
Twisted Edwards-Form Elliptic Curve Cryptography for
8-bit AVR-based Sensor Nodes

Dalin Chu
Shandong University, China

chudalin@gmail.com

Johann Großschädl
University of Luxembourg

johann.groszschaedl@uni.lu

Zhe Liu
University of Luxembourg

zhe.liu@uni.lu

ABSTRACT
Wireless Sensor Networks (WSNs) pose a number of unique
security challenges that demand innovation in several areas
including the design of cryptographic primitives and proto-
cols. Despite recent progress, the efficient implementation
of Elliptic Curve Cryptography (ECC) for WSNs is still a
very active research topic and techniques to further reduce
the time and energy cost of ECC are eagerly sought. This
paper presents an optimized ECC implementation that we
developed from scratch to comply with the severe resource
constraints of 8-bit sensor nodes such as the MICAz and
IRIS motes. Our ECC software uses Optimal Prime Fields
(OPFs) as underlying algebraic structure and supports two
different families of elliptic curves, namely Weierstraß-form
and twisted Edwards-form curves. Due to the combination
of efficient field arithmetic and fast group operations, we
achieve an execution time of 5.9 · 106 clock cycles for a full
160-bit scalar multiplication on an 8-bit ATmega128 micro-
controller, which is 2.78 times faster than the widely-used
TinyECC library. Our implementation also shows that the
energy cost of ephemeral ECDH key exchange between two
MICAz (or IRIS) motes amounts to only 38.7 mJ per mote
(including radio communication). A mote with a standard
AA battery pack could theoretically perform up to 174,278
ECDH key exchanges before running out of energy.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—Public Key Cryptosystems;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Algorithms, Experimentation, Performance, Security

Keywords
MICAz Mote, AVR Processor, Twisted Edwards Curve

1. INTRODUCTION
In recent years, Wireless Sensor Networks (WSNs) have

found widespread adoption in such areas as environmental
monitoring, military surveillance, industrial control, home
automation, and health care [1]. Many of said applications
collect or process sensitive information, which initiated an
extensive body of research on security and privacy aspects
of WSNs. The special adversary models and threat scenar-
ios of WSNs pose a multitude of unique research problems
(see e.g. [21] for an overview), including some that are still
not properly solved and, hence, need further consideration
[15]. Wang et al [23] identify the following building blocks
as essential for the design and implementation of a secure
WSN: cryptography, key management, secure routing, se-
cure data aggregation, and intrusion detection. One of the
open research issues mentioned in [23] is to further improve
the efficiency of Public-Key Cryptography (PKC) on small
sensor nodes with limited computational power. They state
that “public key cryptography can greatly ease the design
of security in WSNs” [23, p. 19], but perceive overheads in
execution time and energy consumption as limiting factors
for the widespread deployment of PKC.

The benefits and drawbacks of using PKC in WSNs have
been widely researched in the past ten years. Early work on
the feasibility of PKC in WSNs includes that of Carman
et al [5], who analyzed and compared the computation time
and energy requirements of RSA, DSA, Diffie-Hellman and
a few other public-key algorithms. The first really practical
RSA implementation for an 8-bit sensor node, namely the
prevalent MICAz mote [7], was presented by Gura et al in
2004 [11]. They also introduced highly-optimized software
for Elliptic Curve Cryptography (ECC) on 8-bit AVR mi-
cro-controllers and reported an execution time of less than
10 · 106 clock cycles for a 192-bit scalar multiplication. This
result set a new speed record for ECC on an 8-bit platform
and has since then been generally regarded as the ultimate
proof that strong PKC is feasible on resource-constrained
sensor nodes. One of the most widely used ECC implemen-
tations for WSNs is TinyECC [18], whose first version was
released in the late 2007. TinyECC is a highly configurable
ECC library for wireless sensor nodes running TinyOS and
supports Weierstraß curves over arbitrary prime fields. To
increase efficiency, TinyECC contains special optimizations
for standardized 128, 160, and 192-bit fields.

In this paper, we describe a carefully-optimized software
implementation of ECC for 8-bit AVR-based sensor nodes
like the MICAz and IRIS motes. The aim of our work is to
advance the state-of-the-art in lightweight ECC for WSNs



by exploring the potential of new families of elliptic curves
and prime fields with special arithmetic properties. In con-
trast, most existing ECC libraries for 8-bit AVR processors
(in particular TinyECC) are optimized for curves and fields
that have been standardized by such bodies as the Natinal
Institute of Standards and Technology (NIST) [20]. These
so-called NIST curves were specified some 15 years ago and
do not reflect the current state-of-the-art of ECC in terms
of efficiency. Our implementation “departs” from these old
standards and puts forward a novel approach for ECC on
small sensor nodes that combines twisted Edwards curves
(which provide very fast point arithmetic [3]) with so-called
Optimal Prime Fields (which allow for efficient modular re-
duction [24]). Besides achieving high performance, we also
aim for a “lightweight” implementation with low RAM and
ROM footprint. Therefore, we use the conventional double-
and-add method for scalar multiplication, even though one
could reach better execution times at the cost of additional
memory for storing multiples of the base point. Our results
show that an 8-bit sensor node, such as the MICAz mote, is
able to perform a full 160-bit scalar multiplication in some
5.9 · 106 clock cycles, which is roughly 2.8 times faster than
the widely-used TinyECC library.

2. OPTIMAL PRIME FIELDS
The finite field we use in our implementation belongs to

the family of Optimal Prime Fields (OPFs), which were
first mentioned in the literature in an extended abstract
from 2006 [10]. These fields are represented by “low-weight”
primes that can be written as p = u · 2k + v, where u
and v are relatively small compared to 2k; in our case, u
has a length of 16 bits so that it fits into two registers
of an ATmega128 processor, while v is equal to 1. More
specifically, our implementation uses p = 65356 · 2144 + 1,
which happens to be a 160-bit prime that looks as follows
when written in hex notation.

0xFF4C000000000000000000000000000000000001

Primes of such form are characterized by a low Hamming
weight since only the two most significant bytes and the
least significant byte are non-zero; all other bytes are zero.
The low weight of p allows for optimization of the modular
arithmetic because only the non-zero bytes of p need to be
processed in the reduction operation. For example, Mont-
gomery multiplication [19] can be optimized for these primes
so that the modular reduction has only linear complexity,
similar to generalized-Mersenne or pseudo-Mersenne primes
[12].

Our previous work [24] describes an efficient OPF arith-
metic library for 8-bit AVR processors end explains how to
speed up modular reduction for low-weight primes. The
ECC implementation we introduce in this paper uses the
OPF library from [24] as a building block for the low-level
field arithmetic. However, we had to write the Assembly
code for inversion in OPFs from scratch since it was not in-
cluded in the library. For the sake of completeness, we start
this section with an overview of how the library performs
addition, subtraction, multiplication, and squaring in OPFs,
before we describe the inversion in more detail. Throughout
this paper, we will use the following notation. Uppercase
letters denote arrays of w-bit words representing field ele-
ments, while indexed uppercase letters refer to individual
words within an array, e.g. Ai is the i-th word of an array

A that represents a ∈ Fp. Even though AVR is an 8-bit
architecture, we use a word-size of w = 32 bits for perfor-
mance reasons, which means the arithmetic operations of
our library generally process four bytes at once [11]. Given
an operand length of n bits, the total number of words is
s = dn/we, which means s = 5 for a 160-bit OPF.

2.1 Addition and Subtraction
Addition and subtraction are the most basic operations

in multiple-precision arithmetic. To calculate the modular
sum a + b mod p, we first do the addition and then perform
the reduction. Let Ai, Bi be the i-th word of the arrays
A and B, which represent a, b ∈ Fp. The addition starts
with A0 + B0, and then repeatedly calculates Ai + Bi + c
for 0 < i < s, whereby c denotes the carry bit generated
in the previous addition of 32-bit words. After addition
of the most significant words, we have a sum that is up
to n + 1 bits long. We simply use the carry bit from the
last addition of words to decide whether or not to subtract
p, which is faster than an exact comparison, but may lead
to an incompletely reduced result in the range of [0, 2n − 1]
instead of the least non-negative reside. However, this is not
a problem in practice since all arithmetic functions of the
OPF library can handle incompletely reduced operands.

The modular substraction a − b mod p is very similar to
the modular addition, except that the prime p has to be
added if the difference a− b is negative.

2.2 Multiplication and Squaring
Modular multiplication and squaring are the most im-

portant arithmetic operations for public-key cryptography,
especially for ECC. Our OPF library uses Montgomery’s al-
gorithm [19] for the modular multiplication and takes the
low weight of the prime into account. As mentioned before,
the primes we use have the form p = u·216+1, whereby u has
a length of at most 16 bits. An s-word array P representing
p contains only two non-zero words, namely Ps−1 and P0.
There exist different techniques for efficient computation of
the Montgomery product; one of these is the so-called Fine-
ly Integrated Product Scanning (FIPS) method [16], which
performs multiplication and modular reduction in an inter-
leaved fashion. The FIPS method normally executes 2s2 + s
word-level (i.e. (w × w)-bit) multiplications, but this num-
ber drops by roughly one half to s2 + s when the modulus
is a low-weight prime as defined above [24]. Computing the
product of two s-word operands requires s2 word-level mul-
tiplications, which means the overhead of modular reduction
is only s word-level multiplications.

The FIPS method consists of two nested loops, both per-
forming Multiply-ACcumulate (MAC) operations in the in-
ner loop. In our case (i.e. w = 32), the inner loop operation
requires multiplying two 32-bit words (which takes 16 mul

instructions on an AVR processor) and adding the 64-bit
product to a 72-bit cumulative sum held in nine registers.
The concrete implementation of the FIPS method included
the OPF library follows the basic idea of hybrid multiplica-
tion [11], but executes the inner-loop operation in a more
efficient way as described in [24]. An iteration of the in-
ner loop needs only need 101 clock cycles, which allows
a (160 × 160)-bit multiplication (without reduction) to be
performed in 3006 clock cycles (including function-call over-
head). The execution of a FIPS Montgomery multiplication
modulo a 160-bit low-weight prime p as defined above takes



3521 clock cycles of no final subtraction of p is required.
On the other hand, if a final subtraction is necessary, the
execution time increases to 3588 cycles. However, the aver-
age execution time of multiplication in a 160-bit OPF was
reported in [24] to be 3542 cycles.

Similar to modular multiplication, also the implementa-
tion of modular squaring uses a word-size of w = 32, which
means four bytes of the operand are processed per iteration
of the inner loop. However, modular squaring in a 160-bit
OPF is roughly 20% faster than modular multiplication due
to the fact any word-product of the form Ai ·Aj is identical
to Aj · Ai. Consequently, all word-products Ai · Aj with
i 6= j need to be computed only once and then added twice
to the cumulative sum in order to be doubled. According
to [24], squaring an element of a 160-bit OPF takes 2966
clock cycles in the best case (i.e. no final subtraction has to
be performed) and 3032 cycles in the worst case. Further
details about the efficient implementation of multiplication
and squaring in OPFs can be found in [24].

2.3 Inversion
The standard method to calculate the inverse of an el-

ement of a prime field is to use the extended Euclidean
algorithm [6]. A straightforward implementation of this
algorithm requires computationally expensive division op-
erations. To avoid these divisions, we employ a different
method, known as binary inversion algorithm, which is also
based on the Euclidean law but adopts much cheaper shifts,
divisions by 2 and subtractions as described in Section 2.2.5
of [12].

The binary variant of Euclidean’s algorithm computes a−1

mod p by finding an integer x such that ax + py = 1. The
algorithm maintains the invariants

ax1 + py1 = u and ax2 + py2 = v (1)

where y1 and y2 are not explicitly computed. We initialize
u = a, v = p, x1 = 1 and x2 = 01 to get the first equations

a + p · 0 = u and a · 0 + p = v

The binary variant of the Euclidean algorithm has a simple
loop structure. In the body of the loop, we manipulate the
above equations in two ways. First, when u or v is even,
both sides of the equation are divided by 2. Taking u as
an example, if u is even, we can get u/2 simply by a right
shift operation. At the same time, we need to calculate
x1/2 mod p, which is a little more complex. If x1 is even, a
right shift operation is sufficient to get x1/2, otherwise, we
can not do the right shift directly since the lowest bit is 1.
In this case, we need to adopt another element of the same
residue class, namely x1+p ≡ x1 mod p. On the other hand,
the second case is when u and v are both odd. Without loss
of generality, we assume u > v, and subtract v from u.
The left sides of the equations in (1) do the corresponding
subtraction at the same time. The algorithm terminates
when u = 1 or v = 1. In the former case, ax1 + py1 = 1 and
hence a−1 = x1 mod p, while in the latter case, ax2+py2 = 1
and a−1 = x2 mod p.

3. TWISTED EDWARDS CURVES
1Actually, the initial values of y1 and y2 are 0 and 1. Because
we do not need to calculate these values, we just ignore them
in the initializations.

In July 2007, Harold Edwards introduced a normal form
for elliptic curves along with a simple, symmetric addition
law [9]. Bernstein and Lange [4] established the relevance
of Edwards’ work for elliptic curve cryptography and came
up with more efficient formulas for point addition and dou-
bling using standard projective coordinates [12]. They also
extended Edwards’ curve definition to a more general form
that covers a much larger class of elliptic curves. In formal
terms, a so-called Edwards curve over a prime field Fp can
be described by the equation2

E : x2 + y2 = 1 + dx2y2 (2)

with d ∈ Fp \ {0, 1}. Edwards curves have some attractive
properties for practical use, most notably efficiency of the
point arithmetic and completeness of the addition law when
d is not a square in Fp. Completeness means the addition
formula is valid for all P, Q ∈ E(Fp), including the special
cases P = Q, P = −Q, P = O, and Q = O. Bernstein and
Lange [4] also showed that every Edwards curve contains a
point of order 4 and, thus, has a co-factor of h ≥ 4.

In 2008, Bernstein et al [3] introduced Twisted Edwards
curves as a generalization of Edwards curves. Formally, a
twisted Edwards curve over a prime field Fp is defined via
the equation

E : ax2 + y2 = 1 + dx2y2 (3)

where a and d are distinct, non-zero elements of Fp. Bern-
stein et al observed empirically that the twisted Edwards
form covers much more curves than the “original” Edwards
form3 based on Equation 2. Furthermore, as demonstrated
in [3], every twisted Edwards curve over a non-binary field
Fq is birationally equivalent over Fq to a Montgomery curve
(i.e. every twisted Edwards curve can be transformed to a
Montgomery curve, and vice versa). Bernstein et al [3] also
presented explicit formulas for addition and doubling on a
twisted Edwards curve; these formulas are complete if a is
a square and d a non-square in the underlying field.

The most efficient way of performing point arithmetic on
a twisted Edwards curve is to use the extended coordinates
proposed by Hişil et al in [13]. When using this coordinate
system, a point P = (x, y) is represented by the quadruple
(X : Y : T : Z) where x = X/Z, y = Y/Z, xy = T/Z, and
Z 6= 0. Such extended twisted Edwards coordinates can be
seen as homogenous projective coordinates (X : Y : Z), aug-
mented with a fourth coordinate T that corresponds to the
product xy in affine coordinates. The point at infinity O is
represented by (0 : 1 : 0 : 1) and the negative of a point in
extended coordinates is (−X : Y : −T : Z). A point given
in affine coordinates as (x, y) can be converted to extended
coordinates by simply setting X = x, Y = y, T = xy, and
Z = 1. The re-conversion is done in the very same way as
for homogenous projective coordinates through calculation
of x = X/Z and y = Y/Z, which costs an inversion in the
underlying field.

3.1 Curve Generation
Both the IEEE standard P1363 [14] and the textbook

of Cohen et al [6] specify a number of security criteria
2Note that Bernstein and Lange originally defined Edwards
curves more generally over non-binary fields. However, in
this paper we only consider prime fields.
3Of course, the conventional Edwards curves from [4] are a
subset of twisted Edwards curves since an Edwards curve is
nothing else than a twisted Edwards curve with a = 1.



that an elliptic curve has to fulfill to be suitable for use in
cryptography. The most important of these requirements,
which ensure that the Elliptic Curve Discrete Logarithm
Problem (ECDLP) is hard, are summarized below:

• First of all, the additive group of points on the curve
has to contain a large subgroup of prime order m to
ensure the Elliptic Curve Discrete Logarithm Problem
(ECDLP) is hard. In other words, the curve should
have a small co-factor h; ideally, the co-factor is 1.

• Secondly, in order to avoid the Semaev-Smart-Satoh-
Araki (SSSA) attack, the curve must not be anoma-
lous. More precisely, the order of the additive group
of points on the curve must not be equal to the order
of underlying prime field, i.e. #E(Fp) 6= p.

• Finally, to prevent the Menezes-Okamoto-Vanstone
(MOV) attack and other attacks based on the Weil
and Tate pairing, the embedding degree of the curve
must not be small (i.e. the order of the EC group n
must not divide pk − 1 for “small” values of k)

We used the computer algebra system Magma to generate
(i.e. find) a suitable twisted Edwards curve for ECC [3]. As
mentioned in Section 2, our implementation is based on the
prime field Fp with p = 65356 · 2144 + 1, which belongs to
the family of OPFs [24] and has a size of 160 bits. Magma
provides an extensive pool of functions for computations on
elliptic curves given in both short and long (non-simplified)
Weierstraß form, but does not directly support the twisted
Edwards from. However, a twisted Edwards curve with the
parameters a, d ∈ Fp can be expressed via a non-simplified
Weierstraß equation as follows.

a2 = 2(a + d), a4 = (a− d)2, and a1 = a3 = a6 = 0 (4)

The above formulas were derived by simply exploiting the
fact that any twisted Edwards curve over a non-binary field
Fq is birationally equivalent to a Montgomery curve, which
was formally proven in [3]. The Magma script we wrote to
generate a twisted Edwards curve contains a simple loop in
which the parameter d (initially set to 1) gets incremented
each iteration until a suitable curve is found. We fixed the
parameter a to −1 (i.e. a = p− 1) to take advantage of the
fast formulas for point addition and doubling presented in
[13]. Furthermore, our Magma script only considers values
of d that are non-square in Fp so as to ensure completeness
of the addition formula. In each iteration of the loop, three
main steps are carried out. First, the twisted Edwards curve
defined by a and d is transformed into a Weierstraß curve
via Equation (4). Next, we determine the number of Fp-ra-
tional points on this curve using Magma’s Order function
and check whether it is four times a prime (i.e. whether its
co-factor h is 4). If this is the case then the final step is to
carry out some further checks to guarantee the ECDLP is
hard. Following the outlined approach, we eventually found
the curve E : −x2 + y2 = 1 + 31145x2y2 (i.e. a = p− 1 and
d = 31145), which has a cardinality #E(Fp) of

4 · 364371875798791851509551807137352597688979500323

whereby the latter factor is a 158-bit prime. In addition to
the already-mentioned requirements for the hardness of the
ECDLP, we also checked a couple of other criteria such as
“twist security.” The quadratic twist E′ of our curve E has

a small co-factor of 8, which helps to prevent certain forms
of implementation attack [2].

3.2 Point Arithmetic
In the following, Fp denotes a prime field and E a twisted

Edwards curve in the form described by Equation (3) over
Fp. Let P1 = (x1, y1) and P2 = (x2, y2) be points on E.
Then, the group law for E can be described as follows.

1. Identity: (0, 1) is a the neutral element.

2. Inverse: The inverse element of the point P1 =
(x1, y1) on curve E is −P1 = (−x1, y1).

3. Addition law: The addition law for the twisted Ed-
wards curve is:

P1 + P2 = (x1, y1) + (x2, y2) (5)

=

(
x1y2 + y1x2

1 + dx1y1x2y2
,

y1y2 − ax1x2

1− dx1y1x2y2

)
When using projective coordinates, the twisted Edwards
curve E can be brought into the form

(aX2 + Y 2)Z2 = Z4 + dX2Y 2 (6)

where the point (X : Y : Z) is equivalent to (X/Z, Y/Z) in
affine coordinates.

As mentioned earlier in this section, Hişil et al [13] in-
troduced a more efficient approach for the representation
of points, known as extended twisted Edwards coordinates.
In this representation, an additional coordinate t is used,
which is simply the product of the (affine) x and y coor-
dinates, i.e. t = xy. One can transfer a point in affine to
projective coordinates via the map (x, y, t) 7→ (x : y : t : 1).
A point (X : Y : T : Z) = (λX : λY : λT : λZ) that sat-
isfies Equation (6) corresponds to the extended affine point
(X/Z, Y/Z, T/Z) with Z 6= 0. Obviously, the auxiliary co-
ordinate T has the property that T = XY/Z (see [13]).
Given two “extended” points P1 = (X1 : Y1 : T1 : Z1) and
P2 = (X2 : Y2 : T2 : Z2) with Z1 6= 0 and Z2 6= 0, a dedicat-
ed addition, derived from Equation 5, can be performed as
(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3)
where 

X3 = (X1Y2 − Y1X2) (T1Z2 + Z1T2)
Y3 = (Y1Y2 + aX1X2) (T1Z2 − Z1T2)
T3 = (T1Z2 + Z1T2) (T1Z2 − Z1T2)
Z3 = (Y1Y2 + aX1X2) (X1Y2 − Y1X2)

(7)

When P1 = P2, one can obtain the formula for point dou-
bling in extended twisted Edwards coordinates as follows.

X3 = 2X1Y1

(
2Z2

1 − Y 2
1 − aX2

1

)
Y3 =

(
Y 2

1 + aX2
1

) (
Y 2

1 − aX2
1

)
T3 = 2X1Y1

(
Y 2

1 − aX2
1

)
Z3 =

(
Y 2

1 + aX2
1

) (
2Z2

1 − Y 2
1 − aX2

1

) (8)

Note that the above formulas are independent of the pa-
rameter d and can be further simplified if a = −1, which is
the case for our curve. When P2 is given in affine coordi-
nates (i.e. Z2 = 1), the addition (which is actually a mixed
addition) can be carried out using only seven multiplications
(7M) in the underlying field (not taking into account the
multiplication by a). On the other hand, the point doubling
costs four multiplications (4M), four squarings (4S), and a



multiplication by a, the latter of which can be neglected in
our case since a = −1.

As explained in [13, Sect. 4.3], it is possible to save one
field-multiplication in the point doubling by mixing extend-
ed with conventional (i.e. non-extended) twisted Edwards
coordinates. This cost reduction is based on the observa-
tion that the auxiliary coordinate T1 of P1 is only used
in the point addition, but not in the point doubling de-
scribed by Equation (8). Consequently, the computation
of T3 in Equation (8) can be omitted if a point doubling
is followed by another point doubling. The same holds for
the point addition: T3 in Equation (7) does not need to be
computed if the subsequent operation is a point doubling.
In order to optimize the point doubling, we eliminate the
field-multiplication that produces T3 in Equation (8) and
output the two factors E3 = 2X1Y1 and H3 = Y 2

1 − aX2
1

it is composed of instead. When doing so, the result-
ing point P3 = 2P1 consists of five coordinates instead of
four, which means P3 is actually represented by a quintu-
ple of the form (X3 : Y3 : E3 : H3 : Z3). In other words,
the auxiliary coordinate T is split up into E and H such
that EH = T = XY/Z, thereby saving a field multipli-
cation in the point doubling. The subsequently-executed
operation can recover T3, if needed, by simply multiplying
E3 by H3. Of course, this optimization of the doubling
makes it necessary to modify the point addition according-
ly. We implemented the addition formula shown in Equa-
tion (7) to output the two factors E3 = T1Z2 + Z1T2 and
H3 = T1Z2−Z1T2 instead of T3 = E3H3. When performing
an addition using P1 represented by (X1 : Y1 : E1 : H1 : Z1)
as input, the auxiliary coordinate T1 = E1H1 has to be
computed first since it is needed as operand. Note, however,
that this modification does not change the overall cost of a
point addition since the computation of T3 = E3H3 is sim-
ply replaced by forming the product T1 = E1H1. Putting
everything together, the optimized implementation of point
doubling requires 3M and 4S in the underlying field, while
a point addition costs 7M.

Algorithm 1 Point addition on TE curve with a = −1.

Input: Point P1 = (X1 : Y1 : E1 : H1 : Z1) with E1H1 =
T1 = X1Y1/Z1 and P2 = (X2 : Y2 : T2) with T2 = X2Y2.

Output: Sum P3 = P1 + P2 = (X3 : Y3 : E3 : H3 : Z3).
1: T1 ← E1 ·H1

2: A← (Y1 −X1) · (Y2 + X2)
3: B ← (Y1 + X1) · (Y2 −X2)
4: C ← 2 · Z1 · T2

5: D ← 2 · T1

6: E3 ← D + C
7: H3 ← D − C
8: F ← B −A
9: G← B + A

10: X3 ← E3 · F
11: Y3 ← G ·H3

12: Z3 ← F ·G
13: return (X3 : Y3 : E3 : H3 : Z3)

Algorithm 1 specifies the sequence of field operations for
a mixed addition where P1 is given in extended projec-
tive coordinates of the form (X1 : Y1 : E1 : H1 : Z1) with
E1H1 = T1 = X1Y1/Z1. The second point P2, which is
usually the base point of a scalar multiplication, is repre-
sented by extended affine coordinates (X2 : Y2 : T2) with

T2 = X2Y2. Algorithm 2 shows the field operations needed
to double a point P1 using our “special” extended projec-
tive coordinates. Both algorithms are optimized for twisted
Edwards curves with parameter a = −1. Note that, when
using extended coordinates, both the addition and doubling
formulae are independent of the curve parameter d [13].

Algorithm 2 Point doubling on TE curve with a = −1.

Input: Point P1 = (X1 : Y1 : E1 : H1 : Z1).
Output: Double P3 = 2 · P1 = (X3 : Y3 : E3 : H3 : Z3).
1: A← X2

1

2: B ← Y 2
1

3: C ← 2 · Z2
1

4: H3 ← A + B
5: E3 ← (X1 + Y1)

2 −H3

6: G← B −A
7: F ← C −G
8: X3 ← E3 · F
9: Y3 ← G ·H3

10: Z3 ← F ·G
11: return (X3 : Y3 : E3 : H3 : Z3)

There exist a number of algorithms for computing a scalar
multiplication k · P through point additions and doublings;
see e.g. [12] for an overview. The most basic algorithm
is the so-called double-and-add method, which requires to
perform n point doublings and roughly n/2 point additions
when the scalar k has a length of n bits. The number of
point additions can be reduced to roughly n/3 when k is
represented in Non-Adjacent Form (NAF) [12]. Of course,
there exist several faster scalar multiplication techniques,
but they either rely on the pre-computation of multiples of
P (which costs memory) or can only be used when P is
fixed and known a-priori. Since we aim for a “lightweight”
implementation with low memory footprint, we decided to
adopt the double-and-add method with NAF-representation
of the scalar k.

4. IMPLEMENTATION RESULTS
We have implemented scalar multiplication on a twisted

Edwards curve for 8-bit AVR processors such as the AT-
Mega128. The results we describe in this section have been
obtained using a 160-bit OPF, but the order of the field can
be easily extended to e.g. 192, 224, or even 256 bits.

Atmel’s AVR Studio provides a cycle-accurate simula-
tion system for 8-bit micro-controllers like the ATmega128,
which is contained in the MICAz and IRIS sensor nodes.
One can easily obtain detailed information about the effi-
ciency of a program by analyzing the running time (µs) or
the number of clock cycles of a certain function or block.
Therefore, we use AVR Studio to profile and simulate the ex-
ecution time of our ECC implementations and the TinyECC
library [18].

4.1 Execution Times
We started with simulating the underlying field arithmetic

operations of TinyECC and our implementation. Our simu-
lation results of the OPF arithmetic are essentially the same
as that reported in Zhang’s paper [24]. These execution
times are summarized in Table 1, along with the execution
time of inversion, which we implemented from scratch since
it was not part of Zhang’s OPF library. The timings of the



corresponding arithmetic operations of TinyECC are also
specified. To get accurate cycle counts, we executed each
function several times in a loop and use the average value
as result.

Operation Our work TinyECC

int add 166 321

int sub 166 313

int mul 3006 3390

int sqr 2428 3390

mod add 531 637

mod sub 531 682

mod mul 3588 6098

mod sqr 3032 5725

mod inv 356650 861901

Table 1: Execution time (in clock cycles) of arith-
metic operations in a 160-bit prime field

As specified in Table 1, a multiplication (including mod-
ular reduction) in a 160-bit OPF takes 3588 clock cy-
cles, which is only 582 cycles more than a conventional
(160 × 160)-bit multiplication without modular reduction.
OPF-squaring is about 15% faster than multiplication in
an OPF, whereas addition and subtraction need only one
sixth of the multiplication cycles. Inversion is more than
100 times slower than multiplication. Compared with the
field arithmetic operations of TinyECC, our OPF modular
multiplication is 1.7x faster, modular squaring is 1.9x faster,
while inversion is 2.4x faster.

Next, we simulated the point arithmetic operations of our
implementation, which uses a twisted Edwards curve over
a 160-bit OPF, and compared it with the point arithmetic
of TinyECC. The execution times of point addition and
doubling are given in Table 2

Operation Our work TinyECC

point addition 28867 59070

point doubling 26069 48483

Table 2: Execution time (in cycles) of point addition
and point doubling in a 160-bit EC group

Both the point addition and doubling of our implemen-
tation are much faster than that of TinyECC, which is not
only due to the advanced field arithmetic, but also because
of the more efficient addition/doubling formulae. In de-
tail, the point addition of our implementation outperforms
TinyECC by a factor of more than two, while point doubling
is about 1.86x faster.

To assess the execution time of a scalar multiplication k·P ,
we simulated our implementation as well as TinyECC for
three different 160-bit values for the scalar k. When using
the double-and-add method, the number of point additions
is not constant but depends on the number of non-zero digits
in the NAF representation of k. In the first simulation we
used k = 2159 = 0x80...00, which is a 160-bit scalar with
the minimum Hamming weight, yielding the best possible
execution time. The second simulation was performed with
a random value of k such that the number of point additions
is exactly one third of the bitlength of k, which corresponds
to the average case in terms of execution time. Finally,

we used k = 2160 − 1 = 0xff...ff (i.e. maximum Hamming
weight) as scalar to assess the worst-case execution time.
The results are summarized in Table 3.

Scalar k Our work TinyECC

k = 0x80...00 4408966 11314866

random integer 5920717 16489433

k = 0xff...ff 6746829 23237223

Table 3: Best-case, average, and worst-case execu-
tion time of 160-bit scalar multiplication

The results from Table 3 clearly show that, for all three
different values of k, our implementation is about 2.78x
faster than TinyECC. Obviously, the overall improvement
of our implementation is bigger than the performance gain
due to the underlying field arithmetic. Consequently, not
only the field arithmetic but also the point arithmetic on our
twisted Edwards curve is more efficient than that used by
TinyECC. In fact, the contribution of the OPF arithmetic
to the overall speed-up is about 68%, while the advanced
point addition/doubling formulae contribute roughly 32%.

4.2 Energy Evaluation
In this subsection, we aim to estimate the number of

ECDH key exchange operations a MICAz or IRIS mote can
accomplish before running out of battery. For this, we need
to first figure out the power (resp. energy) consumption
characteristics of the MICAz mote and its micro-controller,
the ATmega128. According to [7], the ATmega128 processor
of a MICAz mote draws an average current of 8mA (at a
supply voltage of 3.0V) when its is active. Since the clock
frequency of the mote is known to be 7.3728MHz, we can
get the energy consumption of one scalar multiplication of
our implementation by a simple calculation of the form
W = U · I · t, whereby U denotes the supply voltage (i.e.
3V when using two conventional 1.5V AA batteries), I the
average current drawn by the processor (i.e. 8mA in our case),
and t the execution time. In our implementation, we have an
average execution time of 5920717 clock cycles, which means
the energy cost of computing a single scalar multiplication
amounts to Wc = U ·I · t = 3V ·8mA ·(5920717/7.3728 ·106) =
19.27mJ. An ECDH key exchange requires each node to
compute two scalar multiplications and to send a message
(containing the public key) to the other node. According
to the energy model described in [8], the energy cost of
transmitting a protocol message is Wt = P · t = 0.185mJ.
Consequently, the overall energy cost of ECDH key exchange
is primarily determined by the computation energy Wc for
two scalar multiplications; the communication energy Wt is
essentially negligible, which was already found before in [17].
Putting everything together, the total energy consumption
of performing an ECDH key exchange is W = 2 ·Wc +Wt =
38.73mJ per node.

Piotrowski et al state in [22] that the rated capacity of a
1.5V AA alkaline battery is about 2500mAh and, according-
ly, two AA batteries can theoretically deliver an energy of
21600Ws. However, the ATmega128 requires a supply volt-
age of at least 2.7V, which means according to [22] that “the
node powered by two AA alkaline batteries uses only 31.25%
of the total capacity, i.e., the node can consume about 6750
Ws until the batteries are useless.” Consequently, we can
perform 6750/(38.73 · 10−3) = 174278 ECDH key exchanges



(using 160-bit keys) before the supply voltage of the MICAz
mote drops below 2.7V.

5. CONCLUSIONS
We presented a highly-optimized implementation of el-

liptic curve cryptography for 8-bit AVR processors such as
used in the MICAz mote and various other sensor nodes.
Our software is able to perform a full 160-bit scalar multi-
plication in only 5.9 · 106 clock cycles on average (i.e. 0.8
seconds on a MICAz), which is about 2.78 times faster than
TinyECC. We achieved this execution time by combining
OPFs (a special type of prime fields) with twisted Edwards
curves, a relatively new family of elliptic curve allowing for
fast point arithmetic. TinyECC, on the other hand, uses
standardized curves and fields that were devised some 15
years ago and do not represent the state of the art anymore.
Roughly two third of the speed-up is due to the more ef-
ficient field arithmetic and about one third is contributed
by the fast point addition/doubling formulae of twisted Ed-
wards curves. Going along with this performance gain is a
reduction of the energy cost of ECC by approximately the
same factor. For example, an ECDH key exchange using our
ECC software requires only one third of the energy of the
ECDH implementation included in TinyECC. As a conse-
quence, a conventional MICAz mote is able to perform over
174,000 ECDH key exchanges before running out of battery.
Our work makes ECDH key exchange more attractive for
wireless sensor networks since high energy consumption is
generally considered the most significant drawback of ECDH
and other ECC-based key establishment techniques.

6. REFERENCES
[1] I. F. Akyildiz and M. C. Vuran. Wireless Sensor Networks.

John Wiley and Sons, 2010.

[2] D. J. Bernstein. Curve25519: New Diffie-Hellman speed
records. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
editors, Public Key Cryptography — PKC 2006, volume
3958 of Lecture Notes in Computer Science, pages 207–228.
Springer Verlag, 2006.

[3] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and
C. Peters. Twisted Edwards curves. In S. Vaudenay, editor,
Progress in Cryptology — AFRICACRYPT 2008, volume
5023 of Lecture Notes in Computer Science, pages 389–405.
Springer Verlag, 2008.

[4] D. J. Bernstein and T. Lange. Faster addition and doubling
on elliptic curves. In K. Kurosawa, editor, Advances in
Cryptology — ASIACRYPT 2007, volume 4833 of Lecture
Notes in Computer Science, pages 29–50. Springer Verlag,
2007.

[5] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints
and Approaches for Distributed Sensor Network Security.
Technical Report #00-010, NAI Labs, Network Associates,
Inc., Glenwood, MD, USA, Sept. 2000.

[6] H. Cohen and G. Frey. Handbook of Elliptic and
Hyperelliptic Curve Cryptography, volume 34 of Discrete
Mathematics and Its Applications. Chapmann &
Hall\CRC, 2006.

[7] Crossbow Technology, Inc. MICAz Wireless Measurement
System. Data sheet, available for download at
http://www.xbow.com/Products/Product_pdf_files/
Wireless_pdf/MICAz_Datasheet.pdf, Jan. 2006.

[8] G. de Meulenaer, F. Gosset, F.-X. Standaert, and
O. Pereira. On the energy cost of communication and
cryptography in wireless sensor networks. In Proceedings of
the 4th IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications

(WIMOB 2008), pages 580–585. IEEE Computer Society
Press, 2008.

[9] H. M. Edwards. A normal form for elliptic curves. Bulletin
of the American Mathematical Society, 44(3):393–422, July
2007.

[10] J. Großschädl. TinySA: A security architecture for wireless
sensor networks. In C. Diot, M. Ammar, C. Sá da Costa,
R. J. Lopes, A. R. Leitão, N. Feamster, and R. Teixeira,
editors, Proceedings of the 2nd International Conference on
Emerging Networking Experiments and Technologies
(CoNEXT 2006), pages 288–289. ACM Press, 2006.

[11] N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang
Shantz. Comparing elliptic curve cryptography and RSA on
8-bit CPUs. In M. Joye and J.-J. Quisquater, editors,
Cryptographic Hardware and Embedded Systems — CHES
2004, volume 3156 of Lecture Notes in Computer Science,
pages 119–132. Springer Verlag, 2004.

[12] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide
to Elliptic Curve Cryptography. Springer Verlag, 2004.

[13] H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson.
Twisted Edwards curves revisited. In J. Pieprzyk, editor,
Advances in Cryptology — ASIACRYPT 2008, volume
5350 of Lecture Notes in Computer Science, pages 326–343.
Springer Verlag, 2008.

[14] Institute of Electrical and Electronics Engineers (IEEE).
IEEE Std 1363-2000: IEEE Standard Specifications for
Public-Key Cryptography, Aug. 2000.

[15] M. K. Jain. Wireless sensor networks: Security issues and
challenges. International Journal of Computer and
Information Technology, 2(1):62–67, July 2011.

[16] Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and
comparing Montgomery multiplication algorithms. IEEE
Micro, 16(3):26–33, June 1996.

[17] C. Lederer, R. Mader, M. Koschuch, J. Großschädl,
A. Szekely, and S. Tillich. Energy-efficient implementation
of ECDH key exchange for wireless sensor networks. In
O. Markowitch, A. Bilas, J.-H. Hoepman, C. J. Mitchell,
and J.-J. Quisquater, editors, Information Security Theory
and Practice — WISTP 2009, volume 5746 of Lecture
Notes in Computer Science, pages 112–127. Springer
Verlag, 2009.

[18] A. Liu and P. Ning. TinyECC: A configurable library for
elliptic curve cryptography in wireless sensor networks. In
Proceedings of the 7th International Conference on
Information Processing in Sensor Networks (IPSN 2008),
pages 245–256. IEEE Computer Society Press, 2008.

[19] P. L. Montgomery. Modular multiplication without trial
division. Mathematics of Computation, 44(170):519–521,
Apr. 1985.

[20] National Institute of Standards and Technology (NIST).
Recommended Elliptic Curves for Federal Government Use.
White paper, available for download at http:
//csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf,
July 1999.

[21] A. Perrig, J. A. Stankovic, and D. Wagner. Security in
wireless sensor networks. Communications of the ACM,
47(6):53–57, June 2004.

[22] K. Piotrowski, P. Langendörfer, and S. Peter. How public
key cryptography influences wireless sensor node lifetime.
In S. Zhu and D. Liu, editors, Proceedings of the 4th ACM
Workshop on Security of Ad Hoc and Sensor Networks
(SASN 2006), pages 169–176. ACM Press, 2006.

[23] Y. Wang, G. Attebury, and B. Ramamurthy. A survey of
security issues in wireless sensor networks. IEEE
Communications Surveys & Tutorials, 8(2):2–23, Apr.
2006.

[24] Y. Zhang and J. Großschädl. Efficient prime-field
arithmetic for elliptic curve cryptography on wireless sensor
nodes. In Proceedings of the 1st International Conference
on Computer Science and Network Technology (ICCSNT
2011), volume 1, pages 459–466. IEEE, 2011.


