zmax| < q/2ns1 or it is “large”, |zmax| ≥ q/2ns1.
Recall that by Lemma 3 for each ~xi we have ‖~xi‖ ≤ s1

√
n except with probability 2−m. If ~z is “small” then

we get
| 〈~z, ~xi〉 | ≤ ‖~z‖ · ‖~xi‖ ≤ |zmax|

√
n · s1

√
n < q/2.
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Hence except with probability m2−m all the entries of X~z are smaller than q/2 in magnitude, which means
that [X~z]q = X~z, and so [X~z]q belongs to the column space of X . Using the union bound again, we get
that with all but probability qn ·m2−m < m2−9m/10, the vectors [X~z]q for all the “small” ~z’s belong to the
column space of X .

We next turn to analyzing “large” ~z’s. Fix one “large” vector ~z, and for that vector define the set of “bad”
vectors ~x ∈ Zn, i.e. the ones for which |[〈~z, ~x〉]q| < q/4nw (and the other vectors ~x ∈ Zn are “good”).
Observe that if ~x is “bad”, then we can get a “good” vector by adding to it the imax’th standard unit vector,
scaled up by a factor of µ = min

(
dsne , bq/|2zmax|c

)
, since

|[〈~z, ~x+ µ~eimax〉]q| = |[〈~z, ~x〉+ µzmax]q| ≥ µ|zmax| − |[〈~z, ~x〉]q| ≥ q/4nw.

(The last two inequalities follow since q/2nw < µ|zmax| ≤ q/2 and |[〈~z, ~x〉]q| < q/4nw.) Hence the
injunction ~x 7→ ~x+ µ~eimax maps “bad” ~x’es to “good” ~x’es. Moreover, since the ~x’es are chosen according
to the wide ellipsoid Gaussian DZn,S with σn(S) = sn ≥ ηε(Zn), and since the scaled standard unit vectors
are short, µ < sn + 1, then by Lemma 6 the total probability mass of the “bad” vectors ~x differs from the
total mass of the “good” vectors ~x + µ~eimax by at most 0.81. It follows that when choosing ~x ← DZn,S ,
we have Pr~x [|[〈~z, ~x〉]q| < q/4nw] ≤ (1 + 0.81)/2 < 0.91. Thus the probability that all the entries of
[X~z]q are smaller than q/4nw in magnitude is bounded by (0.91)m = 2−0.14m. Since m > 10n log q, we
can use the union bound to conclude that the probability that there exists some “large” vector for which
‖[X~z]q‖ < q/4nw is no more than qn · 2−0.14m < 2−O(m).

Summing up the two cases, with all but probability 2−O(m)) over the choice of X , there does not
exist any vector ~z ∈ Znq for which [X~z]q is linearly independent of the columns of X and yet |[X~z]q| <
q/4nw.

Corollary 3. With the parameters as above, the smoothing parameter of A = A(X) satisfies ηε(A) ≤ s′ =
4mnw ln(1/ε), except with probability 2−O(m).

Proof. Recall that Aq is the scaled-by-q dual of Mq. By Lemma 11 we have that w.h.p. λn+1(Mq) ≥
q/4nw, and from Banasczcyk’s theorem (Theorem 1) we conclude that λm−n(Aq) ≤ 4mnw. Hence we
have m − n linearly independent vectors ~vj ∈ Aq of size below 4mnw. We next argue that these vectors
must also belong to A.

To see that they must be integer vectors, note that by definition of Aq, for every ~v ∈ Aq it holds in
particular that ~v × qIm ∈ qZm, which means that ~v = ~v × Im ∈ Zm. To see that the ~vj’s are orthogonal
to the the columns of X , recall that the columns of X are in Mq and the ~vj’s are in Aq, and therefore
X>~vj ∈ qZn for all j. On the other hand, by Lemma 3 with all but probability 2−O(m) the rows of X are
smaller than s1

√
n, hence the columns are smaller than s1

√
n
√
m. It thus follows that

‖X>~vj‖ ≤ ‖~vj‖ · ‖X‖ ≤ (4mnw) · (s1

√
mn) = 4(mn)1.5s1w < q/2,

which together with X>~v ≡ ~0 (mod q) means that we have X>~vj = ~0 (over R, with no modular reduc-
tion). We conclude that the ~vj’s are integer vectors orthogonal to the columns of X , hence they belong
to A.

It thus follows that all the successive minima of the rank-(m− n) lattice A are bounded below 4mnw,
and Lemma 7 then says that

ηε(A) ≤ 4mnw ·
√

ln(2(m− n)(1 + 1/ε))

π

(?)

≤ 4mnw ln(1/ε) = s′

(where the inequality (?) uses the fact that 1/ε� m).

Putting together Lemma 10 and Corollary 3 completes the proof of Theorem 2.
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3.2 The Distribution EX,s′ Over General Lattices

Armed with Theorem 2, we turn to prove the same theorem also for general lattices.

Theorem 3. Let L be a full-rank lattice L ⊂ Rn and B a matrix whose columns form a basis of L.
Also let M ∈ Rn×n be a full rank matrix, and denote S = M(B>)−1, s1 = σ1(S), sn = σn(S), and
w = s1/sn. Finally let ε be negligible in n and m, s′ be parameters such that m ≥ 10n log(8(mn)1.5s1w)
and s′ ≥ 4mnw ln(1/ε).

If sn ≥ ηε(Zn), then, when choosing the rows of an m-by-n matrix X from the ellipsoid Gaussian
over L, X ← (DL,M )m, we have with all but probability 2−O(m) over the choice of X , that the statistical
distance between EX,s′ and the ellipsoid Gaussian DL,s′X is bounded by 2ε.

Proof. This theorem is an immediate corollary of Theorem 2 and Fact 2. Noting that S, ε satisfy the con-
ditions of Theorem 2, we conclude that when choosing the rows of an m-by-n integer matrix as Z ←
(DZn,S)m, the statistical distance between EZ,s′ and DZn,s′Z is at most 2ε.

Letting X = BZ, we get by Fact 2 that choosing the columns of Z from DZn,S induces the distribution
DL,M on the columns of X . Also multiplying the output of both distributions EZ,s′ and DZn,s′Z by B, we
have that EX,s′ = B × EZ,s′ and DL,s′X = B ×DZn,s′Z . Since the distance between EZ,s′ and DZn,s′Z is at
most 2ε, then so is the distance between EX,s′ and DL,s′X .

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck
Wee. Functional encryption for threshold functions (or fuzzy IBE) from lattices. In PKC,
2012.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption
for inner product predicates from learning with errors. In Asiacrypt, 2011.

[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of num-
bers. Mathematische Annalen, 296(4):625–635, 1993.

[BF11] Dan Boneh and David Mandall Freeman. Homomorphic signatures for polynomial functions.
In Eurocrypt, 2011.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. In ITCS, pages 97–106, 2012.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Public Key Cryptography, pages 499–517, 2010.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, pages 719–737, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In CRYPTO, pages 505–524, 2011.

16



[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, pages 97–106, 2011.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In EUROCRYPT, pages 523–552, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, pages 116–137, 2010.

[GGH12] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices
and applications. Cryptology ePrint Archive, Report 2012/610, 2012. http://eprint.
iacr.org/.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206. ACM, 2008.

[HILL99] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, March 1999.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way func-
tions. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
STOC ’89, pages 12–24, New York, NY, USA, 1989. ACM.

[LPRTJ05] A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann. Smallest singular value of
random matrices and geometry of random polytopes. Advances in Mathematics, 195(2), 2005.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. In FOCS, pages 372–381. IEEE Computer Society, 2004.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Computing, 37(1):267–302, 2007.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Crypto, 2010.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. JACM,
56(6), 2009.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In TCC, pages
219–234, 2011.

[Tao12] Terence Tao. Topics in random matrix theory, volume 132 of Graduate Studies in Mathemat-
ics. American Mathematical Society, 2012.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, pages 24–43, 2010.

17


