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Abstract. SAFER+ was a candidate block cipher for AES with 128-bit block
size and a variable key sizes of 128, 192 or 256 bits. Bluetooth uses customized
versions of SAFER+ for security. The numbers of rounds for SAFER+ with key
sizes of 128, 192 and 256 are 8, 12 and 16, respectively. SAFER++, a variant
of SAFER+, was among the cryptographic primitives selected for the second
phase of the NESSIE project. The block size is 128 bits and the key size can
take either 128 or 256 bits. The number of rounds for SAFER++ is 7 for keys of
128 bits, and 10 for keys of 256 bits. Both ciphers use PHT as their linear trans-
formation. In this paper, we take advantage of properties of PHT and S-boxes
to identify 3.75-round impossible differentials for SAFER++ and 2.75-round
impossible differentials for SAFER+, which result in impossible differential
attacks on 4-round SAFER+/128(256), 5-round SAFER++/128 and 5.5-round
SAFER++/256. Our attacks significantly improve previously known impossible
differential attacks on 3.75-round SAFER+/128(256) and SAFER++/128(256).
Our attacks on SAFER+/128(256) and SAFER++/128(256) represent the best
currently known attack in terms of the number of rounds.
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1 Introduction

SAFER+, designed by Massey, Khachatrian and Kuregian, was a candidate block cipher
for AES with 128-bit block size and a variable key sizes of 128, 192 or 256 bits, denoted
by SAFER+/128, SAFER+/192 and SAFER+/256, respectively [8]. Since some weaknesses
to the key schedules of SAFER+/192 and SAFER+/256 were discovered, Massey et al.
changed the key schedule algorithms later. In this paper, we will use the remedied key
schedule algorithms as in [12]. Bluetooth uses custom algorithms based on SAFER+ for
key derivation and authentication as MAC [4]. SAFER++ was submitted to the NESSIE
project [13] and was among the primitives selected for the second phase of this project [9].
The block size is 128-bit and the key size can be taken as 128-bit and 256-bit. The two
ciphers have common S-boxes derived from exponentiation and discrete logarithm functions
and share the Pseudo-Hadamard-like mixing transforms (PHT) but have different ways to
use it. They also share the methods to perform key-mixing with two-commutative operations.

Several cryptanalytic results on SAFER+ and SAFER++ have been published. Nakahara
et al. gave the non-homomorphic linear cryptanalysis for 3.25 rounds of SAFER+/128 and
3 rounds of SAFER++/128 and SAFER++/256 [10,11]. Piret et al. gave the integral crypt-
analysis for 4.25 rounds of SAFER++/128 and 4.75 rounds of SAFER++/256 [14]. Biryukov



et al. gave the multiset attack on 4.5 rounds of SAFER++/128 and the boomerang attack
on 5.5 rounds of SAFER++/128.

For the impossible differential cryptanalysis, Nakahara et.al also gave the impossible
differential cryptanalysis for 2.75 rounds of SAFER+/128 and SAFER++/128 [11,12]. Then
Behnam et al. claimed they could attack 4 rounds of SAFER++/128 with the impossible
differential cryptanalysis [1], however, their attack only worked for 4-round SAFER++/128
without the final whitening-key layer, so their attack was a 3.75-round attack. Zheng et al.
gave the impossible differential attacks on 3.75 rounds of SAFER+/128 (SAFER+/256) and
3.75 rounds of SAFER++/128 (SAFER++/256).

The impossible differential attack, which was independently proposed by Biham et al. [2]
and Knudsen [5], is a popular cryptanalytic method. The attack starts with finding an input
difference that can never result in an output difference, which will produce an impossible
differential. By adding rounds before and/or after the impossible differential, one can collect
pairs with certain plaintext and ciphertext differences. If there exists a pair that meets the
input and output values of the impossible differential under some subkey bits, these bits
must be wrong. In this way, we discard as many wrong keys as possible and exhaustively
search the rest of the keys, this phase is called key recovery phase. The early abort technique
is usually used during the key recovery phase, that is, one does not guess all the subkey bits
at once, but guess some subkey bits instead to discard some pairs that do not satisfy certain
conditions step by step. In this case, we can discard the unwished pairs as soon as possible
to reduce the time complexity.

Our Contributions By delicately choosing the positions and the number of the active S-
boxes in the first round, we can identify 3.75 rounds impossible differentials for SAFER++,
which are significantly better than the previous 2.75-round impossible differentials [1, 16].

At the same time, we also identify 2.75-round impossible differentials for SAFER+.
Although our impossible differentials work for the same number of rounds as those in [1,16],
they will result in less active S-boxes in the first round or the last round, and then the
number of guessed subkey bytes will be reduced during the key recovery phase, so we can
attack four full rounds with the final whitening key layer; the attack is better than the
3.75-round attack in [16] and the four-round attack without the final whitening key layer
in [1]. Our attacks on bluetooth ciphers SAFER+/128 and SAFER+/256 are the best attacks
according to the number of rounds. Specially, our attack on SAFER+/128 is the first attack
on half of the full-round SAFER+.

Our attack on SAFER++/128 can work for 5 rounds with the final whitening key layer,
which is much better than the previous impossible differential attack for 3.75 rounds in [1,16].
However, the best attack on SAFER++/128 is the boomerang attack for 5.5 rounds [3]. Our
attack on SAFER++/256 can work for 5.5 rounds. Although our attack on SAFER++/128
is not as good as those in [3], we greatly improve the impossible differential attack in [1,16]
and our attacks are the best chosen plaintext attacks.

The only difference for the components of round functions for SAFER+ and SAFER++ is
the linear transformation; the linear transformation of SAFER++ is more complicated than
that of SAFER+, so the designers use less rounds for SAFER++ than SAFER+. It seems
that the linear transformation for SAFER++ is much secure than SAFER+, however, our
attack shows that SAFER++ is less resistant to impossible differential attack than SAFER+,
because the diffusion of the inverse linear layer for SAFER++ is much weaker.

We summarize our results of SAFER+ and SAFER++, as well as the major previous
results in Table 1.

The rest of the paper is organized as follows. We give the brief descriptions of SAFER+

and SAFER++ in Sect. 2. Section 3 identifies the impossible differentials for SAFER+ and
SAFER++. The impossible differential cryptanalysis of SAFER+/128 and SAFER+/256 is



Table 1. Summary of attacks on SAFER+ and SAFER++

Cipher Attack #Rounds Data Time Memory Source
(Encryptions) (Bytes)

+/128 ID 2.75 264CP 258 2104 [12]
+/128 LNH 3.25 2101KP 2141 2108 [10]
+/128 ID 3.75 278CP 272 268 [16]
+/128 ID 4 2122.4CP 2121 287.4 Sect.4

+/256 ID 3.75 278CP 272 268 [16]
+/256 ID 4 2124.4CP 2216 289.4 Sect.4

++/128 LNH 3 281KP 2105 288 [10]
++/128 ID 2.75 264CP 258 2104 [12]
++/128 Integral 4 264CP 2117 271 [14]
++/128 Integral 4.25 − − − [3]
++/128 Multiset 4.5 248CP 2100 255 [3]
++/128 Boomerang 5.5 2108CP/ACC 2116 255 [3]
++/128 ID 3.75 223CP 284 275 [1]
++/128 ID 3.75 278CP 263 262 [16]
++/128 ID 5 2124CP 2121 297 Sect.5

++/256 LNH 3 281KP 2105 288 [10]
++/256 Integral 4 264CP 2149 271 [14]
++/256 Integral 4.75 − − − [14]
++/256 ID 3.75 278 CP 271 270 [16]
++/256 ID 5.5 2124CP 2246 297 Sect.5

CP: Chosen Plaintext; KP: Known Plaintext; ACC: Adaptive Chosen Ciphertext
ID: Impossible Differential; LNH: Linear(Non-Homomorphic).

presented in Sect. 4. Section 5 gives the impossible differential cryptanalysis of SAFER++/128
and SAFER++/256. Finally, Sect. 6 concludes this paper.

2 Brief Descriptions of SAFER+ and SAFER++

This section contains short descriptions of SAFER+ and SAFER++. For more details, see
[8, 9]. Throughout this paper we will number bytes and S-boxes from left to right, starting
from 0.

SAFER+ (SAFER++ ) is a 128-bit SPN block ciphers with variable key sizes of 128, 192
or 256 bits, denoted by SAFER+/128, SAFER+/192 and SAFER+/256 (SAFER++/128
and SAFER++/256). The round function of SAFER+ (SAFER++ ) consists of an upper key
layer, a nonlinear layer, a lower key layer and a linear transformation. After the final round,
an additional key-addition whitening similar to the upper key layer is added. The numbers of
round of SAFER+/128 and SAFER+/256 are 8 and 16, respectively. The numbers of round
of SAFER++/128 and SAFER++/256 are 7 and 10, respectively. Among the components of
the round functions of SAFER+ and SAFER++, only the linear transformation is different.
SAFER+ uses a 2-point pseudo Hadamard transformation(2-PHT) while SAFER++ uses a
4-point pseudo Hadamard transformation(4-PHT). The linear layer is accordingly denoted
by M+ for SAFER+ and M++ for SAFER++.

2.1 The Keyed Non-Linear Layer

Since SAFER+ and SAFER++ are byte-oriented ciphers, the input plaintext block is initially
splited into 16 bytes to combine with the 16 bytes subkey. Bytes 0, 3, 4, 7, 8, 11, 12, and



15 of the subkey are XORed to the corresponding bytes of the block, while bytes 1, 2, 5, 6,
9, 10, 13, and 14 of the subkey are combined with the corresponding bytes using addition
modulo 256. The nonlinear layer is based on two different 8-to-8 bit functions, X and L,

X(a) = (45a mod 257) mod 256,
L(a) = log45

a mod 257,

with the special case that L(0) = 128, making X and L mutually inverse. We call the layer
including X and L as S-box layer. In this layer, bytes 0, 3, 4, 7, 8, 11, 12, and 15 are sent
through the function X, and L is applied to bytes 1, 2, 5, 6, 9, 10, 13, and 14. The lower
key layer mixes a 16-byte subkey to the output blocks from the X and L functions. Bytes 2,
3, 6, 7, 10, 11, 14 and 15 of the subkey are XORed to the corresponding bytes of the block
and bytes 1, 4, 5, 8, 9, 12, 13 and 16 of the subkey and blocks are combined using addition
modulo 256.

2.2 The Linear Layer

The linear transformation of SAFER+ (SAFER++ ) is constructed by two parts: the first
is a permutation and the second is a 2-PHT(4-PHT) to two group of 2-branch(four group
of 4-branch). The 2-PHT(4-PHT) can be implemented with two(six) modular additions.
The linear layers can be expressed by matrices M+(M++) and the inverse linear layers are
M−1+ (M−1++). The matrixes M+(M++) and M−1+ (M−1++) are shown in Appendix A.

2.3 The Key Schedule

The key schedule of SAFER++ is same as that of SAFER+ for the same key size and the key
schedules of 128-bit and 256-bit master keys are different. Firstly we introduce the 128-bit
key schedule: K=(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16) is the
128-bit master key. From the 16 bytes of master key we get the 17-th byte:

ksp1 =

16⊕
i=1

ki.

Table 2 gives the relations between the subkey and the master key according to which
master key byte they depend on for SAFER+/128 and SAFER++/128. In the first column
of Table 2, Kri is the subkey where r is the round number and i = 1 and i = 2 denote the
subkey of the upper key layer and the lower key layer, respectively. As we only attack no
more than 5 full rounds for SAFER++/128, we only list the relations of the subkey for the
first 5.5 rounds in Table 2.

The 256-bit mater key is K=(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14,
k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32). Different
from 128-bit key schedule, the 256-bit master key is splitted into two 128-bit blocks. The
first one is used to produce the upper key layer of each round and the final key addition, and
the second one is used to produce the lower key layer of each round. ksp1 is computed as in
SAFER+/128 and SAFER++/128. In addition, another subkey byte ksp2 can be computed
with

ksp2 =

32⊕
i=17

ki.

Similarly, Table 3 lists the relations between the subkeys and the master key according to
which master key byte they depend on for SAFER+/256 and SAFER++/256. In Table 3,
Kri has the same meaning as that in Table 2. As we only attack no more than 5.5 rounds
for SAFER++/256, we only list the relations of the subkeys for the first 6 rounds in Table 3.



Table 2. Relations between subkey and master key for SAFER+/128 and SAFER++/128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K11 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16

K12 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1

K21 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1

K22 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2

K31 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3

K32 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4

K41 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5

K42 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6

K51 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7

K52 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7 k8

K61 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7 k8 k9

Table 3. Relations between subkey and master key for SAFER+/256 and SAFER++/256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K11 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16

K12 k18 k19 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31 k32 ksp2

K21 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1

K22 k20 k21 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31 k32 ksp2 k17 k18

K31 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3

K32 k22 k23 k24 k25 k26 k27 k28 k29 k30 k31 k32 ksp2 k17 k18 k19 k20
K41 k7 k8 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5

K42 k24 k25 k26 k27 k28 k29 k30 k31 k32 ksp2 k17 k18 k19 k20 k21 k22

K51 k9 k10 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7

K52 k26 k27 k28 k29 k30 k31 k32 ksp2 k17 k18 k19 k20 k21 k22 k23 k24

K61 k11 k12 k13 k14 k15 k16 ksp1 k1 k2 k3 k4 k5 k6 k7 k8 k9

K62 k28 k29 k30 k31 k32 ksp2 k17 k18 k19 k20 k21 k22 k23 k24 k25 k26

3 Impossible Differentials of SAFER+ and SAFER++

In this section, we will show how to identify the impossible differentials for SAFER+ and
SAFER++. As a result, 2.75 rounds impossible differentials for SAFER+ and 3.75 rounds
impossible differentials for SAFER++ are presented.

3.1 Notations

In this paper we use the following notations: T I
r denotes the input of the r-th round, TU

r ,
TS
r , TL

r and TA
r denote the output values of the upper key layer, the S-boxes, the lower key

layer and the linear layer in round r, respectively. So T I
r = TA

r−1 for r ≥ 2. ∆ represents the
modular subtraction difference in F28 . ∗ means the undetermined value. (∆T i

r)j stands for
the j-th byte of ∆T i

r , 0 ≤ j ≤ 15. Cj means the j-th byte of the ciphertext, 0 ≤ j ≤ 15.

3.2 Impossible Differentials of SAFER+ and SAFER++

Firstly, we will introduce three propositions related with S-boxes, XOR and the modular
addition.

Proposition 1 (see [7]) For any byte pair (p, p′), if (p − p′) ≡ 0x80 (mod 256), then the
output difference X(p) �X(p′) is always odd.



Proposition 2 (see [6]) For any byte pair (p, p′), p⊕ p′ = 0x80 always means (p− p′) ≡
0x80 (mod 256), and vice versa.

Proposition 3 (see [16]) For any given byte pair (p, p′), if p ⊕ p′ is odd, then (p � k) ⊕
(p′ � k) is odd. Also, if p� p′ is odd, (p⊕ k) � (p′ ⊕ k) is odd. Here, k can take any value
in Z256.

Based on the propositions, we can get 2.75-round impossible differentials for SAFER+ and
3.75-round impossible differentials for SAFER++.

Theorem 1 For SAFER+, if the output difference of the S-boxes in the first round ∆TS
1

is (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80x, 0) and the output difference of the upper key layer in
the fourth round ∆TU

4 is (0, a, 0, 0, 0, b, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where a and b are any
non-zero value. Such 2.75-round differential is impossible if a and b satisfy one of the three
following conditions: a+ b = 0, 8a+ b = 0, a+ 8b = 0.

Proof. We list the 2.75 rounds impossible differentials with a+b = 0 in Fig.1. In the forward
direction: as ∆TS

1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80x, 0), we have (∆TL
1 )14 = (∆TS

1 )14
according to Proposition 2. Then we have

∆T I
2 = ∆TA

1 = ∆TL
1 ×M+ = (0, 0, 80x, 80x, 0, 0, 80x, 80x, 0, 0, 0, 80x, 0, 0, 0, 0).

According to Proposition 2 again, after the upper key layer, ∆TU
2 =∆T I

2 . From Proposi-
tion 1 we have: ∆TS

2 =(0, 0, m1, od, 0, 0, n1, od, 0, 0, 0, od, 0, 0, 0, 0), where m1 and n1
are undetermined non-zero values, and od is the odd value. Proposition 3 tells us ∆TL

2 =(0,
0, m2, od, 0, 0, n2, od, 0, 0, 0, od, 0, 0, 0, 0), where m2 and n2 are undetermined non-zero
values. Then ∆TA

2 = ∆TL
2 ×M+=(∗, ∗, ∗, od, ∗, ∗, od, ∗, od, ∗, ∗, ∗, od, od, ∗, ∗), where ∗

is undetermined value.

In the reverse direction: If a + b = 0, from ∆TU
4 =(0, a, 0, 0, 0, −a, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0), we have ∆TA
3 =∆T I

4 =(0, a, 0, 0, 0, −a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). ∆TL
3 =∆TA

3 ×
M−1+ =(∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗). After the S-box layer and the upper key layer in
the third round, we have ∆TA

2 =∆T I
3 =(∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗).

So the 4-th and 9-th byte of the output difference of the second round is zero, which is
contradiction with the fact that the 4-th and 9-th byte of the output difference of the second
round is odd. Therefore, the 2.75-round differential is an impossible differential.

The proofs of the other two kinds of impossible differentials are similar. ut

Theorem 2 For SAFER++, if the output difference of the S-boxes in the first round ∆TS
1

is (0, 80x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80x, 0), and the output difference of the upper key layer
in the fifth round is

∆TU
5 = (0, a,−a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where a is any non-zero value, such 3.75-round differential is impossible.

Proof. The 3.75 rounds impossible differentials have been shown in Fig.2. In the forward
direction: as ∆TS

1 =(0, 80x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80x, 0), we have ∆TL
1 =∆TS

1

according to Proposition 2. Then

∆TA
1 = ∆TL

1 ×M++ = (0, 0, 0, 0, 80x, 80x, 0, 80x, 0, 0, 0, 0, 80x, 0, 80x, 80x) = ∆T I
2 .



According to Proposition 2 again, after the upper key layer, ∆TU
2 = ∆T I

2 . From Proposition
1 we have: ∆TS

2 =(0, 0, 0, 0, od, m3, 0, od, 0, 0, 0, 0, od, 0, n3, od), where m3 and n3 are
undetermined non-zero values, and od is the odd value. Proposition 3 tells us ∆TL

2 =(0, 0,
0, 0, od, m4, 0, od, 0, 0, 0, 0, od, 0, n4, od), where m4 and n4 are undetermined non-zero
values. Then ∆TA

2 = ∆TL
2 ×M++=(∗, ∗, ∗, ∗, od, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗), where ∗ is

undetermined.

In the reverse direction: ∆TU
5 =(0, a, −a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), we have

∆TA
4 =∆T I

5 =(0, a, −a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ∆TL
4 =∆TA

4 ×M−1++=(0, ∗, ∗, 0, ∗, ∗,
∗, ∗, 0, 0, 0, 0, ∗, ∗, ∗, ∗). After the S-boxes layer and the upper key layer in the fourth round,
we have ∆TA

3 = ∆T I
4 = (0, ∗, ∗, 0, ∗, ∗, ∗, ∗, 0, 0, 0, 0, ∗, ∗, ∗, ∗). Then ∆TL

3 = ∆TA
3 ×M−1++ =

(∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗), ∆TS
3 = (∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗) = ∆T I

3 .
So the fifth byte of the input difference of round 3 is zero, which contradicts the fact that
the fifth byte of the output difference of the second round is odd. Therefore, the 3.75-round
differential is an impossible differential. ut
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Fig. 1. 2.75-Round Impossible Differential of SAFER+
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Fig. 2. 3.75-Round Impossible Differential of SAFER++



4 Impossible Differential Attacks on SAFER+

In this section, we will use our 2.75-round impossible differential to recover the keys for four
rounds of SAFER+/128 in Fig.3 and four rounds of SAFER+/256 in Fig.4. First of all, in
order to filter out the pairs as soon as possible, we derive the relation between the ciphertext
bytes difference in Proposition 4.

Proposition 4 For four full-round of SAFER+/128 or SAFER+/256, if the pairs have the
difference ∆TU

5 =(0, a, −a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the differences for their
corresponding ciphertext pairs have the following relations,

∆C1 −∆C2 = 0, 2∆C1 −∆C6 = 0, ∆C5 −∆C10 = 0, (1)

∆C5 +∆C9−5∆C13 = 0, ∆C6 +2∆C14−6∆C13 = 0, ∆C1 +∆C5 +∆C6−7∆C13 = 0. (2)

Proof. From Fig. 3 and Fig. 4, we know ∆TU
4 =(0, a, −a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0), then we get ∆TL
4 =∆TS

4 =(0, A, B, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where both A
and B are non-zero undetermined difference values. By multiplying the matrix M+, we can
get ∆TA

4 = (A + 2B,A + 2B,A + 2B,A + B, 8A + 2B, 4A + B, 2A + 4B,A + 2B, 2A +
8B,A + 4B, 4A + B, 2A + B,A + B,A + B, 2A + B, 2A + B). So the ciphertext difference
∆C = (∗, A+ 2B,A+ 2B, ∗, ∗, 4A+B, 2A+ 4B, ∗, ∗, A+ 4B, 4A+B, ∗, ∗, A+B, 2A+B, ∗).
Therefore, we have

∆C1 = ∆C2 = A+ 2B, 2∆C1 = ∆C6 = 2A+ 4B, ∆C5 = ∆C10 = 4A+B,

∆C5 +∆C9 = 4A+B +A+ 4B = 5(A+B) = 5∆C13,

∆C6 + 2∆C14 = 2A+ 4B + 2(2A+B) = 6(A+B) = 6∆C13,

∆C1 +∆C5 +∆C6 = A+ 2B + 4A+B + 2A+ 4B = 7(A+B) = 7∆C13.

ut

4.1 Impossible Differential Attack on SAFER+/128

By placing the 2.75-round impossible differential on round 0.5-3.25, we can attack from
round 1 to round 4. This is described in Fig.3. In order to show the effect of the key
schedule, we denote our guessed subkey bits with their related master key bytes instead
of themselves in Fig.3, and the similar denotation is used in the following figures for the
attacks on SAFER+/256, SAFER++/128 and SAFER++/256.

Data Collection. We first construct 2114.4 structures of plaintexts, where in each structure
the plaintext byte P14 takes all values, whereas the other bytes are fixed. For each structure,
ask for the encryption of the plaintexts to get the corresponding ciphertexts. In order to
filter out the wrong pairs with Equation (1) in Proposition 4, we construct a hash table
indexed by (C1−C2|2C1−C6|C5−C10) and put 28 corresponding ciphertexts into the hash
table. Then we combine the ciphertext pairs in the same entity in the hash table which can
satisfy Equation (1) in Proposition 4. On average there are about 215/224 = 2−9 remaining
pairs for each structure. Then we will further filter out the wrong pairs with Equation (2) in
Proposition 4, so we construct another hash table indexed by (C5 +C9 − 5C13|C6 + 2C14 −
6C13|C1 + C5 + C6 − 7C13) and put the 2−9 pairs into the hash table. There will remain
pairs in the same entity in the hash table which can satisfy Equation (2) in Proposition 4.
Now we can easily get the value of A and B in Fig.3 from the ciphertext difference for each
remaining ciphertext pair. On average, there are 2−9/224 = 2−33 remaining pairs for each
structure.
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Key Recovery. In order to find if there are pairs obtained from the data collection phase
that may follow the differential in Fig.3, we need to guess the key bits and sieve the pairs
in round 1 and round 4. From Fig.3, in round 1, we need to guess the 15-th subkey byte in
the upper key layer which is related to the master key byte k15 from Table 2. In round 4, 16
subkey bytes of the lower key layer which are related to the master key bytes (k9, k10, k11,
. . ., k16, ksp1, k1, k2,. . ., k7) and we will guess partial bits for these 16 key bytes. We also
need to guess the second and the sixth subkey bytes of the upper key layer which are related
to the master key bytes (k9, k13). We proceed the key recovery phase for the remaining pairs
as follows:

– Step 1. For all 28 possible values for the 15-th subkey byte of the upper key layer of
the first round which depends on k15, encrypt each plaintext of 2−33 remaining pairs
for 1

2 round to get the output differences of the S-boxes in the first round, which should
satisfy (∆TS

1 )14 = 80x. Then the number of remaining pairs is about 2−41. The total
number of guessed subkey bits in this step is 8.

– Step 2.
• Step 2.1 In the final whitening key layer, there are eight XOR operations. As we

get the ciphertext differences for the eight bytes, we can directly get the value for
the least significant bit of (∆TA

4 )j , j ∈ {0, 3, 4, 7, 8, 11, 12, 15} without guessing the
corresponding subkey value. Because we have known the value for A and B in the
data collection phase, we can derive the difference values for the eight least significant
bits from A and B. Then we can sieve the pairs with the eight conditions, as a result,
2−41/28 = 2−49 pairs remain for each structure.

• Step 2.2 For all 28 values of the least significant bits of the eight subkey bytes which
depend on k9, k12, k13, k16, ksp1, k3, k4, and k7, respectively, compute the second
least significant bits for (∆TA

4 )j , j ∈ {0, 3, 4, 7, 8, 11, 12, 15} for all remaining pairs
and verify if they equal to the corresponding values obtained from A and B. If
not, we discard the pair. In a similar way, we guess the eight subkey bytes from
the second least significant bit to the seventh least significant bit one by one and
sieve the pairs according the conditions derived from A and B. As a result, about
2−49/28∗7 = 2−105 pairs are obtained. The total number of new guessed subkey bits
in this step is 56.

– Step 3. In this step, we will compute the value for a and b corresponding to (∆TU
4 )1 and

(∆TU
4 )5. With M−1+ ,

(TU
4 )1 = S−1((TL

4 )1 − (K42)1)

= S−1([−2, 4,−2, 4,−1, 1,−4, 4,−1, 1,−2, 2,−8, 16,−1, 2]× (TA
4 )− k9),

(TU
4 )5 = S−1((TL

4 )5 − (K42)5))

= S−1([−1, 2,−4, 4,−1, 1,−2, 2,−1, 1,−8, 16,−2, 4,−2, 4]× (TA
4 )− k13),

so in order to calculate the values of (TU
4 )1 and (TU

4 )5, the bits depending on the fol-
lowing keys should be guessed:

(TU
4 )1: k13, k14, ksp1, k1, k6, k9; the seven least significant bits of k11, k2, k3, k7;

the six least significant bits of k10, k12, k15, k16; the five least significant bits of k4; the
four least significant bits of k5.

(TU
4 )5: k9, k13, k14, ksp1, k1; the seven least significant bits of k10, k15, k16, k4, k6;

the six least significant bits of k11, k12, k5, k7; the five least significant bits of k2; the
four least significant bits of k3.
Here some subkey bits have been guessed in the previous steps, so the total number of
the new involved subkey bits in this step is 54.



For each pair obtained from Step 2.2, compute a and b to verify if they satisfy any one of
the three relations for the three impossible differentials. If so, the 54-bit subkey should
be discarded. After processing all the pairs, if any values for the 54-bit subkey remain,
we output them with the guessed 64-bit subkey, and exhaustively search them with the
remaining 10 bits subkey by trial encryption. Otherwise, we try another guess for 64-bit
subkey from Step 1 and Step 2.

The data complexity of the attack is 2122.4 chosen plaintexts. In the data collection
phase, the time complexity is about 2122.4×3 = 2124 modular subtraction operations which is
equivalent to 2119 encryptions and the memory complexity is about 281.4×2×32 = 287.4 bytes
for the remaining pairs. In Step 1, the time complexity is about 2×28×2114.4−33× 1

2×
1
16×

1
4 =

283.4 encryptions and the memory complexity for remaining pairs is less than that in the data
collection phase. In Step 2, the time complexity is about 2×28×2114.4−41×8×8 ≈ 288.4 XOR
operations and 287.4 modular subtraction operations. The memory complexity for remaining
pairs is less than that in Step 1. In Step 3, The expected number of remaining 118-bit subkey
guesses is about 2118× (1− 3

28 )2
114.4−105 ≈ 2108. Since each of the remaining key guesses has

to be exhaustively searched with the other 210 key values, so the time complexity of this
step is about 2×2118× [1+(1− 3

28 )+(1− 3
28 )2 + . . .+(1− 3

28 )]2
9.4× 2

16 ×
1
4 +2108+10 ≈ 2120.7

encryptions. Thus the total time complexity is about 2121 encryptions and the memory
complexity is about 287.4 bytes.

4.2 Impossible Differential Attack on SAFER+/256

The attack on 4 rounds of SAFER+/256 is shown in Fig.4. The only difference between the
attack on SAFER+/256 and SAFER+/128 is the difference in the key schedule.

Data Collection. Because this phase is not related to the key, it is completely the same
as the data collection in the attack on SAFER+/128 except that the number of structures
is 2116.4. We do not describe it here.

Key Recovery.

– Step 1. From Fig.4, the key byte to be guessed in the first round is k15, which is the
same as that in the attack on SAFER+/128, so this step is the same as Step 1 in the
attack on SAFER+/128.

– Step 2. In this step, the guessed new key bits are completely the same as those of Step
2 in the attack on SAFER+/128.

– Step 3. In this step, we will guess the necessary subkey bits compute the values for a
and b. The total number of the new involved subkey bits in this step is 70.
For each pair obtained from Step 2, compute a and b to verify if they satisfy any one of
the three relations for the three impossible differentials. If so, the 70-bit subkey should
be discarded. After processing all the pairs, if any values for the 70-bit subkey remain,
we output them with the guessed 64-bit subkey, and exhaustively search them with the
remaining 122 bits subkey by trial encryption. Otherwise, we try another guess for 64-bit
subkey from Step 1 and Step 2.

The data complexity of the attack is 2124.4 chosen plaintexts. In data collection phase,
Step 1 and Step 2, the time complexity is four times bigger than that in the attack on
SAFER+/128. In Step 3, the expected number of remaining 134-bit subkey guesses is about

2134×(1− 3
28 )2

116.4−105 ≈ 294. Since each of the remaining key guesses has to be exhaustively
searched with the other 2122 key values, so the time complexity of this step is about 2 ×
2134 × [1 + (1− 3

28 ) + (1− 3
28 )2 + . . .+ (1− 3

28 )]2
11.4 × 2

16 ×
1
4 + 294+122 ≈ 2216 encryptions.

So the total time complexity is 2216 encryptions and the memory complexity is about 289.4

bytes.
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5 Impossible Differential Attacks on SAFER++

In this section, we will use the 3.75-round impossible differentials for SAFER++ in Section 3
to recover the keys for SAFER++/128 in Fig.5 and SAFER++/256 in Fig.6. First of all, in
order to filter out the pairs as soon as possible, we derive the relations between the ciphertext
bytes difference in Proposition 5.

Proposition 5 For five full rounds SAFER++/128 or SAFER++/256, if the pairs have the
difference ∆TU

5 =(0, a, b, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), their corresponding output
difference has the following relations,

(∆TU
6 )5 − (∆TU

6 )10 = 0, (∆TU
6 )1 − (∆TU

6 )9 = 0, (∆TU
6 )6 − (∆TU

6 )14 = 0, (3)

(∆TU
6 )1 + (∆TU

6 )6 − 3(∆TU
6 )5 = 0,

(∆TU
6 )2 + (∆TU

6 )13 − 5(∆TU
6 )5 = 0,

3(∆TU
6 )1 + (∆TU

6 )13 − 7(∆TU
6 )5 = 0.

(4)

The proof can be finished from Fig.5 and Fig.6 with a similar proving method for Propo-
sition 4, so we will not describe it here.

5.1 Impossible Differential Attack on SAFER++/128

By placing the 3.75-round impossible differential on round 0.5-4.25, we can attack SAFER++/128
from round 1 to round 5. This is described in Fig.5.
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Fig. 5. Impossible Differential Attack on 5-Round SAFER++/128

Data Collection. We first construct 2108 structures of plaintexts, where in each structure
the plaintext bytes P1 and P14 take all values, whereas the other bytes are fixed. For each
structure, ask for the encryption of the plaintexts to get the corresponding ciphertexts. In
order to filter out the wrong pairs with Equation (3) in Proposition 5, we construct a hash
table indexed by (C5 − C10|C1 − C9|C6 − C14) and put 216 corresponding ciphertexts into
the hash table. Then we combine the ciphertext pairs in the same entity in the hash table
which can satisfy Equation (3) in Proposition 5. On average there are about 231/224 = 27

remaining pairs for each structure. Then we will further filter out the wrong pairs with
Equation (4) in Proposition 5, so we construct another hash table indexed by (C1 + C6 −
3C5|C2 + C13 − 5C5|3C1 + C13 − 7C5) and put the 27 pairs into the hash table. There
will remain pairs in the same entity in the hash table which can satisfy Equation (4) in
Proposition 5. Now we can easily get the value of A and B in Fig.5 from the ciphertext
difference for any remaining ciphertext pair. On average, there are 27/224 = 2−17 remaining
pairs for each structure.

Key Recovery. In order to find if there are pairs obtained from the data collection phase
that may follow the differential in Fig.5, we need to guess the key bits and sieve the pairs
in round 1 and round 5. From Fig.5, in round 1, we need to guess the second and 15-th
subkey bytes in the upper key layer which are related to the master key bytes k2 and k15,
respectively. In round 5, 16 final whitening subkey bytes are related to the master key bytes
(k11, k12, k13, . . . , k16, ksp1, k1, k2, . . . , k9) and we will guess partial bits for the 16 subkey
bytes. We also need to guess the second and the third subkey bytes of the lower key layer in
round 5 which are related to the master key bytes (k11, k12), respectively. We proceed the
key recovery phase for the remaining pairs as follows:



– Step 1. For all 216 possible values for the second and the 15-th bytes of upper key layer
of the first round which depend on k2 and k15, for each structure encrypt each plaintext
pair of the 2−17 remaining pairs for 1

2 round to get the output differences of the S-boxes
in the first round, which should satisfy (∆TS

1 )1 = (∆TS
1 )14 = 80T . Then the number of

remaining pairs is about 2−33. The total number of guessed subkey bits in this step is
16.

– Step 2.

• Step 2.1 In the final whitening key layer, there are eight XOR operations. As we
get the ciphertext differences for the eight bytes, we can directly get the value for
the least significant bit of (∆TA

5 )j , j ∈ {0, 3, 4, 7, 8, 11, 12, 15} without guessing the
corresponding subkey value. Because we have known the value for A and B in the
data collection phase, we can derive the 8 bits difference for the least significant bits
from A and B. Then we can sieve the pairs with the eight conditions, as a result,
2−33/28 = 2−41 pairs remain for each structure.

• Step 2.2 For all 28 values for the least significant key bit of eight subkey bytes which
depend on k11, k14, k15, k1, k2, k5, k6, k9, respectively, compute the second least
significant bits for (∆TA

5 )j , j ∈ {0, 3, 4, 7, 8, 11, 12, 15} for all remaining pairs and
verify if they equal to the corresponding value derived from A and B. If not, we
discard the pair. In a similar way, we guess eight subkey bytes from the second least
significant bits to the seventh least significant bits one by one which depend on k11,
k14, k15, k1, k2, k5, k6, k9, respectively, then we sieve the pairs according to the
conditions derived from A and B. As a result, about 2−41/28∗7 = 2−97 pairs are
obtained. The total number of new guessed subkey bits in this step is 42.

– Step 3. In this step, we will compute the value for a and −a corresponding to (∆TU
5 )1

and (∆TU
5 )2. Similar to the attack on SAFER+, we only guess the subkey bits that are

necessary, the total number of the new involved subkey bits in this step is 52.

For each pair obtained from Step 2.2, compute the value for (∆TU
5 )1 and (∆TU

5 )2 to
verify if (∆TU

5 )1 = −(∆TU
5 )2. If so, the 52-bit subkey should be discarded. After pro-

cessing all the pairs, if any values for the 52-bit subkey remain, we output them with
the guessed 58-bit subkey, and exhaustively search them with the remaining 18 bits key
by trial encryption. Otherwise, we try another guess for 58-bit subkey from Step 1 and
Step 2.

The data complexity of the attack is 2124 chosen plaintexts. In the data collection phase,
the time complexity is about 2124 × 3 = 2125.6 modular subtraction operations, which is
equivalent to 2120.6 times of encryptions and the memory complexity is about 291×2×32 =
297 bytes for the remaining pairs. In Step 1, the time complexity is about 2×216×291× 1

2 ×
1
16×14 = 2101 encryptions. In Step 2, the time complexity is about 2×216×275×8×8 ≈ 298

XOR operations and 297 modular subtraction operations. In Step 3, the expected number
of remaining 110-bit key guesses is about 2110 × (1 − 1

28 )2
108−97 ≈ 2100. Sine each of the

remaining key guesses has to be exhaustively searched with the other 218 key values, so the
time complexity of this step is about 2×2110× [1 + (1− 1

28 ) + (1− 1
28 )2 + . . .+ (1− 1

28 )]2
11 ×

2
16 ×

1
4 + 2118 ≈ 2118 encryptions. Thus the total time complexity is about 2121 encryptions

and the memory complexity is about 297 bytes.

5.2 Impossible Differential Attack on SAFER++/256

The attack on 5.5 rounds of SAFER++/256 is shown in Fig.6. We put the 3.75-round
impossible differential from round 0.5 to round 4.25 and we will recover the key for 5.5-
round SAFER++/256.
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Fig. 6. Impossible Differential Attack on 5.5-Round SAFER++/256

Attack Procedure. We first construct 2108 structures of plaintexts, where in each structure
the plaintext bytes P1 and P14 take all values, whereas the other bytes are fixed. For each
structure, ask for the encryption of the plaintexts to get the corresponding ciphertexts. In
order to find if there are pairs obtained that may follow the differential in Fig.6, we need to
guess the key bits and sieve the pairs in round 1, round 5 and round 6. We proceed the key
recovery phase as follows,

– Step 1. Guess eight subkey bytes of the lower key layer in round 6 which depend on
kj , j ∈ {29, 30, sp2, 17, 20, 21, 24, 25} and compute (∆TU

6 )l, l ∈ {1, 2, 5, 6, 9, 10, 13, 14}
for the 216 ciphertexts of each structure. We sieve the pairs satisfying the 48 conditions
from Proposition 5. As a result, we obtain 231−48 = 2−17 pairs for each structure. For
the remaining pairs, we can get the values A and B from the ciphertext pairs.

– Step 2. Guess two subkey bytes in the first round which depend on k2 and k15, respec-
tively and compute (∆TL

1 )1 and (∆TL
1 )14 from the plaintexts of the remaining pairs.

Finally, we get 2−33 pairs for each structure.
– Step 3.
• Step 3.1 As we have guessed k15 in Step 2, we only guess k32 and we can compute

(∆TA
5 )4. We sieve the pairs satisfying (∆TA

5 )4 = A + 2B. As a result, the number
of remaining pairs is 2−33−8 = 2−41.

• Step 3.2 As we have guessed k2 in Step 2, we only guess k19 and we can compute
(∆TA

5 )8. We sieve the pairs satisfying (∆TA
5 )8 = A+B. As a result, the number of

remaining pairs is 2−41−8 = 2−49.
• Step 3.3 We guess 8-bit for k28 denoted as k287∼0 and the seven least significant sub-

key bits which depend on k11 denoted as (k11)6∼0 (we describe them as 15-bit tuples
(k287∼0, (k

11)6∼0) )to compute (∆TA
5 )0 for the remaining 2−49 ciphertext pairs for each



structure. We sieve the pairs satisfying (∆TA
5 )0 = 2A + 2B. As a result, the num-

ber of remaining pairs is 2−49−8 = 2−57. In a similar way, we guess other 15-bit tuples
(k317∼0|(k14)6∼0), (k187∼0|(k1)6∼0), (k227∼0|(k5)6∼0), (k237∼0|(k6)6∼0), (k267∼0|(k9)6∼0) one by
one to sieve the pairs according to the corresponding values for ∆TA

5 . At last, we
obtain 2−57−40 = 2−97 pairs for each structure. The number of the new guessed
subkey bits is 90.

– Step 4. In this step, we will compute the value for a and −a corresponding to (∆TU
5 )1

and (∆TU
5 )2. The total number of the new involved subkey bits in this step is 51.

For each pair obtained from Step 3.3, compute the value for a and −a corresponding to
(∆TU

5 )1 and (∆TU
5 )2 to verify if (∆TU

5 )1 = −(∆TU
5 )2. If so, the 51-bit key should be

discarded. After processing all the pairs, if any values for the 51-bit subkey remain, we
output them with the guessed 186-bit subkey, and exhaustively search them with the
remaining 19 bits key by trial encryption. Otherwise, we try another guess for 186-bit
subkey from Step 1.

The data complexity of the attack is 2124 chosen plaintexts. The memory complexity is
about 297 bytes. The time complexity is dominated by Step 4. In this step, the expected
number of remaining 237-bit key guesses is about 2237 × (1 − 1

28 )2
108−97 ≈ 2227. Since each

of the remaining key guesses has to be exhaustively searched with the other 219 key values,
the time complexity of this step is about 2 × 2237 × [1 + (1 − 1

28 ) + (1 − 1
28 )2 + . . . + (1 −

1
28 )2

11

]× 2
16 ×

1
4 + 2227+19 ≈ 2246 encryptions.

6 Conclusion

This paper introduces impossible differential attacks on SAFER+ and SAFER++ block ci-
phers. We first derive 2.75-round and 3.75-round impossible differentials for SAFER+ and
SAFER++, which improves the previous 2.75-round impossible differentials for SAFER++.
With the impossible differentials, attacks on 4-round SAFER+/128(256), 5-round SAFER++/128
and 5.5-round SAFER++/256 can be achieved. Our method can also be applied to other
ciphers that have similar structures to SAFER+.
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A Appendix

This appendix contains the matrices corresponding to the linear layer and its inverse for
SAFER+ and SAFER++.

M+ =



2 2 1 1 16 8 2 1 4 2 4 2 1 1 4 4
1 1 1 1 8 4 2 1 2 1 4 2 1 1 2 2
1 1 4 4 2 1 4 2 4 2 16 8 2 2 1 1
1 1 2 2 2 1 2 1 4 2 8 4 1 1 1 1
4 4 2 1 4 2 4 2 16 8 1 1 1 1 2 2
2 2 2 1 2 1 4 2 8 4 1 1 1 1 1 1
1 1 4 2 4 2 16 8 2 1 2 2 4 4 1 1
1 1 2 1 4 2 8 4 2 1 1 1 2 2 1 1
2 1 16 8 1 1 2 2 1 1 4 4 4 2 4 2
2 1 8 4 1 1 1 1 1 1 2 2 4 2 2 1
4 2 4 2 4 4 1 1 2 2 1 1 16 8 2 1
2 1 4 2 2 2 1 1 1 1 1 1 8 4 2 1
4 2 2 2 1 1 4 4 1 1 4 2 2 1 16 8
4 2 1 1 1 1 2 2 1 1 2 1 2 1 8 4

16 8 1 1 2 2 1 1 4 4 2 1 4 2 4 2
8 4 1 1 1 1 1 1 2 2 2 1 2 1 4 2





M++ =



1 2 1 1 1 1 1 1 4 2 2 2 1 1 2 1
2 1 1 1 1 1 2 1 1 1 1 1 2 4 2 2
2 2 4 2 2 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1
4 2 2 2 1 1 2 1 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 2 4 2 2 1 1 1 1
1 1 1 1 1 2 1 1 2 2 4 2 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1
1 1 2 1 4 2 2 2 1 2 1 1 1 1 1 1
1 1 1 1 2 4 2 2 1 1 2 1 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 2 2 4 2
2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1
1 1 1 1 1 2 1 1 1 1 2 1 4 2 2 2
2 4 2 2 1 1 1 1 2 1 1 1 1 1 2 1
2 1 1 1 2 2 4 2 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1



M−1+ =



2 −2 1 −2 1 1 4 −8 2 −4 1 1 1 −2 1 −1
−4 4 −2 4 −2 2 −8 16 −2 4 −1 1 −1 2 −1 1

1 −2 1 −1 2 −4 1 −1 1 −1 1 −2 2 −2 4 −8
−2 4 −2 2 −2 4 −1 1 −1 1 −1 2 −4 4 −8 16

1 −1 2 −4 1 −1 1 −2 1 −2 1 −1 4 −8 2 −2
−1 1 −2 4 −1 1 −1 2 −2 4 −2 2 −8 16 −4 4

2 −4 1 −1 1 −2 1 −1 2 −2 4 −8 1 −1 1 −2
−2 4 −1 1 −1 2 −1 1 −4 4 −8 16 −2 2 −2 4

1 −1 1 −2 1 −1 2 −4 4 −8 2 −2 1 −2 1 −1
−1 1 −1 2 −1 1 −2 4 −8 16 −4 4 −2 4 −2 2

1 −2 1 −1 4 −8 2 −2 1 −1 1 −2 1 −1 2 −4
−1 2 −1 1 −8 16 −4 4 −2 2 −2 4 −1 1 −2 4

4 −8 2 −2 1 −2 1 −1 1 −2 1 −1 2 −4 1 −1
−8 16 −4 4 −2 4 −2 2 −1 2 −1 1 −2 4 −1 1

1 −1 4 −8 2 −2 1 −2 1 −1 2 −4 1 −1 1 −2
−2 2 −8 16 −4 4 −2 4 −1 1 −2 4 −1 1 −1 2



M−1++ =



0 0 0 −4 1 0 1 0 0 1 0 −1 1 0 0 0
0 0 0 −4 0 0 1 −1 0 1 0 0 1 1 0 0
0 0 1 −4 0 0 1 0 0 1 0 0 1 0 0 −1
0 0 −1 16 −1 0 −4 1 0 −4 0 1 −4 −1 0 1
1 0 0 0 0 0 0 −4 1 0 1 0 0 1 0 −1
1 0 0 −1 0 0 0 −4 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 −4 0 0 1 −1 0 1 1 0
−4 0 0 1 0 0 0 16 −1 −1 −4 1 0 −4 −1 1

1 1 0 0 1 0 0 −1 0 0 0 −4 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 −4 0 0 1 −1
0 1 0 −1 1 0 1 0 0 0 0 −4 0 0 1 0
−1 −4 0 1 −4 −1 −1 1 0 0 0 16 0 0 −4 1

0 0 1 −1 0 1 0 0 1 0 0 0 1 0 0 −4
0 1 1 0 0 1 0 0 1 0 0 −1 0 0 0 −4
0 0 1 0 0 1 0 −1 1 0 1 0 0 0 0 −4
0 −1 −4 1 0 −4 0 1 −4 0 −1 1 −1 0 0 16




