
Hardness Preserving Reductions via Cuckoo Hashing

Itay Berman∗ Iftach Haitner∗ Ilan Komargodski† Moni Naor†‡

December 24, 2012

Abstract

A common method for increasing the usability and uplifting the security of pseudorandom
function families (PRFs) is to “hash” the inputs into a smaller domain before applying the PRF.
This approach, known as “Levin’s trick”, is used to achieve “PRF domain extension” (using a
short, e.g., fixed, input length PRF to get a variable-length PRF), and more recently to transform
non-adaptive PRFs to adaptive ones. Such reductions, however, are vulnerable to a “birthday
attack”: after

√
|U| queries to the resulting PRF, where U being the hash function range, a

collision (i.e., two distinct inputs have the same hash value) happens with high probability. As
a consequence, the resulting PRF is insecure against an attacker making this number of queries.

In this work we show how to go beyond the birthday attack barrier, by replacing the above
simple hashing approach with a variant of cuckoo hashing — a hashing paradigm typically used
for resolving hash collisions in a table, by using two hash functions and two tables, and cleverly
assigning each element into one of the two tables. We use this approach to obtain: (i) A domain
extension method that requires just two calls to the original PRF, can withstand as many queries
as the original domain size and has a distinguishing probability that is exponentially small in
the non cryptographic work. (ii) A security-preserving reduction from non-adaptive to adaptive
PRFs.

1 Introduction

We study methods for strengthening pseudorandom functions; such methods transform functions
that are somewhat weak (e.g., with a small domain, or withstands only non-adaptive (also known
as static) attacks: the attacker choose its query ahead of time, before seeing any of the answers)
into ‘stronger’ functions, e.g., with a large domain, or secure against adaptive (dynamic) attacks:
the attacker queries may be chosen as a function of all previous answers.

A common paradigm, first suggested by Levin [23, §5.4], for increasing the usability and uplifting
the security of pseudorandom function families (PRFs), is to “hash” the inputs into a smaller
domain before applying the PRF. This approach is used to achieve “PRF domain extension” (using

∗School of Computer Science, Tel Aviv University. E-mail: {itayberm@post,iftachh@cs}.tau.ac.il. Research
supported in part by Check Point Institute for Information Security and the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11).
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel. Email: {ilan.komargodski,moni.naor}@weizmann.ac.il. Research supported in part by a grant from the
I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation.
‡Incumbent of the Judith Kleeman Professorial Chair. Research supported in part by a grant from the Israel

Science Foundation.

1

a short, e.g., fixed, input length PRF to get a variable-length PRF), and more recently to transform
non-adaptive PRFs to adaptive ones [6]. Such reductions, however, are vulnerable to the following
“birthday attack”: after

√
|U| queries to the resulting PRF, where U being the hash function range,

a collision (i.e., two distinct inputs have the same hash value) happens with high probability. Such
collisions are an obstacle for the indistinguishability of the PRF, since in a random function we
either do not expect to see a collision at all (in case the range is large enough) or expect to see
fewer collisions. Hence, the resulting PRF is insecure against an attacker making this number of
queries.

In this work we study variants of the above hashing approach to go beyond the birthday attack
barrier. Specifically, we consider constructions based on cuckoo hashing : a hashing paradigm
typically used for resolving hash collisions in a table by using two hash functions and two tables,
and assigning each element to one of the two tables (see Section 1.2). We use this paradigm to
present a new PRF domain extension method that requires just two calls to the original PRF, can
withstand as many queries as the original domain size and has a distinguishing probability that is
exponentially small in the amount of non cryptographic work. A second implication is a security-
preserving reduction from non-adaptive to adaptive PRFs, an improvement upon the recent result
of [6].

Before stating our results, we discuss in more details the notions of pseudorandom functions
and cuckoo hashing.

1.1 Pseudorandom Functions

Pseudorandom function families (PRFs), introduced by Goldreich, Goldwasser, and Micali [16],
are function families that cannot be distinguished from a family of truly random functions, by an
efficient distinguisher who is given an oracle access to a random member of the family. PRFs have
an extremely important role in cryptography, allowing parties, which share a common secret key, to
send secure messages, identify themselves and to authenticate messages [15, 24]. In addition, they
have many other applications, essentially in any setting that requires random function provided as
black-box [4, 8, 11, 14, 25, 34]. Different PRF constructions are known in the literature, whose
security are based on different hardness assumptions. The construction that is most relevant to this
work is the one of [16], hereafter the GGM construction, that uses a length-doubling pseudorandom
generator (and thus can be based on the existence of one-way functions [18]).

We use the following definitions: an efficiently computable function family ensemble F =
{Fn}n∈N is a (q, t, ε)-PRF, if (for large enough n) a q(n)-query oracle-aided algorithm (distin-
guisher) of running time t(n), getting access to a random function from the family, distinguishes
between Fn and the family of all functions (with the same input/output domains), with probability
at most ε(n). F is non-adaptive (q, t, ε)-PRF, if it is only required to be secure against non-adaptive
distinguishers (i.e., ones that prepare all their queries in advance). Finally, F is a t-PRF, in case
q is only limited by t and ε = 1/t.

We note that the information-theoretic analog of a t-PRF is known as a t-wise independent
family and is formally defined in Definition 2.5.

1.2 Cuckoo Hashing and Many-wise independent hash function

Cuckoo hashing, introduced by Pagh and Rodler [36], is an efficient technique for constructing
dynamic dictionaries. Such data structures are used to maintain a set of elements, while supporting

2

membership queries as well as insertions and deletions of elements. Cuckoo hashing maintains such
a dynamic dictionary by keeping two tables of size only slightly larger than the number of elements
to be inserted and two hash functions mapping the elements into cells of those tables, and applying
a clever algorithm for placing at most a single element in each cell. Since its introduction, many
variants of cuckoo hashing have been proposed and an extensive literature is devoted to its analysis.

Pagh and Pagh [35] used ideas in the spirit of cuckoo hashing to construct efficient many-wise
independent hash functions. For that they introduce the following paradigm. Let H, G and F be
function families from D to S, from D to R and from S to R respectively. Define the function
family PP(H,G,F) from D to R as

PP(H,G,F) = (F ◦ H)⊕ (F ◦ H)⊕ G, (1)

where F1 ◦ F2, for function families F1 and F2, is the function family whose members are the
elements of F1×F2 and (f1, f2)(x) is defined by f1(f2(x)) (F1⊕F2 is analogously defined). In other
words, given f1, f2 ∈ F , h1, h2 ∈ H and g ∈ G, design a function PPf1,f2,h1,h2,g(x) = f1(h1(x)) ⊕
f2(h2(x))⊕ g(x).

Pagh and Pagh [35] showed that when the families H and G are of “high enough” independence,
roughly, both families are (c · log |S|)-wise independent, then the family PP(H,G,Π) is O(|S|−c)-
indistinguishable from random by a |S|-query, non-adaptive distinguisher, where Π being the set
of all functions from S to R.1 Note that the security of the resulting family goes well beyond the
birthday attack barrier: it is indistinguishable from random by an attacker making |S| >>

√
|S|

queries.
Aumüller et al. [3] (building on the work of Dietzfelbinger and Woelfel [12]) were able to

strengthen the result of Pagh and Pagh [35] by using more sophisticated hash functions H and
G (rather than the O(log |S|)-wise independent that [35] used). Specifically, for a given s ≥ 0,
Aumüller et al. [3] constructed a function familyADW(H,G,Π) such that the familyADW(H,G,Π)

is O(|S|−(s+1))-indistinguishable from random by a |S|-query , non-adaptive distinguisher, where
Π being the set of all functions from S to R, as above. The idea to use more sophisticated hash
functions, in the sense that they require less combinatorial work, has already appeared in previous
works, e.g., the work of Arbitman et al. [2, §5.4].

In Section 3 we take the above results a step further, showing that they hold also for adaptive
distinguishers.2 Furthermore, it turns out that by using the above function family with a pseudo-
random function F , namely the family PP(H,G,F) (or ADW(H,G,F)), we get a pseudorandom
function that is superior over F (the actual properties of PP(H,G,F) are determined by the choice
of F and the choice of H and G). This understanding is the main conceptual contribution of this
paper, and the basis for the results presented below.

We note that the works of Pagh and Pagh [35], Dietzfelbinger and Woelfel [12] and Aumüller
et al. [3] went almost unnoticed in the cryptography literature so far.3 In this work we apply, in a
black-box manner, the analysis of [35] and of [3] in cryptographic settings.

1We note that in some cases, an adaptive adversary is a more powerful distinguisher than a non-adaptive one.
An example of this difference is when an adaptive distinguisher and a non-adaptive distinguisher try to distinguish
between a truly random function and a random involution (permutations where the cycle length is at most 2). Clearly,
the adaptive distinguisher will succeed with very high probability while the non adaptive distinguisher will fail with
very high probability (see [22, 33]).

2We note that our approach for this transformation has many predecessors. For instance, the work of Naor and
Reingold [32], and of Jetchev et al. [21].

3Pagh and Pagh [35] did notice this connection, and in particular mentioned the connection of their work to that
of Bellare et al. [5].

3

1.3 Our Results

We use a construction inspired by cuckoo hashing to improve upon two PRF reductions: PRF
domain extension and non-adaptive to adaptive PRF.

1.3.1 PRF Domain Extension

PRF domain extensions use PRFs with “small” domain size, to construct PRFs with larger (or
even unlimited) domain size. These extensions are used for reducing the cost of a single invocation
of the PRF and increasing its usability. Domain extension methods are typically measured by the
security of the resulting PRFs, and the amount of calls the resulting PRF makes to the underlying
PRF.

A known domain extension technique is the MAC-based constructions, like CBC-MAC and
PMAC (a survey on their security can be found in [30]). The number of calls made by these
constructions to the underlying (small domain) PRF can be as small as two (for doubling the domain
length). Assuming that the underlying PRF is a random function over {0, 1}n,4 then the resulting
family is (q,∞, O(q2/2n))-PRF (i.e., the ∞ in the second parameter means that the distinguisher
running time is unlimited). A second technique is using the Feistel or Benes transformations (e.g.,
[1, 37, 38], where a complete survey on can be found in [39]). The Benes based construction
makes 8 calls to the underlying PRF and is (q,∞, O(q/2n))-PRF, where a 5-round Feistel based
construction (that makes 5 calls to the underlying PRF) is (q,∞, O(q/2n))-PRF. Once you have a
length doubling extension one can get any extension at the appropriate cost.

Our cuckoo hashing based function family (see below) is (q,∞, O(q/2n))-PRF, makes only two
calls to the underlying PRF and can extend the domain size to any poly(n) length.

Theorem 1.1 (informal). Let k ≤ n, let H and G be efficient k-wise independent function families
mapping strings of length `(n) to strings of length n, and let Π be the functions family of all
functions from {0, 1}n to {0, 1}n. Then the family PP(H,G,Π), mapping strings of length `(n) to
strings of length n, is a (q,∞, q/2Ω(k))-PRF, for q ≤ 2n−2.

Specifically, for k = Θ(n) Theorem 1.1 yields a domain extension that is (q,∞, q/2n)-PRF. The
resulting PRF makes only two calls to the underlying PRF. Using larger k (i.e. higher independence
in terms of combinatorial work) we can decrease the error to be arbitrary small. We note that we
actually get stronger result using the function family ADW(H,G,Π) (for different H and G. See
Theorem 4.4).

1.3.2 From PRG to PRF

Another application of the above technique is a hardness preserving construction of PRFs from
pseudorandom generators (PRG). An efficiently computable function G : {0, 1}n 7→ {0, 1}2n is t-
PRG, if any distinguisher of running time t(n) can distinguish a random output of G from a truly
random 2n-bit string, with probability at most 1/t(n). We are interested in constructions of PRF
using this PRG that preserve the security of G, more specifically, constructions that are (2c

′n)-PRF
for some 0 < c′ < c, assuming that G is a (2cn)-PRG.5 The efficiency of such constructions is

4Measuring the security of the resulting under this unrealistic random function assumption is a useful, and common,
method for understanding the quality of the domain extension reduction itself.

5Considering this range of parameters is only for the sake of concreteness. Our actual result (see Section 4) handles
a larger range of parameters.

4

measured by the number of calls made to the underlying PRG as well as other parameters such as
representation size.

The construction of Goldreich et al. [16] (i.e., GGM) is in fact such hardness preserving according
to the above criterion. Their construction, however, makes n calls to the underlying PRG, which
might be too expensive is some settings. In order to reduce the number of calls to the underlying
PRG, Levin [23] suggested to first hash the input to a smaller domain, and only then apply GGM.
The resulting construction, however, is not hardness preserving.

While the GGM construction seems optimal for the security it achieves (as shown in [20]), in
some settings the number of queries the distinguisher can make is strictly less than its running time;
for instance consider a distinguisher of running time 2cn who can only make 2

√
n � 2cn queries. In

such settings the security of the GGM seems like an overkill, and raises the question whether there
exist more efficient reductions. Jain et al. [20] (who raised the above questions) gave the following
partial answer, by designing a domain extension method tailored to the PRG to PRF reduction.

Theorem 1.2 ([20], informal). Let c > 0 and 1/2 ≤ α < 1. There exists an efficient oracle-aided
function family JPT such that the following holds: assume that G is a length-doubling (2cn)-PRG,
then JPTG is a (2n

α
, 2c
′n, 2c

′n)-PRF, for every 0 < c′ < c. A function f ∈ JPTG makes O(nα)
queries to G.

A restriction of Theorem 1.2 is that it dictates the resulting PRF family to use at least Ω(
√
n)

queries to the underlying PRG (since 1/2 ≤ α < 1). Here we use cuckoo hashing to give a
more versatile version of their theorem, allowing α to be arbitrary, that also improves some of
their parameters. Thus, our result implies hardness-preserving PRF reduction, which is useful to
construct PRFs of low query complexity.

In the following we let GGMm to be the variant of the GGM construction that on input of length
m(n), makes m(n) calls to a length-doubling PRG on inputs of length n, and outputs a string of
length n.6

Corollary 1.3 (informal). Let c > 0 and 0 < α < 1, let H = {Hn : {0, 1}n 7→ {0, 1}m(n)}n∈N and
G = {G : {0, 1}n 7→ {0, 1}n}n∈N be efficient Θ(nα+ cn)-wise independent function families. Assume
that G is a length-doubling (2cn)-PRG, then PP(H,G,GGMG

m) is a (2Ω(nα), 2c
′n, 2c

′n)-PRF, for
every 0 < c′ < c, and m(n) = O(nα).

Note that f ∈ PP(H,G,GGMG
m) makes O(nα) queries to G. Again, using ADW(H,G,GGMG

m)
(with differentH and G), we actually get stronger result (see Corollary 4.9). We refer to Section 4.1.1
for a more elaborate comparison between the construction of [20] and our construction.

Independently and concurrently with this work, Chandran and Garg [10] showed that a variant
of the construction of [20] achieves similar security parameters to [20] and also works for 2n

α
queries

for any 0 < α < 1/2. The construction of [10], however, outputs only n2α bits, as opposed to n
bits as in the construction of [20] and as in our construction.

1.3.3 From Non-Adaptive to Adaptive PRF

Constructing adaptive PRFs from non-adaptive ones can be done using general techniques; for
instance, using the PRG-based construction of Goldreich et al. [16] or the synthesizers based con-
struction of Naor and Reingold [31]. These constructions, however, make (roughly) n calls to the

6GGMm is a variant of the standard GGM function family, that on input of length m(n) uses seed of length n for
the underlying generator, rather than seed of length m(n) (see Proposition 4.6 for the formal definition).

5

underlying non-adaptive PRF (where n is the input length). Recently, Berman and Haitner [6]
showed how to perform this security uplifting at a much lower price: the adaptive PRF makes only
a single call to the non-adaptive PRF. The drawback of their construction, however, is a significant
degradation in the security: assuming the underlying function is a non-adaptive t-PRF, then the
resulting function is an (adaptive) O(t1/3)-PRF. The reason for this significant degradation in the
security is the birthday attack we mentioned earlier.

We present a reduction from non-adaptive to adaptive PRFs that preserves the security of the
non-adaptive PRF. The resulting adaptive PRF makes only two calls to the underlying non-adaptive
PRF.

Theorem 1.4 (informal). Let t be a polynomial-time computable integer function, let H =
{Hn : {0, 1}n 7→ [4t(n)]{0,1}n}n∈N (where [4t(n)]{0,1}n are the first 4t(n) elements of {0, 1}n) and
G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be efficient O(log t(n))-wise independent function families, and let
F be a length-preserving non-adaptive t(n)-PRF. Then PP(H,G,F) is a length-preserving (t(n)/4)-
PRF.

As before, we actually get stronger result using ADW(H,G,F) (with different H and G. See
Theorem 5.5).

1.4 More Related Work

Bellare et al. [5] introduced a paradigm for using PRFs in the symmetric-key settings that, in
retrospect, is similar to cuckoo hashing. Assume two parties, who share a secret function f , would
like to use it for (shared-key) encryption. The ‘textbook’ (stateless) solution calls for the sender to
choose r at random and send (r, f(r)⊕M) to the receiver, where M is the message to be encrypted.
This proposal breaks down in case the sender chooses the same r twice (in two different sessions with
different messages). Thus, the scheme is subject to the birthday attack and the length parameters
should be chosen accordingly. This requires the underlying function to have large domain. Instead,
[5] suggested choosing t > 1 values at random, and sending (r1, . . . , rt, f(r1) ⊕ · · · ⊕ f(rt) ⊕M).
They were able to show a much better security then the single r case. They also showed a similar
result for message authentication. Our domain extension results (see Section 4) improve upon the
results of [5].

The issue of transforming a scheme that is only resilient to non-adaptive attack into one that
is resilient to adaptive attacks has received quite a lot of attention in the context of pseudorandom
permutations (or block ciphers). Maurer and Pietrzak [27] showed that starting from a family of
permutations that is information-theoretic secure against non-adaptive attacks,7 if two indepen-
dently chosen members of the family are composed, then the result is a permutation secure against
adaptive attacks (see [27] for the exact formulation). On the other hand, Pietrzak [40] showed that
this is not necessarily the case for permutations that are randomly looking under a computational
assumption (see also [29, 41]) (reminding us that translating information theoretic results to the
computational realm is a tricky business).

Paper Organization

Basic notations and formal definitions are given in Section 2. Section 3 is where we formally define
the hashing paradigm of [35] and of [3], and show how to extend their results to hold against adaptive

7That is, secure against (non-adaptive) unbounded attackers.

6

adversaries. Our domain extension is described in Section 4, and the improved non-adaptive to
adaptive reduction is described in Section 5. In Section 6 we survey some possible directions for
future research.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We use calligraphic letters to denote sets, uppercase
for random variables, and lowercase for values. Let ‘||’ denote string concatenation. For an integer
t, let [t] = {1, . . . , t}. For a set S and integer t, let S≤t = {s ∈ S∗ : |s| ≤ t ∧ s[i] 6= s[j] ∀1 ≤
i < j ≤ |s|}, and let [t]S be the first t elements (in increasing lexicographic order) of S (equal to
S in case |S| < t). For integers n and `, let Πn,` stands for the set of all functions from {0, 1}n to
{0, 1}`, and let Πn = Πn,n.

We let poly denote the set all polynomials, and let pptm denote the set of probabilistic algo-
rithms (i.e., Turing machines) that run in strictly polynomial time. Given a random variable X,
we write X(x) to denote Pr[X = x], and write x ← X to indicate that x is selected according to
X. Similarly, given a finite set S, we let s← S denote that s is selected according to the uniform
distribution on S. The statistical distance of two distributions P and Q over a finite set U , denoted
as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|.

2.2 Pseudorandom Generators

Definition 2.1 (Pseudorandom Generators). A polynomial-time function G : {0, 1}n 7→ {0, 1}`(n)

is (t(n), ε(n))-PRG, if `(n) > n for every n ∈ N (G stretches the input), and∣∣∣Prx←{0,1}n [D(G(x)) = 1]− Pry←{0,1}`(n) [D(y) = 1]
∣∣∣ ≤ ε(n)

for every algorithm (distinguisher) D of running time t(n) and large enough n.

2.3 Function Families

2.3.1 Operating on Function Families

We consider two natural operation on function families.

Definition 2.2 (composition of function families). Let F1 : D1 7→ R1 and F2 : D2 7→ R2 be two
function families with R1 ⊆ D2. The composition of F1 with F2, denoted F2 ◦ F1, is the function
family {(f2, f1) ∈ F2 ×F1}, where (f2, f1)(x) := f2(f1(x)).

Definition 2.3 (XOR of function families). Let F1 : D 7→ R1 and F2 : D 7→ R2 be two function
families with R1,R2 ⊆ {0, 1}`. The XOR of F1 with F2, denoted F2

⊕
F1, is the function family

{(f2, f1) ∈ F2 ×F1}, where (f2, f1)(x) := f2(x)⊕ f1(x).

2.3.2 Function Family Ensembles

A function family ensemble is an infinite set of function families, whose elements (families) are
typically indexed by the set of integers. Let F = {Fn : Dn 7→ Rn}n∈N stands for an ensemble of

7

function families, where each f ∈ Fn has domain Dn and its range contained in Rn. Such ensemble
is length preserving, if Dn = Rn = {0, 1}n for every n. We naturally extend Definitions 2.2 and 2.3
to function family ensembles.

For function family ensemble to be useful, it has to have an efficient sampling and evaluation
algorithms.

Definition 2.4 (efficient function family ensembles). A function family ensemble F = {Fn : Dn 7→
Rn}n∈N is efficient, if the following hold:

Efficient sampling. F is samplable in polynomial-time: there exists a pptm that given 1n, outputs
(the description of) a uniform element in Fn.

Efficient evaluation. There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).

2.3.3 Many-Wise Independent Hashing

Definition 2.5 (k-wise independent families). A function family H = {h : D 7→ R} is k-wise
independent (with respect to D and R), if

Prh←H[h(x1) = y1 ∧ h(x2) = y2 ∧ . . . ∧ h(xk) = yk] =
1

|R|k
,

for every distinct x1, x2, . . . , xk ∈ D and every y1, y2, . . . , yk ∈ R.

For every `, k ∈ poly, the existence of efficient k(n)-wise independent family ensembles mapping
strings of length `(n) to strings of length n is well known ([9, 44]). A simple and well known example
of k-wise independent functions is the collection of all polynomials of degree (k − 1) over a finite
field. This construction has small size, and each evaluation of a function at a given point requires
k operations in the field. Starting with Siegel [43], there has been quite a lot of attention devoted
to the question of whether it is possible to come up with constructions that require much less than
k operations per evaluation (see Section 1.2).

As a side remark we mention that a k-wise independent families (as defined in Definition 2.5)
look random for k-query distinguishers, both non-adaptive and adaptive ones. On the other hand,
almost k-wise independent families8 are only granted to be resistant against non-adaptive distin-
guishers. Yet, the result presented in Section 3 yields that, in some cases, the adaptive security of
the latter families follows from their non-adaptive security.

2.4 Pseudorandom Functions

Definition 2.6 (Pseudorandom Functions). An efficient function family ensemble F =
{Fn : {0, 1}n 7→ {0, 1}`(n)}n∈N is an (adaptive) (q(n), t(n), ε(n))-PRF, if∣∣∣Prf←Fn [Df (1n) = 1]− Prπ←Πn,`(n)

[Dπ(1n) = 1]
∣∣∣ ≤ ε(n)

8Formally, a function family H = {h : D 7→ R} is (ε, k)-wise independent if for any x1, . . . , xk ∈ D and for any

y1, . . . , yk ∈ R it holds that
∣∣∣Prh←H[h(x1) = y1 ∧ · · · ∧ h(xk) = yk]− |R|−k

∣∣∣ ≤ ε. We call a family of functions an

almost k-wise independent family, if it is (ε, k)-wise independent for some small ε > 0.

8

for every q(n)-query oracle-aided algorithm (distinguisher) D of running time t(n) and large enough
n. If q(n) is only bounded by t(n), then F is called (t(n), ε(n))-PRF. In addition, if we limit D
above to be non-adaptive (i.e., it has to write all his oracle calls before making the first call), then
F is called non-adaptive (t(n), ε(n))-PRF. Finally, The ensemble F is a t-PRF, if it is a (t, 1/t)-
PRF according to the above definition (where the same conventions are also used for non-adaptive
PRFs).

Some applications require the pseudorandom functions to be secure against distinguisher with
access to two oracles (and not just a single oracle as in Definition 2.6).

Definition 2.7 (pseudorandom functions secure against two-oracle distinguishers). An efficient
function family ensemble F = {Fn : {0, 1}n 7→ {0, 1}`(n)}n∈N is a (q(n), t(n), ε(n))-two-oracle PRF,
if for every q(n)-query two oracle-aided (i.e., makes at most q(n) queries to each oracle) algorithm
(distinguisher) D of running time t(n) and large enough n, it holds that∣∣∣Pr(f1,f2)←Fn×Fn [Df1,f2(1n) = 1]− Pr(π1,π2)←Πn,`(n)×Πn,`(n)

[Dπ1,π2(1n) = 1]
∣∣∣ ≤ ε(n).

The following lemma shows that a standard (single oracle) PRF is also a two oracle one, with
only slight worse parameters.

Lemma 2.8 (cf., [7], Theorem 1). Let F = {Fn : {0, 1}n 7→ {0, 1}`(n)}n∈N be a function family
ensemble. Then for every q(n)-query two-oracle adaptive [resp., non-adaptive] distinguisher D of
running time t(n), there exists a q(n)-query single-oracle adaptive [resp., non-adaptive] distinguisher
D̂ of running time t(n) + 2q(n)eF (n), where eF stands for the evaluation time of F , with∣∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πn,`(n)

[D̂π(1n) = 1]
∣∣∣

≥ 1

2
·
∣∣∣Pr(f1,f2)←Fn×Fn [Df1,f2(1n) = 1]− Pr(π1,π2)←Πn,`(n)×Πn,`(n)

[Dπ1,π2(1n) = 1]
∣∣∣

for every n ∈ N.

Lemma 2.8 is proven using a standard hybrid argument. For a complete proof we refer the
reader to [7], where a more general lemma is proven.9

3 From Non-Adaptive to Adaptive Hashing

In this section we describe a general transformation of non-adaptive secure function families with
a certain combinatorial property into adaptive secure ones. We note that the transformations
defined in this section cannot be applied directly to (non-adaptive) PRFs, since we have no reason
to assume that such families posses this property (alternatively, see Section 5 for the transformation
from non-adaptive to adaptive PRFs).

Our framework can be used to prove that for certain function families, adaptive distinguishers
are subject to the same distinguishing bound of non-adaptive ones. Specifically, it deals with
constructions where the randomness can be partitioned into two (non empty) parts U and V and
there exists some bad event that is defined only over the U part for a given subset of the domain
(the queries). In addition, if the bad event does not happen, we require that the resulting output
will be uniform over the subset of queries. We begin with a definition of monotone sets.10

9[7] only states, and proves, the adaptive case, but the very same lines also yields the non-adaptive case.
10Monotone sets are a special case of the “monotone event sequence” defined in [26].

9

Definition 3.1 (monotone sets). A set M⊆ S∗×T is left-monotone, if for every (s1, t) ∈M and
every s2 ∈ S∗ that has s1 as a prefix, it holds that (s2, t) ∈M.

Next, we formally state the lemma that is the basis of our framework. The lemma deals with
a construction of a function family F that can be defined as F = F(U ,V) where U and V are
arbitrary non-empty sets. Intuitively, it states that assuming there exists a bad event BAD that
can be defined over the inputs and the U part (i.e, independently of the V part) that happens with
small probability, and conditioning on that BAD does not happen, we know that F is uniform over
subsets of the range of size that is the number of queries, then we can say that the function family
F is resistant against adaptive adversaries.

Lemma 3.2. Let F = F(U ,V) be a function family of the form {fu,v : D 7→ R}(u,v)∈U×V , where
U and V are arbitrary non-empty sets, let t ∈ N and let BAD ⊆ D≤t × U be a left-monotone set.
Assume that for every q ∈ D≤t it holds that

1.
(
f(q1), . . . , f(q|q|)

)
f←{fu,v : v∈V}

is uniform over R|q| for every u ∈ U such that (q, u) 6∈ BAD,

and

2. Pru←U [(q, u) ∈ BAD] ≤ ε,

then for any t-query adaptive algorithm D, it holds that∣∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π[Dπ = 1]

∣∣∣∣ ≤ ε
where Π is the set of all functions from D to R.

Lemma 3.2 is a special case of a result given in [21, Theorem 12] (which closes a gap in the
work of [26]), and its direct proof can be found in Appendix A.

3.1 Instantiation with the Pagh and Pagh [35] Function Family

In this section we instantiate the framework with the function family of Pagh and Pagh [35]. One
advantage of this construction is the relative simplicity of description. We begin by describing their
method of combining function families.

Definition 3.3 (The Pagh and Pagh [35] function family). Let H be a function family from D to
S, let G be a function family from D to R and let F be a function family from S to R. Define the
function family PP(H,G,F) from D to R as

PP(H,G,F) := (F ◦ H)⊕ (F ◦ H)⊕ G.

For h1, h2 ∈ H, let PPh1,h2(G,F) := (F ◦ h1)⊕ (F ◦ h2)⊕ G.

Pagh and Pagh [35] showed that when instantiated with the proper function families, the above
function family has the following properties:

Theorem 3.4 ([35]). Let t be an integer, let H = {h : D 7→ [4t]D} and G = {g : D 7→ R} be function
families, and let Π be the all function family from D to R. Then for every k, t ∈ N there exists
left-monotone set BAD ⊆ D≤t ×H2,11 such that the following holds for every q ∈ D≤t:

11See [35] for the definition of BAD.

10

1. Assuming that G is k-wise independent over the elements of q, then(
f(q1), . . . , f(q|q|)

)
f←PPh1,h2

(G,Π)
is uniform over R|q| for every u ∈ U such that

(q, u) 6∈ BAD.

2. Assuming that H is k-wise independent over the elements of q, then Pru←H2 [(q, u) ∈ BAD] ≤
t/2Ω(k).12

What Pagh and Pagh [35] concluded is that for (the many) applications where the analysis is
applied to a static set it is safe to use this family. However, as we can see, the function family
PP(H,G,Π) is not only closed to being uniform in the eyes of a non-adaptive distinguisher, but
also allows us to apply Lemma 3.2 to deduce its security in the eyes of adaptive distinguishers.
By plugging in Theorem 3.4 into the general framework lemma (Lemma 3.2), we get the following
result:

Lemma 3.5. Let H, G and Π be as in Theorem 3.4, and let D be an adaptive, t-query oracle-aided
algorithm. Then ∣∣∣Prf←PP(H,G,Π)[D

f = 1]− Prπ←Π[Dπ = 1]
∣∣∣ ≤ t/2Ω(k).

Proof. Let U = H×H, V = Π×Π× G. For (h1, h2) ∈ U and (π1, π2, g) ∈ V, let F(h1,h2),(π1,π2,g) =
π1 ◦ h1 ⊕ π2 ◦ h2 ⊕ g, and let F = {Fu,v : D 7→ R}(u,v)∈U×V . Finally, let BAD be the set BAD of
Theorem 3.4. We prove the lemma showing that the above sets meet the requirements stated in
Lemma 3.2.

Item 1 of Theorem 3.4 assures that the first property of Lemma 3.2 is satisfied, and according
to Item 2 of Theorem 3.4 we set ε of Lemma 3.2 to be t/2Ω(k), and thus the second property is also
satisfied. Hence, applying Lemma 3.2 with respect to the above sets, concludes the proof of the
lemma. �

Remark 3.6. For our application, see Sections 4 and 5, we need to apply Lemma 3.5 with efficient
k-wise independent function family ensembles mapping strings of length n to the set [t(n)]{0,1}n,
where t is an efficiently computable function. It is easy to see (cf., [6]) that such ensembles exist
for any efficiently computable t that is a power of two. By considering t′(n) = 2blog(t(n))c, we use
these ensembles for our applications, while only causing factor of two loss in the resulting security.

3.2 Instantiation with the Aumüller et al. [3] Function Family

We now explore instantiating the framework with the function families of Aumüller et al. [3]. The
resulting families enjoy shorter description length and invoking them require less combinatorial
work than [35] based families discussed above. On the other hand, describing them on paper is a
bit more complicated. The function family of Aumüller et al. [3] (building upon Dietzfelbinger and
Woelfel [12]) follows the same basic outline as the [35] function family, but uses more complex hash
functions. Recall that the members of the Pagh and Pagh [35] function family PP(H,G,F) are of

12The function family we consider above (i.e., PP) is slightly different than the one given in [35]. Their construction
maps element x ∈ D to F1[h1(x)] ⊕ F2[h2(x)] ⊕ g(x), where F1 and F2 are uniformly chosen vectors from Rt,
h1, h2 : D 7→ [t] are uniformly chosen from a function family H and g : D 7→ R is chosen uniformly from a function
family G. Yet, the correctness of Theorem 3.4 follows in a straightforward manner from [35] original proof (specifically
from Lemma 3.3 and 3.4).

11

the form (f1 ◦h1)⊕ (f2 ◦h2)⊕g, for f1, f2 ∈ F , h1, h1,∈ H and g ∈ G. In the family ADW(H,G,F)
described below, the role of h1, h2 and g is taken by some variant of tabulation hashing (and not
taken from a relatively high k-wise independent family as in [35]). Specifically, at the heart of these
functions lies a function of the form:

ah,g,M (x) :=

h(x) +
∑

1≤j≤z
M [gj(x), j]

 mod m

where M ∈ (Zm)`×z is a `× z matrix, g = (g1, · · · , gz) is a list of z functions where gj : D 7→ Z`
and h : D 7→ Zm. The matrix M will be chosen at random (sometimes actually pseudorandomly)
and the gj ’s and h from a relatively low independence family. In addition, unlike in Pagh and Pagh
[35], the functions are chosen in a correlated manner (i.e., , sharing the same function vector g).

In the rest of this section, we formally define the hash function family of Aumüller et al. [3],
state their (non-adaptive) result, and apply Lemma 3.2 to get an adaptive variant of their result.

Definition 3.7 (The Aumüller et al. [3] function family). For z ∈ N, for functions h1, h2, h3 : D 7→
Zm and f1, f2 : D 7→ R, a function vector g = (g1, · · · , gz), where gj : D 7→ Z` for each 1 ≤ j ≤ z,
and matrices M1,M2,M3 ∈ (Zm)`×z, define the function adwM1,M2,M3,h1,h2,h3,g,f1,f2 from D to R
as

adwM1,M2,M3,h1,h2,h3,g,f1,f2 := (f1 ◦ aDh1,g,M1
)⊕ (f2 ◦ aDh2,g,M2

)⊕ aRh3,g,M3
, (2)

where aSh,g,M (x), for a set S, is the (ah,g,M (x))th element of S (in lexicographic order), where

ah,g,M (x) :=
(
h(x) +

∑
1≤j≤zM [gj(x), j]

)
mod m.

For function families H = {h : D 7→ Zm} and F = {f : D 7→ R}, and M1,M2, h1, h2, g as above,
let

ADWM1,M2,h1,h2,g(H,F) := {adwM1,M2,M3,h1,h2,h3,g,f1,f2 : M3 ∈ (Zm)`×z, h3 ∈ H, f1, f2 ∈ F} (3)

Finally, for function family G = {g : D 7→ Z`}, and H,F as above, let

ADWz(H,G,F) := {adwM1,M2,M3,h1,h2,h3,g,f1,f2 : (4)

M1,M2,M3 ∈ (Zm)`×z, h1, h2, h3 ∈ H, g ∈ Gz, f1, f2 ∈ F}.

Aumüller et al. [3] proved the following result with respect to the above function family.

Theorem 3.8 ([3]). The following holds for any t, s ∈ N and ζ, c1, c2 > 0: let m = (1 + ζ)t,
δ = c1/ log t, ` = tδ, k = c2 · s · log t and z = d(s + 2)/(c1 · c2 · s)e. Let H = {h : D 7→ Zm} and
G : {g : D 7→ Z`} be 2k-wise independent hash families, and let Π be the all function family from D
to R.

Then for t ∈ N there exists a left-monotone set BAD ⊆ D≤t ×
(
(Zm)2

`×z ×H2 × Gz
)
,13 such

that the following holds for every q ∈ D≤t:

1.
(
f(q1), . . . , f(q|q|)

)
f←ADWu(H,Π)

is uniform over R|q| for every u ∈ (Zm)2
`×z ×H2 × Gz such

that (q, u) 6∈ BAD, and

13See [3] for the definition of BAD.

12

2. Pru←(Zm)2
`×z×H2×Gz [(q, u) ∈ BAD] ≤ 1/ts+1.

That is, for the right choice of parameters, the function family ADWz(H,G,F) is not only
closed to being uniform in the eyes of a non-adaptive distinguisher, but also allows us to apply
Lemma 3.2 to deduce its security in the eyes of adaptive distinguishers. Indeed, by plugging in
Theorem 3.8 into the general framework lemma (Lemma 3.2), we get the following result:

Lemma 3.9. Let s, z, H, G and Π be as in Theorem 3.8 and let D be an adaptive, t-query oracle-
aided algorithm. Then∣∣∣Prf←ADWz(H,G,Π)[D

f = 1]− Prπ←Π[Dπ = 1]
∣∣∣ ≤ 1/ts+1.

Proof. Let U = (Zm)`×z×(Zm)`×z×H×H×Gz, V = (Zm)`×z×Π×Π×H. For (M1,M2, h1, h2, g) ∈ U
and (M3, π1, π2, h) ∈ V, let F(M1,M2,h1,h2,g),(M3,π1,π2,h) = (π1 ◦ ah1,g,M1) ⊕ (π2 ◦ ah2,g,M2) ⊕ ah,g,M3 ,
and let F = {Fu,v : D 7→ R}(u,v)∈U×V . Finally, let BAD be the set BAD of Theorem 3.8. We prove
the lemma showing that the above sets meet the requirements stated in Lemma 3.2.

Item 1 of Theorem 3.8 assures that the first property of Lemma 3.2 is satisfied, and according
to Item 2 of Theorem 3.8 we set ε of Lemma 3.2 to be 1/ts+1, and thus the second property is also
satisfied. Hence, applying Lemma 3.2 concludes the proof of the lemma. �

We note that for large enough t, in contrast to the function family using PP, using ADW we
get meaningful results even when using an underlying k = O(log t)-wise independent family.

Remark 3.10. In the rest of the paper we mostly apply Lemma 3.9 with the parameters stated in
Theorem 3.8. Different choice of parameters can be used to get different results. For example, using
larger “random tables” (e.g., δ = 1/2), we improve the result of Jain et al. [20] (see Section 4.1).

4 Extending the Domain of a PRF

In this section we show how to apply the constructions of Section 3, inspired by cuckoo hashing, in
order to extend a domain of a given PRF F to an arbitrary size one.

Let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families {Pu,v : Dn 7→
Rn}(u,v)∈Un×Vn , where Un and Vn are some non-empty sets as described in Section 3. We begin

by showing that P(U ,VF) is computationally indistinguishable from P(U ,VΠ), where VF denotes
that V is implemented using pseudorandom functions and VΠ denotes that V is implemented using
truly random functions.14 In the sequel, we assume that V is implemented using 2 calls to the
underlying functions (as this is the case in the actual constructions we work with).

Lemma 4.1. Let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families {Pu,v : Dn 7→
Rn}(u,v)∈Un×Vn, where Un and Vn are arbitrary sets, Π = {Πn : Sn 7→ Rn}n∈N, where Πn is the set
of all functions from Sn to Rn, and F = {Fn : Sn 7→ Rn}n∈N be an efficient function family. Then

14Namely, in case the implementation of PP is used, then U = H×H, VF = F × F × G and VΠ = Π×Π× G. In
case the implementation of ADWz is used, then U = (Zm)`×z × (Zm)`×z ×H×H×Gz, VF = (Zm)`×z ×F ×F ×H
and VΠ = (Zm)`×z ×Π×Π×H.

13

for every q(n)-query oracle-aided distinguisher D of running time t(n), there exists p ∈ poly and a
q(n)-query distinguisher D̂ of running time t(n) + p(n)q(n), with∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πn [D̂π(1n) = 1]

∣∣
≥ 1

2
·
∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣,

for every n ∈ N.

Proof. Let D̃ be the following two-oracle distinguisher:

Algorithm 4.2 (D̃).

Input: 1n.

Oracle: functions φ1, φ2 from Dn to Rn.

1. Set f = P(Un,Vφ1,φ2
n)

2. Emulate Df (1n).

Note that D̃ makes q(n) queries to φ1 and φ2, and it can be implemented to run in time
t(n) + q(n)eP(n), where eP is the sampling and evaluation time of P(U ,V). Observe that in case
φ1 and φ2 are uniformly drawn from Fn, then the emulation of D done in D̃φ1,φ2 is identical to a
random execution of Df with f ← P(Un,VFnn). Similarly, in case φ1 and φ2 are uniformly drawn
from Πn, then the emulation is identical to a random execution of Df with f ← P(Un,VΠn

n). Thus,∣∣Pr(f1,f2)←Fn×Fn [D̃f1,f2(1n) = 1]− Pr(π1,π2)←Πn×Πn [D̃π1,π2(1n) = 1]
∣∣

=
∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣.

Hence, Lemma 2.8 yields that there exists a q(n)-query single-oracle distinguisher D̂ of running
time t(n) + q(n)eP(n) ≤ t(n) + p(n)q(n), where p ∈ poly, such that∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πn [D̂π(1n) = 1]

∣∣
≥ 1

2
·
∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣,

�

Assuming that Dn = {0, 1}`(n), Rn = {0, 1}s(n), F = {Fn : {0, 1}m(n) 7→ {0, 1}s(n)}n∈N is
(q(n), t(n), ε(n))-PRF and Π = {Πm(n),s(n)}n∈N, Lemma 4.1 yields that for large enough n∣∣∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,V
Πm(n),s(n)
n)

[Df (1n) = 1]

∣∣∣∣ ≤ 2ε(n). (5)

Assuming the conditions of Lemma 3.2 with respect to P(U ,V) hold, we get that for some ε′∣∣∣∣Pr
f←P(Un,V

Πm(n),s(n)
n)

[Df (1n) = 1]− Prπ←Π`(n),s(n)
[Dπ(1n) = 1]

∣∣∣∣ ≤ ε′(n) (6)

14

for every n ∈ N. Hence, by the triangle inequality∣∣∣Pr
f←P(Un,VFnn)

[Df (1n) = 1]− Prπ←Π`(n),s(n)
[Dπ(1n) = 1]

∣∣∣ ≤ 2ε(n) + ε′(n)

for large enough n.
Plugging in a specific function family P (e.g., PP or ADW), we get domain extension for a

PRF. Specifically, plugging is Lemma 3.5 we get the following theorem.

Theorem 4.3 (Restating Theorem 1.1). Let H = {Hn : {0, 1}`(n) 7→ {0, 1}m(n)}n∈N and G =
{Gn : {0, 1}`(n) 7→ {0, 1}s(n)}n∈N be efficient k(n)-wise independent function family ensembles,
and let F = {Fn : {0, 1}m(n) 7→ {0, 1}s(n)}n∈N be a (q(n), t(n), ε(n))-PRF. Then PP(H,G,F) =
{PP(Hn,Gn,Fn) : {0, 1}`(n) 7→ {0, 1}s(n)}n∈N is a (q(n), t(n) − p(n)q(n), 2ε(n) + q(n)/2Ω(k(n)))-
PRF, where p ∈ poly is determined by the evaluation and sampling time of H, G and F and
q(n) ≤ 2m(n)−2.15

Notice that in order for Theorem 4.3 to be useful, we have to set k(n) = Ω(log q(n)). Plugging
in Lemma 3.9 we get the following theorem.

Theorem 4.4. Let s ≥ 0, z, H = {Hn : {0, 1}`(n) 7→ {0, 1}m(n)}n∈N, G = {Gn : {0, 1}n 7→
{0, 1}`(n)}n∈N be as defined in Theorem 3.8, and let F = {Fn : {0, 1}m(n) 7→ {0, 1}s(n)}n∈N be a
(q(n), t(n), ε(n))-PRF. Then ADWz(H,G,F) = {ADWz(Hn,Gn,Fn) : {0, 1}`(n) 7→ {0, 1}s(n)}n∈N
is a (q(n), t(n)−p(n)q(n), 2ε(n) + 1/q(n)s+1)-PRF, where p ∈ poly is determined by the evaluation
and sampling time of H, G and F and q(n) ≤ 2m(n)/(1 + ζ) where ζ is from Theorem 3.8.

Notice that we used the setting of parameters of Theorem 3.8. In particular, since the matrices
that are sampled in the definition of ADWz are of constant size, they can be embedded in the key
of the PRF.

4.1 Hardness Preserving PRG to PRF Reductions

An important corollary of Theorem 4.3 is a security preserving reduction from pseudorandom
generators to pseudorandom functions.

Definition 4.5 (PRG to PRF reductions). An oracle-aided function family ensemble F is a
(v, q, t, ε)-PRG-to-PRF reduction, if the following holds:

1. For any oracle G and n ∈ N, a function f ∈ FGn makes at most v(n) oracle calls per invocation.

2. Assuming that G is a length-doubling (tG, εG)-PRG of evaluation time eG, then FG is a
(q(tG, εG, eG), t(tG, εG, eG), ε(tG, εG, eG))-PRF.

The following fact easily follows from [16].

Proposition 4.6 ([16]). For any integer function m, there exists an efficient oracle-aided function
family ensemble, denoted GGMm, that maps strings of length m(n) to strings of length n, and is a
(m(n), q(n), tG(n)−m(n) · q(n) · eG(n),m(n) · q(n) · εG(n))-PRG-to-PRF reduction for any integer
function q.16

15The -2 factor is due to the definition of H is Theorem 3.4.
16GGMm is a variant of the standard GGM function family, that on input of length m(n) uses seed of length n

for the underlying generator, rather than seed of length m(n). Formally, GGMm is the function family ensemble
{GGMm(n)}n∈N, where GGMm(n) = {fr}r∈{0,1}n , and for r ∈ {0, 1}n, the oracle-aided function fr : {0, 1}m(n) 7→
{0, 1}n is defined as follows: given oracle access to a length-doubling function G and input x ∈ {0, 1}m(n), fGr (x) = rx,
where rx is recursively defined by rε = r, and, for a string w, rw||0||rw||1 = G(rw).

15

Combining Proposition 4.6 with Theorem 4.3 yields the following result.

Corollary 4.7. Let H = {Hn : {0, 1}n 7→ {0, 1}m(n)}n∈N and G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be
efficient k(n)-wise independent function family ensembles, then the oracle-aided function ensemble
PP(H,G,GGMG

m) is a (m(n), q(n), tG(n)− p(n) ·m(n) · q(n), 2m(n) · q(n) · εG(n) + q(n)/2Ω(k(n)))-
PRG-to-PRF reduction, where p ∈ poly is determined by the evaluation and sampling time of H,
G and G, and q(n) ≤ 2m(n)−2.

For settings of interest, Corollary 4.7 yields the following result.

Corollary 4.8 (Restating Corollary 1.3). Let c > 0, 0 < δ < 1 and 0 < α < δ, and let H and G be
as in Corollary 4.7, with respect to k(n) = Θ(nα + cnδ) (the hidden constant is universal). Then

PP(H,G,GGMG
m) is an (O(nα), 2n

α
, 2c
′nδ , 2−c

′nδ)-PRG-to-PRF reduction, for every 0 < c′ < c.

Proof. Let t(n) = tG(n) − p(n) ·m(n) · q(n) and ε(n) = 2m(n) · q(n) · εG(n) + q(n)/2Ω(k(n)). Set

k(n) = Θ(nα + cnδ), with an appropriate constant, such that q
2Ω(k) < 2−cn

δ
, and thus ε(n) <

21+log(nα+2)+nα−cnδ + 2−cn
δ
. Let c′′ ∈ N such that nc

′′
> p(n) for large enough n (where p is of

Corollary 4.7), and thus it holds that t(n) > 2cn
δ − nc′′2nα(nα + 2). Hence, for every c′ < c, we

have ε(n) < 2−c
′nδ and t(n) > 2c

′nδ for large enough n. �

Combining Proposition 4.6 with Theorem 4.4 yields the following result.

Corollary 4.9. Let s ≥ 0, z, H = {Hn : {0, 1}n 7→ {0, 1}m(n)}n∈N, G = {Gn : {0, 1}n 7→
{0, 1}`(n)}n∈N be as defined in Theorem 3.8, then the oracle-aided function ensemble
ADWz(H,G,GGMG

m) is a (m(n), q(n), tG(n)− p(n) ·m(n) · q(n), 2m(n) · q(n) · εG(n) + 1/q(n)s+1)-
PRG-to-PRF reduction, where p ∈ poly is determined by the evaluation and sampling time of H,
G and G, and q(n) ≤ 2m(n)/(1 + ζ) where ζ is from Theorem 3.8.

4.1.1 Settling the Parameters

In the construction given in Corollary 4.8, assuming 2n
1/2 ≤ q < 2n, we need to set k to be Θ(n).

Higher independence means that we need to use a longer key and the evaluation time is larger.
More accurately, the evaluation time of our construction is lower bounded by the evaluation time
of the Θ(n)-wise independent hash function (that may or may not be larger than Θ(log(q) · eG)).
Moreover, the key length must be Θ(n2), but this can be circumvented by extending a short key
to a long one using GGM. This costs additional Θ(n · eG) time. As we have stated in Corollary 4.8,

our construction gives a (O(nα), 2n
α
, 2c
′nδ , 2c

′nδ)-PRG-to-PRF reduction for every 0 < c′ < c, and
works for any 0 < α < δ, while the construction of JPT only works for δ/2 ≤ α < δ.

In the construction given in Corollary 4.9, assuming 2n
1/2 ≤ q < 2n, we can get better results

(that also improve upon Jain et al. [20]). Assume for simplicity of the exposition that q = 2n
1/2

. As
opposed to the specification of parameters in Theorem 3.8, we can use long random tables of size
Θ(
√
q) (i.e., δ = 1/2 in Theorem 3.8), s = n/ log q and get that setting k = Θ(n1/2) is enough to

get error O(1/2n). The point is that the creation of the (long) tables that we need in Theorem 3.8
(which so far were part of the key) can be done by applying GGM on a short input key. This only
increases the evaluation time by an additional Θ(log(q) · eG) term. In total, the evaluation time of
our construction is Θ(log(q) · eG).

16

5 From Non-Adaptive to Adaptive PRF

In this section we show how to apply the Cuckoo Hashing based constructions of Section 3 in order
to come up with a construction of an adaptive PRF from non-adaptive one in a security preserving
manner. As in Section 4, let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families
{Pu,v : Dn 7→ Rn}(u,v)∈Un×Vn , where Un and Vn are some non-empty sets as described in Section 3.

We begin by showing that P(U ,VF) is computationally indistinguishable from P(U ,VΠ), where VF
denotes that V is implemented using non-adaptive pseudorandom functions and VΠ denotes that
V is implemented using truly random functions (see also Footnote 14). In the sequel, we assume
that V is implemented using 2 calls to the underlying functions (as this is the case in the actual
constructions we work with).

For ease of notation, in the following we assume `(n) = n (i.e., F is length preserving).

Lemma 5.1. Let P(U ,V) = {P(Un,Vn)}n∈N be the ensemble of function families {Pu,v : Dn 7→
Rn}(u,v)∈Un×Vn, that is implementation of PP or ADW, where Un and Vn are arbitrary sets, Π =
{Πn : Dn 7→ Rn}n∈N, where Πn is the set of all functions from Dn to Rn, and F = {Fn : Dn 7→ Rn}
be an efficient function family. Let ζ > 0 that depends on the instantiation of P.17 Then for every
q = q(n)-query, oracle-aided, adaptive distinguisher D of running time t = t(n), there exists a
(1 + ζ)q-query, non-adaptive, oracle-aided distinguisher D̂ of running time p(n)t(n), with∣∣∣Prf←Fn [D̂f (1n) = 1]− Prf←Πn [D̂f (1n) = 1]

∣∣∣
≥ 1

2
·
∣∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣∣ ,

for every n ∈ N.

Proof. The proof follows along similar lines to the proof of [6, Lemma 1]. Let D̃ be the following
two-oracle distinguisher:

Algorithm 5.2 (D̃).

Input: 1n.

Oracles: Functions φ1 and φ2 from Dn from Rn.

1. Compute φ1(x) and φ2(x) for every x ∈ [(1 + ζ)q(n)]Dn.

2. Set f according to P = (Un,Vφ1,φ2
n).

3. Emulate Df (1n): answer a query x to φ1 and φ2 made by D with f(x), using the information
obtained in Step 1.

Note that D̃ makes (1 + ζ)q(n) non-adaptive queries to φ1 and φ2, and it can be implemented
to run in time t(n)eP(n) + 2(1 + ζ)q(n) + eq(n) ≤ r(n)t(n) (where eP and eq are the sampling and
evaluation time of P and q respectively) for large enough r ∈ poly. Observe that both possible
implementations of P, i.e., PP or ADW, only query φ1 and φ2 on the first (1 + ζ)q(n) elements
of their domain. Hence, in case φ1 and φ2 are uniformly drawn from Fn, then the emulation of D

17In case we use PP function family (Definition 3.3) then ζ = 3, and in case we use ADW function family
(Definition 3.7) then ζ is of Theorem 3.8.

17

done in D̂φ1,φ2 is identical to a random execution of Df with f ← P(Un,VFnn). Similarly, in case φ1

and φ2 are uniformly drawn from Πn, then the emulation is identical to a random execution of Df

with f ← P(Un,VΠn
n). Thus,∣∣∣Pr(f1,f2)←Fn×Fn [D̃f1,f2(1n) = 1]− Pr(π1,π2)←Πn×Πn [D̃π1,π2(1n) = 1]

∣∣∣ (7)

=
∣∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣∣ .

Hence, Lemma 2.8 yields that there exists a (1 + ζ)q(n)-query, non-adaptive, single-oracle distin-
guisher D̂ of running time r(n)t(n) + 2q(n)eF (n) ≤ p(n)t(n), where p ∈ poly, such that∣∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πn [D̂π(1n) = 1]

∣∣∣
≥ 1

2
·
∣∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣∣ .

�

Let Dn = Rn = {0, 1}n, F = {Fn : {0, 1}n 7→ {0, 1}n}n∈N be a non-adaptive ((1 +
ζ)q(n), p(n)t(n), ε(n))-PRF and let D be an oracle-aided algorithm of running time t(n) making at
most q(n) queries. Lemma 5.1 yields that for large enough n∣∣∣Pr

f←P(Un,VFnn)
[Df (1n) = 1]− Pr

f←P(Un,VΠn
n)

[Df (1n) = 1]
∣∣∣ ≤ 2ε(n)

Assuming the conditions of Lemma 3.2 with respect to P(U ,V) hold, we get that for some ε′∣∣∣Pr
f←P(Un,VΠn

n)
[Df (1n) = 1]− Prπ←Πn [Dπ(1n) = 1]

∣∣∣ ≤ ε′(n) (8)

for every n ∈ N. Hence, by the triangle inequality∣∣∣Pr
f←P(Un,VFnn)

[Df (1n) = 1]− Prπ←Πn [Dπ(1n) = 1]
∣∣∣ ≤ 2ε(n) + ε′(n).

Plugging in Lemma 3.5 we immediately get the following theorem.

Theorem 5.3. Let q be a polynomial-time computable integer function, let H = {Hn : {0, 1}n 7→
[4q(n)]{0,1}n}n∈N and G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be efficient (c log(q(n)))-wise independent

function family ensembles, where c > 0 is universal, and let F = {Fn : {0, 1}n 7→ {0, 1}`(n)}n∈N be
a non-adaptive (4q(n), p(n)t(n), ε(n))-PRF, where p ∈ poly is determined by the evaluation time of
q,H,G and F . Then PP(H,G,F) is an adaptive (q(n), t(n), 2ε(n) + 1/q(n))-PRF.

Proof. Recall that in this case ε′(n) = q(n)/2Ω(c log(q(n))). Setting c such that q(n)/2Ω(c log(q(n))) =
1/q(n) complete the proof. �

Theorem 5.3 yields the following simpler corollary.

Corollary 5.4 (Restatement of Theorem 1.4). Let q, H, G and p be as in Theorem 5.3. Assuming
F is a non-adaptive (p(n)t(n))-PRF, then PP(H,G,F) is an adaptive (t(n)/4)-PRF.

Plugging in Lemma 3.9 we immediately get the following (similarly to Theorem 5.3):

18

Theorem 5.5. Let q be a polynomial-time computable integer function, let s ≥ 0, z, H =
{Hn : {0, 1}n 7→ [(1 + ζ)q(n)]}, G = {Gn : {0, 1}n 7→ {0, 1}`(n)}n∈N be as defined in Theorem 3.8,
and let F = {Fn : {0, 1}n 7→ {0, 1}`(n)}n∈N be a non-adaptive ((1 + ζ)q(n), p(n)t(n), ε(n))-PRF,
where p ∈ poly is determined by the evaluation time of q,H,G and F . Then ADWz(H,G,F) is an
adaptive (q(n), t(n), 2ε(n) + 1/q(n)s+1)-PRF.

Notice that in Theorem 5.5 we used the setting of parameters of Theorem 3.8. In particular,
since the matrices that are sampled in the definition of ADWz are of constant size, we can embed
them into the key of the PRF.

6 Further Research

The focus of this paper was on PRFs. In Sections 4 and 5 we have shown domain extension tech-
niques and non-adaptive to adaptive transformations for PRFs that provide a nice tradeoff between
combinatorial work, cryptographic work and error. In general, hardness preserving reductions be-
tween pseudorandom objects has led to fruitful research with many result (some of which we review
next). It is an interesting question whether our technique has any bearing on other models.

Perhaps the most interesting model for this kind of reductions is pseudorandom permutations
(PRPs) (without goind through a PRP-to-PRF reduction). Given a family of (q, t, ε)-PRPs from
n-bits to n bits, how can we construct a family of PRPs with larger domain while preserving
its security? How about constructing a family of PRPs with smaller domain while preserving
its security? Finally, it is also interesting how to transform a family of (q, t, ε)-PRPs that is
secure against non-adaptive adversaries to a family of PRPs that are also secure against adaptive
adversaries. One related paper is that of Hoang et al. [19], that gives a method to convert a PRF
into a PRP with beyond-birthday security. Another related work is of H̊astad [17] that showed how
to extend the domain of a PRP.

A different model of interest is message authentication codes (MACs). In this model, we are
interested in designing domain extension techniques that given an n-bit to n-bit MAC with MAC
security ε against q queries provide variable-length MAC with some (good enough) promise on the
MAC security in terms of q and ε. The best answer to-date for this question was given by Dodis
and Steinberger [13] that showed that given an n-bit to n-bit MAC with MAC security ε against
q queries, it is possible to get a variable-length MAC achieving MAC security O(ε · q · poly(n))
against queries of total length qn.

Another interesting model is public random functions. A public random function f : {0, 1}m →
{0, 1}n is a system with a public and private interface which behaves as the same random function
at both interfaces. In other words, a public random function can be interpreted as a random
oracle. In this model, again, the domain extension problem is very interesting. To date, the best
construction is of Maurer and Tessaro [28] that presented a construction Cε,m,` that extends public
random functions f : {0, 1}n → {0, 1}n to a function Cε,m,`(f) : {0, 1}m(n) → {0, 1}`(n) with
time complexity poly(n, 1/ε) and which is secure against adversaries which make up to Θ(2(1−ε)n)
queries.

On a different note, notice that all of our constructions assume that we are given the number
of queries in advance. Can we get any non-trivial results given only an upper bound on the number
number of queries (in any of the models above)? In particular, in the non-adaptive to adaptive
reduction of Section 5 we assumed that q(n), the number of queries to which the non adaptive

19

function is resistent to, is known. What can be done if it is not known? This issue was addressed
by Berman and Haitner [6] in a non security preserving manner.

Recently Pǎtraşcu and Thorup [42] have shown that for many data structure problems it is
possible to use tabulation hashing even though it is ‘merely’ 3-wise independent. The question is
whether this has any bearing on cryptographic constructions.

7 Acknowledgments

We thank Eylon Yogev and the anonymous referees for their helpful comments. The third author
would like to thank his advisor Ran Raz for his support.

References

[1] W. Aiello and R. Venkatesan. Foiling birthday attacks in length-doubling transformations -
benes: A non-reversible alternative to feistel. In Advances in Cryptology – EUROCRYPT ’96,
pages 307–320, 1996.

[2] Y. Arbitman, M. Naor, and G. Segev. Backyard cuckoo hashing: Constant worst-case op-
erations with a succinct representation. In Proceedings of the 51th Annual Symposium on
Foundations of Computer Science (FOCS), pages 787–796, 2010.

[3] M. Aumüller, M. Dietzfelbinger, and P. Woelfel. Explicit and efficient hash families suffice for
cuckoo hashing with a stash. In L. Epstein and P. Ferragina, editors, ESA, volume 7501 of
Lecture Notes in Computer Science, pages 108–120. Springer, 2012.

[4] M. Bellare and S. Goldwasser. New paradigms for digital signatures and message authentication
based on non-interative zero knowledge proofs. In Advances in Cryptology – CRYPTO ’89,
pages 194–211, 1989.

[5] M. Bellare, O. Goldreich, and H. Krawczyk. Stateless evaluation of pseudorandom functions:
Security beyond the birthday barrier. In Advances in Cryptology – CRYPTO ’99, pages 270–
287, 1999.

[6] I. Berman and I. Haitner. From non-adaptive to adaptive pseudorandom functions. In Theory
of Cryptography, 9th Theory of Cryptography Conference, TCC 2012, pages 357–368, 2012.

[7] O. Billet, J. Etrog, and H. Gilbert. Lightweight privacy preserving authentication for rfid using
a stream cipher. In 18th International Symposium on the Foundations of Software Engineering
(FSE), pages 55–74, 2010.

[8] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2/3):225–244, 1994.

[9] L. J. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, pages 143–154, 1979.

[10] N. Chandran and S. Garg. Hardness preserving constructions of pseudorandom functions,
revisited. IACR Cryptology ePrint Archive, 2012:616, 2012.

20

[11] B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE Transactions on Information
Theory, 46(3):893–910, 2000.

[12] M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages
629–638, 2003.

[13] Y. Dodis and J. P. Steinberger. Domain extension for macs beyond the birthday barrier. In
Advances in Cryptology – EUROCRYPT 2011, pages 323–342, 2011.

[14] O. Goldreich. Towards a theory of software protection. In Advances in Cryptology – CRYPTO
’86, pages 426–439, 1986.

[15] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of random
functions. In Advances in Cryptology – CRYPTO ’84, pages 276–288, 1984.

[16] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of
the ACM, pages 792–807, 1986.

[17] J. H̊astad. The square lattice shuffle. Random Structures & Algorithms, 29(4):466–474, 2006.

[18] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, pages 1364–1396, 1999.

[19] V. T. Hoang, B. Morris, and P. Rogaway. An enciphering scheme based on a card shuffle. In
Advances in Cryptology – CRYPTO 2012, pages 1–13, 2012.

[20] A. Jain, K. Pietrzak, and A. Tentes. Hardness preserving constructions of pseudorandom
functions. In Theory of Cryptography, 9th Theory of Cryptography Conference, TCC 2012,
pages 369–382, 2012.

[21] D. Jetchev, O. Özen, and M. Stam. Understanding adaptivity: Random systems revisited. In
Advances in Cryptology – ASIACRYPT 2012, pages 313–330, 2012.

[22] E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (almost) inde-
pendent permutations. Algorithmica, 55(1):113–133, 2009.

[23] L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

[24] M. Luby. Pseudorandomness and cryptographic applications. Princeton computer science notes.
Princeton University Press, 1996.

[25] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[26] U. M. Maurer. Indistinguishability of random systems. In Advances in Cryptology – EURO-
CRYPT 2002, pages 110–132, 2002.

[27] U. M. Maurer and K. Pietrzak. Composition of random systems: When two weak make one
strong. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004,
pages 410–427, 2004.

21

[28] U. M. Maurer and S. Tessaro. Domain extension of public random functions: Beyond the
birthday barrier. In Advances in Cryptology – CRYPTO 2007, pages 187–204, 2007.

[29] S. Myers. Black-box composition does not imply adaptive security. In Advances in Cryptology
– EUROCRYPT 2004, pages 189–206, 2004.

[30] M. Nandi. A unified method for improving prf bounds for a class of blockcipher based macs.
In Fast Software Encryption, 17th International Workshop, FSE 2010, Seoul, Korea, pages
212–229, 2010.

[31] M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science (FOCS), pages 170–181, 1995.

[32] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-rackoff
revisited. Journal of Cryptology, 12(1):29–66, 1999.

[33] M. Naor and O. Reingold. Constructing pseudo-random permutations with a prescribed struc-
ture. Journal of Cryptology, 15(2):97–102, 2002.

[34] R. Ostrovsky. An efficient software protection scheme. In Advances in Cryptology – CRYPTO
’89, 1989.

[35] A. Pagh and R. Pagh. Uniform hashing in constant time and optimal space. SIAM Journal
on Computing, 38(1):85–96, 2008.

[36] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[37] J. Patarin. Security of random feistel schemes with 5 or more rounds. In Advances in Cryptology
– CRYPTO 2004, pages 106–122, 2004.

[38] J. Patarin. A proof of security in o(2n) for the benes scheme. In Progress in Cryptology -
AFRICACRYPT 2008, pages 209–220, 2008.

[39] J. Patarin. Security of balanced and unbalanced feistel schemes with linear non equalities.
IACR Cryptology ePrint Archive, 2010:293, 2010.

[40] K. Pietrzak. Composition does not imply adaptive security. In Advances in Cryptology –
CRYPTO 2005, pages 55–65, 2005.

[41] K. Pietrzak. Composition implies adaptive security in minicrypt. In Advances in Cryptology
– EUROCRYPT 2006, pages 328–338, 2006.

[42] M. Pǎtraşcu and M. Thorup. The power of simple tabulation hashing. J. ACM, 59(3):14,
2012.

[43] A. Siegel. On universal classes of extremely random constant-time hash functions. SIAM
Journal on Computing, 33(3):505–543, 2004.

[44] M. N. Wegman and L. Carter. New hash functions and their use in authentication and set
equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

22

A Adaptive Security of Functions Family – A General Framework

We provide a general framework for proving the adaptive security of functions families, given that
the analysis of the security of the non-adaptive case behaves in a certain way: we need to be able
to separate the ‘key’ into two parts, drawn from U and V respectively. Then the anlysis has to
guarantee that provided the non-adaptive distinguisher did not stumble upon a BAD set in U , the
randomness of V should make his view completely random. If the analysis is of this nature, then
we claim that the resulting construction is secure against adaptive attacks as well.

Lemma A.1 (Restating Lemma 3.2). Let F = F(U ,V) be a function family of the form {fu,v : D 7→
R}(u,v)∈U×V , where U and V are arbitrary non-empty sets, let t ∈ N and let BAD ⊆ D≤t × U be a
left-monotone set. Assume that for every q ∈ D≤t it holds that

1.
(
f(q1), . . . , f(q|q|)

)
f←{fu,v : v∈V}

is uniform over R|q| for every u ∈ U such that (q, u) 6∈ BAD,

and

2. Pru←U [(q, u) ∈ BAD] ≤ ε,

then for any t-query adaptive algorithm D, it holds that∣∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π[Dπ = 1]

∣∣∣∣ ≤ ε
where Π is the set of all functions from D to R.

Proof. Let D be an t-query distinguisher. We assume for simplicity that D is deterministic (the
reduction to the randomized case is standard) and makes exactly t valid (i.e., inside D) distinct
queries. To prove the lemma we define an Algorithm A.2 that runs D twice: one giving it completely
random answers and the second time, choosing a u ← U and continuing answering with the same
answers as the first round until we hit a BAD event according to the queries and the chosen u. We
then choose a random v that is consistent with answers given so far and continue answering with
it.

Intuitively, the answers provided to D in the first round are distributed like the answers D
expects to get from a truly random function, while the answers provided to D in the second round
are distributed like the answers D expects to get from a random function in F . But, since these
answers are the same until a BAD event occurs, the distinguishing ability of D is bounded by the
probability of such an event to occur. Since, u is chosen after D has already “committed” to the
queries it is going to make, this probability is bounded by the non-adaptive property of F .

For a vector v = (v1, . . . , vt), let v1,...,i be the first i element in v (i.e., v1,...,i = (v1, . . . , vi)) and
v1,...,0 = λ, where λ is the empty vector. Consider the following random process:

Algorithm A.2.

1. Emulate D, while answering the ith query qi with ai ← R.

Set q = (q1, . . . , qt) and a = (a1, . . . , at).

2. Choose u← U and set v =⊥.

3. If (λ, u) ∈ BAD, set v ← V.

23

4. Emulate D again, while answering the ith query q′i according to the following procedure:

(a) If (q′1,...,i = (q′1, . . . , q
′
i), u) /∈ BAD, answer with a′i = ai (the same ai from Step 1).

(b) Otherwise ((q′1,...,i, u) ∈ BAD):

i. If v =⊥, set v ← {v′ ∈ V : ∀j ∈ [i− 1] : fu,v′(q
′
j) = a′j}.

ii. Answer with a′i = fu,v(q
′
i).

5. Set q′ = (q′1, . . . , q
′
t) and a′ = (a′1, . . . , a

′
t). In case v =⊥, set v ← {v′ ∈ V : ∀j ∈ [t] : fu,v′(q

′
j) =

a′j}.

Let A, Q, A′, Q′, U and V be the (jointly distributed) random variables induced by the values
of q, a, q′, a′, u and v respectively, in a random execution of Algorithm A.2. By definition A has
the same distribution as the oracle answers in a random execution of Dπ with π ← Π. In Claim A.3
we show that A

′
is distributed the same as the oracle answers in a random execution of Dfu,v with

(u, v)← U × V. Using it, we now conclude the proof by bounding the statistical distance between

A and A
′
.

Since the queries and answers in both emulations of D at Algorithm A.2 are the same until
(Q1,...,i, U) ∈ BAD for some i ∈ [t], and since BAD is monotone, it holds that

Pr[A 6= A
′
] ≤ Pr[(Q,U) ∈ BAD] (9)

In addition, since U is chosen after Q, the second condition of Lemma A.1 yields that

Pr[(Q,U) ∈ BAD] ≤ ε (10)

It follows that Pr[A 6= A
′
] ≤ ε and therefore SD(A,A

′
) ≤ ε.

We conclude that ∣∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π[Dπ = 1]

∣∣∣∣ ≤ SD(A,A
′
) ≤ ε.

�

Claim A.3. A
′

has the same distribution as the oracle answers in a random execution of Dfu,v

with (u, v)← U × V.

Proof. It is easy to verify that A
′

is the oracle answers in DfU,V . Hence, to obtain the claim we
need to show that (U, V) is uniformly distributed over U × V. The definition of Algorithm A.2
assures that U is uniformly distributed over U , so it is left to show that conditioned on any fixing
u of U , the value of V is uniformly distributed over V.

In the following we condition on U = u ∈ U . For an answers vector w ∈ Rk, let qw [resp.,
q+
w] be the first k [resp., k + 1] queires asked by D, assuming that it gets w as the first k answers

(since D is deterministic these values are well defined). Let Sw = {v ∈ V : fu,v(qw) = w} and let
W = {w ∈ R∗ : |w| ≤ t ∧ (qw, u) /∈ BAD}. If λ /∈ W , it follows that (λ, u) ∈ BAD, and thus
Algorithm A.2 chooses v at Step 3. Hence V is uniformly distributed over V. In case λ ∈ W , we
conclude the proof by applying the following claim (proven below) with w = λ (note that Sλ = V).

Claim A.4. Conditioned on A′1,...,i = w ∈W for some i ∈ {0, , . . . , t}, the value of V is uniformly
distributed over Sw.

24

�

Proof of Claim A.4. We prove by reverse induction on i = |w|. For the base case i = t, we note
that (by definition) Algorithm A.2 chooses v at Step 5, and thus V is uniformly distributed over
Sw. In the following we assume the hypothesis holds for i+ 1, and condition on A′1,...,i = w ∈ W .
In case (q+

w , u) ∈ BAD, Algorithm A.2 chooses v at Step 4(b)i, and thus V is uniformly distributed
over Sw. So it is left to handle the case (q+

w , u) /∈ BAD.
Fix v′ ∈ Sw and let a ∈ R be such that v′ ∈ Sw◦a, where ‘◦’ denotes vector concatenation

(i.e., for w = (w1, . . . , wi), w ◦ a = (w1, . . . , wi, a)). Conditioning on A′i+1 = a, we can apply the
induction hypothesis on w ◦ a (since w ◦ a ∈ W) to get that V is uniformly distributed over Sw◦a.
It follows that

Pr[V = v′ | A′1,...,i = w] = Pr[A′i+1 = a | A′1,...,i = w] · Pr[v = v′ | A′1,...,i+1 = w ◦ a]

=
1

|R|
· 1

|Sw◦a|

=
1

|R|
· |R|

|w|+1

|V|

=
|R||w|

|V|
=

1

|Sw|
,

concluding the induction step. The second equality holds by the induction hypothesis, and for the
third one we note that

|Sw′ |
|V|

= Prv←V [v ∈ Sw′] = Prv←V [fu,v(qw′) = w′] =
1

|R||w
′| , (11)

for every w′ ∈W , where the third equality of Equation (11) holds by the first property of F(U ,V)
(as stated in Lemma A.1). �

25

	Introduction
	Pseudorandom Functions
	Cuckoo Hashing and Many-wise independent hash function
	Our Results
	PRF Domain Extension
	From PRG to PRF
	From Non-Adaptive to Adaptive PRF

	More Related Work

	Preliminaries
	Notations
	Pseudorandom Generators
	Function Families
	Operating on Function Families
	Function Family Ensembles
	Many-Wise Independent Hashing

	Pseudorandom Functions

	From Non-Adaptive to Adaptive Hashing
	Instantiation with the PaghP08 Function Family
	Instantiation with the AumullerDW12 Function Family

	Extending the Domain of a PRF
	Hardness Preserving PRG to PRF Reductions
	Settling the Parameters

	From Non-Adaptive to Adaptive PRF
	Further Research
	Acknowledgments
	Adaptive Security of Functions Family – A General Framework

