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Abstract

The traditional notion of program obfuscation requires that an obfuscation f̃ of a program f com-
putes the exact same function as f , but beyond that, the code of f̃ should not leak any information
about f . This strong notion of virtual black-box security was shown by Barak et al. (CRYPTO 2001)
to be impossible to achieve, for certain unobfuscatable function families. The same work raised the
question of approximate obfuscation, where the obfuscated f̃ is only required to approximate f̃ ; that
is, f̃ only agrees with f on some input distribution.

We show that, assuming trapdoor permutations, there exist families of robust unobfuscatable
functions for which even approximate obfuscation is impossible. That is, obfuscation is impossible
even if the obfuscated f̃ only agrees with f with probability slightly more than 1

2 , on a uniformly
sampled input (below 1

2 -agreement, the function obfuscated by f̃ is not uniquely defined). Addi-
tionally, we show that, assuming only one-way functions, we can rule out approximate obfuscation
where f̃ is not allowed to err, but may refuse to compute f with probability close to 1.

We then demonstrate the power of robust unobfuscatable functions by exhibiting new impli-
cations to resettable protocols that so far have been out of our reach. Concretely, we obtain a new
non-black-box simulation technique that reduces the assumptions required for resettably-sound zero-
knowledge protocols to one-way functions, as well as reduce round-complexity. We also present a
new simplified construction of simultaneously resettable zero-knowledge protocols that does not rely
on collision-resistent hashing. Finally, we construct a three-message simultaneously resettable WI
argument of knowledge (with a non-black-box knowledge extractor). Our constructions are based
on a special kind of “resettable slots” that are useful for a non-black-box simulator, but not for a
resetting prover.
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1 Introduction

The problem of program obfuscation concerns the task of rewriting programs in a way that makes
their code “unintelligible” without destroying its functionality. The rigorous study of the problem was
initiated in the work of Barak et al. [BGI+01], which formalize secure obfuscation according to the
virtual black-box notion. At high-level, this notion implies that whatever an efficient learner can deduce,
given an obfuscation f̃ of a program f , should also be learnable, given only black-box access to f .
The same work shows, however, that in general, this notion may not be achievable. More concretely,
[BGI+01] show that there exist an unobfuscatable family of functions {fk}, for which any program f̃k
that computes the same function as fk leaks information that cannot be learned, given only black-box
access to fk, assuming k is chosen at random.

Approximate obfuscation. In light of the [BGI+01] impossibility, several followup works studied
notions of obfuscation with relaxed security [AW07, GR07, HMLS07, HRSV07, BC10]. A different
kind of relaxation is to weaken the functionality (rather than security) requirement. In this context,
Barak et al. [BGI+01] put forth the notion of approximate obfuscation, where the obfuscated program
f̃ is not necessarily required to perfectly compute the same function as f , but only to approximate f
in some sense. Concretely, Barak et al. show that obfuscation of general programs is impossible if an
obfuscation f̃ is required to approximate f in the following strong sense: for every input, the obfuscation
f̃ is allowed to err only with negligible probability, over the coins of the obfuscator algorithm that
samples f̃ .

However, this notion of approximation is rather strong, since it provides a correctness guarantee for
every input; in particular, if we allow the obfuscation f̃ to err even on poly(n)-many inputs, no impos-
sibility is known. In fact, one may require that f̃ only agrees with the function f , with high-enough
probability, over inputs drawn from some specific distribution D, such as the uniform distribution. In-
deed, this relaxation may suffice for many applications: for example, protecting the secret key of a
program that digitally signs messages from a high-entropy distribution, or protecting the code of an
algorithm that can factor random integers. The existence of such approximate obfuscators was left by
Barak et al. as an open question.

1.1 The Impossibility Result

We show that approximate obfuscation of general programs is impossible. Concretely, we construct
error-robust unobfuscatable functions that rule out the approximate obfuscation notion discussed above.
(where f̃ is only required to often agree with f on a uniformly random input, and may otherwise err).
To construct error-robust unobfuscatable functions, we study a weaker notion of robust unobfuscatable
functions. Such function only rule out a stronger notion of obfuscation where f̃ is limited to making
only detectable errors (e.g., output ⊥). Although weaker than their error-robust counterparts, robust
unobfuscatable functions will play a significant role as a building block for error-robust functions, and
will also allow us to reduce computational assumptions in some of our results.

Theorem 1.1 (existence of robust unobfuscatable functions - informal).
1. Assuming the existence of one-way functions, there exist robust unobfuscatable families.
2. Assuming the existence of trapdoor permutations, there exist error-robust unobfuscatable families.

We further discuss the two notions of robustness and the corresponding constructions in Section 1.3.

1.2 Applications to Non-Black-Box Simulation and Resettable Cryptography

We demonstrate the power of robust unobfuscatable functions by exhibiting new implications to reset-
table protocols. Indeed, the recent work of [BP12] shows that the impossibility of obfuscation also has
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positive implications to ZK protocols with non-black-box simulation. Specifically, they show a construc-
tion of resettably-sound ZK using unobfuscatable functions. Based on ideas from [BP12], and on our
construction of error-robust unobfuscatable functions, we present a new non-black-box simulation tech-
nique, and use it to get simplified constructions of resettably sound ZK and simultaneously resettable
ZK, with weaker computational assumptions, and reduced round-complexity.

We now further discuss the model of resetting, explain the related challenges, and present the con-
crete improvements we obtain.

Background. Resettable cryptography deals with the problem of secure computation in the presence of
malicious parties that can reset honest paries, forcing them to repeat any execution from the same initial
state and random tape, whereas the malicious party may use different inputs and messages. This setting
is motivated by scenarios in which cryptographic protocols are run by parties that cannot regenerate
fresh randomness or keep a state between different executions, occurring after different reset attempts.
Common examples include: parties implemented on stateless hardware, inside virtual machines, or
parties that are required to perform multiple consistent executions in a distributed environment.

Resettable protocols were first studied by [CGGM00] in the context of zero-knowledge (ZK). They
define and construct resettable ZK proof systems, requiring that the view of any malicious verifier in a
proof can be efficiently simulated, even if the verifier is allowed to reset the honest prover. [BGGL01]
define and construct resettably-sound ZK protocols guaranteeing soundness, even against malicious
provers that can reset the honest verifier. [DGS09] construct simultaneously resettable ZK protocols,
i.e., protocols that are both resettable ZK and resettably-sound. Resettable soundness and simultaneous
resettability subsequently had a major role in the construction of resettable secure computation protocols
for more general functionalities [GS09, GM11]. (In addition, several works tr to construct improved rZK
and rsZK protocols in the relaxed bare public-key model [CGGM00, MR01, DFG+11]; in this work,
however, we focus on the plain model.)

The challenge of resetting, in a nutshell. In standard (non-resetting) ZK protocols, simulation is,
traditionally, performed by “rewinding” (or in other words, resetting) the verifier. By rewinding the
verifier, the simulator can extract from the verifier the required information for generating a simulated
proof, without knowing a corresponding witness. As shown by [CGGM00], such rewinding techniques
(concretely [RK99]) can also be extended to simulate resetting verifiers, yielding resettable ZK proto-
cols; on the other side, rewinding techniques alone cannot be enough for simulation in resettably-sound
protocols. Indeed, any rewinding strategy applied by the simulator can also be applied by a malicious
resetting prover, in which case soundness cannot be guaranteed (for non-trivial languages). Thus, re-
settable soundness is impossible to achieve with a simulator that only uses the verifier as a black-box,
and indeed to construct such protocols [BGGL01] rely on Barak’s non-black-box simulation technique
[Bar01].

Comparing to black-box ZK protocols (e.g., [FS89]), Barak’s ZK protocol requires stronger as-
sumptions (collision-resistant hashing vs. one-way functions), more rounds (eight-message vs. four-
message), and rather heavy machinery (PCPs). The resettably-sound protocol of [BGGL01], which
relies on Barak’s technique, inherits all of the above. Naturally, the situation is even harder when trying
to apply Barak’s technique to achieve simultaneous resettability; indeed, to obtain a simultaneous re-
settable protocol, [DGS09] provide a highly non-trivial extension of Barak’s technique that is carefully
combined with the rewinding techniques required to obtain resettable ZK.

Resettable protocols via robust unobfuscatable functions. Extending [BP12], we show a new non-
black-box simulation technique yielding new and improved constructions of resettably-sound and si-
multaneously resettable protocols. The constructions are based on a unified paradigm that couples non-
black-box simulation with existing black-box simulation techniques. Moreover, our resettably-sound
protocol relies on weaker assumptions and has fewer rounds than previous protocols. More concretely,
we obtain the following:
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• A resettably-sound ZK protocol based on one-way functions. Such a protocol was very recently
demonstrated by Chung, Pass, and Seth [CPS12]; we provide an alternative construction. Previous
constructions relied on collision-resistent hashing or oblivious transfer[BGGL01, BP12]). As an im-
mediate corollary from the work of [BGGL01], we also get a resettable ZK argument of knowledge
based on one-way functions.
• A resettably-sound concurrent ZK protocol based on one-way functions. The protocol can be trans-

formed to a simultaneously-resettable protocol, with the additional assumption of trapdoor per-
mutations. (Previous constructions relied on trapdoor permutations and collision-resistant hashing
[DGS09].)
• A 6-message resettably-sound ZK protocol, based on trapdoor permutations, and a 4-message pro-

tocol based on fully homomorphic encryption. (Previous constructions required eight messages
[BGGL01].1)
• A 3-message simultaneously-resettable WI argument of knowledge, based on trapdoor permutations.

(Previous constructions relied also on collision-resistant hashing, and required at least ten messages
[COSV12].)

An additional interesting feature is that our protocols do not make any use of heavy machinery, such as
PCPs and may thus be more efficient in practice. (PCPs were also circumvented in [BP12], but only for
resettable-soundness.)

1.3 Constructing Robust Unobfuscatable Functions

Our first (and arguably, harder) step is to construct robust unobfuscatable functions from one-way func-
tions. Our second step is to compile any robust unobfuscatable family into an error-robust family using
trapdoor permutations. We now overview the ideas behind the constructions; we start by a more precise
presentation of robust and error-robust unobfuscatable functions.

Informally, a function family F is a(n) (error-)robust unobfuscatable family if:
1. Efficient learners, with black-box access to a random fk ← F , cannot learn k.
2. There exists a samplable input distribution D, and an efficient extractor that extracts k from any

circuit C that approximates fk in the following sense:
• If F is robust, C is required to agree with fk, on inputs drawn from D, with probability 1

poly(n) ,
but is only allowed to make detectable errors, i.e., it either outputs the correct answer or ⊥.

• If F is error-robust, C is required to agree with fk, on inputs drawn from D, with probability
1
2 + 1

poly(n) , but is allowed to err on the rest of the space.

Crucially, we require that the distribution D is publicly samplable and independent of the key k; specif-
ically, this implies that extraction succeeds even if a circuit fails to compute fk on points that depend
on the key k. Also, we shall consider a variant of the above definition where some unlearnable property
P (k) is extracted, rather than the entire key k; this will be sufficient for all of our applications. Finally,
we note that in the above definition we choose to consider extractors that output a unique key k from a
given circuit C, and thus we require that C approximates a single function from the family. This is why
we require, in the case of error-robustness, more than 1

2 -agreement (otherwise, for any function family
with more than a single function, there exist circuits that can approximate two different functions, with
probability 1

2 each). (We also discuss more liberal definitions.)

The starting point for our construction of robust unobfuscatable functions is the construction of (non-
robust) unobfuscatable functions from [BGI+01], and can be seen as a “random-self-reducible” version
of it. We start by describing the construction of [BGI+01], and then move on to describe the main
modifications that we introduce.

1Recently, Ostrovsky and Visconti [OV12] showed that the [BGGL01] protocol can be compressed into 6-messages.
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The construction of [BGI+01]. Barak et al. [BGI+01] construct a family F = {fk} of unobfuscatable
functions as follows. The key k consists of two random strings (a, b) and a key sk for a symmetric
encryption scheme. For a simpler exposition, let us assume for now that the encryption scheme is fully
homomorphic. Later, we will explain how to modify the construction to rely on CCA-1 symmetric
encryption (that can be based on one-way functions).

We also describe fk = fa,b,sk as a randomized function; however, it could be made deterministic
using a pseudo-random function. The function is defined as follows:
1. On input a, output b.
2. On input “Encrypt”, output an encryption of a.
3. On input that is an encryption of b, output b.

Notice that given black-box access to the function, the only way to learn b is to first learn a, which
will break the security of the encryption scheme, or produce an encryption of b, which is information the-
oretically impossible, conditioned on not learning a. On the other hand, given a circuit C that computes
fa,b,sk, we can obtain an encryption of a, evaluate the circuit C homomorphically on this encryption,
and obtain an encryption of b, and then learn b using another black-box application of C.

Making the construction “random-self-reducible”. The latter construction is not robust: for example,
given a circuit C that computes fa,b,sk but only errs on the single input a, we can no longer extract
b. At high-level, to to overcome this problem, we use a pseudo-random function PRF to “encode” the
connection between a and b in random inputs. Specifically, we add the seed s of the PRF to the key of
f and modify it to also evaluate the two functions G(x) = PRFs(x) and, G′(x) = b ⊕ PRFs(x ⊕ a).
Now, for a random string r, we can query G with r and G′ with r⊕ a and obtain G(r)⊕G′(r⊕ a) = b.
Still, without knowing a, an efficient algorithm that gets black-box access to G and G′ cannot find any
correlation between the functions. The gain is that now each individual query is distributed uniformly
and therefore we can learn b from a, even if the function errs on, say, a 1

4 -fraction of inputs. To extract
from circuits that make more errors, we change f to evaluate the G on many random inputs in parallel,
amplifying the probability of getting the correct answer on a single random input.

In order to successfully extract b, it is not sufficient to deal with circuits that err on a, but we should
also handle circuits that err given encryptions of b, i.e. they do not output b. We would like to use a
similar idea to the one described before; namely, include a function G′′(c) that, on input c, decrypts c
to some plaintext x, and outputs b ⊕ Gs(x ⊕ b). However, given black-box access to such a function,
semantic security is not maintained. Indeed, two encryptions c1 and c2 correspond to the same plaintext
iff G′′(c1) = G′′(c2), and thus it is possible to learn a and thus also b in a black-box way. We show
that this can be solved by using a symmetric encryption scheme with public randomness (where the
encryption algorithm outputs its coins in the clear). Specifically, denoting the public randomness in c
by pub(c), we redefine G′′(c) = b ⊕ PRFs(x ⊕ b||pub(c)), where x is the decryption of c. Note that
if c1 6= c2, and x1 = x2, then pub(c1) 6= pub(c2); therefore, also G′′(c1) and G′′(c2) are distributed
pseudo independently at random, and we can show that semantic security is maintained. However, given
a random encryption c1 of b, it is possible to learn b by first sampling a random string r and a random
encryption c2 of r, then homomorphically computing an encryption c3 of b ⊕ r, and finally, evaluating
G′′(c3) ⊕ PRFs(r||pub(c3)) = b. The input r||pub(c3) to PRFs is distributed uniformly independently
b. (We note that the public randomness requirement can be relaxed to a slightly more complicated
“decomposability requirement” that can be obtained from any encryption scheme).

Getting rid of homomorphic encryption. The construction of [BGI+01] only uses a standard sym-
metric encryption, and homomorphic operations are performed gate by gate by fk: given two encrypted
input bits, it decrypts them, evaluates the desired operation and returns the result encrypted. Since such
queries consist of random encryptions, we may hope that a circuit C that does not err too much will
correctly compute extractor’s homomorphic operation with high probability. However, this is not the
case since in a long (a-priori unbounded) homomorphic computation, errors accumulate, and there is no
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way of checking consistency along the way.
Here, we use the fact that, in robust unobfuscatable functions, we can assume that C only makes

“detectable errors”; we show that this is enough in order to recover from errors during the homomorphic
computation. Specifically, when a single homomorphic operation fails (the circuit outputs⊥), we would
like the extractor to rerandomize the input encryptions and try again. This could be achieved by rely-
ing on rerandomizable encryption. However, we wish to avoid this assumption and provide a solution
based on one-way functions. For this purpose, we modify fk to return many random encryptions of the
resulting bit, and show a procedure that assures that the extractor is always left with enough “good”
encryptions to continue the homomorphic evaluation. (Formally, we will need to use “invoker random-
izable” PRFs [BGI+01]; however, this is not needed for understanding the high-level idea behind the
construction.)

From several (key-dependent) distributions to one samplable independent distribution. The family
F described above, corresponds to d = O(1) input distributions D1, . . . , Dd, where if a circuit C ap-
proximates fk on every distribution Di with sufficient probability, extraction succeeds. Specifically, the
input distributions correspond to the different functions implemented by fk: G,G′,G′′ and the homo-
morphic evaluation functionality. In particular, for the homomorphic evaluation functionality, we need
a distribution for each configuration of possible gate and input plaintexts. The problem is that the latter
distributions may not be directly samplable without the secret encryption key. Indeed, in symmetric-key
encryption (based on one-way functions), we do not know how to sample encryptions of individual bits,
without the secret key.

Instead, we use an encryption scheme that supports sampling ciphers of random plaintexts, indepen-
dently of the secret key. At high-level, if the circuit does not abort given an encryption of a random bit,
with sufficiently high-probability, then it also does not abort for encryptions of specific bits, with related
probability. To make sure that the probability is indeed high-enough we use again parallel repetition.
(Note that, when emulating a homomorphic operation, the extractor queries fk on encryptions of individ-
ual bits; however, it does not sample those encryptions on its own, but rather these were obtained as the
result of a previous homomorphic operation.) Eventually, we can bundle all of the distributions in to one
distribution that is samplable independently of the secret key for fk; furthermore, for our construction,
this distribution can simply be the uniform one.

Necessity of one-way functions. We also show that one-way functions are not only sufficient, but also
necessary for robust unobfuscatable functions. (The one-way function simply maps (k, x1, . . . , xm) to
(fk(x1), . . . , fk(xm), x1, . . . , xm), for m � |k|.) This should be contrasted with non-robust unobfus-
catable functions, where a similar implication is not known; in fact, [BGI+01] construct (non-robust)
unobfuscatable Turing machine (rather than circuit) families without any computational assumptions,
whereas robust unobfusactable functions also imply one-way functions in the Turing machine case.

Error-robust unobfuscatable functions. We show how to transform any robust unobfuscatable func-
tion family into an error-robust unobfuscatable family. Recall that, for an unobfuscatable function family
to be error-robust, we require that for any fk, it is possible to extract k (or some unlearnable property of
k), from any circuit C that agrees with fk with probability noticeably greater than 1/2. On inputs where
C and fk disagree there are no restrictions on the output of C (unlike the robust case, where the output
had to be ⊥).

The idea is to first construct a stronger type of robust unobfuscatable functions called verifiable
robust unobfuscatable functions. Such functions also have a public verification key vk that uniquely
defines fk; however, the function is still black-box unlearnable, even given vk. Moreover, vk allows
verifying that an answer, given by a circuitC, is consistent with fk, We construct such functions based on
non-interactive commitments and 2-message witness indistinguishable proofs (ZAPs). Specifically, the
verification key, consists of a commitment to a robust unobfuscatable function fk, and the outputs of the
verifiable function include a ZAP showing consistency with the committed fk.The actual construction
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is a bit more involved: to guarantee that the ZAP does not reveal the secret key k, we evaluate two
functions in parallel with independent keys and prove that one of them was computed correctly. The
construction uses ideas from [FS90, COSV12].

Equipped with verifiable robust unobfuscatable functions, we can construct error-robust unobfus-
catable functions by appending to each output the public key. This allows an extractor to identify the
verification key vk returned with probability greater than half, and thus obtain a circuit that either com-
putes fk or outputs ⊥. Answers containing a verification key different from vk, or answers that does not
verify under vk are treated as ⊥.

Verifiable robust unobfuscatable functions will also set as a convenient abstraction in the construc-
tion of resettable protocols.

Verifiable robust unobfuscatable functions and digital signatures. Interestingly, verifiable robust
unobfuscatable functions are equivalent to a unique kind of signature schemes that have a weak unforge-
bility guaranty, but a strong extraction guaranty. Specifically, it is guaranteed that no adversary can forge
a signature on a random message m← U , even if it is given access to a signing oracle prior to receiving
m; however, given the circuit of an adversary that manages to sign random messages with noticeably
probability, it is possible to efficiently extract the secret signing key. The transformation between the
two is rather direct: the private signing key and public verification key are simply the secret key k and
public verification key vk of a verifiable robust unobfuscatable function; signing a message m is simply
done by computing fk(m), and the verification is identical to that of the verifiable unobfuscatable func-
tion. Indeed, it is not hard to see that the non-black-box learnability and black-box unlearnability of the
verifiable robust family {fk}, are equivalent to the above extraction and unforgebility properties.

1.4 Applications to Resettable Protocols

In the world of black-box ZK, simulation is performed by “rewinding” the verifier. A common paradigm
for designing ZK with black-box simulation is using the notion of a “slot”. A slot is a two message sub-
protocol, where the prover sends a query and the verifier sends a response. Slot-based protocols are
designed such that: (a) a rewinding simulator that can get answers to different queries in the slot, can
use them to obtain a “trapdoor” that allows generating simulated proofs (without the witness), and (b)
a cheating prover that participates in a slot interaction only once cannot obtain the trapdoor and cannot
break the soundness of the protocol. Standard constructions of stand-alone ZK protocols are based on
a constant number of slots, whereas known concurrent or resettable zero-knowledge protocols require a
super-constant number of slots.

When constructing resettably-sound ZK, the idea of slots seems to lose its appeal since a resetting
prover can rewind a slot, learn the trapdoor, and thus break soundness. However, we may hope to design
a special resettable slot that is useful for resettably-sound protocols. A resetting cheating prover that can
rewind the slot many times should not obtain the trapdoor, while, a simulator can use the code of the
cheating verifier implementing the slot to obtain a trapdoor, and simulate a proof. This motivation was
already raised in the work of [DGS09] while trying to construct a resettable slot to get simultaneously
resettable ZK. Eventually, the techniques presented by [DGS09] achieved the goal of simultaneously
resettable ZK, but diverged from the idea of a resettable slot.

Resettable slots from verifiable robust functions. Verifiable robust unobfuscatable functions provide a
natural and simple construction of a resettable slot. Given a public verification key vk for such a function
fk, the slot query q is just a query to fk, and the slot answer is just fk(q). The trapdoor is defined to be
the key k of fk (or some unlearnable property of k). Since k is hard to learn, given black box access to
a random fk, it follows that a resetting prover that rewinds the slot cannot obtain a trapdoor. However,
given the code of any verifier that provides valid answers in the slot with significant probability (where
validity can be checked using vk), the unlearnable k (and thus a trapdoor) can be obtained.
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Comparison to [BP12]. In the work of [BP12], unobfuscatable functions that are not robust are used
to get a resettably-sound ZK protocol. The problem with using non-robust functions is that a mali-
cious verifier evaluating the unobfuscatable function may introduce errors or simply refuse to compute
the function on specific inputs. [BP12] solved this problem by letting the prover and verifier execute
a secure function evaluation protocol, in order to compute the function. However, constructing such
protocols that are secure in the resetting model turns out to be challenging and introduces more assump-
tions, rounds, and complexity to the protocol. Relying on robust unobfuscatable functions, this problem
completely disappears.

Constructing simultaneously resettable ZK. By plugging our resettable slot into the concurrent ZK
protocol of Richardson and Kilian [RK99], we get a concurrent ZK protocol that is also resettably-
sound. This is, in fact, “the hard part” of constructing simultaneously resettable protocols; once this
is obtained, the general transformation of [DGS09] can be applied to obtain full-fledged simultaneous
resettability. Our protocols rely only on trapdoor permutations, in contrast to previous constructions that
relied additionally on collision-resistent hashing. (In fact, our resettably-sound concurrent ZK protocol
can be constructed from one-way functions, and thus any improvement in assumptions for the [DGS09]
transformation, will also result in an improvement for our protocol.)

An open question in the context of simultaneously resettable ZK, which we find fascinating , is to
construct protocols with a logarithmic round-complexity (matching the what is known for resettable ZK
[PRS02]). Unfortunately, we cannot plug our resettable slot into the concurrent ZK protocol of [PRS02]
since this protocol requires that the ratio between the time it takes to evaluate the slot and the time it
takes to extract from the slot is constant. In our construction, the extraction time may be quadratic in
the evaluation time. This ratio can be improved to depend only on the security parameter assuming
homomorphic encryption; however, we still do not know how to construct unobfuscatable function, for
which this ratio is constant.

Constructing round-efficient resettably-sound ZK. By plugging our resettable slot into the round-
efficient ZK protocol of Feige and Shamir [FS89], we may hope to get a 4-message resettably-sound ZK
protocol. However, as already observed in [BP12], using just one slot requires that the ratio between the
time it takes to evaluate the slot, and the time it takes to extract from the slot, is a fixed polynomial in the
security parameter. To fix the problem, we can add a second slot to our protocol resulting in a 6-message
protocol. Alternatively, assuming homomorphic encryption, we can construct a resettable slot where
extraction is only slower than evaluation up to a fixed poly(n) factor. Such a construction will result in
a 4-message resettably-sound ZK protocol.

Constructing resettably-sound ZK from minimal assumptions. Our constructions of error-robust un-
obfuscatable functions relies on non-interactive commitments and 2-message witness indistinguishable
proofs (ZAPs [DN07]); however, in order to construct a resettably-sound protocol, it in fact suffices to
use robust (rather than error-robust) unobfuscatable functions, which can already be constructed from
one-way functions. Concretely, the corresponding protocol follows the transformation from robust to
error-robust unobfuscatable functions, but uses interactive (2-message) commitments [Nao91], instead
of non-interactive ones, and instance-dependent resettable witness-indistinguishable arguments based
on one-way functions, instead of ZAPs.

Our one-way function based protocol is an alternative to the very recent protocol by Chung, Pass,
and Seth [CPS12], who show an elegant way of replacing collision-resistant hashing in Barak’s non-
black-box protocol [Bar01] with strong digital signatures, and then apply the [BGGL01] transformation.

3-message simultaneously-resettable witness indistinguishability. We also construct a 3-message
simultaneously-resettable WI argument of knowledge protocol. (Indeed, notice that while ZAPs are 2-
message simultaneously-resettable WI, they are not known to also be an argument of knowledge, without
relying on non-standard “knowledge assumptions”.)

Previously, Cho et al. [COSV12] constructed a simultaneously-resettable WI argument of knowl-
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edge based on trapdoor permutations and collision-resistant hashing. The round complexity of their
protocol is bounded from below by that of the [BGGL01] protocol, which is used as a subroutine; over
all the protocol requires more than ten messages. Our new protocol is based on robust unobfuscat-
able functions and only assumes trapdoor permutations. The protocol has a non-black-box knowledge
extractor.

2 Robust Unobfuscatable Functions

In this section, we define the basic notion of robust unobfuscatable functions.

Definition 2.1 ((ε,D)-approximation). Let D be a distribution on {0, 1}n, a circuit C is said to (ε,D)-
approximate a function f : {0, 1}n → {0, 1}∗ if:

1. It partially agrees with f on inputs drawn from D:

Pr
q←D

[C(q) = f(q)] ≥ ε ,

2. It only makes detectable errors on inputs from D:

Pr
q←D

[C(q) /∈ {⊥, f(q)}] ≤ negl(n) .

We say that C (ε,D)-approximates f with errors if the second item is not guaranteed.

Remark 2.1 (abusing notation). Formally, the definition is also parameterized by the negligible function
negl bounding the probability of undetectable errors (i.e., C(q) /∈ {fk(q),⊥}); however, to lighten
notation, we use (ε,D) rather than (ε,negl, D). Accordingly, the following definitions are also implicitly
parameterized by the same negligible function negl. Eventually, in our applications, we will treat specific
families of circuits C = {Cn} each with an associated error function negl.

In addition, ε and D may depend on n. To lighten notation, we shall often avoid explicitly writing
n in their description. In particular, whenever n is clear from the context, we may denote a distribution
D(1n) by its sampler D.

Definition 2.2 (Robust unobfuscatable functions). A function family F = {fk}k∈{0,1}n,n∈N is a robust
unobfuscatable family, with respect to efficient relationRF and input sampler D, if it is:

1. Black-box unlearnable: For any poly-size learner L = {Ln}n∈N, and all large enough n ∈ N:

Pr
k←{0,1}n

[(k, z) ∈ RF : z← Lfkn ] ≤ negl(n) .

RF is thus called “the unlearnable relation”.

2. Non-Black-box learnable: There exists an efficient extractor E such that for any noticeable func-
tion ε(n) = n−O(1) , any large enough n ∈ N, any k ∈ {0, 1}n, and every circuit C that
(ε,D)-approximates fk, E extracts z ∈ RF (k) from C:

Pr
E

[
(k, z) ∈ RF : z← E(C, 1n, 11/ε)

]
≥ 1− negl(n) · poly(|C|) ,

where D = D(1n), ε = ε(n), and poly is a fixed polynomial that depends only on E.

We say that the family is (just) ε-robust, for some function ε = ε(n), if there exists an extractor E = Eε,
such that for all large enough n ∈ N, k ∈ {0, 1}n, and circuit C that (ε,D)-approximates fk:

Pr
E

[(k, z) ∈ RF : z← E(C, 1n)] ≥ 1− negl(n) · poly(|C|) .

8



We next define error-robust unobfuscatable functions which are defined analogously, only that extraction
should work for any circuit C that sufficiently agrees with fk, even if C makes undetectable errors.

Definition 2.3 (Error-robust unobfuscatable functions). A family of functions F = {fk}k∈{0,1}n,n∈N is
an error-robust unobfuscatable family with respect to efficient relationRF and input sampler D if it is:

1. Black-box unlearnable: As in Definition 2.2.

2. Non-Black-box learnable: There exists an efficient extractor E such that for any noticeable func-
tion ε = ε(n), all large enough n ∈ N, any k ∈ {0, 1}n, E extracts z ∈ RF (k) from any circuit C
that (1

2 + ε,D)-approximates fk with errors (see Definition 2.1):

Pr
E

[
(k, z) ∈ RF : z← E(C, 1n, 11/ε)

]
≥ 1− negl(n) · poly(|C|) ,

where D = D(1n), ε = ε(n), and poly is a fixed polynomial that depends only on E.

Remark 2.2 (The samplerD). In the above definitions, we allow the input samplerD to represent an arbi-
trary samplable distribution, where sampling is independent of the key k for the unobfuscatable function.
We can consider a more strict (but natural) definition, where D(1n) represents the uniform distribution
over stings in {0, 1}poly(n). Indeed, our constructions also achieve this variant (see Remark 3.1).

Remark 2.3 (Uniquely determined functions). For the case of erroneous circuits, i.e. with non-detectable
errors (Definition 2.3), we naturally require that the circuitC determines one specific function, and hence
we require more than 1

2 -agreement (which already guarantees thatC cannot simultaneously approximate
two functions in the family, assuming that any two functions in the family have at most 1

2 -agreement.)
In principle, one may also consider alternative definitions of error-robustness where the circuit may
somewhat agree with several functions and the extractor is required to extract the keys of all the functions
whose agreement with C crosses a given threshold. We restrict attention to the unique-function case,
although our techniques naturally extends to such alternative notions.

Remark 2.4 (Unique-witness unlearnable relations). A natural requirement regarding the unlearnable
relation RF of a family F is that, given k, there is a unique z ∈ RF (k), and this z can be efficiently
computed; this property is satisfied by our constructions, and is required for some of our applications.

2.1 Robustness from Weaker Robustness

In this section, we discuss two natural relaxations of robust obfuscation that will be convenient to work
with, and show how to transform functions that are unobfuscatable according to these notions to func-
tions that are robust according to Definition 2.2. We restrict attention to approximation without errors.
(Eventually, in Section 4 we show how to go from robust functions to error-robust ones.)

We first show that, using parallel repetition, we can always amplify the robustness of an unobfuscat-
able family (at the cost of blowing up the input and output size by a factor of n).

Lemma 2.1. Any
(

1− 1
4√n

)
-robust G can be transformed to a robust F , where the size of inputs and

outputs grows by a factor of n.

We describe the construction behind the lemma, followed by the analysis.

Construction 2.1 (Robustness from
(

1− 1
4√n

)
-robustness). Let G be a

(
1− 1

4√n

)
-robust unobfuscat-

able family with respect to an unlearnable relation RF , and an input distribution ensemble D; We
construct a new robust unobfuscatable family F with respect to the same relation RF , and the n-fold
distribution ensemble D̂ = D × · · · × D. Any function fk : {0, 1}n2 → {0, 1}n2

is just the n-fold
version ĝk(q1, . . . , qn) = (gk(q1), . . . , gk(qn)) of the function gk : {0, 1}n → {0, 1}n.
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Proof sketch of Lemma 2.1. Unlearnability of F follows directly from that of G, since any oracle calls
fk ∈ F can be simulated by n oracle calls to the corresponding gk. To show that the function is robust,
we describe its extractor Ê. For a noticeable function ε(n) = n−O(1), the extractor Ê, is given as input
a circuit C that

(
ε, D̂

)
-approximates fk (where D̂ = D̂(1n)) and the parameter 11/ε. Ê first constructs

from C a probabilistic circuit C ′ that, with probability
(

1− 1
4√n

)
, ((1− 1

4√n),D)-approximates gk. The

circuit C ′, given a random sample q ← D(1n), samples (q′1, . . . , q
′
n) ← D̂(1n) and replaces a random

coordinate q′i∗ with q, and feeds the augmented n-fold sample toC. The circuitC ′ repeats this procedure
n
ε times (for the same q), and if it obtains an answer (z1, . . . , zn) that is not ⊥, it returns zi∗ . Then, after
producing the circuit C ′, Ê then chooses n random strings r1, . . . , rn for C ′, and runs the extractor E of
gk, on each C ′ri , if all executions output ⊥, the extractor fails, and otherwise it produces k.

To show that Ê works as required, we show that the circuit C ′ indeed approximates gk as required.
First since C is assumed to err with negligible probability, so does C ′; we now show that C ′ answers
with high probability. For any sample q ∈ supp(D), let D̂|q denote the distribution that the circuit C ′

samples from (i.e., where a random sample is drawn from D̂, and then one of its random coordinates is
replaced by q). We say that q is good if Pr~q′←D̂|q

[
C(~q′) 6= ⊥

]
≥ ε

2 . We claim that an input q drawn

from D is good with probability at least
(

1− 1√
n

)
. Indeed, if that was not the case, then in any sample

~q′ ← D̂(1n), there is some coordinate that is not good, with probability at least
(

1− 1√
n

)n
≈ e−

√
n;

however, conditioned on this event, C answers a random sample with probability at most ε/2, and thus
overall it answers with probability at most ε(n)/2 − negl(n) < ε(n), leading to a contradiction. Now,
since Prq←D,C′ [C

′(q) 6= ⊥] ≥
(

1− 1√
n

)
, it holds that for a

(
1− 1

4√n

)
-fraction of the random coins

r used by C ′, it holds that Prq←D [C ′r(q) 6= ⊥] ≥ (1− 1
4√n). Thus, one of the n repeated extraction

attempts from C ′ using different randomness, will succeed, except with negligible probability.

Further on, it will be convenient to also consider a notion where the circuit is required to approximate
d distributions D1, . . . ,Dd, instead of one (in this work, it will always be the case that d is a constant).
This definition will only serve us as an intermediate step towards constructing families according to
Definition 2.2, where d = 1. In particular, we will not require that each of these distribution can be
sampled independently of k, but rather we will only require that, when i∗ is chosen at random from [d],
it is possible to sample fromDi∗ , independently of k. As we shall see, the latter weak sampling guarantee
(combined with parallel repetition) will be sufficiently powerful to construct an unobfuscatable function
with a single distribution that is samplable independently of k.

We next present the definition. Since robustness can always be amplified, it will be sufficient and
more convenient to describe the notion for a constant approximation factor, e.g., 1/2.

Definition 2.4 (d-distribution robust unobfuscatable function). A family of functionsF is a d-distribution
1
2 -robust unobfuscatable family with respect to an efficient relationRF and input samplers D1, . . . ,Dd,
if it is:

1. Black-box unlearnable: as in Definition 2.2.

2. Non-Black-box learnable: There exists an efficient extractor E such that for any large enough
n ∈ N, any k ∈ {0, 1}n, and every circuit C that (1

2 ,Di)-approximates fk, for all i ∈ [d], E
extracts z ∈ RF (k) from C:

Pr
E

[(k, z) ∈ RF : z← E(C, 1n)] ≥ 1− negl(n) · poly(|C|) ,

where Di = Di(1n, k), and poly is a fixed polynomial depending only on E.
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For any k ∈ {0, 1}n, consider the distribution D∗(k) = {q ← Di∗(1n, k) | i∗ ← [d]}. We say that
D1, . . . ,Dn are jointly key-independent, if there exists an efficient sampler D∗, such that for all k,
D∗(1n) , D∗(k).

We now show that any d-distribution robust unobfuscatable family, where D1, . . . ,Dn are jointly
key-independent, can be transformed in a robust unobfuscatable family according to Definition 2.2.
Specifically, we show a 2

3 -robust family, but robustness can always be amplified using Lemma 2.1.

Lemma 2.2. If G is a d-distribution 1
2 -robust unobfuscatable family, with samplers D1, . . . ,Dd that are

jointly key-independent, then G can be transformed to a 2
3 -robustness F (with a single distribution).

We now describe the construction behind the lemma, followed by the analysis.

Construction 2.2 (2
3 -Robustness from d-distribution 1

2 -robustness). Let G be a d-distribution 1
2 -robust

unobfuscatable family with samplers {Di}i∈[d]. (Each Di is possibly key-dependent, but {Di}i∈[d] are
jointly key-independent). We construct a new robust unobfuscatable familyF on a distribution ensemble
D̂∗ as follows. Each function fk : {0, 1}n2 → {0, 1}n2

is just the n-fold version ĝk(q1, . . . , qn) =
(gk(q1), . . . , gk(qn)) of the function gk : {0, 1}n → {0, 1}n. The input distribution D̂∗ is the n-fold
D∗ × · · · × D∗, (where D∗ is as defined above).

Proof sketch. Black-box unlearnability follows rather directly, from the fact that any oracle query to
fk can be perfectly simulated by n oracle queries to gk. We thus focus on showing non-black-box
learnability. First, note that since

Let C be a circuit that
(

2
3 , D̂

∗
)

-approximates fk, we construct a new probabilistic circuit Ĉ ′ that,

with overwhelming probability, for all i ∈ [d], (2
3 −

1
Ω(
√
n)
,Di)-approximates gk. For this purpose, we

describe another probabilistic circuit C ′ that, given a sample q, drawn from some Dj , samples a random
i∗ ∈ [d], and a random sample (q′1, . . . , q

′
n) from D̂∗, replaces q′i∗ with q, and feeds it to C. The circuit

Ĉ ′, given a sample q, simply chooses n sets of random coins r1, . . . , rn for C ′, and runs each C ′ri(q);
if any one of the circuits does not output ⊥, Ĉ ′ outputs the same. The extractor E for F , then simply
chooses random coins for Ĉ ′ and feeds it to the extractor of gk.

To show that the above works as required, we first show that, for any fixed j ∈ [d], with
(

1
6 −

1
Ω(
√
n)

)
probability, the circuit C ′

(
1
2 ,Dj

)
-approximates gk. First, since C errs with negligible probability so

does C ′; let us show that C ′ does not output ⊥ with the required probability. Let D′ be the distribution
that C ′ forwards to C (where sample i∗ is replaced by a sample fromDj). We can compute the statistical
distance SD(D̂∗,D′) by comparing the number #j of samples taken from Dj in each one of them; a
combinatoric calculation shows that this is bounded by:

SD(D̂∗,D′) ≤ |#j(D̂∗)−#j(D′)| ≤
n∑
k=0

∣∣∣∣Bin(k;n,
1

d

)
− Bin

(
k − 1;n− 1,

1

d

)∣∣∣∣ = O

(
d√
n

)
,

where Bin(k;n, p) =
(
n
k

)
pk(1 − p)n−k is the binomial probability with parameters (n, k, p). We shall

assume for simplicity that d = O(1), and our constructions indeed achieve this; the analysis extends
also to any d �

√
n. It follows that C ′ obtains an answer with probability at least 2

3 −
1

Ω(
√
n)

, and in

particular it holds with probability at least 1
6−

1
Ω(
√
n)

over the coins of C ′, that C ′
(

1
2 ,Dj

)
-approximates

gk. We call such random coins r of C ′ good for Dj . It is left to note that the probability that Ĉ ′ does not
sample r1, . . . , rn that contain a some r that is good for all of the Dj’s is bounded by d ·

(
1− 1

7

)n, from
which it follows that with overwhelming probability C ′ gives the required approximation for all Dj’s.
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2.2 Robust Unobfuscatable Functions with a Hardcore Secret

The notion of robust (and error-robust) unobfuscatable function is defined with respect to an unlearnable
relation RF , where it is guaranteed that given black-box access to fk, it is hard to fully learn some
unlearnable secret z ∈ RF (k). We now present a natural variant of this definition, where each function
has an associated hardcore secret that is indistinguishable from a random string, even given black-box
access to the function; in contrast, the hardcore secret can be extracted from any circuit that approximates
fk. This variant will be useful for constructing unobfuscatable functions with a verifiable unlearnable
secret (see Section 4), and for some applications to resettable protocol (see Section 5.5).

In the following definition HCn =
{
h : {0, 1}poly(n) → {0, 1}n

}
will represent a family of func-

tions (which we will call hardcore functions).

Definition 2.5 (Robust unobfuscatable functions with a hardcore secret). A family of functions F =
{fk}k∈{0,1}n,n∈N is a robust unobfuscatable family with respect to an efficient input sampler D, and a
family of hardcore functionsHC if it has the following properties:

1. Black-box indistinguishability: For any poly-size distinguisher L = {Ln}n∈N, and all large
enough n: ∣∣∣∣ Pr

(k,h)

[
Lfkn (h, h(k)) = 1

]
− Pr

(k,h,u)

[
Lfkn (h, u) = 1

]∣∣∣∣ ≤ negl(n) ,

where k← {0, 1}n, h← HCn, and u← {0, 1}n are all sampled independently.

2. Non-Black-box learnability: There exists an efficient extractor E such that for any noticeable
function ε(n) = n−O(1), any large enough n, any hardcore function h ∈ HCn, any k ∈ {0, 1}n,
and every circuit C that (ε,D)-approximates fk, E(h) extracts h(k) from C:

Pr
E

[
h(k)← E(C, h, 1n, 11/ε)

]
≥ 1− negl(n) · poly(|C|) .

Next, we show that any robust unobfuscatable family G that has a unique-witness unlearnable rela-
tionRG (as defined in Remark 2.4) can be transformed into a robust F with a hardcore secret.

Lemma 2.3. There exists a hardcore family HC = {HCn}n∈N, such that a robust unobfuscatable
family G with respect to a unique-witness unlearnable relation RG , can be transformed to a robust
unobfuscatable family F with respect to someRF and the hardcore familyHC.

Proof sketch. Given a robust family G with respect to a unique-witness unlearnable relation RG and an
efficient input samplerD, we define a new function family F , where each fk consists of n independently
chosen functions from G, with keys (k′1, . . . , k

′
n); the new key k is set to be (k′1, . . . , k

′
n). The input

sampler of the function is the n-fold product distribution D̂ = D × · · · × D, and hk(q1, . . . , qn) is
defined to be gk′1(q1), . . . , gk′n(qn).

Let us denote by ` = `(n) the length ` = |zi| of the unique witness zi ∈ RG(k′i). The hardcore
family HCn will be the family GLn that extracts a single Goldreich-Levin [GL89] hardcore-bit from
each k′i. That is, a randomly chosen function hr1,...,rn ∈ GLn is parameterized by n random strings{
ri ∈ {0, 1}`

}
, and is defined as:

hr1,...,rn(k′1, . . . , k
′
n) = 〈z1, r1〉, . . . , 〈zn, rn〉 ,

where each zi ∈ RG(k′i) is the unique unlearnable secret corresponding to k′i, and 〈·, ·〉 is the inner-
product operation modulo 2.
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To see that F has the black-box indistinguishability property (Definition 2.5), note that the uniquely
determined z1, . . . , zn are each uninvertible given oracle access to fk; indeed, any inverting algorithm
directly implies a learner for the underlying gk. We can thus apply the Goldreich-Levin theorem [GL89]
to deduce that 〈z1, r1〉, . . . , 〈zn, rn〉 are pseudo-random, given r1, . . . , rn and oracle access to fk.

Next, we show that F is non-black-box learnable according to Definition 2.5; namely, the hardcore
secret can be extracted from any circuit approximation. Indeed, note that any circuit C that (D̂, 2ε)-
approximates fk can be transformed, with overwhelming probability, into a circuit Ci that (D, ε)-
approximates gk′i (and this holds for any i ∈ [n]). To transform C into such a circuit, we construct

a circuit C ′ that, given a sample q ← D(1n) for gk′i , completes q into a sample from D̂ by sampling the
rest of the coordinates himself, and then feeds this tuple to C. A standard averaging argument shows
that with probability at least ε over the choice of randomness r for C ′ the resulting circuit C ′r (D, ε)-
approximates gk′i . Thus we can take n/ε random copies of C ′, and with overwhelming probability get a
circuit Ci that (D, ε)-approximates gk′i . (It is important here that since C errs with negligible probability
so does C ′ and hence we can do the above amplification.)

Thus the extractor EF for F , would run the extractor EG with each circuit Ci, and obtain the corre-
sponding unique secret zi ∈ RG(k′i). In particular, given hr1,...,rn ∈ GLn, EG can compute as required

hr1,...,rn(k) = hr1,...,rn(k′1, . . . , k
′
n) = 〈z1, r1〉, . . . , 〈zn, rn〉 .

This concludes the proof of Lemma 2.3.

3 A Construction of Robust Unobfuscatable Functions

In this section, we construct robust unobfuscatable functions from one-way functions.

Theorem 3.1. Assuming one-way functions, there exist a family of robust unobfuscatable functions.

3.1 Required PRFs and Encryption

Before describing the construction, we define several required primitives.

We start by defining invoker randomizable pseudo-random functions. These are functions that allow
their invoker to ensure that the output is truly uniform, independently of the seed for the function.
Looking ahead, such functions will allow the extractor for the unobfuscatable function family, to obtain
samples from the proper distribution. See further details in the next section. The definition is taken
almost verbatim from [BGI+01].

Definition 3.1 (Invoker randomizable pseudo-random functions [BGI+01]). Let PRF = {PRFs}s∈{0,1}∗ ,
be pseudo random function family, where for s ∈ {0, 1}n, PRFs : {0, 1}`(n)+n → {0, 1}n. Then
PRF is called invoker randomizable if, for any s ∈ {0, 1}n and any x ∈ {0, 1}`(n), the mapping
r 7→ PRFs(x, r) is a permutation.

[BGI+01] show that invoker randomizable PRFs are implied by any PRF.

The required symmetric-key encryption. In our construction, we will make use of a symmetric-

key encryption scheme with specific properties. Next, we define these properties and note existing
constructions that satisfy these properties, and based only on one-way functions. In a nutshell, we
require a CCA-1 symmetric-key encryption scheme with public randomness, and oblivious generation
of ciphers for a random plaintexts. Such an encryption scheme can be obtained using a one-bit output
PRF as Encsk(b) = (r, b⊕ PRFsk(r)).

In what follows, we give slightly more general definitions that are sufficient for our needs, and will
be useful for optimization of extraction running time.
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First we require that the encryption scheme is decomposable, meaning that every cypher can be “de-
composed” into a public part and a private part. We require that the public part is independent of
the plaintext, however, together with the plaintext, the public part uniquely defines the ciphertext (with
respect to a given secret key). For example, any encryption that uses public randomness (i.e., the ran-
domness of the encryption algorithm is included in the ciphertext) is decomposable; the public part of
the cipher is just the public randomness.

Definition 3.2 (Decomposable encryption). A decomposable encryption scheme includes in addition to
the standard (Gen,Enc,Dec) is decomposable if there exist an efficient algorithm pub that operates on
ciphertexts and satisfies the following conditions:

• For ciphertext c, pub(c) is independent of the plaintext and samplable; that is, there exist an
efficient sampler PubSamp such that:

PubSamp(1n) , pub(Encskn(0)) , pub(Encskn(1)) ,

for any secret key sk ∈ {0, 1}n (however, PubSamp works independently of sk).

• A ciphertext c is deterministically defined by pub(c) and the plaintext; that is, for every secret key
sk and two distinct ciphers c 6= c′, if pub(c) = pub(c′), then Decsk(c) 6= Decsk(c

′).

In addition, we shall require random generation of ciphertexts encrypting random values.

Definition 3.3 (Encryption with random ciphertext generation). An encryption scheme (Gen,Enc,Dec)
is said to have random ciphertext generation if there exist a ciphertext sampling algorithm RanSamp
such that for any secret key sk ∈ {0, 1}n:

RanSamp(1n) , Encskn(U1)) ,

were U1 is the uniform distribution over {0, 1}.

We remark that in both Definitions 3.2 and 3.3, the equality of distributions can be, naturally, re-
placed with statistical (or computational) indistinguishability; however, the construction presented below
does satisfy the stronger notion with equality. We also remark that if we assume that the scheme has ran-
dom ciphertext generation, then the algorithm PubSamp, can be simply implemented as PubSamp(1n) ,
pub(RanSamp(1n)), and need not be explicitly defined.

The encryption scheme used in our constructions. We will use a CCA-1 symmetric key decom-
posable bit encryption scheme with random ciphertext generation. Such an encryption scheme can be
constructed from one-way functions. Concretely, given a PRF {fs}s∈{0,1}∗ with one bit output, for se-
curity parameter n, the secret key is a random s ∈ {0, 1}n, and encryption of a bit b is computed by
sampling a random r ∈ {0, 1}n and outputting r, fs(r) ⊕ b. This function can be shown to be CCA-1
(see [Gol00]), and it is clearly decomposable and has random cipher generation.

3.2 The Construction

To prove Theorem 3.1, we shall construct an unobfuscatable function family that is d-distribution 1
2 -

robust with respect to distribution ensemblesD1, . . . ,Dd, that are jointly key-independent in the sense of
Definition 2.4. Then, we will use Lemma 2.2 to obtain robust unobfuscatable functions (Definition 2.2).
We now proceed to describe the construction (in several steps).

Construction 3.1. Let (a, b) be random strings, sk a key for a CCA-1 symmetric key decomposable
encryption scheme with random ciphertext generation (Definitions 3.2,3.3), and let s a seed for a pseudo-
random function PRF. The construction will use two probabilistic and three deterministic auxiliary
functions:
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1. The function Ask,a (given whatever input) returns a bit encryption c = Encsk(a) of a’s bits.

2. The function Hsk is given two encryptions c1, c2, and an operation � in a universal set of gates, it
then decrypts to obtain the plaintexts x1 and x2, where xi = Decsk(ci), it computes the operation:
x3 = x1 � x2, and returns an encryption c3 = Encsk(x3).

3. The function Rs is given r ∈ {0, 1}∗, and returns PRFs(r).

4. The function Ra,b,s is given r ∈ {0, 1}n, and returns b⊕ PRFs(r ⊕ a).

5. The function Rsk,b,s is given n bit encryptions c1, . . . , cn, it decrypts them to obtain plain text
r ∈ {0, 1}n, and returns b ⊕ PRFs(r ⊕ b||pub(c1)|| . . . ||pub(cn)). (Recall that pub(c) is the
public part of c.)

Making the functions deterministic and invoker randomizable. Let s′ be a seed for an invoker ran-
domizable PRF (Definition 3.1), we define derandomized variants Ask,a,s′ ,Hsk,s′ of the two probabilistic
functions: Ask,a,Hsk. For a function Gkey ∈ {Hsk,Ask,a}, the function Gkey,s′ gets, in addition to its
original input q, a random string r ∈ {0, 1}n. Gkey,s′(q; r) runs the original Gkey(q), using randomness
PRFs′(q; r).

The n-fold repetition. For each function G above, we define an n-fold variant Ĝ, that takes n inputs
q1, . . . , qn and returns (G(q1), . . . ,G(qn)).

The function. A function fk ∈ F will be parameterized by a random k = (a, b, sk, s, s′) ∈ {0, 1}5n,
where (a, b, sk, s, s′) are as specified above. The function fk will be given input (q, iG) where iG ∈ [5],
indicates which function G ∈

{
Âsk,a,s′ , Ĥsk,s′ , R̂s, R̂a,b,s, R̂sk,b,s

}
to invoke with input q. The unlearn-

able relation is

RF =
{

((a, b, sk, s, s′), b̃) : b = b̃
}

.

(Note that this is a unique-witness relation according to Remark 2.4.

3.3 Black-Box Unlearnability

Lemma 3.1. F given by Construction 3.1 satisfies black-box unlearnability with respect toRF .

We next prove the lemma. The high-level overview of the proof is presented in the introduction
(Section 1.3).

Proof sketch. We shall perform the analysis in several steps: we will first show unlearnability assuming
1-fold probabilistic oracles then we will show security for the case that randomness is derived using
(invoker-randomizable) PRF, and move to security for n-fold oracles, and finally for the actual function
fk.

Let A be a polysize adversary with oracle access to the functions Hsk,Rs,Rsk,b,s.
We first defineE1 to be the event thatA produces distinct queries q = (c1, . . . , cn), q′ = (c′1, . . . , c

′
n)

to Rsk,b,s such that

r ⊕ b||pub(c1)|| . . . ||pub(cn) = r′ ⊕ b||pub(c′1)|| . . . ||pub(c′n) ,

where (r, r′) ∈ {0, 1}n are the decryptions under sk of (q, q′).

Claim 3.1. Prb,sk,s [E1] = 0.
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Proof. Indeed, for E1 to occur it must be that for all i ∈ [n] ri = r′i and pub(ci) = pub(c′i), implying
that ci = c′i, and thus also q = q′ (recall that the public part and the plaintext determine the cipher
Definition 3.2).

We now define E2 to be the event that A produces queries q = (c1, . . . , cn) to Rsk,b,s and q′ to Rs

such that r ⊕ b||pub(c1)|| . . . ||pub(cn) = q′, where as above r ∈ {0, 1}n is the underlying plaintext of
q.

Claim 3.2. Prb,sk,s [E2] ≤ negl(n).

Proof. First, we note that the event is testable given (b, sk) and thus, it is enough to show that the claim
holds when PRFs, is replaced by a truly random function R.

Let Ēi be the event that E2 does not occur in the first i queries, it is enough to show that

Pr
[
Ēi+1|Ēi

]
≥ 1− negl(n) .

Indeed, conditioned on Ēi, the view of A after the first i queries is information theoretically inde-
pendent of b. We can now show that if Ēi+1 does not occur, then A can reconstruct b from its view in
the first i queries, implying that Ei+1 can only occur with negligible probability. Indeed, if the first i+ 1
queries contain q, q′ satisfying E2, then b = r ⊕ r′, where r is the decryption of q and r′ are the first n
bits of q′.

We now claim that an encryption schemes using sk is still semantically secure, even given the oracles
Hsk,Rs,Rsk,b,s.

Claim 3.3 (semantic security). Let A be a polysize adversary, then:{
AHsk,Rs,Rsk,b,s(Encsk(0))

}
sk,s,b

≈c
{
AHsk,Rs,Rsk,b,s(Encsk(1))

}
sk,s,b

,

where the distributions are also over the randomness of all involved probabilistic functions.

Proof sketch. We first note that by Claims 3.2,3.1, we can replace Rsk,b,s (in both distributions) with
a PRF PRFs′ that is completely independent of sk. Now, the claim follows directly from the CCA-1
security of the encryption scheme, just as in [BGI+01, Claim 3.7].

Now, let A be a polysize adversary with oracle access to the (probabilistic) functions

Ask,a,Hsk,Rs,Ra,b,s,Rsk,b,s .

We define E to be the event that A produces distinct queries (q, q′) to Ra,b,s and Rs, respectively,
such that q = q′ ⊕ a.

Claim 3.4. Prb,sk,s [E] = negl(n).

Proof sketch. First we note that the event E is testable given a and thus, it is enough to show that the
claim holds when PRFs, is replaced always replaced by a truly random functionR. Now assume towards
contradiction that E occurs with noticeable probability ε = ε(n). Then, there exists an i ≤ |A| such
that, the event E first occurs in the i’th query that A makes with noticeable probability ε/|A|. We
consider an hybrid experiment, where for the first i − 1 queries that A makes, Ra,b,R is replaced with
an independent random function R′. The view of A does not change because the first i answers to
Ra,b,R are uncorrelated to the answers of RR, since the queries are not a-correlated, and they’re also
uncorrelated to the answers of Rsk,b,R, since the queries are of different length. Thus, in this hybrid
experiment, E still occurs first in the i’th query with probability ε/|A|. Now, after replacing Ra,b,R with
an independent random function R′ for the first i − 1 queries, we think about a new adversary Ai that
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halts after making the i’th query. By semantic security Claim 3.3 (and a standard hybrid argument), we
can replace the oracle Ask,a, with a new oracle Ask,0n , while effecting the probability that E occurs in
Ai only by a negligible amount. Now, the view of Ai is information theoretically independent of a, and
thus the probability that it outputs to queries q, q′, such that a = q ⊕ q′ cannot be noticeable, leading to
the required contradiction.

Putting things together. Now, for any adversary A with oracle access to the functions

Ask,a,Hsk,Rs,Ra,b,s,Rsk,b,s ,

we can first replace all applications of PRFs with a truly random function R; then, by Claim 3.4,
we can replace Ra,b,R with an independent random function R′; Now, we can invoke semantic security
(Claim 3.3) to replace Ask,a with Ask,0n , and finally we can invoke again Claims 3.2,3.1, to replace
Rsk,b,s with another independent random function R′′. Overall, each change effects the probability that
A outputs b, only with negligible probability; however, the view of A in the final hybrid is information
theoretically independent of b, and thus, A cannot output b with noticeable probability.

Deducing unlearnability of fk. Recall that the function fk is implemented n-fold repetitions of the
invoker randomizable deterministic variants of the above oracles. However, the view of an adversary
interacting with fk can be simulated from the above oracles. Indeed, first note that we can replace
Ask,a,Hsk by their invoker-randomizable deterministic variants: every new call (y, r) to Gkey,s′ is an-
swered according to probabilistic oracle Gkey(y), and repeated calls are answered consistently. Then,
we can replace any oracle G with its n-fold variant Ĝ: every call to Ĝ is replaced by n calls to G.

3.4 Non-Black-Box Learnability

In this section, we prove that Construction 3.1 is non-black-box learnable in the sense of Definition 2.4.
the high-level overview of the proof (namely the construction of an extractor), is given in Section 1.3.

The following notation will be useful in the proof below.
• We denote by AMa,sk,s′(U) the distribution{

AMa,sk,s′ (r) : r ← {0, 1}n
}

for sampling a random cipher encrypting a’s bits. We denote by ÂMa,sk,s′(U) its n fold variant{
ÂMa,sk,s′ (~r) : ~r ← {0, 1}n×n

}
.
• We denote by HMsk,s′(c, c

′,�;U) the distribution{
HMsk,s′

(
(c, c′,�; r)

)
: r ← {0, 1}n

}
for sampling a cipher encrypting the result of an homomorphic operation. We denote by ĤMsk,s′(c, c

′,�;U)
the distribution {

ĤMsk,s′
(
(c, c′,�; r1), . . . , (c, c′,�; rn)

)
: ~r ← {0, 1}n

}
for sampling an n-fold cipher encrypting the result of the homomorphic computation.

We now describe the extraction procedure; we start by describing an extractor that is only required to
work for circuit that perfectly compute a 1-fold version of each one of the underlying functions. Then,
we will explain how to generalize this extractor for faulty circuits, in the n-fold case.
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Construction 3.2. Let C be a circuit that perfectly implements a function fk ∈ F . In particular, C
consists of the following restricted circuits

AMsk,a,s′ ,H
M
sk,s′ ,R

M
s ,RMa,b,s,RMsk,b,s ,

perfectly implementing each of fk’s underlying functions. The extractor E works according to the fol-
lowing steps:

1. Obtain a random encryption of a’s bits using AMsk,a,s′(Un).

2. Sample a random r ← {0, 1}n; then, using the circuit HMsk,s′(·;Un), homomorphically compute

c1 = Encsk(RMa,b,s(a⊕ r)) = Encsk(PRFs(r)⊕ b) ,

c2 = Encsk(RMs (r)) = Encsk(PRFs(r)) ,

c3 = HMsk,s′(c1, c2,⊕;Un) = Encsk(b) .

3. Sample a random r′ ← {0, 1}n; using the circuit HMsk,s′(·;Un), and cipher c3 homomorphically
compute c4 = Encsk(b⊕ r′), and now obtain b by computing:

b⊕ PRFs(r
′||pub(c4)) = RMsk,b,s(c4)

PRFs(r
′||pub(c4)) = RMs (r′||pub(c4)) .

A “parallel emulation” of the extractor. Next, we move to describe an extractor Ê that extracts b from
any circuit C that approximately implements the n-fold variants of the underlying functions related to
fk ∈ F . (The required notion of approximation is described following the construction, and is not
needed for the description of the extractor, but only for its analysis.) At a very high-level, in the n-fold
version of the extractors, a ciphertext for any single bit b is, in fact, an n-fold cipher consisting of n
ciphers, each encrypting the same bit b.

Construction 3.3. The extractor Ê is given a circuit C consisting of restricted circuits

ÂMsk,a,s′ , Ĥ
M
sk,s′ , R̂

M
s , R̂Ma,b,s, R̂Msk,b,s ,

approximating each of fk’s underlying n-fold functions. The extractor Ê runs a “parallel emulation” of
E as follows.

Emulating ciphertext operations. We now describe how to perform ciphertext operations; specifically,
how to retrieve encryptions of a, and how to perform homomorphic operations.
• Whenever E would run the circuit AMsk,a,s′ to obtain an encryption of a’s bits, Ê obtains n samples

from ÂMa,sk,s′(U). If all samples are⊥ abort; otherwise, continue with the first n-fold cipher that was
successfully sampled.
• Whenever E would run the circuit HMsk,s′ with two ciphers (c, c′) and a gate �, Ê has at hand two
n-fold ciphers c1, . . . , cn and c′1, . . . , c

′
n.

For each pair (ci, c
′
i): it obtains n samples from ĤMsk,s′(ci, c

′
i,�;U). If at least a 1

8 -fraction of
the samples are not ⊥, exit the loop and continue with the first n-fold cipher as the result of the
homomorphic operation; otherwise, continue to the next pair of ciphers. If non of the pairs produced
sufficiently many samples, abort.

Emulating Steps 2 and 3 of E. Before describing how to perform a parallel emulation of Steps 2 and 3,
we describe several auxiliary functions that will be used by Ê.

For G ∈ {Rs,Ra,b,s,Rb,sk,s}, let RandInputG be a function that samples a random input for G:
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• RandInputRs
and RandInputRa,b,s

, each consist of n random strings ~r = r1, . . . , rn. (We note that
Rs may get different input lengths; throughout, the proper length will be clear from the context.)
• RandInputRb,sk,s

consists of n random ciphers of random bits~c = c1, . . . , cn, sampled using RanSamp(1n),
as defined in 3.3.

Importantly, all the above samplers work independently of the key k for the unobfuscatable function,
so E can invoke them.

For G ∈ {Rs,Ra,b,s,Rb,sk,s}, we define an auxiliary function ParEvalG that, given queries q1, . . . , qn
for G, plants each qi in a random n-fold query, and tries to obtain an answer. Intuitively, this function
exploits the parallel repetition, to boost up the answering probability on any specific query q. The
function is given by Algorithm (3.1).

Algorithm 3.1 Parallel Evaluation - ParEvalG
Input: (q1, . . . , qn)

1: for j ∈ [n] do
2: obtain (q′1, . . . , q

′
n)← RandInputG

3: sample a random i∗ ← [n]
4: execute Ĝ(q′1, . . . , q

′
i∗−1, qj , q

′
i∗+1, . . . , q

′
n)

5: if the call succeeds (does not output ⊥) then
6: obtain the answer (a1, . . . , an) and set ansj = ai∗

7: else
8: set ansj = ⊥
9: end if

10: end for
11: return (ans1, . . . , ansn)

Emulating Step 2 of E. In this step, Ê has an encryption of a and it transforms it to an encryption of b, by
homomorphically evaluating a circuit Ca,b that outputs b on input a. The circuit Ca,b will be constructed
by Ê and will emulate a parallel execution of Step 2 of E. The circuit is described in Algorithm (3.2). We
shall describe Ca,b as a probabilistic circuit (using probabilistic subroutines); when Ê homomorphically
computes Ca,b, it first samples the required random coins and hardwires them to Ca,b.

Algorithm 3.2 The a to b circuit - Ca,b
Input: ã (allegedly ã = a)

1: sample r1, . . . , rn ∈ {0, 1}n
2: execute (ans1, . . . , ansn)← ParEvalRs(r1, . . . , rn)
3: execute (ans′1, . . . , ans

′
n)← ParEvalRa,b,s

(ã⊕ r1, . . . , ã⊕ rn)
4: if ∃j ∈ [n] such that ansj and ans′j are not ⊥ then
5: return ansj ⊕ ans′j
6: else
7: return ⊥
8: end if

Emulating Step 3 of E. In this step, Ê has an encryption of b, which it will transform into b. The above
is done using the procedure Cb, given by Algorithm (3.3):
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Algorithm 3.3 The b decoding procedure - Cb
Input: n tuples~c1, . . . ,~cn, each~ci consists of n ciphers with an underlying plaintext b̃i
(allegedly b̃i = bi).

1: sample r1, . . . , rn ∈ {0, 1}n
2: for j ∈ [n] do
3: homomorphically compute from~c1, . . . ,~cn

new tuples of ciphers ~c′1, . . . , ~c′n, encrypting r′j = b̃⊕ rj
4: set~c∗k = ~c′1[k], . . . , ~c′n[k] to be an encryption of the bits of r′j
5: execute (ans1, . . . , ansn)← ParEvalRsk,b,s

(~c∗1, . . . ,~c
∗
n)

6: execute (ans′1, . . . , ans
′
n)← ParEvalRs(rj ||pub(~c∗1), . . . , rj ||pub(~c∗n))

7: if ∃m ∈ [n] such that ansm and ans′m are not ⊥ then
8: return ansm ⊕ ans′m
9: end if

10: end for
11: return ⊥ (if the loop failed for all j ∈ [n])

Emulating all steps together. We describe the full extraction process of Ê. Ê first constructs the circuit
Ca,b and the procedure Cb from the restricted circuits (ĤMsk,s′ , R̂

M
s , R̂Ma,b,s, R̂Msk,b,s) (in particular, it will

sample random coins to be used by Ca,b and Cb). Ê then proceeds according to the following steps:
1. Obtain a random encryption of a’s bits using ÂMsk,a,s′(Un).
2. Using homomorphic ciphertext operations, evaluate the circuit Ca,b on the encryptions of a’s bits

and obtain encryptions of b’s bits.
3. Execute Cb on the encryptions of b’s bits, obtain b and output it.

The approximated distributions. We define d = O(1) distribution ensembles (or samplers) D̂1, . . . , D̂d.
For the extractor Ê to work, the circuit will be required to (D̂i, ε)-approximate each of these distribu-
tions. Each D̂i = D̂i(1n) will be an n-fold version of a distribution Di = Di(1n); we thus define the
distributions {Di}:
• DAsk,a

consists of n random strings r1, . . . , rn ∈ {0, 1}n (each ri is “invoker randomness” for
encrypting ai).
• For each operation � (from the universal set of gates) and every pair of bits x, x′, D�,x,x

′

Hsk
consists

of a random string r ∈ {0, 1}n (for encrypting x� x′), and random encryptions c, c′ under sk with
underlying plaintexts x, x′.
• DnRs

consists of a random string r ∈ {0, 1}n.

• Dn+n2

Rs
consists of a random string r ∈ {0, 1}n, and n independent samples from PubSamp(1n) of

random “public parts of a cipher” as defined in 3.2.
• DRa,b,s

consists of a random string r ∈ {0, 1}n.
• DRsk,b,s

consists n random encryptions c1, . . . , cn to the bits of a random string r ∈ {0, 1}n.

As noted above, for each D we define the n-fold version D̂. For all the distributions D, but D�,x,x
′

Hsk
, D̂

is just the n-fold product distribution D × · · · × D. For D = D�,x,x
′

Hsk
, D̂ is defined a bit differently: it is

the product distribution D × . . . ,×D conditioned on c, c′ being the same in all repetitions; that is, the
distribution corresponds to a single pair c, c′, and n random strings r1, . . . , rn meant for n independent
homomorphic operations. In addition, each of the distributions D̂ above also includes an index iG ∈ [5],
indicating which function G ∈

{
Âsk,a,s′ , Ĥsk,s′ , R̂s, R̂a,b,s, R̂sk,b,s

}
to invoke.

Key-independent sampling. Note that in Definition 2.4 for d-distribution robustness, we do not re-
quire that all the distributions D1, . . . ,Dd are efficiently samplable independently of the key k for the
unobfuscatable function. Indeed, while almost all the above distributions can be sampled independently
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of k, the distributions of the form D�,x,x
′

Hsk
may not be samplable without the secret encryption key sk,

even given (x, x′); we only assume sampling of ciphers for random plaintexts (Definition 3.3). We do
require, however, that the distributions {Di} are jointly key-independent (Definition 2.4), implying that,
for a random i∗ ← [d], we can sample from Di∗ , independently of k. (This sampler was denote by D∗.)
In our case, this is satisfied due to random ciphertext generation (Definition 3.3): instead of sampling
at random x, x′ ∈ {0, 1}, and then sampling encryptions (c, c′) of (x, x′), we can directly sample two
independent ciphers of random bits.

Furthermore, the extractor Ê itself works by generating query samples from the different distributions
Di. However, Ê naturally cannot use the key k to sample (it is trying to extract it, or a part of it). For
those distributions that can be sampled without k this is not a problem. On the other hand, for the
distributions D�,x,x

′

Hsk
, where the secret key is needed, Ê does not generate the samples on its own, but

rather they are generated as answers to previous ciphertext queries (to H, or A), without Ê knowing the
underlying plaintext. The only place where Ê needs to generate ciphers completely on its own is when
running ParEvalRb,sk,s

within Cb; however, there it only generates ciphers of random bits, which can
already be done obliviously of the key for the encryption sk.

Remark 3.1 (One uniform distribution). In the general Definition 2.2 of unobfuscatable functions, we
allow the distribution ensembleD to be an arbitrary samplable distribution. As mentioned in Remark 2.2,
we can consider a more strict (but natural) definition where D is required to be the uniform distribution.
Our constructions can indeed achieve this stronger notion. Indeed, the distribution D in our eventual
construction of robust robust unobfuscatable functions, will be a n-fold repetition of the distributionD∗,
and D∗ can be made uniform.

Specifically, using the symmetric key encryption described in Section 3.1, the samplers PubSamp
and RanSamp both output uniformly random strings. So each distribution D̂j described above simply
consists of a random strings (of some length) and an index iG ∈ [5]. In particular, by appropriately
padding with extra randomness, we can think of each of the n blocks of D∗ as a uniform string repre-
senting a random iG ∈ [5], plus an extra random string representing the input to G. (There are some
extra technical issues that can be easily taken care of: (a) the index iH is outputted by several distribu-
tions D̂j , and not just one, which may skew the uniformity of iG; however, this can be taken care of by
artificially adding more indices to represent iH. (b) formally, the way we defined thingsD�,x,x

′

Hsk
includes

n appearances of the same pair (c, c′); however, this was done just to be consistent with the description
of Ĥ as a n-fold function, and can be augmented to include one copy.)

We now move on to proving that the construction described in this section is non-black-box learnable.

Lemma 3.2. F given by Construction 3.1 is non-black-box learnable in the sense of Definition 2.4.

Proof. We start by giving a roadmap to the proof; the high-level ideas behind the proofs are described
in the introduction.

Overview of the proof. Our first step is to show the completeness homomorphic evaluation; namely,
that when the extractor performs homomorphic operations (in its parallel mode), it will never get stuck,
and will always obtain a new n-fold cipher representing the result of the homomorphic computation. At
the second step, we will prove that the circuitCa,b constructed by the extractor indeed performs properly;
that is, maps a to b. Finally, we will show that the procedure Cb, when given the n-fold encryption of b
produced by Ê, successfully outputs b.

Throughout the analysis, we will condition on the event that the circuit C (that we extract from) does
not make any undetectable errors (i.e., C(q) /∈ {fk(q),⊥}) on any query q sampled by the extractor for
one of the functions implemented by the circuit. Recall, that the probability of an undetectable error is
negl(n), and the total number of queries made by the extractor is bounded by some poly(|C|, n). Thus,
this condition is violated and may cause extraction failure with probability at most negl(n) · poly(|C|).
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Completeness of the homomorphic evaluation phase. We say that a pair of ciphers (c, c′) encrypting
a pair bits x and x′ is good for � if

Pr
[
ĤMsk(c, c′,�;U)

]
≥ 1

4
,

where ĤMsk(c, c′,�;U) is as defined in Construction 3.3. We say that a pair of n-fold ciphers ~c, ~c′, each
encrypting a pair of bits x and x′, respectively, is good for � if there exists i ∈ [n] such that (~c[i], ~c′[i])
is good for �. We say that a pair of n-fold ciphers is good if it is good for any operation �.

Since the circuit ĤMsk answers D�,x,x
′

Hsk
, where c, c′ are random, with probability 1

2 , it holds that at
least an 1

4 -fraction of the cipher-pairs encrypting x, x′ is good for �. Therefore, a random pair of n-fold
ciphers is not good with probability at most

(
3
4

)n · d (indeed, the number of distributions d is a bound
on the number of operations).

Claim 3.5. The extractor Ê does not abort during the homomorphic evaluation phase, except with
negligible probability.

Proof sketch. We first claim that except with negligible probability, for every two n-fold ciphers ~c and
~c′ that are produced at some point during the execution of Ê (at different times), the pair (~c, ~c′) is good.
Indeed, note that any two executions of circuit ĤMsk produce a pair (~c,~c′) that is not good, only if the
corresponding two executions of the function Ĥsk (that never outputs ⊥), given the same inputs, output
such a pair. However, since ĤMsk is invoker randomizable, the output of any two executions is uniformly
distributed over all pairs of n-fold ciphers, and, therefore, is not good only with negligible probability(

3
4

)n · d; in particular, this is also the case for any pair produced by an execution of the circuit ĤMsk. The
same argument holds for pair of n-fold ciphers generated by the circuit ÂMa,sk (or by mixed pairs created
by the two circuits).

We now claim that, except with negligible probability, the extractor does not abort during the ho-
momorphic evaluation phase. We condition on the (overwhelmingly often event) that the extractor only
runs a homomorphic operation only for good pairs. First note that, in Step 3.3, Ê aborts only if all n
samples from ÂMa,sk,s′(U) are ⊥. Thus, because the circuit ÂMsk,a answers on D̂Ask,a

with probability 1
2 , Ê

aborts only with probability 2−n. In Step 3.3, when Ê is running a homomorphic operation� for a good
pair of n-fold ciphers (~c,~c′), there always exist some i ∈ [n], such that the pair of ciphers (~c[i],~c′[i])
is good for the �. Therefore, samples drawn from ĤMsk,s′(~c[i],~c

′[i],�;U) are not ⊥ with probability at

least 1
4 . Recall, that Ê aborts only if it fails to obtain more than 1

8 -fraction of the samples in all iterations;
however, this would occur in the good iteration i only with negligible probability.

Good inputs under completion. We next analyze the completeness of Ca,b, and Cb. For this purpose,
we prove a simple claim regarding the probability of successfully computing a function on a specific
sample taken from a 1-fold distribution. We will compute the function by completing the specific sample
into a random sample and evaluate the function on it.

For G ∈ {Rs,Ra,b,s,Rsk,b,s}, let D̂G be an n-fold samplable distribution (D̂G = DG × · · · × DG).
For a fixed element q in the support of DG, we denote by D̂G|q the distribution given by sampling a
random ~q′ from D̂G and replacing a random coordinate q′i∗ with q. We say that q is good for DG if

Pr
~q′←D̂G|q

[
G(~q′) 6= ⊥

]
≥ 1

4
.

Claim 3.6. Prq←DG [q is good for DG] ≥ 1− 1√
n

.
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Proof sketch. First recall that for G ∈ {Rs,Ra,b,s,Rsk,b,s}, it holds that

Pr
~q′←D̂G

[
G(~q′) 6= ⊥

]
≥ 1

2
.

Assume towards contradiction that the claim does not hold, then except with negligible probability(
1− 1√

n

)n
≈ e−

√
n, a random sample from D contains some bad q; however, conditioned on this

event, the event
{
G(~q′) 6= ⊥

}
occurs with probability at most 1

4 , resulting in a contradiction.

Completeness of the circuit Ca,b. We now show that the probabilistic circuit Ca,b constructed by the
extractor (almost always) returns b on input a as required.

Claim 3.7. PrCa,b
[Ca,b(a) = b] ≥ 1− negl(n).

Proof sketch. Recall that Ca,b samples n random string r1, . . . , rn. Conditioned on ri being good for
DRs , ansi 6= ⊥ with probability at least 1

4 ; similarly, if ri ⊕ a is good for DRa,b,s
, ans′i 6= ⊥ with

probability at least 1
4 . By Claim 3.6, for a random ri, the pair (ri, ri ⊕ a) is simultaneously good (in

the above sense) with probability at least 1 − 2√
n

, in which case both ansi and ans′i are not ⊥ and

b = ansi ⊕ ans′i, with probability at least 1
16 ; overall, b is returned except with probability

(
1

8
√
n

)n
.

Completeness of the procedure Cb. We now show that the procedure Cb (almost always) returns b on
an n-fold encryption of b as required.

Claim 3.8. Let~c be the n-fold encryption of b produced by Ê, then PrCb
[Cb(~c) = b] ≥ 1− negl(n).

Proof sketch. Throughout, we condition on the (overwhelmingly often) event that homomorphic oper-
ations do not fail. Let c be a (1-fold) random encryption of a random n-bit string r; by Claim 3.6, c is
good for D = D̂Rsk,b,s

with probability at least 1 − 1√
n

. For such a random c, let r(c) = Decsk(c) be

the underlying plaintext, and let pub(c) be the public part of c. We say that c is good for D = D̂n+n2

Rs
,

if (b ⊕ r(c), pub(c)) is good for D = D̂n+n2

Rs
. Note that a random cipher of a random string, such as c,

induces a random pair (b⊕ r(c), pub(c)); thus, by Claim 3.6 c is good for D = D̂n+n2

Rs
with probability

at least 1− 1√
n

. Overall, a random c is good for both distributions with probability at least 1− 2√
n

. We

say that r is good if a random encryption c of r is good for both distributions with probability 1− 4

√
4
n ;

in particular, we know that there is a
(

1− 4

√
4
n

)
-fraction of good r’s.

For a fixed r, letM be a matrix with rows (~c1, . . . ,~cn), such that each~ci is an n-fold cipher encrypt-
ing the bit ri. We say that such a matrix M is good if one of its columns M [j] = (~c1[j], . . . ,~cn[j]) is a
good (1-fold) encryption of the string r (as defined above). By the previous paragraph, it follows that if

r is good, then a random matrixM encrypting it is not good with probability at most
(

4

√
4
n

)n
≤
(

1
17

)n.

Recall that, for random r1, . . . , rn Cb generates for each r = rj a matrix M encrypting r′ = b⊕ r,
where every row of M is an n-fold cipher encrypting r′. Fix any column M [i] of the matrix, this
column is generated homomorphically from a pair of ciphers (c, c′). We claim that except with neg-
ligible probability Pr

[
ĤMsk,s′(c, c

′,�;U) 6= ⊥
]
≥ 1

16 ; otherwise, the homomorphic evaluation proce-

dure (Step 3.3) would skip (c, c′) with overwhelming probability. Next, note that the output of the
(non-aborting) invoker-randomizable function Ĥsk,s′(c, c

′,�;U) is uniformly distributed over all n-fold
ciphers of r′i. It follows that M [i] that is sampled from the circuit ĤMsk,s′(c, c

′,�;U) is uniformly dis-
tributed over at least a 1

16 -fraction of all n-fold cipher encrypting r′i. Since this holds for every i, the
matrix M is uniformly distributed over a

(
1
16

)n-fraction of all random cipher matrices encrypting r′.
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It now follows, that for any good r, a matrix M encrypting r that is produced by Cb is good except
with probability

(
16
17

)n. For any good M there exists a column ck that is a good encryption of r, and
in particular ansk and ans′k are not ⊥, and b = ansk ⊕ ans′k with probability 1

16 in each one of the n

trials. Finally, since a
(

1− 4

√
4
n

)
-fraction of the r’s are good, and our extractor performs n trials, Cb

will recover b with overwhelming probability.

This concludes the proof of Lemma 3.2.

3.4.1 Necessity of One-Way Functions

We show that one-way functions are not only sufficient for constructing robust unobfuscatable functions,
but also necessary (given the natural requirement of a unique witness unlearnable relation noted in
Remark 2.4).

Lemma 3.3. Robust unobfuscatable functions with unique witness unlearnable relations imply one-way
functions.

Proof sketch. LetF = {fk : {0, 1}n → {0, 1}∗}k∈{0,1}n,n∈N be a family of robust unobfuscatable func-
tions. For simplicity, let us also assume that the family is 2

3 -robust with respect to the uniform distri-
bution ensemble D = U (the proof easily generalizes to arbitrary 1 − ε, and samplable distribution
ensemble D). We define a one-way function ϕ = {ϕn} as follows: ϕn : {0, 1}n(m+1) → {0, 1}∗, and

(k, x1, . . . , xm)
ϕn7−→ (fk(x1), . . . , fk(xm), x1, . . . , xm) ,

where m(n) = 2n.
We next show that ϕ is one-way. For any k ∈ {0, 1}n, we denote by zk its corresponding unique

unlearnable secret. First note that for any k, k′ such that zk 6= zk′ , the agreement between fk and fk′ is at
most 2/3. Indeed, if that was not the case, we could construct a circuit Ck∩k′ that given input x returns
fk(x), only if fk(x) = fk′(x), and otherwise returns ⊥. This circuit computes both functions with
probability at least 2/3 (without making errors); however, in this case the robust extraction guarantee,
implies that the extractor outputs z ∈ RF (k) ∩RF (k′) = {zk} ∩ {zk′}, which means that zk = zk′.

Thus we can deduce that for any k ∈ {0, 1}n:

Pr
x1,...,xm

[
∃k′
∣∣∣∣ zk 6= zk′

∀i ∈ [m] : fk(xi) = fk′(xi)

]
≤ |
{
k′ ∈ {0, 1}n

}
| ·
(

2

3

)m
≤
(

8

9

)n
.

It follows that any algorithm that inverts ϕ with noticeable probability, outputs k′ such that zk′ = zk;
in particular, such an algorithm directly implies a learner that breaks the black-box unlearnability of F
with respect to its unlearnable relationRF . This learner would simply query its oracle fk on m random
points, run the inverter to obtain k′ and compute zk′ = zk.

Remark 3.2. We note that the above lemma also holds if we consider a weaker form of robust unobfus-
catable Turing machine families, whereas for non-robust unobfusactable Turing machine families can be
constructed without any computational assumptions (see [BGI+01]). In addition, the above also holds
given a weaker inefficient extraction guarantee.
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3.5 More Efficient Extraction from Fully Homomorphic Encryption

In this section, we discuss the running time of the extractor and its importance. We analyze the running
of the extractor corresponding to Construction 3.1, and also present an augmented construction with
more efficient extraction based on fully homomorphic encryption.

The extractor Ê given by Construction 3.3 evaluates each of the functions R̂Ms , R̂Ma,b,s, R̂Msk,b,s, im-
plemented by the input circuit C, a poly(n) number of times (where poly is some fixed polynomial).
However, some of these evaluations are performed by “homomorphically evaluating” the circuit C on
certain encryptions. Since each homomorphic operation is performed by evaluating the function ĤMsk,s′
implemented by C, we get that the total running of Ê is poly(n) · |C|2.

As discussed in Section 1.4 and will be further discussed in Section 5.3.2, improving the ratio be-
tween the running time of Ê and |C| has applications to reducing the round complexity of resettably-
sound and simultaneously resettable ZK. By replacing the symmetric encryption in Construction 3.1
with fully homomorphic encryption we can improve the running time of Ê to poly(n) · |C|; namely, we
can make the dependency on |C| linear instead of quadratic.

The main idea is that now Ê is able to emulate a homomorphic operation without evaluating the
function ĤMsk,s′ implemented by C.

The augmented construction. We start by overviewing the basic properties needed by the encryption
scheme, compared to those of the previous one. First, we require that the scheme is fully-homomorphic
and rerandomizable in the following sense:

Definition 3.4 (Rerandomizable encryption). an encryption scheme (Gen,Enc,Dec) is rerandomizable
if there exist an efficient ciphertext rerandomization algorithm ReRan, such that, for every sequence of
ciphers and secret keys, {cn, skn}n∈N:

{ReRan(cn)}n∈N ≈s {Encskn(Decskn(cn)))}n∈N .

(statistical indistinguishability can be naturally relaxed to computational)

In our modified construction, the learner will not have access to a function that performs homomor-
phic ciphertext operations and therefore we no longer require that the encryption is CCA-1. Additionally,
our previous requirement of random ciphertext generation can be replaced by the above rerandomization
property (which is needed anyhow). Specifically, we assume WLOG that, when constructing publicly
verifiable robust unobfuscatable functions (see Section 4), the public verification key contains encryp-
tions of the constants in {0, 1}. Now, using encryptions of constants and the ciphertext rerandomization
algorithm, it is possible to sample random ciphertexts encrypting random bits. (The notion of publicly
verifiable robust unobfuscatable functions we get from this construction is slightly weaker then defined
in Definition 4.1 since the distribution D is only samplable given the public verification key. However,
this suffices for all the applications to ZK, where the public verification key is known before evaluating
the function.)

Recall that for Construction 3.1 we required that the underlying encryption scheme is decomposable
(according to Definition 3.2). We will make the same requirement for the augmented construction;
however, we next show that any homomorphic encryption scheme can be also made decomposable. If
the original scheme is rerandomizable, so is the resulting scheme.

Construction 3.4 (Making a homomorphic encryption decomposable). Let (Gen,Enc,Dec,Eval) be a
fully homomorphic encryption scheme. We construct a decomposable fully homomorphic encryption
scheme (Gen′,Enc′,Dec′,Eval′) as follows:

• Gen′ is identical to Gen.

• Enc′ on a secret key sk and plaintext b ∈ {0, 1}, samples a random bit r from {0, 1} and outputs
Encsk(r)||b⊕ r.
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• Dec′ on a secret key sk and ciphertext c||r, outputs r ⊕ Decsk(c).

• Eval′ on a pair of ciphertexts c1||r1 and c2||r2 samples a random bit r from {0, 1} and outputs c||r
where the ciphertext c is computed homomorphically (using Eval) from (c1, c2, r1, r2, r) accord-
ing the homomorphic operation.

• If the original scheme has a rerandomization algorithm ReRan, the new scheme has a rerandom-
ization algorithm ReRan′ that on input ciphertext c1||r1, samples a random bit r from {0, 1}, ho-
momorphically computes a cipher c such that Dec(c1||r1) = Dec(c||r) and outputs ReRan(c)||r.

The algorithm pub on input ciphertext c||r outputs c. (As remarked in Section 3.1, the algorithm
PubSamp can be implemented by sampling a random cipher of a random plaintext and applying pub.)

Theorem 3.2. Assuming rerandomizable homomorphic encryption, there exist a family of robust unob-
fuscatable functions, where the running time of the extractor E(C, 1n) is poly(n) · |C|.

Construction 3.5 (Robust unobfuscatable functions with efficient extraction). The construction is a vari-
ant of Construction 3.1 with the following modifications:

• The encryption scheme is a rerandomizable decomposable fully homomorphic bit encryption.

• The function fk will no longer evaluate the function Ĥsk

• When making the function Ask,a deterministic, a standard PRF can be used (instead of one that is
invoker randomizable). In addition, the n-fold Âsk,a can be replaced with the 1-fold version Ask,a.

Proof sketch of Theorem 3.2. The proof of black-box unlearnability is similar to the proof of Lemma 3.1.
In the proof of non-black-box learnability, the main modification we introduce to the extractor given by
Construction 3.3 is in the emulation of ciphertext operations. Specifically, ciphertexts are no longer
represented by n-fold ciphers; instead, values of intermediate wires in the homomorphic evaluation per-
formed by Ê are represented by a single ciphertext, and homomorphic operations are performed using
Eval (instead of using the function ĤMsk,s′). Also, the circuit Cb is given one encryption of b instead of
n encryptions. Cb will now use the ciphertext rerandomization algorithm ReRan to generate n random
encryptions of b.

4 Publicly Verifiable Robust Unobfuscatable Functions

In this section, we define publicly-verifiable robust unobfuscatable functions, and show, in Section 4.1,
how to construct them from robust unobfuscatable functions (using a general compiler). We also show
that such functions imply error-robust unobfuscatable functions. Throughout, we shall simply call them
verifiable (rather than publicly-verifiable).

At high-level, a verifiable robust unobfuscatable family F is associated with a key generation algo-
rithm GenF that samples a secret key k and a (public) verification key vk. The verification key has two
purposes:
• Public verification of the unlearnable relation. vk allows verifying a witness for a unlearnable

relation RF ; namely, given z, it can be efficiently checked whether RF (vk, z) = 1 (whereas in
Definition 2.2, the secret key k is required for verification).
• Public verification of an image property. vk allows to publicly verify a given property of a candi-

date image a for fk(q), for any given input q. Specifically, the family is associated with an efficient
relation VerF , where VerF (vk, q, a) = 1 only if (q, a) satisfy a given property with respect to
fk. For example, fk may consist of two functions fk1 , fk2 , and VerF may try to verify that a pair
(q1, a1), (q2, a2) is such that either a1 = fk1(q1) or a2 = fk2(q2). We will require that VerF has a
completeness property, implying that it is always that case that if a = fk(q), then VerF (vk, q, a).
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The black-box unlearnability property is defined just as for robust unobfuscatable functions, except that
it should hold also against learners that are given the verification key vk. The non-black-box learnability
property is strengthened: in the definition of robustness, the extractor was required to work for anyC that
agrees with the function on a given distribution D = D(1n); now we require that extraction works, even
if the circuit C may never produce a = fk(q), but does produce a’s such that VerF (vk, q, a) = 1 with
high-probability over inputs drawn from D. In particular, the circuit C is allowed to output undetectable
errors a /∈ {fk(q),⊥}.

We now proceed to formally define the notion.

Definition 4.1 (A verifiable robust unobfuscatable function). A family of functions F , with efficient key
generation algorithm GenF , and image verification relation VerF , is a verifiable robust unobfuscatable
family with respect to efficient relationRF and input sampler D if it is:

1. Black-box unlearnable: For any poly-size learner L = {Ln}n∈N:

Pr
(k,vk)←GenF (1n)

[(vk, z) ∈ RF : z← Lfkn (vk)] ≤ negl(n) .

Non-Black-box learnable: There exists an efficient extractor E such that for any noticeable func-
tion ε(n) = n−O(1), all large enough n ∈ N, any secret key and verification key (k, vk) ∈
supp(GenF (1n)), and every circuit C such that

Pr
q←D(1n)

[VerF (vk, q, a) = 1 : C(q) = y] ≥ ε(n) ,

E extracts z ∈ RF (vk) from C:

Pr
E

[
(vk, z) ∈ RF : z← E(C, vk, 1n, 11/ε(n))

]
≥ 1− negl(n) · poly(|C|) .

2. Verification completeness: For any (k, vk) ∈ supp(GenF (1n)), and for any q in the domain of
fk, VerF (vk, q, fk(q)) = 1.

It is not hard to see that verifiable robust unobfuscatable functions are, in particular, stronger than
error-robust unobfuscatable functions.

Lemma 4.1. Any verifiable robust unobfuscatable function family G can be transformed into an error-
robust unobfuscatable function family F (according to Definition 2.3).

Proof sketch. The transformation from G to F : a key k′ for a function fk′ ∈ F consists of a key k
and a corresponding verification key vk for a function gk. The input sampler D is the same as for
F , and a function fk′ is defined as follows: given an input q ← D(1n), fk′(q) returns (gk(q), vk),
the unlearnable relation RF will be {((k, vk), z) : z ∈ RG(vk)}. First, black-box unlearnability of the
constructed F follows directly from that of G. Second, for black-box non-learnability, note that if a
circuit C (1

2 + ε,D)-approximates fk′ , even with errors (where D = D(1n)). Then, an extractor EF can
first sampleC (about n/ε) to identify, with overwhelming probability, the single verification key vk, such
that k′ = (vk, k); then, it can construct from C a new circuit C ′ that (1

2 + ε,D)-approximates fk in the
sense of Definition 4.1; indeed, the completeness of VerF says that whenever C agrees with the function
VerF will accept. Now, the extractor can run the underlying extractor EG and obtain z ∈ RG(vk).
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4.1 Constructing Verifiable Robust Families

We now show how to construct verifiable robust families from robust families with a hardcore secret
(Definition 2.5), which in turn can be constructed from any robust family with a unique-witness relation
(Lemma 2.3), such as the family constructed in Section 3.

Theorem 4.1. Assuming, trapdoor permutations exist, family G that is a robust unobfuscatable family
with respect to a hardcore family {HCn}, can be compiled into a verifiable robust family F (according
to Definition 4.1).

Proof sketch. We prove the theorem in two steps: we first show how to get a verifiable family that only
satisfies public-verifiability of the unlearnable relation, but will only be robust against detectable errors
(like the family G we started from). Then, we show how to transform the resulting family into one that
also satisfies public-verifiability of some prescribed image property, and will already be robust to errors,
given that the property is frequently satisfied.

Step 1 - a family with a publicly-verifiable unlearnable relation. Given a family G with a hardcore
family {HCn}, we augment each function gk ∈ G and its corresponding (secret) key k, with public key
vk = (h, y), where h ← HCn is randomly chosen hardcore function, and y = ϕ(h(k)) for a one-way
function ϕ. We then define the publicly verifiable unlearnable relation to be

RG = {(vk, z) = ((h, y), x) | y = ϕ(x)} .

Claim 4.1. A randomly chosen gk ∈ G is black-box unlearnable with respect to the relation RG , even
given a corresponding vk. Also, for any h ∈ HCn, and k, h(k) is non-black-box learnable from any
circuit C that (D, ε)-approximates fk is the input distribution corresponding to G).

Proof sketch. First, to see that gk is unlearnable with respect to RG , recall that h(k) is pseudo random,
even given black-box access to gk, and h. Thus, any learner that manages to satisfy RG , would also
manage to do so had we given it ϕ(u), contradicting the one-wayness of ϕ.

The fact that z ∈ RG(k) can be extracted, given a circuit that (D, ε)-approximates gk, and vk =
(h, y), directly follows from the extraction guarantee of G. Indeed, EG , given h and C, is guaranteed to
extract h(k), and thus produces the required pre-image in ϕ−1(y).

Step 2 - public-verification of an image property. The family G, after being augmented as above, still
does not have a publicly-verifiable image property. We now construct from G a new family F that will
already satisfy all the requirements of a verifiable robust family as given by Definition 4.1.

The basic idea is to embed, in the function’s answers, rZAPs (see Section 5.1) attesting that the
answer is consistent with the verification key; however, to securely use rZAPs, we first need to establish a
proper statement with at least two valid witnesses. We use a similar idea to that used in [FS90, COSV12],
of using a WI proof (or rZAPs in our case) in order to get a witness-hiding proof for statements with two
independent witnesses. Details follow.

Each function fk in the familyF consists of two independent functions gk0 and gk1 sampled indepen-
dently from G, and randomness s for an rZAP; the secret key k is set to be (k0, k1, s). The corresponding
verification key vk, will consist of the two verification keys (vk0, vk1) sampled with the above to func-
tions (as defined in Step 1), as well as two commitments C0 = Com(k0), C1 = Com(k1), and a third
commitment C = Com(b), to a random bit b ← {0, 1}n (the commitments are non-interactive and per-
fectly binding as defined in Section 5.1); overall, vk = (vk0, vk1,C0,C1,C). The input sampler for F
is given by the product D̂ = D × U ; namely it consists of an input for the underlying gk0 , gk1 , and a
random string r, which will be a uniformly random first message for a rZAP.
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The function fk, given an input (q, r), computes a0 = gk0(q) and a1 = gk1(q), and then treating
r as the first message of an rZAP, and using the rZAP randomness s, computes an rZAP proof for the
statement:{

{C = Com(0)} ∨
{

C0 = Com(k0)
a0 = gk0(q)

}}∧{
{C = Com(1)} ∨

{
C1 = Com(k1)
a1 = gk1(q)

}}
;

This statement has two witnesses: one witness consists of the bit b and randomness for the commitment
C, as well as the key k1−b, and randomness for the commitment C1−b. the second witness consists of
the two keys k0, k1 and the randomness corresponding to both commitments C0,C1. The function fk
correctly computes ab = gkb(q), for both b ∈ {0, 1}, and gives the proof using the second witness.
Finally, the unlearnable relation for the new family F will be:

RF = {((vk0, vk1,C0,C1,C), z) | z ∈ RG(vk0) ∨ z ∈ RG(vk1)} ;

namely, z is a witness if it is a witness for either one of the underlying verification keys vk0 or vk1.

Claim 4.2. The function family F is verifiable and robust according to Definition 4.1.

Proof sketch. First, we show that a random fk ∈ F is black-box unlearnable, even given the verification
key vk. Specifically, we show that any learner L that satisfies RF (vk) with noticeable probability ε =
ε(n) can be transformed into a learner L′ for the family G. Indeed, given oracle access to a random gk,
and its verification key vk′, L′ will treat its oracle gk as gkb and the verification key vk′ as vkb. In addition,
L′ samples a random bit b, and then samples gk1−b

∈ G on its own, together with a verification key vk1−b.
L′ then feeds the learner L with a verification key vk consisting of commitments C = Com(b),C1−b =
Com(k1−b) and Cb = Com(0|kb|), and the verification keys vkb, vk1−b. Now, L′ emulates L, answering
any query (q, r) using its own sampled function for answer a1−b, and the oracle for answer ab. The
proof is then given using what we referred above a “the first witness”; namely, for one part of the “and”
statement b and the randomness for C = Com(b) is used, and for the second part the function gk1−b

and
the randomness for C1−b = Com(k1−b) is used.

We now claim that with probability at least ε/2, the emulated L (and thus also L′) outputs zb ∈
RG(vkb) for the oracle gkb . Indeed, using the fact that the commitment Com is hiding, and that the
rZAP is (resettably) witness-indistinguishable, we can use a standard hybrid argument to move to an
experiment in which L has the exact same view as in a true interaction with fk, where it outputs z that
satisfies the unlearnable relation corresponding to one of the two functions. Then, using again the hiding
of the commitment, we can move to an experiment where C is a commitment to a bit b′ that is chosen
independently of b, and L still succeeds; thus, it will output the right bit at least in 1

2 of its successes.
We now show that F is non-black-box learnable according to Definition 4.1. Specifically, we define

the image relation VerF (vk, (q, r), (a0, a1, π)) to be a relation that simply verifies the rZAP proof π
with respect to a first random message r, and the statement given by (vk, q, a0, a1). (Clearly, VerF has
the required completeness: VerF (vk, (q, r), fk(q, r)) = 1 for any triple). Next, for ε = n−O(1), let C
be any circuit that (D̂, ε)-approximates fk in the weak sense given by Definition 4.1. The extractor EF
will operate as follows: it will first transform C into two circuits C0 and C1 such that one of them will
(D, ε − n−ω(1))-approximate the underlying function gk0 or gk1 . The circuit Cb given a sample q from
D(1n), samples randomness r for an rZAP and feeds (q, r) to C, when it gets a result (a0, a1, π), it
verifies the proof π, if it does not verify, Cb outputs ⊥, otherwise it outputs ab. Let b be the plaintext
bit in the commitment C given in the verification key vk. We claim that with overwhelming probability
over the choice of randomness r for the rZAP, Cb (D, ε− n−ω(1))-approximates gkb . Indeed, by taking
the randomness for the rZAP to be of sufficiently large length poly(n), it can be guaranteed that with
overwhelming probability all false statements (of some fixed bounded length `(n) � poly(n)) are
rejected (see [DN07]). Therefore, Cb only makes detectable errors (i.e., outputs ⊥). Also, we are
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guaranteed that C satisfies VerF (and, in particular, satisfies the rZAP statement) with probability at
least ε, and thus (D̂, ε− n−ω(1))-approximation follows as required. Hence, it suffices that the extractor
EF chooses randomness for both C0, C1 and feeds each one of them to the extractor EG of the family G,
and it will manage to produce z ∈ RG(kb).

This concludes the proof of Theorem 4.1

5 From Verifiable Robust Unobfuscatable Functions
to Resettable Protocols

5.1 Definitions

We briefly recall the definitions of resettable ZK [CGGM00], resettable soundness [BGGL01], and
several other basic definitions and tools used in this section. Most definitions are taken almost verba-
tim from [CGGM00, BGGL01, DGS09]. In Subsection 5.1.1, we define instance-dependent resettable
witness-indistinguishability.

Resettable ZK. we start by recalling resettable ZK.

Definition 5.1 (Resettable zero-knowledge [CGGM00]). An interactive proof system (P,V) for a lan-
guage L is said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V∗

there exists a probabilistic polynomial time simulator S so that the distribution ensembles D1 and D2

described below are computationally indistinguishable: Let each distribution be indexed by a sequence
of distinct common inputs ~x = x1, . . . , xpoly(n) ∈ L∩{0, 1}n and a corresponding sequence of prover’s
auxiliary-inputs ~y = y1, . . . , ypoly(n).

Distribution D1 is defined by the following random process which depends on P and V∗

• Randomly select and fix t = poly(n) random-tapes ω1, . . . , ωt for P, resulting in deterministic
strategies P(i,j) = Pxi,yi,ωj defined by Pxi,yi,ωj (α) = P(xi, yi, ωj , α) for i, j ∈ {1, . . . , t}. Each
P(i,j) is called an incarnation of P.
• Machine V∗ is allowed to run polynomially-many sessions with the P(i,j)’s. Throughout these ses-

sions, V∗ is required to complete its current interaction with the current copy of P(i,j) before starting
a new interaction with any P(i′, j′), regardless if (i, j) = (i′, j′) or not. Thus, the activity of V∗ pro-
ceeds in rounds. In each round it selects one of the P(i,j)’s and conducts a complete interaction with
it.
• Once V∗ decides it is done interacting with the P(i,j)’s it (i.e, V∗) produces an output based on

its view of these interactions. This output is denoted by (P(~y),V∗)(~x) and is the output of the
distribution.

Distribution D2: The output of S(~x).

Resettably-sound ZK. We briefly recall the definitions of resettable-soundness presented in [BGGL01].
In the setting of resettable-soundness, the prover P∗ has the power to reset the verifier V. Specifically,
the random tape of V is chosen at random and fixed once and for all and, from that point on, the prover
can interact multiple times with the residual deterministic verifier Vr(x) induced by r and the common
input x. Each such interaction is called a session.

Note that the adversary may repeat in a current session the same messages sent in a prior session,
resulting in an identical prefix of an interaction (since the verifier’s randomness is fixed). Furthermore,
by deviating in the next message, the adversary may obtain two different continuations of the same prefix
of an interaction.

A generalization of the above model, also considered in [BGGL01], is to allow the prover to interact
with multiple “incarnations” of the verifier. Here, t = poly(n) random tapes r1, . . . , rt are sampled, and
the prover can adaptively choose at any point an input x and index i ∈ [t] and interact with Vri(x).
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Definition 5.2 (Resettably sound argument[BGGL01]). A resetting attack of a malicious prover P∗ on
a resettable verifier V is defined by the following random process, indexed by a security parameter n:

1. Uniformly select pick t = poly(n) random-tapes, denoted r1, . . . , rt for V, resulting in determin-
istic strategies Vr1 , . . . ,Vrt . For a given x ∈ {0, 1}n, Vri(x) is called an incarnation.

2. A prover P∗ of size poly(n) can initiate poly(n) interactions with different incarnations. In each
such interaction, P∗ chooses x ∈ {0, 1}n and i ∈ [t], and conducts a complete session with the
incarnation Vri(x).

An argument system 〈P � V〉 is a resettably sound argument for L, for any resetting poly-size P∗,
the probability that in some session during a resetting attack, P∗ convinces some incarnation Vri(x) of
accepting while x /∈ L is negligible in n.

For simplicity, we concentrate on the simple case of one incarnation Vr(x); however, all of our
results directly extend to the model of multiple incarnations.

Resettably-sound witness-indistinguishable arguments of knowledge. An rsWIAOK, is WI in the
usual since, and is also an argument of knowledge against resetting provers; namely we can efficiently
extract a witness from any resetting prover that convinces the verifier of accepting with noticeable prob-
ability. Such proof systems can be constructed from classical public-coin proof systems such as (the
n-fold version of) Blum’s Hamiltonicity WI protocol [Blu86] by applying to them the [BGGL01] trans-
formation (the resulting constructions are based solely on one-functions).

A useful property of these classical protocols is that the knowledge extraction uses the prover as a
black-box (except for being given its size).

Resettable ZAPs. ZAPs are 2-message public-coin witness-indistinguishable proofs introduced by
Dwork and Naor [DN07]. They further have the special property that the first message (sent by the
prover) can be reused for multiple proofs. As noted in [BGGL01], any ZAP already has the property of
resettable soundness. Furthermore, resettable witness-indistinguishability property can be obtained by
applying the transformation in [CGGM00]. We refer to the resulting system as an rZAP system having
the property of resettable-soundness as well as resettable-witness indistinguishability.

Commitments. In this work, we shall use two types of perfectly (or statistically) binding commitments.
One type is non-interactive commitments, which can be constructed based on any one-way permutation
(let alone a trapdoor permutation) [Blu81]. The second are interactive (2-message) commitments that
can be constructed from one-way functions [Nao91].

5.1.1 Instance-dependent resettable witness-indistinguishable arguments.

An instance-dependent resettable-WI argument (rWIy), for an NP language L, is defined with respect to
a candidate instance y for another (possibly different) NP language L′. In an instance-dependent rWIy

the soundness and rWI properties are decoupled according to y: if y ∈ L′ the system is a sound and if
y /∈ L′ the system is rWI.

Definition 5.3 (rWIy). An argument system 〈P� V〉 for L is rWI with respect to L′ if satisfies:

1. Instance-dependent soundness: for any poly-size prover P∗, and all large enough x ∈ {0, 1}n\L
and y ∈ L′:

Pr
V

[〈P∗ � V〉(x, y) = 1] ≤ negl(n) .
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2. Instance-dependent rWI: for any poly-size resetting verifier V∗, all large enough x ∈ L,
w

(1)
x , w

(2)
x ∈ RL(x), and y /∈ L′:

Pr
[
〈P(w(1)

x )� V∗〉(x, y) = 1
]
− Pr

[
〈P(w(2)

x )� V∗〉(x, y) = 1
]
≤ negl(n) .

Constructing instance-dependent rWIs from one-way functions. Instance-dependent rWI can be
constructed based on the [CGGM00] transformation, and instance-dependent commitment schemes
(also known as equivocable commitments), which in turn can be constructed from one-way functions
[FS89, Dam89].

We briefly recall what are the properties of such commitments (a more formal definition can be
found in [FS89]). An instance-dependent commitment scheme is also parameterized by an instance y
for an NP language L′ and has two properties:

1. Instance-dependent equivocation There is an efficient equivocation algorithm Eq that, given
(y, w) ∈ RL′ and some length `, can produce an equivocal commitment C̃, which it can open to
any x ∈ {0, 1}` (the equivocation algorithm uses w). Equivocal commitments and their openings
are computationally indistinguishable from honestly generated commitments and their openings.

2. Instance-dependent binding For y /∈ L, the commitment is statistically binding.

Given such commitments, it is possible to transform any public-coin WI system (e.g. Blum) to an
instance-dependent rWI, using the [CGGM00] transformation. Specifically, given an instance y as a
candidate for L, the verifier first commits to its random message using the y-dependent commitment.
Then, the parties run the WI protocol, where the verifier opens the commitment as its message. The
randomness used by the prover is derived by applying a pseudo random function to the verifier’s com-
mitment. If y ∈ L′, it follows by the equivocation guarantee, and the soundness for the underlying WI,
that the protocol is sound. If /∈ L, the commitment is binding, and rWI follows as in [CGGM00].

5.2 The Base Protocol

In this section, we present an O(m)-round resettably sound ZK protocol where m is a parameter that
will be chosen according to the desired notion of ZK (stand-alone or concurrent).

In what follows, let F be a verifiable robust unobfuscatable function family, with respect to the
relation RF . Let GenF ,VerF be the key generation algorithm and the image verification relation of
F , and let D be the efficient sampler guaranteed by the non-black-box learnability property of F . The
protocol is described in Figure 1.

5.3 The Resettable Security of the Protocol

In this section, we show analyze the resettable security of Protocol 1, according to the setting of the
parameter m.

5.3.1 Resettable Soundness

We show that Protocol 1 is resettably sound, for any setting of m (constant or poly(n)).

Lemma 5.1. For any m, Protocol 1 is a resettably-sound ZK argument of knowledge.

Proof sketch. Given a prover P∗ that, for a set X of inputs, convinces V to accept each x ∈ X ∩
{0, 1}n with probability ε(n). We can easily construct PPT extractor E that (for all but finitely many
x ∈ X ) extracts a witness w ∈ RL(x). First we consider a new prover P∗1 against the rsWIAOK
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Protocol 1

Common Input: x ∈ L ∩ {0, 1}n.

Auxiliary Input to P: w ∈ RL(x).

1. V samples keys (k, vk)← GenF (1n) for F and sends vk to P.

2. Repeat the following function evaluation slot m times:

(a) P samples q ← D(1n) and sends q to V.

(b) V evaluates the function a = fk(q) and sends a to P.

(c) P verifies that indeed VerF (vk, q, a) = 1.

3. P proves the following statement to V using an rsWIAOK:
“x ∈ L or {∃z : (vk, z) ∈ RF}”.

Figure 1: A resettably-sound (concurrent) ZK protocol

protocol concluding the proof. The new prover P∗1 is given oracle access to a random fk ∈ F , as
well as a corresponding public key vk, and tries to convince the rsWIAOK verifier of the WI statement
corresponding to x and vk. This prover perfectly emulates P∗, forwarding to the oracle fk any query that
P∗ makes in the function evaluation slot, and forwarding any message in the proof stage to the external
resettable verifier. Since the view of the emulated P∗ is the same as in a real execution it convinces the
rsWIAOK verifier with the same probability ε. We can now apply the black-box extractor Ewi for the
rsWIAOK to extract a witness from P∗1. To do so, Ewi can sample fk and vk on its own, and use them to
answer any oracle call that P∗1 makes. By the POK guarantee, we know that Ewi outputs a witness for the
WI statement corresponding to x and vk (in expected polynomial time). It is left to see that, except with
negligible probability, this witness will be w ∈ RL(x), rather than z ∈ RF (vk); otherwise, we can use
Ewi′ and P∗1 to break the unlearnability of F . Indeed, since Ewi is a black-box extractor (see Section 5.1),
it can answer all of P∗1’s calls to the function, using an external oracle to fk.

5.3.2 Stand-Alone (Non-Resettable) ZK

In this section, we show that Protocol 1 for m = O(1) is (stand-alone) ZK (in the next section, we’ll
show that for m = nΩ(1), it is concurrent ZK).

Let F be a verifiable robust unobfuscatable function family, as used Protocol 1, and let d be a
constant such that the running time of the non-black-box extractor of F , given security parameter n, and

approximation parameter ε, is poly(n) ·
(
|C|
ε

)d
.

Lemma 5.2. Protocol 1 with m = d is ZK.

We describe the main ideas behind the proof of Lemma 5.2. More details can be found in [BP12].

Proof sketch. Following the simulation technique of Goldreich and Kahan [GK96], the simulator starts
by running the cheating verifier V∗ once, simulating its view until the proof step. If the V∗ does not abort
and evaluates the function correctly in Step 3b, the simulator interacts with V∗ repeatedly to estimate the
probability εi that V∗ evaluates the function correctly in each slot i. This estimation can be computed
in expected polynomial time, and it can be shown that for some i ∈ [d], it holds that εi ≥ ε1/d, where
ε is the probability that V∗ does not abort in any of the slots. The simulation runs the extractor E of
the unobfuscatable function family on the circuit corresponding to the next messages function of V∗ in
a slot i as the above, using the approximation parameter εi. Correctness of the simulation follows from
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the properties of the unobfuscatable function and the WI property of rsWIAOK. Since the extractor runs
in time poly(n)

εdi
≤ poly(n)

ε and since V∗ aborts before the proof step with probability 1 − ε the expected

running time of the simulation is poly(n).

Round-efficient resettably-sound ZK. As explained in Section 3.5 the construction described in Sec-
tion 3 either yields extractors with running time poly(n) · |C|2, assuming trapdoor permutations, or
extractors running in time poly(n) · |C|, assuming fully-homomorphic encryption. However, the size
of the circuit |C| in our protocol will be |V∗| · poly(n)

ε (the poly(n)
ε overhead is incurred by Lemma 2.1).

Thus the actual running times are poly(n) ·
(
|V∗|
ε

)2
and poly(n) ·

(
|V∗|
ε

)
(respectively).

Plugging this into Protocol 1, we would get by Lemma 5.2, an 8-message protocol in the first case
and a 6-message one in the second case, if we use say a 3-message rsWIAOK (e.g. based on [Blu86]).
However, we can, in fact, save a round and run the first two messages of the rsWIAOK in parallel to the
last slot of the protocol (Step 3) similarly to the protocol of [FS89].

Corollary 5.1 (of Lemma 5.2). Assuming trapdoor permutations there exist a 6-message resettably-
sound ZK protocol.

Corollary 5.2 (of Lemma 5.2). Assuming rerandomizable fully homomorphic encryption and trapdoor
permutations, there exist a 4-message resettably-sound ZK protocol.

5.3.3 Concurrent and Resettable ZK

In this section, we show that for m = nΩ(1) Protocol 1 is concurrent ZK. A simultaneously resettable
ZK protocol can then be obtained from Protocol 1 by applying the general transformation of [DGS09]
from resettably-sound concurrent ZK to simultaneously resettable ZK.

Lemma 5.3. For every constant δ > 0, Protocol 1 with m = nδ is concurrent zero-knowledge.

Proof of Lemma 5.3.

Overview of the simulation. The simulation uses the techniques of [RK99], and more specifically,
the slightly augmented version of them applied in [DGS09, CLP10]. We start by describing the main
ideas behind this technique as they where used in previous works. The execution of the protocol in
every session consists of running many sequential slots giving the simulator many chances to “solve”
the session. The simulation runs a main thread, and in the beginning of every slot, the simulation also
starts “look-ahead” threads that are only supposed to simulate the interaction until the end of the slot. if
the simulation in the look-ahead thread is successful, the simulator can then continue the simulation in
the main thread and solve the session.

The main difficulty is that, in the concurrent setting, even the simulation of one slot may be non
trivial. The idea is to have look ahead threads recursively use the same simulation strategy. If some slot
contains too many other concurrent slots, the simulation of the corresponding look-ahead thread may
“give up” and not reach the end of the slot. However, it can be shown that, in every session, some slots
must be successfully simulated by look-ahead threads and therefore on the main thread, all sessions will
be solved.

Our setting. In our simulation, we think of every slot as computing V∗’s function fk. Instead of running
a look-ahead thread to simulate the execution of a slot, we construct the circuit implementing such look-
ahead thread and run the extractor of the unobfuscatable function family on this circuit. While we do not
start any look ahead threads, the nature of our simulation is still recursive since the circuits we construct
and extract from are also constructing smaller simulation circuits themselves and extracting from them.

We now describe several sub-routines used in our simulation procedure. We first describe them at
high-level and then move on to describe them in more detail.
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Let V∗ be a concurrent verifier that opens at most nc sessions, and assume WLOG that V∗ is determinis-
tic. We refer to every iteration of Step 3 where V∗ evaluates the function fk as a slot. In a single session,
there are nδ slots, and in the entire execution of V∗ with the honest prover, there are at most nc

′
= nc+δ

slots (less if V∗ aborts or deviates from the protocol). The simulator S, using the code of V∗, uses the
following functions to create the simulated transcript:

The function MAIN simulates a given number of slots. MAIN takes the parameters (T,m) where T is
the state of the concurrent simulation at the time the function is called, andm is the number of additional
slots to simulate.

The function EMULATE transforms the code of V∗ into a circuit that computes the function fk.
EMULATE is given a state T of a partial simulation of V∗ right before the beginning of a slot. EMULATE
generates a circuit C that, given input q, tries to evaluate the function fk(q) by simulating the slot with
the input q as the first message. C simulates V∗ according to same logic as in the function MAIN until
the slot terminates. EMULATE takes the parameters (T,m), and uses them within C in the same way
that they are used in the MAIN function.

The function EXTRACT. This function tries to extracts the unlearnable secret z of the function fk,
in some session, by executing the extractor E of the unobfuscatable function family on the circuit C
returned by a call to EMULATE. EXTRACT takes parameters (T,m) and passes them to EMULATE.

We note following recursive relations between the above functions:
• Whenm > 1 the function MAIN will execute the function EXTRACT on every slot it starts, passing

it a smaller m.
• The function EXTRACT uses the circuit C generated the function EMULATE.
• The circuit C generated by the function EMULATE simulates messages according to the strategy of

the function MAIN. In particular, C executes the function EXTRACT with a smaller value of m.

The initial call. The simulator S will execute the function MAIN with m = nc
′

and the empty simula-
tion state.

Next, we describe the above functions in more detail.

The function MAIN. The function is given the state T of the simulation so far, and extends it as
described above, updating the value of T as the simulation proceeds. Specifically, the simulation up to
Step 3 (sending the rsWIAOK) in all sessions follows the strategy of the honest prover P (note that the
witness w is not required for that). The state of the simulation is just the state maintained by P along the
different sessions.

Whenever a slot starts, MAIN executes the function EXTRACT with parameters (T ′,m′) where T ′

is the simulation state just before the beginning of the slot, and m′ = m/∆ where ∆ = nδ
′

for some
0 < δ′ < δ a parameter of the simulation. If EXTRACT manages to output an unlearnable secret z such
thatR(vk, z) = 1 for the vk sent in the session, then z is saved in T .

To simulate the rsWIAOK given in some session (Step 3), MAIN uses the unlearnable secret of the
session saved in T . If no such secret is previously extracted MAIN aborts. In this case we say that the
simulation “got stuck”, and main will return ⊥. When V∗ terminates or starts the m + 1 slot, MAIN
terminates and outputs the current value of T .

The function EMULATE. On parameters (T,m), the function creates a circuit C and outputs it. C
simulates V∗ by following almost the same logic as in the function MAIN with the same parameters
(T,m). The only difference between the simulation of C and the function MAIN is that C get an
external input q and sends it as the prover message in the first slot that V∗ starts (when executed from
T ). If during the simulation the first slot closes, C obtains V∗’s response a and outputs it, otherwise
it outputs ⊥. As in the function MAIN, If V∗ aborts or starts m additional slots, before the first slot
terminates, C outputs ⊥.
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The function EXTRACT. On parameters (T,m), the function calls the function EMULATE with the
same parameters and obtains a circuit C. EXTRACT then executes the extractor E of the unobfuscatable
functions family on C with ε = 1

16 and outputs the same as E.

Correctness of the simulation.
Let Real(x,w) be the view of V∗ in a real interaction 〈P(w) � V∗〉(x), and let S(x) be the view

generated by our simulation procedure. Let Bad be the event over the coins of S, that the simulation gets
stuck; namely, it reaches a proof in some session in which the unlearnable secret was not yet extracted.
Since the only difference between the experiments Real and S is the witness used to simulate the proof,
it follows from the WI property of rsWIAOK that

{Real(x,w)}(x,w)∈RL ≈c {S(x)|¬Bad}x∈L .

It is thus enough to show that

Pr
S(x)

[Bad] = negl(n) ,

where n = |x|. For this purpose, we need to show that, in every session, one of the extraction attempts
succeeds. The difficulty is that the circuit we are extracting from is performing simulation recursively,
and this simulation may also get stuck and result in one of circuits (created by EMULATE along the main
thread) not computing the function correctly. To bound the probability of such an event, we consider the
following experiment: in the experiment, before executing the extractor on some circuit, we execute this
circuit several time (using independent randomness) to see is the execution of this circuit is likely to get
stuck. The simulation in the circuit will recursively follow the same augmented behavior. If in any of
the executions the circuit gets stuck, we do not even try to extract just admit failure. We show that the
probability of getting stuck, in this modified experiment, is still negligible. Intuitively, this guarantees
that no attempt to extract, in the real simulation, will ever fail due to a recursive simulation getting stuck
(except with negligible probability). We next define this experiment in more detail.

Let S ′ be the experiment that is defined like S except that all the calls to the function EXTRACT
are replaced by calls to a new function FORK. The function FORK starts off just like the function
EXTRACT; that is, on parameters (T,m), FORK calls the function EMULATE with the same param-
eters, obtains a circuit C, and executes the extractor E of the unobfuscatable functions family on C.
FORK then repeats the following n independent times: sample q ← D(1n) and run C(q). We shall
refer to the computation transcript produced by C in the i-th execution (out of n executions) as the i-th
simulation performed by FORK.

After every such simulation performed by FORK, the simulation is rewound back to the state T .
If any of the simulations by FORK gets stuck, we say that FORK gets stuck as well, and this failure
propagates up. More precisely:
• If the function MAIN makes a call to FORK that gets stuck, the entire simulation gets stuck.
• If FORK makes a recursive call to FORK that gets stuck, the outer execution of FORK also gets

stuck.
• If a circuit C constructed by EMULATE makes a call to FORK that gets stuck, C outputs ⊥.

Finally, FORK outputs the same as E on C (similarly to the function EXTRACT).
Clearly

Pr
S′(x)

[Bad] ≥ Pr
S(x)

[Bad] ,

and therefore it is enough to show that

Pr
S′(x)

[Bad] = negl(n) .
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Assume towards contradiction that there exist a polynomial p such that, for infinitely many values
of x ∈ L ∩ {0, 1}n, PrS′(x)[Bad] ≥ p(n), and let us fix any such x. Whenever Bad occurs in S ′,
the simulation performed by MAIN or by some call to FORK reaches the proof in some session while
the unlearnable secret was not previously extracted. We look at the execution “thread” that contains the
entire simulated interaction from the beginning of the experiment up until the point where the simulation
gets stuck. (Note that this thread might spread across several nested calls to FORK.) We can identify
every thread of execution by the number of previous calls to FORK and the index of the simulation in
the current call to FORK for every level of the recursion.

Let Badt,s1 be the event where the execution gets stuck in thread t and session s. Since the total
number of threads and sessions is polynomial, there exist a thread t and a session s such that the event
Bad1 = Badt,s1 occurs with some polynomial probability p1(|x|).

To argue that some of the slots of session s in thread t are “light”, that is, they do not contain too
many slots of other sessions, we will focus on a single level of the recursion that contains many of the
slots of the session. Let Badl2 be the event that Bad1 occurs and the call to FORK, in recursion level
l and thread t, contains at least 2∆ full slots of session s. Since the simulation in the thread t must
contains all nδ slots of session s, in order to get stuck in s, and since the maximal number of nested
calls to FORK is bounded by d = c′

δ′ = O(1), it follows that there exist a level l such that the event
Bad2 = Badl2 occurs with some polynomial probability p2(|x|). Let ml be the parameter of FORK in
recursion level l.

Since the simulation of FORK in thread t in level l of the recursion contains a bounded amount
of slots from all sessions, but many slots of session s, there must be many slots of session s that are
concurrent to a relatively small number of other slots. Intuitively, this means that the extraction from
these light slots is more likely to succeed. Let Si be the random variable representing the simulation of
the i-th slot of session s that starts on recursion level l, in thread t (if no such slot exist Si is empty).
Let Gi be the event that Si is not empty, contains no aborts, and the number of other slots that start
concurrently to Si is at most ml

∆ . Recall that before the simulation of a slot on recursion level l, S ′
makes a recursive call to FORK with parameter ml

∆ . Since the total number of sessions that start in the
function FORK in level l is at most ml, we have that whenever Bad2 occurs, |{i ∈ [2∆]|Gi}| ≥ ∆.

Since with noticeable probability level l of thread t has many light slots, we expect that in at least
one of these slots, if we rewind the simulation to the beginning of the slot, and simulate it again with
independent randomness it will remain light with some constant probability. We will show that the
extraction from such slot is likely to succeed. Let Hi be the event that Pr[Gi|S1, . . . , Si−1] < 1/8.
Let Badi3 be that event Bad2 ∧ ¬Hi. The following lemma, together with the fact that PrS′(x)[Bad2] =

p2(n), implies that there exist i∗ ∈ [2∆] such that event Bad3 = Badi
∗

3 occurs with some polynomial
probability p3(|x|).

Lemma 5.4. Pr[{(|{i ∈ [2∆]|Gi}| ≥ ∆} ∧ {H1 ∧ · · · ∧H2∆}] ≤ negl(n)

Proof. First we show that for every set {ij}j∈[∆] ⊆ [2∆] and for every 0 ≤ d ≤ ∆

Pr

 ∆∧
j=1+∆−d

Gij

 ∧
 ∆∧
j=1+∆−d

Hij

 ∣∣∣∣∣∣
∆−d∧

j=1

Gij

 ∧
∆−d∧

j=1

Hij

 ≤ 8−d

For d = 0 the claim clearly holds. Assuming the claim holds for d− 1 we have:
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Pr

 ∆∧
j=1+∆−d

Gij

 ∧
 ∆∧
j=1+∆−d

Hij

 ∣∣∣∣∣∣
∆−d∧

j=1

Gij

 ∧
∆−d∧

j=1

Hij


≤ Pr

 ∆∧
j=1+∆−d

Gij

 ∧
 ∆∧
j=2+∆−d

Hij

 ∣∣∣∣∣∣
∆−d∧

j=1

Gij

 ∧
1+∆−d∧

j=1

Hij


≤ Pr

Gi1+∆−d

∣∣∣∣∣∣
∆−d∧

j=1

Gij

 ∧
1+∆−d∧

j=1

Hij


· Pr

 ∆∧
j=2+∆−d

Gij

 ∧
 ∆∧
j=2+∆−d

Hij

 ∣∣∣∣∣∣
1+∆−d∧

j=1

Gij

 ∧
1+∆−d∧

j=1

Hij


≤ Pr

Gi1+∆−d

∣∣∣∣∣∣
∆−d∧

j=1

Gij

 ∧
1+∆−d∧

j=1

Hij

 · 81−d

≤ 8−d ,

where the last inequality is due to the fact that the event

(
∆−d∧
j=1

Gij

)
∧

(
1+∆−d∧
j=1

Hij

)
is contained in the

event Hi1+∆−d
. By setting d = ∆ we get that

Pr

 ∆∧
j=1

Gij

 ∧
 2∆∧
j=1

Hj

 ≤ Pr

 ∆∧
j=1

Gij

 ∧
 ∆∧
j=1

Hij

 ≤ 8−∆ .

Finally, there are
(

2∆
∆

)
< 22∆ sets {ij}j∈[∆] ⊆ [2∆] of size ∆ and therefore:

Pr [{|{i ∈ [2∆]|Gi}| ≥ ∆} ∧ {H1 ∧ · · · ∧H2∆}] ≤
(

4

8

)∆

≤ negl(n) .

Let T be the state of the simulation just before the beginning of the i∗-th slot. Let good be the event
that the i∗-th slot exists, and the probability over the rest of the experiment, starting from T , that Bad3

occurs is at least p3(n)/2. Since PrS′(x)[Bad3] = p3(n), we have that PrS′(x)[good] ≥ p3(n)/2. Now,
conditioned on a good prefix T of the execution, PrSi [Gi | T ] ≥ 1/8 = 2/16 (this will be useful in a
few lines).

Before the simulation of the i∗-th slot the function FORK is called, and tries to extract the unlearn-
able secret of the session s. Let S′i∗ be a random variable representing a simulation attempt made by
FORK (out of the n identically distributed attempts). S′i∗ is distributed like Si∗ except that:
• S′i∗ never contains more than ml

∆ other slots, while Si may contain up to ml concurrent slots. How-
ever, this difference does not hold conditioned on the event Gi∗ .
• The simulation of S′i∗ makes recursive calls to FORK with parameter ml

∆2 , while the simulation of
Si∗ calls FORK with parameter ml

∆ ; this means that the simulation of Si∗ is more likely to extract
a witness, and less likely to get stuck. In particular, note that the above difference no longer holds
conditioned on the event that the simulation of S′i∗ does not get stuck. We denote this event by NS.
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Since Gi∗ implies that Si∗ contains the end of the i∗-th slot, and that the messages (q, a) of the i∗-th slot
satisfy VerF (vk, q, a) = 1, we have that NS ∧ Gi∗ implies that the same holds for S′i∗ . Note that NS
must occur with probability at least 15/16; otherwise, one of the n simulation attempts made by FORK,
starting from T , will get stuck with overwhelming probability and therefore Bad2 will only occur with
negligible probability; however, this will contradict our choice of T (recall that Bad2 occurs only when
the simulation gets stuck in thread t and not in the recursive call to FORK after state T ). We thus have
that Pr [NS ∧Gi∗ | T ] ≥ 1/16 and therefore, with probability at least 1/16, S′i∗ contains the end of
the i∗-th slot, and an execution of C(q), performed by FORK starting from state T , outputs a such that
VerF (vk, q, a) = 1 with probability at least 1/16. By the non-black-box learnability property of the
unobfuscatable function, when FORK invokes E on C with ε = 1

16 , it outputs z such that (vk, z) ∈ RF
with overwhelming probability. However, by the choice of T , the probability that Bad3 occurs and
session s is not solved on thread t must be noticeable.

Simulation running time. Let TMAIN(m), TEMULATE(m), TEXTRACT(m) be the running times of the functions
MAIN, EMULATE, EXTRACT, given parameter m. One can verify that following relations hold:

TMAIN(m) < p1(n) · TEXTRACT(
m

∆
) + p2(n)

TEXTRACT(m) < p3(TEMULATE(m))

TEMULATE(m) < p4(TMAIN(m))

And therefore

TMAIN(m) < p1(n) · p5(TMAIN(
m

∆
)) + p2(n)

Where p1 to p5 are polynomials that depend only on V∗. Specifically, note that p3 is such a polynomial
since EXTRACT only runs E with a constant value of ε. For m ≤ 1 the MAIN stops whenever a new
slot starts and does not make any calls to EXTRACT. Therefore, TMAIN(m) < p0(n) where p0 is a
polynomial that depend only on V∗. We get that:

TMAIN(m) < pd(n)

where p is a polynomial that depends only on V∗ and d = dlog∆me + 1. Since ∆ = nδ
′

and the main
simulation executes MAIN with parameter m = nc

′
we have d = O(1) and the simulation running time

is polynomial.

This concludes the proof of Lemma 5.3 showing that Protocol 1 is concurrent zero-knowledge.

5.4 Resettably-sound ZK from Minimal Assumptions

In this section, we show how to construct resettably-sound ZK, and resettably-sound concurrent ZK
protocols based only on one-way functions, by directly using robust unobfuscatable function, instead of
(ZAP-based) verifiable robust ones. As a corollary, we also get a resettable ZK argument of knowledge
based on one-way function, by plugging our protocol into the transformation of [BGGL01].

Let G be a family of robust unobfuscatable functions with respect to a hardcore family {HCn}
(as defined in Definition 2.5, and constructed in Sections 2 and 3 based on one-way functions). Let
ϕ be a one-way function. We make use of a 2-message statistically binding commitment Com (e.g.,
[Nao91]). Given a first receiver message r, we denote by Comr the function that computes the sender’s
commitment message. Additionally, we use an instance-dependent resettable witness-indistinguishable
argument rWI and resettably-sound witness-indistinguishable arguments of knowledge rsWIAOK (see
Definition 5.1). The protocol closely follows the idea of making robust unobfuscatable functions (with a

39



hardcore secret) verifiable, as presented in Section 4.1. Non-interactive commitments are replaced with
2-message commitments. ZAPs are replaced with instance-dependent rWIs (as defined in Section 5.1.1),
where the dependance is on the proven statement x. (The latter will be used by the verifier to prove that
it acts properly, so they need to be sound only when x ∈ L, and rWI only when x /∈ L). The protocol is
described in Figure 2, where m is a parameter that controls the number of slots. similarly to Protocol 1
we set m = 2 to get constant round resettably-sound ZK and m = nΩ(1) to get a resettably-sound
concurrent ZK.

Protocol 2

Common Input: x ∈ L ∩ {0, 1}n.

Auxiliary Input to P: w ∈ RL(x).

1. P samples the first message r for a statistically binding commitment scheme and sends r to P.

2. V samples a bit b ∈ {0, 1}.
For i ∈ {0, 1}, V samples gki ∈ G and vki = (hi, yi), where hi ← HCn is randomly chosen hardcore
function, and yi = ϕ(h(ki)).
V computes C = Comr(b),Ci = Comr(ki) and sends (vk0, vk1,C0,C1,C) to P.

3. Repeat the following function evaluation slot m times:

(a) P samples q ← D(1n) and sends q to V.

(b) V evaluates the functions a0 = gk0(q), a1 = gk1(q) and sends a0, a1 to P.

(c) V proves to P using an x-dependent rWIx argument that the following statement is correct:{
{C = Comr(0)} ∨

{
C0 = Comr(k0)
a0 = gk0(q)

}}∧{
{C = Comr(1)} ∨

{
C1 = Comr(k1)
a1 = gk1(q)

}}
4. P proves the following statement to V using an rsWIAOK:

“x ∈ L or {∃z : y0 = ϕ(z) ∨ y1 = ϕ(z)}”.

Figure 2: A resettably-sound (concurrent) ZK protocol from any one-way function

Theorem 5.1 (resettably-sound (concurrent) ZK from one-way functions). Protocol 2 with m = 2 is a
constant round resettably-sound ZK protocol, and with m = nΩ(1), it is a resettably-sound concurrent
ZK protocol.

Corollary 5.3 (of Theorem 5.1 and [BGGL01]). There exist a resettable ZK argument of knowledge
based on one-way functions.

The proof of Theorem 5.1 closely follows the proofs of Lemmas 5.3,5.1, and 5.2, and is omitted.
Corollary 5.3 follows by plugging in our one-way function based resettably-sound ZK protocol into the
transformation of [BGGL01].

5.5 A 3-Message Simultaneous Resettable WI Argument of Knowledge

In this section, we construct a 3-message simultaneously-resettable WI proof-of-knowledge protocol
based on robust unobfuscatable functions, where knowledge extraction is performed by a non-black-box
extractor. As in Section 4.1, our protocol will use the idea of turning a single witness statement into a
two independent-witnesses statement as done in [FS90, COSV12].

Lemma 5.5. Protocol 3 is a resettable WI argument of knowledge.
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Protocol 3

Common Input: x ∈ L ∩ {0, 1}n.

Auxiliary Input to P: w ∈ RL(x).

1. P performs the following:

• samples two keys k0, k1 ← {0, 1}n for fk0 , fk1 ∈ F , and a bit b← {0, 1}.
• samples two hardcore functions h0, h1 ← HCn and computes r0 = h0(k0), r1 = h1(k1).

• sends V: C0 = Com(k0),C1 = Com(k1),C = Com(b), and h0, e0 = w ⊕ r0, h1, e1 = w ⊕ r1.

2. V performs the following:

• samples randomness r ← {0, 1}poly(n) for an rZAP, and an input q ← D(1n).

• sends (q, r) to P.

3. P performs the following:

• computes a0 = fk0(q), a1 = fk1(q).

• computes an rZAP proof π for the statement:{C = Com(0)} ∨


C0 = Com(k0)
a0 = gk0(q)
w ∈ RL(x)

e0 = w ⊕ h0(k0)



∧{C = Com(1)} ∨


C1 = Com(k1)
a1 = gk1(q)
w ∈ RL(x)

e1 = w ⊕ h1(k1)




• sends V: a0, a1, π.

4. V verifies the rZAP proof π, and decided whether to accept accordingly.

Figure 3: An rWI 3-message Argument of Knowledge (implying srWIAOK)

Since the protocol is a 3-message protocol, we can apply the [BGGL01] transformation, where V
derives its randomness by applying a PRF to the transcript; as a corollary, we get the following theorem:

Corollary 5.4. Assuming trapdoor permutations exist, there exist a 3-message simultaneously-resettable
WI argument of knowledge (with non-black-box knowledge extraction).

We now give a proof sketch of the lemma.

Proof sketch of Lemma 5.5. We start by showing that the protocol is resettably WI. Let

(X ,W0,W1) = {(x,w0, w1) : (x,w0), (x,w1) ∈ RL}

be any infinite sequence of instances in L and corresponding witness pairs. We next consider a sequence
of hybrids starting with an hybrid describing an interaction with a prover that uses w0 ∈ W0, and
ending with an hybrid describing an interaction with a prover that uses w1 ∈ W1, where both w0, w1,
are witness for some x ∈ X . We shall prove that no efficient verifier can distinguish between any two
hybrids in the sequence. The list of hybrids is given in Table 1. The can be though of as two sequences.
One 0.1-6, starts from witness w0, and the other 1.1-6 starts at witness w1. We will show that within
these sequences the hybrids are indistinguishable, and then will show that 0.6 is indistinguishable from
1.6.

Hybrid 0.1: describes a true interaction of a resetting verifier V∗ with an honest prover P that uses
w0 as a witness for the statement x ∈ L. In particular, the rZAP uses the witness ((k0, w0), (k1, w0))
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hyb zapwb Cb rb eb ⊕ rb zapw1−b C1−b r1−b e1−b ⊕ r1−b
0.1 (kb, w0) kb hb(kb) w0 (k1−b, w0) k1−b h1−b(k1−b) w0

0.2 b kb hb(kb) w0 (k1−b, w0) k1−b h1−b(k1−b) w0

0.3 b 0|kb| hb(kb) w0 (k1−b, w0) k1−b h1−b(k1−b) w0

0.4 b 0|kb| u w0 (k1−b, w0) k1−b h1−b(k1−b) w0

0.5 b 0|kb| u w1 (k1−b, w0) k1−b h1−b(k1−b) w0

0.6 (kb, w1) kb hb(kb) w1 (k1−b, w0) k1−b h1−b(k1−b) w0

1.6 (kb, w0) kb hb(kb) w0 (k1−b, w1) k1−b h1−b(k1−b) w1

1.2-5 . . . . . . . . . . . . . . . . . . . . . . . .

1.1 (kb, w1) kb hb(kb) w1 (k1−b, w1) k1−b h1−b(k1−b) w1

Table 1: The sequence of hybrids; the bit b corresponds the bit commitment C; the blue cells are those
different comparing to the previous hybrid.

(the witness also includes the randomness for the commitments C0 and C1, but for notational brevity,
shall omit it.) In Table 1, the witness used in part 0 of the rZAP is referred to as zapw0, and the one
corresponding to 1 in zapw1.

Hybrid 0.2: This hybrid differs from the previous only the witness used in any rZAP. Specifically, for
the bit b given by C, the witness for the rZAP is set to be (b, (k1−b, w0)), instead of ((kb, w0), (k1−b, w0)).
(Again the witness should include the randomness for the commitment C, and C1−b, but is omitted from
our notation.) Since the rZAP is resettably WI, this hybrid is computationally indistinguishable from the
previous one.

Hybrid 0.3: In this hybrid, the commitment Cb is given to 0|kb|, instead of to kb. This hybrid is compu-
tationally indistinguishable from the previous one due to the computational hiding of the commitment
scheme C.

Hybrid 0.4: In this hybrid, instead of sending the verifier the hardcore secret hb(kb), it is given a
random independent string u ← {0, 1}|hb(kb)|. Computational indistinguishability of this hybrid from
the previous one, follows by the black-box indistinguishability of F (Definition 2.5). Indeed, note that
any distinguisher here can be turned into a distinguisher againstF and its corresponding hardcore family
HC, by treating the oracle as kb and simulating all the other elements in the experiment.

Hybrid 0.5: In this hybrid, the padded value eb is taken to be w1 ⊕ rb, instead of w0 + ⊕rb. Since rb
is now uniform and independent of all other elements, this hybrid induces the exact same distribution as
the previous hybrid.

Hybrid 0.6: This hybrid now backtracks, returning to the same experiment as in hybrid 0.1 with the
exception that the rZAP witness is now ((kb, w1), (k1−b, w0)) instead of ((kb, w0), (k1−b, w0)). This
indistinguishability follows exactly as when moving from 0.1 to 0.5 (only backwards).

Hybrids 1.1 to 1.6: These hybrids are symmetric to the above hybrids, only that they start from w1

instead of w0. This means that they end in 1.6 which uses an rZAP witness ((kb, w0), (k1−b, w1)),
which is the same as 0.6, only in reverse order.

Hybrids 0.6 and 1.6 are computationally indistinguishable. This follows directly from the compu-
tationally hiding of C = Com(b). Indeed, assume towards contradiction that V distinguishes the two
hybrids. Concretely, denote the probability it outputs 1 on 0.6 by p0, and the probability it outputs 1
on 1.6 by p1, and assume WLOG that p0 − p1 ≥ ε, for some noticeable ε = ε(n). We can construct a
predictor that given a commitment C = Com(b) to a random bit b ← {0, 1}, guesses b with probability
1+ε

2 . The predictor, samples a random b′ ← {0, 1} as a candidate guess for b, and performs the experi-
ment corresponding to 0.6, only that it locates w0 and w1 according to b′, rather than the unknown b. If
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the distinguisher outputs 1, the predictor guesses b = b′ and otherwise it guesses b = 1− b′.
Conditioned on b = b′, V is experiencing 0.6, and thus the guess will be correct with probability p0;

conditioned on b = 1 − b′, V is experiencing 1.6, and the guess will be right with probability 1 − p1.
So overall the guessing probability is p0

2 + 1−p1

2 ≥ 1
2 + ε

2 . This completes the proof that the protocol is
resettable WI.

It is left to show that the protocol is an argument of knowledge. Indeed, let P∗ be any prover that
convinces the honest verifier of accepting with noticeable probability ε = ε(n), then with probability at
least ε/2 over its first message, it holds with probability at least ε/2 over the rest of the protocol that P∗

convinces V. Let us call such a prefix good. Now for any good prefix, we can consider the perfectly
binding induced commitment to the bit b, and from the soundness of the rZAP, we get a circuit that with
probability at least ε/2 computes correctly the function fk1−b

, and gives a valid witnessw ∈ RL, padded
with h1−b(k1−b). This in particular, means that we can first sample a prefix (hope it is good), and then
invoke the non-black-box learnability guarantee (Definition 2.5) to learn h1−b(k1−b), and thus also the
witness w. (Since we do not know what is the bit b, we will need to construct to circuits for both options
of b, and try to extract from both, just as was done in the proof of Claim 4.2.) This completes the proof
of Lemma 5.5.
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