
Non-Black-Box Simulation from One-Way Functions

And Applications to Resettable Security

Kai-Min Chung∗ Rafael Pass† Karn Seth‡

November 5, 2012

Abstract

The simulation paradigm, introduced by Goldwasser, Micali and Racko�, is of fundamental
importance to modern cryptography. In a breakthrough work from 2001, Barak (FOCS'01)
introduced a novel non-black-box simulation technique. This technique enabled the construc-
tion of new cryptographic primitives, such as resettably-sound zero-knowledge arguments, that
cannot be proven secure using just black-box simulation techniques.

The work of Barak and its follow-ups, however, all require stronger cryptographic hardness
assumptions than the minimal assumption of one-way functions: the work of Barak requires the
existence of collision-resistant hash functions, and a very recent result by Bitansky and Paneth
(FOCS'12) instead requires the existence of an Oblivious Transfer protocol.

In this work, we show how to perform non-black-box simulation assuming just the exis-
tence of one-way functions. In particular, we demonstrate the existence of a constant-round
resettably-sound zero-knowledge argument based only on the existence of one-way functions.
Using this technique, we determine necessary and su�cient assumptions for several other no-
tions of resettable security of zero-knowledge proofs. An additional bene�t of our approach is
that it seemingly makes practical implementations of non-black-box zero-knowledge viable.

Keywords non-black-box simulations, resettable security, one-way functions, zero-knowledge

1 Introduction

Zero-knowledge (ZK) interactive protocols [GMR89] are paradoxical constructs that allow one player
(called the Prover) to convince another player (called the Veri�er) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Veri�er. Beyond being fascinating
in their own right, ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks.

The zero-knowledge property is formalized using the so-called simulation paradigm: for every
malicious veri�er V ∗, we require the existence of a �simulator� S that, given just the input x, can
indistinguishably reproduce the view of V ∗ in an interaction with the honest prover. (We note

∗Cornell University. Email: chung@cs.cornell.edu.
†Cornell University. Email: rafael@cs.cornell.edu. Work supported in part by a Alfred P. Sloan Fellowship,

Microsoft New Faculty Fellowship, NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197, BSF
Grant 2006317.
‡Cornell University. Email: karn@cs.cornell.edu.

1

that the simulation paradigm extends well beyond the notion of zero-knowledge, and is a crucial
component of modern de�nitions of protocol security.) The most typical way of performing such
a simulation is using black-box simulation [GO94]: here we exhibit a universal simulator S that,
given only black-box access to any (e�cient) V ∗, can reproduce the view of V ∗ in an interaction
with the honest prover. Indeed most zero-knowledge protocols (and more generally protocols for
secure computation) are analyzed using black-box simulators. But several limitations of black-box
simulators are also known; see e.g. [GK96, CKPR01, BGGL01, PTV08].

In a breakthrough result from 2001, Barak [Bar01] demonstrated a new, powerful non-black-
box simulation technique, and used this technique to construct a constant-round public-coin zero-
knowledge argument; by the result of [GK96] such protocols cannot be proved zero-knowledge using
just black-box simulation. In the same year, Barak, Goldwasser, Goldreich and Lindell [BGGL01]
demonstrated that this non-black-box simulation technique could be used to acheive a new crypto-
graphic primitive that cannot be proven secure using black-box simulation, namely resettably-sound
zero-knowledge protocols. In a resettably-sound zero-knowledge protocol, the soundness property is
required to hold even if the malicious prover is allowed to �reset� and �restart� the veri�er. This
model is particularly relevant for cryptographic protocols being executed on embedded devices,
such as smart cards. (Since these devices have neither a built-in power supply, nor a non-volatile
rewritable memory, they can be �reset� by simply disconnecting and reconnecting the power sup-
ply.) Roughly speaking, the reason why non-black-simulation is cruicial for resettably-sound zero-
knowledge protocols is that a black-box simulator has essentially the same �powers� as a malicious
resetting prover (i.e., it can only reset and restart the veri�er); from this observation it follows
that, unless L ∈ BPP, a �good� simulator can be as a successful cheating prover. Since these re-
sults, non-black-box simulation techniques have found applications in various other contexts (see
e.g. [BG02, Pas04, PR05, DGS09]).

One important limitation of the non-black-box simulation technique of Barak [Bar01] (also
present in its follow-up works) is that the technique requires stronger assumptions than those typi-
cally needed for constructing zero-knowledge protocols. In particular, the protocol of Barak (using
the re�nement in [BG02]) relies on the existence of families of collision-resistant hash functions
(CRH), and as a consequence, such hash functions are needed in the above applications too.1

In contrast, for �plain� zero-knowledge (i.e., without, for instance, resettable soundness) one-way
functions are both su�cient and necessary [GMW91, HILL99, OW93], leaving open the following
question, which is the focus of this work.

Do one-way functions su�ce for performing non-black-box simulation (for primitives
that cannot be proven secure using black-box simulation techniques)?

A very recent elegant work by Bitansky and Paneth [BP12a] takes us a step closer to answering
this question. They present a resettably-sound zero-knowledge argument without relying on hash
functions; instead, they rely on the existence of an oblivious transfer (OT) protocol. Although,
the existence of an OT protocol is seemingly a more �complex� assumption than the existence of
CRHs,2 it is not known whether the existence of an OT protocol implies the existence of CRH (or

1The original protocol of Barak relies on a very slightly super-polynomially hard collision-resistant hash function;
the need for super-polynomial hardness was removed in [BG02]

2For instance, all candidate constructions of OT protocols rely on �structured�, number-theoretic or lattice-based,
assumptions. Additionally, all these assumptions are known to imply also the existence of collision-resistance hash
function (but the converse is not true).

2

vice versa). More important, to achieve this result, Bitansky and Paneth devise a quite di�erent
method for performing non-black-box simulation.

1.1 Our Result

In this work, we answer the above question in the a�rmative. We show that for the case of
resettably-sound zero-knowledge, the existence of one-way functions su�ces.

Theorem 1 (Main Theorem). Assume the existence of one-way function. Then there exists a
constant-round resettably-sound zero-knowledge argument for all of NP.

Interestingly, our protocol is quite close in spirit to Barak's original protocol, while dispensing
of the need for collision-resistant hash functions.

By relying on the above main theorem, we establish several other results on resettable security:
Assuming one-way functions, all of NP has

• a constant-round resettably-witness-indistinguishable argument of knowledge;

• a Õ(log n)-round resettable-zero-knowledge argument of knowledge.

(Roughly speaking, in a resettably-witness indistinguishable (resp., zero-knowledge) argument, the
witness-indistinguishability (resp., zero-knowledge) property is required to hold also in the presence
of a resetting veri�er. For the above-mentioned primitives, previous results required additional
cryptographic assumptions (the existence of collision-resistant hash-functions or oblivious transfer
protocols). We additionally show how to eliminate the needs for CRHs in the construction of
[DGS09] of a simultaneously resettable zero-knowledge argument for NP�simultaneous resettability
here means that security (both zero-knowledge and soundness) holds even with respect to resetting
attackers.

We emphasize that for all the above results, the use of non-black-box techniques are inherent.
Our results lead to improvements also for cases when black-box simulation can be used: prior to our
results, resettable zero-knowledge arguments (without the argument of knowledge property) were
known only based on the existence of CRHs, but these protocols were actually proven secure using
black-box simulation. As mentioned above, we are able to establish even the stronger notion of a
resettable zero-knowledge argument of knowledge assuming only one-way functions.

1.2 Our Techniques

To explain our techniques, let us start by very brie�y recalling the idea behind Barak's constant-
round public-coin protocol; we will then explain how this protocol is used to get a resettably-sound
zero-knowledge protocol. The protocol relies on the existence of a family of collision-resistant hash
function h : {0, 1}∗ → {0, 1}n; note that any such family of collision-resistant hash functions can be
implemented from a family of collision-resistant hash functions mapping n-bit string into n/2-bit
strings using tree hashing [Mer89].

Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n), the Prover P and Veri�er V ,
proceed in two stages. In Stage 1, V starts by selecting a function h from a family of collision-
resistant hash function and sends it to P ; P next sends a commitment c = Com(0n) of length
n, and �nally, V next sends a �challenge� r ∈ {0, 1}2n. In Stage 2, P shows (using a witness

3

indistinguishable argument of knowledge) that either x is true, or that c is a commitment to a
�hash� (using h) of a program M (i.e., c = Com(h(M)) such that M(c) = r.

Roughly speaking, soundness follows from the fact that even if a malicious prover P ∗ tries to
commit to (the hash of) some program M (instead of committing to 0n), with high probability, the
string r sent by V will be di�erent from M(c) (since r is chosen independently of c). To prove ZK,
consider the non-black-box simulator S that commits to a hash of the code of the malicious veri�er
V ∗; note that, by de�nition, it thus holds that M(c) = r, and the simulator can use c as a �fake�
witness in the �nal proof. To formalize this approach, the witness indistinguishable argument in
Stage 2 must actually be a witness indistinguishable universal argument (WIUARG) [Mic00, BG02]
since the statement that c is a commitment to a program M of arbitrary polynomial-size, and that
proving M(c) = r within some arbitrary polynomial time, is not in NP. WIUARG are known based
on the existence of CRH and those protocols are constant-round public-coin; as a result, the whole
protocol is constant-round and public-coin.

Finally, Barak et al. [BGGL01] show that any constant-round public-coin zero-knowledge argu-
ment of knowledge can be transformed into a resettable-sound zero-knowledge argument, by simply
having the veri�er generate its (random) message by applying a pseudorandom function to the
current partial transcript.3

Why hash functions are needed Note that hash functions are needed in two locations in Barak's
protocol. First, since there is no a-priori polynomial upper-bound of the length of the code of V ∗, we
require the simulator to commit to the hash of the code of V ∗ . Secondly, since there is no a-priori
polynomial upper-bound on the running-time of V ∗, we require the use of universal arguments (and
such constructions are only known based on the existence of collision-resistant hash functions).

Using signature schemes instead of CRHs Our main idea is noticing that digital signature
schemes�which can be constructed based on one-way functions�share many of the desirable
properties of CRHs. In particular, we will show how to appropriately instantiate (a variant of)
Barak's protocol using signature schemes instead of using CRHs. Recall that ��xed-length� sig-
nature schemes, that allow signing messages of arbitrary polynomial-length (e.g length 2n) using
a length n signature, are known based on just one-way functions [Rom90]. In fact, based on the
same assumption, strong �xed-length signature schemes are known: in a strong signature scheme no
polynomial time attacker can obtain a new signature even for messages that it has seen a signature
on [Gol01]. We observe that such signature scheme share a lot of properties with CRHs. First of
all, they are compressing. More importantly, we observe that by the unforgeability requirement of
strong signatures, no attacker can �nd a single valid signature σ for two distinct messages m,m′�
that is, signatures satisfy a collision-resistance property. Additionally, by using an appropriate
analog of tree hashing, a signature tree could be used to compress arbitrary length messages into a
signature of length n.

So, can we just replace the CRHs in Barak's protocol with strong, �xed-length, signature
schemes? The problem with naively implementing this idea is that the collision-resistance property
of strong signature schemes only holds against an attacker that does not know the secret key. On
the other hand, to generate signatures, knowledge of the secret key is needed. In our application,
the simulator�acting as a prover�needs to be able to generate signature (in order to �hash down�
the program, and in the universal argument) but at the same time, we need to ensure collision-
resistance against cheating provers. So if we let the prover generate the signature keys, simulation

3Strictly speaking, Barak's protocol is not a argument of knowledge, but rather a �weak� argument of knowledge
(see [BG02, BGGL01] for more details), but the transformation of [BGGL01] applies also to such protocol.

4

is easy, but soundness no longer holds, whereas if we let the veri�er generate the signature keys
and only sends the veri�cation key to the prover, then soundness holds, but it is no longer clear
how to perform a simulation. We resolve this issue by using a �hybrid approach�: we let the veri�er
generate the signature keys, but gives the prover access to a single signing query. More precisely,
in an initial stage of the protocol, the veri�er generates a signature key-pair sk, vk and send only
the veri�cation key vk to the prover. Next, in a �signature slot�, the prover sends a message m to
the veri�er, and the veri�er computes and returns a valid signature σ of m (using sk). (We note
that such a signature slot previously used by [LP11] in a quite di�erent context, but as we shall see
shortly, some of their techniques will be useful also to us.) Finally, the protocol proceeds essentially
as in Barak's protocol, but where the CRH is replaced using the signature scheme. Implementing
this is somewhat subtle: First, the statement proved in the WIUARG in Barak's protocol considers
the hash function h (e.g., prover needs to prove statements of the type h(m) = q). In our approach
since �hashing� has been replaced by �signing�, this would require the honest prover to prove things
related to the secret-key (e.g., Signsk(m) = q), but the honest prover does not know sk. This issue is
easily resolved by instead of letting the prover show that signatures used (as �hashes�) verify�i.e.,
that Vervk(m) = q. Another issue is that in Barak's protocol, the honest prover actually needs to
perfom hashes to complete the WIUARG. We resolve this second issue by relying on an instantiation
of Barak's protocol due to Pass and Rosen [PR05], which relies on a special-purpose WIUARG, in
which the honest prover never needs to perform any hashing.4 Now completeness of this protocol
follows in exactly the same way as in [Bar01, PR05].

For soundness, note that since the prover does not get to see sk, soundness follows in a similar
way to Barak's protocol. In fact, if the signature scheme used satis�es strong unforgeability, then
the signature trees are collision-resistant with respect to attackers that get vk and have access to
a signing oracle, and collision-resistance of the signature tree is the only property needed to prove
soundness as in Barak's protocol. (Note that we here only require collision-resistance with respect
to attackers that get a single query to a signing oracle, but the more general result will be useful
when we consider resettable-soundness.)

Let us turn to zero-knowledge. At �rst sight, it seems that we still have an issue. The prover just
gets a single signature, but to complete the simulation, the simulator needs an a-priori unbounded
polynomial number of signatures (to e.g., �hash down� a program of a-priori unbounded polynomial-
size.5) Note, however, that the simulator can always rewind the veri�er to get as many signatures as
it wants and can thus complete the simulation in a similar way to the one used in Barak's protocol.
This approach doesn't quite work: the malicious veri�er V ∗ may not always agree to sign every
message requested by the simulator; we deal with this issue in the same way as in [LP11], rather
than having the simulator send the messages it wants to be signed in the clear, it simply sends a
commitment to them. To make use of such a simulator strategy, we appropriately modify the notion
of a signature tree to consist of signatures of commitments to signatures etc.

So, we now have a zero-knowledge protocol that is based on one-way functions (and is constant-
round). But it is no longer public-coin!

Nonetheless, let us still apply the PRF transformation of [BGGL01] to the protocol (i.e., we
have the veri�er generate its random coins in each round by applying a PRF to the current partial
transcript). Clearly, the protocol is still zero-knowledge (since we only modi�ed the veri�er strategy).
As it turns out, the resulting protocol is actually also resettably-sound: note that, except for the

4In fact, an early version of Barak's protocol also had this property.
5Also in the implementation of the WIUARG, an a-priori unbounded number of �hashes� are needed.

5

signature slot added in the beginning of the protocol, the protocol still is public-coin, and the same
argument as in [GK96, BGGL01] can be used to show that in the public-coin part of the protocol,
rewindings do not �help� a resetting cheating prover. So, in essence, the only �advantages� a resetting
prover gets is that it may rewind the signature slot, and thus get an arbitrary polynomial number of
signatures on messages of its choice. But, as noted above, signature trees are collision-resistant even
with respect to an attacker that gets an arbitrary polynomial number of queries to a signing oracle
and thus resettable-soundness follows in exactly the same way as the (non-resetting) soundness
property.

Beyond resettably-sound zero-knowledge For the applications of a) a constant-round re-
settably witness-indistinguishable argument of knowledge, and b) Õ(log n)-round resettable-zero-
knowledge argument of knowledge for NP, we simply plug in our resettably-sound zero-knowledge
argument of knowledge into the protocols of [CGGM00, BGGL01] with some minor modi�cations.

To achieve simulateously resettable zero-knowledge, we instead instantiate the protocol of Deng,
Goyal and Sahai [DGS09] with signature trees, in exactly the same way as Barak's protocol.
Resettable-soundness follows exactly as in [DGS09], relying on the collision-resistance property
of signature trees. Resettable-zero-knowledge is more tricky though: [DGS09] provides an intri-
cate simulation strategy that combines black-box simulation, using rewinding, and non-black-box
simulation (as in [Bar01]). Roughly speaking, the protocol consists of polynomially many �rewind-
ing slots� (say 2n2), and for each session started by the resetting veri�er, the simulator of [DGS09]
rewinds a polynomial fraction (say 2n) of them twice. Their argument shows that for each such slot,
the rewinding �succeeds� with probability close to 1/2 and the slot gets �solved�; as a consequence,
except with negligible probability, for each session, there exists some slot that is �solved� and this
su�ces for simulating the session. In our instantiation of their protocol, rewinding a slot just once
does not su�ce to �solve� the session (and complete the simulation of that session). Rather we
need polynomially many, say g(n) = poly(|V ∗|) where |V ∗| is the size of the veri�er (including its
auxiliary input), successful rewindings (in order to rewind the signature slot su�ciently many times
to provide the signature trees). We deal with this issue in a straight-forward way: we use exactly
the same rewinding strategy as in [DGS09] but instead rewind each slot (that was being rewound
once in [DGS09]) 3g(n) times. It follows using a slight generalization of the argument in [DGS09]
that each slot that is rewound is successfully solved with probability close to 1/2, and the rest of
the simulation argument continues in identically the same way as [DGS09]. Additionally, rewinding
polynomially many times (as opposed to twice) only increases the running-time by a polynomial
factor (the technical reason for this is that the [DGS09] simulator only performs a constant-number
of recursive rewindings).

A PCP-free construction Just as the construction of Barak's protocol, our constructions rely on
universal arguments, which in turn rely on Probabilistically Checkable Proofs (PCPs). Intriguingly,
the approach of Bitansky and Paneth [BP12a] does not rely on PCPs; on the other hand, it relies
on some other quite heavy machinery: �unobfuscatable functions� [BGI+12] and general secure
two-party computation [GMW91].

As we now sketch, our approach can be instantiated without the use of PCPs, and without
introducing any other machinery. (Indeed, although we have not veri�ed the details, it would seem
that a practical implementation of our protocol can be given by relying on e�cient signatures and
zero-knowledge proofs of committed signatures, as in e.g., [CL01].) Recall that in Barak's protocol
the universal argument is used to prove a statement of the form c is a commitment to a hash of
a program M such that M(c) = r. Also recall that (in the [PR05] variant of [Bar01]) the honest

6

prover never needs to engage in the universal argument, it is only the simulator that needs to
prove the above statement. Rather than providing a universal argument, we let the simulator prove
this statement piecemeal, step-by-step, using a strategy that is very similar to one employed in
the �impossibility of instantiating random oracles� result of [CGH04]. (On a high-level, this type
of piecemeal decomposition is also somewhat similar to what is done in the impossibility result of
[BGI+12]; as such our approach brings out the connection between the techniques from [Bar01]
and [BP12a].) More precisely, in the actual protocol, the veri�er generates a key-pair vk′, sk′ for
a signature scheme and sends vk′ to the prover. The prover then provides the veri�er with a
commitment c1 to a signature-tree of a start-con�guration, a commitment c2 to a signature-tree of a
current-con�guration, a commitment c3 to a signature-tree of a next-con�guration, a commitment c4,
and a witness indistinguishable argument of knowledge that either a) x ∈ L or b) start-con�guration
= next-con�guration or c) c4 is a commitment to a signature (using sk′) of c1, c2 and if performing
one step of computation given current-con�guration leads to next-con�guration. (Note that since
we use signature-trees, veri�cation of condition b) and c) can both be done in time polylogarithmic
in the length of the con�gurations). If the argument of knowledge is accepting, the veri�er signs
c1, c3. Roughly speaking, the above �slot� makes it possible for the simulator to get a signature
on (commitments to signature-trees) (s0, s0) where s0 is the initial con�guration of M(σ) (using
condition b), and next by rewinding the veri�er su�ciently many times to get signatures on later
con�gurations (s0, st) in the computation of M(σ) (using condition c). Thus, �nally, the simulator
can get a signature on (s0, sT) where sT is the terminating con�guration of the computation of
M(σ). The simulator can then use this signature to convince the veri�er that M(c) = r where M is
the program committed to in c. To formally prove soundness, we actually need to slightly modify
the de�nition of a signing slot (as in [LP11]) to additionally require the prover to �rst proves (using
a witness indistinguishable argument of knowledge) that the message m it request a signature of
is a valid commitment to a value that it know, or that x ∈ L; as in [LP11], the reason we require
this additional argument of knowledge is to ensure that if an attacker is able to come up with root
of a signature-tree, then we can extract out the whole tree it has �committed� to. A complete
formalization of this approach will appear in the �nal version of this paper.

1.3 Subsequent Work

A very recent elegant work by Bitansky and Paneth [BP12b] (developed subsequently to our results)
shows an alternative approach for obtaining resettably-sound arguments (and related primitives)
from one-way functions, by �rst constructing functions that not even are �approximately� unobfus-
catable, and relying on the connection between resettable-soundness and unobfuscatable functions
from [BP12a].

1.4 Outline

In Section 3 we provide formal de�nitions of signature trees, and provide collision-resistance prop-
erties of such trees. To formalize our construction of resettably-sound zero-knowledge in a modular
way, in Section 4, we �rst consider an �oracle-aided� model, in which players have access to a signing
oracle. We �rst show that the universal argument construction of Barak and Goldreich [BG02] can
be instantiated using one-way functions in such an oracle-aided model, by replacing �hashing� with
�signing�. We next show how to instantiate Pass and Rosen's [PR05] variant of Barak protocol in
the same way (by relying on the oracle-aided construction of universal arguments). This leads to

7

a constant-round oracle-aided public-coin zero-knowledge argument of knowledge, satifying a key
property: the honest prover never needs to access the oracle. We may next apply the transformation
of [BGGL01] to this protocol to obtain an oracle-aided resettably-sound zero-knowledge argument
of knowledge satisfying the same key property (the results of [BGGL01] relativize and thus we can
directly apply them also to oracle-aided protocols).

In Section 5, we present a general transformation, transforming any oracle-aided resettably-
sound zero-knowledge argument (of knowledge) satisy�ng the above key property, into a resettably-
sound zero-knowledge argument (of knowledge) in the �plain� model (i.e. without any oracle): the
transformation simply consists of adding a signature slot at the beginning of the protocol. Taken
together with our result in Section 4, this yields a constant-round resettably-sound zero-knowledge
argument of knowledge for NP based on one-way functions.

In Section 6, applications (such as simultanously resettable zero-knowledge) are presented.

2 Preliminaries

We assume familiarity with interactive arguments, arguments of knowledge and witness indistin-
guishability; see the Appendix A for more details.

2.1 Notations

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. Given a string x, we
let xi denote the i-th bit of x, and x≤i denote the pre�x of x upto and including its ith bit. By a
probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape as input.
If M is a probabilistic algorithm, then for any input x, the notation �Mr(x)� denotes the output
of the M on input x when M 's random tape is �xed to r, while M(x) represents the distribution
of outputs of Mr(x) when r is chosen uniformly. An oracle algorithm is a machine that gets oracle
access to another machine. Given a probabilistic oracle algorithm M and a probabilistic algorithm
A, we let MA(x) denote the probability distribution over the outputs of the oracle algorithm M on
input x, when given oracle access to A.

By x ← S, we denote an element x is sampled from a distribution S. If F is a �nite set,
then x ← F means x is sampled uniformly from the set F . To denote the ordered sequence in
which the experiments happen we use semicolon, e.g. (x ← S; (y, z) ← A(x)). Using this notation
we can describe probability of events. For example, if p(·, ·) denotes a predicate, then Pr[x ←
S; (y, z)← A(x) : p(y, z)] is the probability that the predicate p(y, z) is true in the ordered sequence
of experiments (x ← S; (y, z) ← A(x)). The notation {(x ← S; (y, z) ← A(x) : (y, z))} denotes
the resulting probability distribution {(y, z)} generated by the ordered sequence of experiments
(x← S; (y, z)← A(x)).

2.2 Zero Knowledge

We start by recalling the de�nition of zero knowledge from [GMR89].

De�nition 1 (Zero-knowledge [GMR89]). An interactive protocol (P, V) for language L is zero-
knowledge if for every PPT adversarial veri�er V ∗, there exists a PPT simulator S such that the
following ensembles are computationally indistinguishable over x ∈ L:

{ViewV ∗ 〈P, V ∗(z)〉 (x)}x∈L,z∈{0,1}∗ ≈ {S(x, z)}x∈L,z∈{0,1}∗

8

2.3 Resettably Sound Zero Knowledge

Let us recall the de�nition of resettable soundness due to [BGGL01].

De�nition 2 (Resettably-sound Arguments [BGGL01]). A resetting attack of a cheating prover P ∗

on a resettable veri�er V is de�ned by the following two-step random process, indexed by a security
parameter n.

1. Uniformly select and �x t = poly(n) random-tapes, denoted r1, . . . , rt, for V , resulting in
deterministic strategies V (j)(x) = Vx,rjde�ned by Vx,rj (α) = V (x, rj , α),6 where x ∈ {0, 1}n

and j ∈ [t]. Each V (j)(x) is called an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the V (j)(x)'s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus
de�ning V (j)(x), and conducts a complete session with it.

Let (P, V) be an interactive argument for a language L. We say that (P, V) is a resettably-sound
argument for L if the following condition holds:

• Resettable-soundness: For every polynomial-size resetting attack, the probability that in some
session the corresponding V (j)(x) has accepted and x /∈ L is negligible.

We will also consider a slight weakening of the notion of resettable soundness, where the state-
ment to be proven is �xed, and the veri�er uses a single random tape (that is, the prover cannot
start many independent instances of the veri�er).

De�nition 3 (Fixed-input Resettably-sound Arguments [PTW09]). An interactive argument (P, V)
for a NP language L with witness relation RL is �xed-input resettably-sound if it satis�es the fol-
lowing property: For all non-uniform polynomial-time adversarial prover P ∗, there exists a negligible
function µ(·) such that for every all x /∈ L,

Pr[R← {0, 1}∞; (P ∗VR(x,pp), VR)(x) = 1] ≤ µ(|x|)

As the following claim shows, any zero-knowledge argument of knowledge satisfying the weaker
notion can be transformed into one that satis�es the stronger one, while preserving zero-knowledge
(or any other secrecy property against malicious veri�ers.

Claim 2. Let (P, V) be a �xed-input resettably sound zero-knowledge (resp. witness indistinguish-
able) argument of knowledge for a language L ∈ NP . Then there exists a protocol (P ′, V ′) that is a
(full-�edged) resettably-sound zero-knowledge (resp. witness indistinguishable) argument of knowl-
edge for L.

Proof. (Sketch): We rely on the PRF transformation used in [BGGL01], but since we are dealing
with private-coin protocols, we simply apply it to the random tape of the veri�er. More precisely,
the new veri�er V ′ now chooses its random coins by applying a PRF to the statement x, and then
continues its execution by simulating V using these random coins. (The honest prover remains un-
changed). It follows using identically the same proof as in [BGGL01] that the new protocol satis�es
the require properties (note that the argument of knowledge property is necessary in this argument).
Since we have only modi�ed the veri�er strategy, zero-knowledge (or witness indistinguishability)
still holds.

6Here, V (x, r, α) denotes the message sent by the strategy V on common input x, random-tape r, after seeing the
message-sequence α.

9

3 Signature Trees

In this section, we de�ne an analogue of Merkle-hash trees using signature schemes. Towards this, we
will rely on the existence of strong, �xed-length, deterministic secure signature schemes. Recall that
in a strong signature scheme, no polynomial-time attacker having oracle access to a signing oracle
can produce a valid message-signature pair, unless it has received this pair from the signing oracle.
The signature scheme being �xed-length means that signatures of arbitrary (polynomial-length)
messages are of some �xed polynomial length. Deterministic signatures don't use any randomness
in the signing process once the signing key has been chosen. In particular, once a signing key has
been chosen, a message m will always be signed the same way.

De�nition 4 (Strong Signatures). A strong, length-`, signature scheme SIG is a triple (Gen,Sign,Ver)
of PPT algorithms, such that

1. for all n ∈ N,m ∈ {0, 1}∗,

Pr[(sk, vk)← Gen(1n), σ ← Signsk(m);Vervk(m,σ) = 1 ∧ |σ| = `(n)] = 1

2. for every non-uniform PPT adversary A, there exists a negligible function µ(·) such that

Pr[(sk, vk)← Gen(1n), (m,σ)← ASignsk(·)(1n);Vervk(m,σ) = 1 ∧ (m,σ) /∈ L] ≤ µ(n),

where L denotes the list of query-answer pairs of A's queries to its oracle.

Strong, length-`, deterministic signature schemes with `(n) = n are known based on the existence
of OWFs; see [NY89, Rom90, Gol01] for further details. In the rest of this paper, whenever we refer
to signature schemes, we always means strong, length-n signature schemes.

Let us �rst note that signatures satisfy a �collision-resistance� property.

Claim 3. Let SIG = (Gen, Sign,Ver) be a strong (length-n) signature scheme. Then, for all non-
uniform PPT adversaries A, there exists a negligible function µ(·) such that for every n ∈ N,

Pr[(sk, vk)← Gen(1n), (m1,m2, σ)← ASignsk(·)(1n, vk);Vervk(m1, σ) = Vervk(m2, σ) = 1] ≤ µ(n)

Proof. Assume for contradiction that there exists some non-uniform polynomial-time A such that A
breaks �collision-resistance� property of SIG with probability 1

p(n) for in�nitely many n ∈ N, where
p is a polynomial. We show that A can be used to break the strong unforgeability property of
SIG. More precisely, note that if A outputs a valid signatures (m1, σ), (m2, σ) without querying
the signing oracle with m1 and m2 and receiving σ as a response to both queries, then A already
breaks the security of the signature scheme. Thus w.l.o.g. we may assume A queries both m1 and
m2 to the signing oracle and receives σ as a response. We then simulate A, recording the previous
messages queried to the oracle along with the responses. At each point during the execution of A,
before forwarding the next query m to the oracle, we test if any of the previously received signatures
are valid signatures for m. If so, we output m together with such a signature σ. Notice that if A
always queries m1 and m2 and receives σ as a response, then we will intercept whichever of the two
A queries second. Thus, for in�nitely many n, with probability ≥ 1

p(n) , we forge a signature σ for
some m before ever querying the signing oracle and receiving σ as a response.

10

We now de�ne an analog of Merkle-hash tree which we call signature trees and show that they
also satisify a collision-resistant property. We index each node of a complete binary tree Γ of depth
d by a binary string of length at most d, where the root is indexed by the empty string λ, and each
node indexed by γ has left and right children indexed γ0 and γ1, respectively.

De�nition 5 (Signature Trees). Let SIG = (Gen, Sign,Ver) be a strong, length-n signature scheme.
Let (sk, vk) be a key-pair of SIG, and s be a string of length 2d. A signature tree of the string s
w.r.t. (sk, vk) is a complete binary tree of depth d, de�ned as follows.

• A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

• An internal node lγ indexed by γ ∈
⋃d−1
i=0 {0, 1}i satis�es that Vervk((lγ0, lγ1), lγ) = 1.

Note that to verify whether a Γ is a valid signature-tree of a string s w.r.t. the signature scheme
SIG and the key-pair (sk, vk) knowledge of the secret key sk is not needed. However, to create a
signature-tree for a string s, the secret key sk is needed.

The following notion of a signature path is the natural analog of an authentication path in a
Merkle-tree.

De�nition 6 (Signature Path). A signature path w.r.t. SIG, vk and a root lλ for a bit b at
leaf γ ∈ {0, 1}d is a vector ~ρ = ((l0, l1), ((lγ≤10, lγ≤11), . . . (lγ≤d−10, lγ≤d−11)) such that for every
i ∈ {0, . . . , d − 1}, Vervk((lγ≤i0, lγ≤i1), lγ≤i

) = 1. Let PATHSIG(~ρ, b, γ, lλ, vk) = 1 if ρ is a signature
path w.r.t. SIG, vk, lλ for b at γ.

The following claim states that signature trees also satisfy an appropriate collision-resistance
property: no non-uniform PPT attacker having oracle access to a signing oracle can output a root
and valid signature paths for both 0 and 1 at some leaf γ.

Claim 4. Let SIG = (Gen, Sign,Ver) be a strong, length-n, signature scheme. Then, for every
non-uniform PPT adversary A, there exists a negligible function µ such that for every n ∈ N,

Pr[(sk, vk)← Gen(1n), (~ρ0, ~ρ1, γ, lλ)← ASignsk(·)(1n, vk);

∀b ∈ {0, 1} PATHSIG(~ρb, b, γ, lλ, vk) = 1] ≤ µ(n)

Proof. The claim directly follows from Claim 3 since any two valid signature-paths with the same
root but di�erent leaf value must contain a collision for the underlying signature scheme.

3.1 Sig-Com Schemes

For the technical reason explained in the introduction, we will rely on variant of signature trees
consisting of alternating signatures and commitments. To formalize this, we consider the notion of
a �sig-com� scheme:

De�nition 7 (Sig-Com Schemes). Let SIG = (Gen, Sign, Ver) be a strong, length-n, signature
scheme, and let Com be a non-interactive commitment schemes. De�ne SIG′ = (Gen′, Sign′,Ver′) to
be a triple of PPT machines de�ned as follows:

• Gen′ = Gen.

11

• Sign′sk(m) : compute a commitment c = Com(m; τ) using a uniformly selected τ , and let
σ = Signsk(c); output (σ, τ)

• Ver′vk(m,σ, τ) : Output 1 i� Vervk(Com(m, τ), σ) = 1.

We call SIG′ the Sig-Com Scheme corresponding to SIG and Com.

Note that the above de�nition of a sig-com scheme assumes that Com is a non-interactive
commitment scheme. This is only for convenience of notation; the above de�nition, as well as
all subsequent results directly apply also to 2-round commitment (i.e., families of non-interactive
commitment schemes, as in [Nao91]), by simply adding the �rst message to the veri�cation key of
the sig-com scheme.

Sig-com schemes also satisfy a collision-resistant property:

Claim 5 (Collision Resistance of Sig-Coms). Let SIG = (Gen, Sign,Ver) be a strong, length-n sig-
nature scheme, Com be non-interactive commitment scheme, and let SIG′ = (Gen′,Sign′,Ver′) be the
sig-com scheme corresponding to SIG and Com. Then, for any non-uniform PPT adversary A, there
exists a negligible function µ such that for all n ∈ N:

Pr[(sk, vk)← Gen(1n), (σ,m1,m2, τ1, τ2)← ASignsk(·)(1n, vk);

m1 6= m2,Ver
′
vk(m1, σ, τ1) = Ver′vk(m2, σ, τ2) = 1] ≤ µ(n)

Proof. Note that by the binding property of Com, no non-uniform PPT can output a valid com-
mitment c to two di�erent messages m1 6= m2 except with negligible probability. Thus, except
with negligible probability, a successful non-uniform PPT attacker must output a signature for two
di�erent commitments c1 6= c2, violating collision-resistance of SIG (i.e., Claim 3).

Note that in Claim 5, the attacker gets oracle access to a signature oracle (for SIG) as opposed
to a sig-com oracle. We may now de�ne sig-com trees and sig-com paths in an analogous way to
(plain) signature trees and paths.

De�nition 8 (Sig-Com Trees). Let SIG = (Gen, Sign, Ver) be a strong, length-n signature scheme,
let Com be a non-interactive commitment and let SIG′ = (Gen′,Sign′,Ver′) be the sig-com scheme
corresponding to SIG and Com. Let (sk, vk) be a key-pair of SIG′, and s be a string of length 2d. A
signature tree of the string s w.r.t. (sk, vk) is a complete binary tree of depth d, de�ned as follows.

• A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

• An internal node lγ indexed by γ ∈
⋃d−1
i=0 {0, 1}i satis�es that there exists some τγ such that

Ver′vk((lγ0, lγ1), lγ , τγ) = 1.

De�nition 9 (Sig-Com Path). Let SIG′ = (Gen′, Sign′, Ver′) be a sig-com scheme. A sig-com path
w.r.t. SIG′, vk and a root lλ for a bit b at leaf γ ∈ {0, 1}d is a vector ~ρ = ((l0, l1, τλ), ((lγ≤10, lγ≤11, τγ≤1

),
. . . , (lγ≤d−10, lγ≤d−10, τγ≤d−1

) such that for every i ∈ {0, . . . , d− 1}, Ver′vk((lγ≤i0, lγ≤i1), lγ≤i
, τγ≤i

)) =

1. Let PATHSIG′(~ρ, b, γ, lλ, vk) = 1 if ~ρ is a signature path w.r.t. SIG′, vk, lλ for b at γ.

Sig-com trees also satisfy a collision-resistance property:

12

Claim 6. Let SIG = (Gen, Sign, Ver) be a strong, length-n signature scheme, let Com be a non-
interactive commitment and let SIG′ = (Gen′,Sign′,Ver′) be the sig-com scheme corresponding to SIG
and Com. Then, for every non-uniform PPT adversary A, there exists a negligible function µ such
that for every n ∈ N,

Pr[(sk, vk)← Gen(1n), (~ρ0, ~ρ1, γ, lλ)← ASignsk(·)(1n, vk);

∀b ∈ {0, 1} PATHSIG′(~ρb, b, γ, lλ, vk) = 1] ≤ µ(n)

Proof. As in Claim 4, the claim follows directly from Claim 5 since any two valid sig-com paths
with the same root but di�erent leaf values must contain a collision for the underlying sig-com
scheme.

Canonical Sig-com Schemes Throughout the rest of the paper, we consider sig-com schemes SIG′

and sig-com trees corresponding to a strong, length-n deterministic signature scheme SIG and a non-
interactive commitment Com that generates n2 bits long commitments to 2n bits strings. Thus,
each node of the sig-com tree is an n-bit signature of an n2 bits commitment of the two signatures
of the children nodes. Hereafter, we refer to such a SIG′ as a canonical sig-com scheme.

4 Oracle-Aided Resettably-sound Zero Knowledge Protocols

In this section we show how to construct a resettably-sound ZK argument in an oracle-aided model
where prover and veri�er additionally have access to a public parameter generated prior to the
interaction (in our protocol, this will be the veri�cation key for a signature scheme), and, further
the prover has access to an oracle, also generated prior to the interaction (in our protocol, this will
be a signature/sig-com oracle).

More formally, let O be a probabilistic algorithm that on input a security parameter n, outputs a
polynomial-length (in n) public-parameter pp, as well as the description of an oracle O. The oracle-
aided execution of an interactive protocol with common input x between a prover P with auxiliary
input y and a veri�er V consist of �rst generating pp, O ← O(1|x|) and then letting PO(x, y, pp)
interact with V (x, pp).

De�nition 10 (Oracle-aided Interactive Arguments). A pair of oracle algorithms (P, V) is an O-
oracle aided argument for a NP language L with witness relation RL if it satis�es the following
properties:

• Completeness: There exists a negligible function µ(·), such that for all x ∈ L, if w ∈ RL(x),

Pr[pp, O ← O(1|x|); (PO(w), V)(x, pp) = 1] = 1− µ(|x|)

• Soundness: For all non-uniform polynomial-time adversarial prover P ∗, there exists a negli-
gible function µ(·) such that for every all x /∈ L,

Pr[pp, O ← O(1|x|); (P ∗O, V)(x, pp) = 1] ≤ µ(|x|)

Additionally, if the following condition holds, (P, V) is an O-oracle aided argument of knowl-

edge:

13

• Argument of knowledge: There exists a expected PPT algorithm E such that for every polynomial-
size P ∗, there exists a negligble function µ(·) such that for every x,

Pr[pp, O ← O(1|x|);w ← EP
∗O(x,pp)(x, pp);w ∈ RL(x)]

≥ Pr[pp, O ← O(1|x|); (P ∗O, V)(x, pp) = 1]− µ(|x|)

De�nition 11 (Oracle-aided Resettably-sound Interactive Arguments). An O-oracle aided resetting
attack of a cheating prover P ∗ on a resettable veri�er V is de�ned by the following three-step random
process, indexed by a security parameter n.

1. An initial setup where a public parameter and an oracle are generated: pp, O ← O(1n). P ∗ is
given pp and oracle access to O.

2. Uniformly select and �x t = poly(n) random-tapes, denoted r1, . . . , rt, for V , resulting in
deterministic strategies V (j)(x) = Vx,rjde�ned by Vx,rj (α) = V (x, rj , α), where x ∈ {0, 1}n

and j ∈ [t]. Each V (j)(x) is called an incarnation of V .

3. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the V (j)(x)'s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus
de�ning V (j)(x), and conducts a complete session with it.

Let (P, V) be an O-oracle aided interactive argument for a language L. We say that (P, V) is
an O-oracle aided resettably-sound argument for L if the following condition holds:

• O-oracle aided resettable soundness: For every polynomial-size resetting attack, the probability
that in some session the corresponding V (j)(x) has accepted and x /∈ L is negligible.

Towards our goal of constructing of oracle-aided resettably-sound zero-knowledge, we now de�ne
and construct an oracle-aided version of universal arguments.

4.1 Oracle-aided Universal Arguments

Universal arguments (introduced in [BG02] and closely related to CS-proofs [Mic00]) are used in
order to provide �e�cient" proofs to statements of the form y = (M,x, t), where y is considered
to be a true statement if M is a non-deterministic machine that accepts x within t steps. The
corresponding language and witness relation are denoted LU and RU respectively, where the pair
((M,x, t), w) is in RU if M (viewed here as a two-input deterministic machine) accepts the pair
(x,w) within t steps. Notice that every language in NP is linear time reducible to LU . Thus, a
proof system for LU allows us to handle all NP-statements. In fact, a proof system for LU enables
us to handle languages that are beyond NP, as the language LU is NE-complete (hence the name
universal arguments).7 We here provide an oracle-aided variant of the [BG02] de�nition of universal
arguments.

De�nition 12 (Oracle-aided Universal Argument). An oracle-aided protocol (P, V) is called an
O-oracle-aided universal argument system if it satis�es the following properties:

7Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to LU

14

• E�cient veri�cation: There exists a polynomial p such that for any y = (M,x, t), and for any
pp, O generated by O, the total time spent by the (probabilistic) veri�er strategy V , on common
input y, pp, is at most p(|y|+ |pp|). In particular, all messages exchanged in the protocol have
length smaller than p(|y|+ |pp|).

• Completeness with a relatively e�cient oracle-aided prover: For every (y = (M,x, t), w) in
RU ,

Pr[pp, O ← O(1|y|); (PO(w), V)(y, pp) = 1] = 1.

Furthermore, there exists a polynomial q such that the total time spent by PO(w), on common
input y = (M,x, t), pp, is at most q(TM (x,w) + |pp|) ≤ q(t + |pp|), where TM (x,w) denotes
the running time of M on input (x,w).

• Weak proof of knowledge for adaptively chosen statements: For every polynomial p there exists
a polynomial p′ and a probabilistic polynomial-time oracle machine E such that the following
holds: for every non-uniform polynomial-time oracle algorithm P ∗, if

Pr[pp, O ← O(1n);R← {0, 1}∞; y ← P ∗OR (pp) : (P ∗OR (pp), V (y, pp)) = 1] > 1/p(n)

then

Pr[pp, O ← O(1n);R, r ← {0, 1}∞; y ← P ∗OR (pp) : ∃w = w1, . . . wt ∈ RU (y) s.t.

∀i ∈ [t], E
P ∗OR
r (pp, y, i) = wi] >

1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU}.

Note that our proof of knowledge condition is somewhat di�erent from the one used in [BG02]
in that we allow the (cheating) prover to adaptively choose the statement to be proved, after having
seen the public parameter, and having interacted with its oracle.

Nevertheless, as we shall see, the construction of [BG02] and their analysis will be useful to us.
Recall that in the construction of [BG02] tree hashing is used to hash down a �long� PCP proof into
a �xed-length �tree root�; the soundness property relies on collision resistant of this tree hashing.
Let SIG′ be a canonical sig-com scheme with SIG = (Gen,Sign, Ver) and Com being its underlying
signature scheme and commitment scheme. We observe that if we replace the use of tree hashing in
[BG02] scheme with a sig-com tree using SIG′, then the resulting protocol is an OSIG-aided universal
argument for the following signature oracle OSIG.

De�nition 13 (Signature Oracle). Given a signature scheme SIG = (Gen,Sign,Ver), we de�ne a
signature oracle OSIG as follows: On input a security parameter n, OSIG(1n) generates (vk, sk) ←
Gen(1n) and lets pp = vk and O(m) = Signsk(m) for every m ∈ {0, 1}poly(n).

In fact, the universal argument has an even stronger completeness property that will be useful
for us: completeness hold even if the prover only gets access to a sig-com oracle (instead of a
signature oracle), and even if this is an arbitrary (not necessarily using the honest sign and commit
algorithms) sig-com oracle, as long as the oracle outputs valid sig-com's (for messages of a certain
�xed length) with overwhelming probability. More formally,

15

De�nition 14 (Valid Sig-com Oracle). An oracle O′ is a valid (SIG′, `) oracle if there is a negligible
µ(·) such that for every n ∈ N , the following holds with probability 1 − µ(n) over pp, O ← O′(1n):
for every m ∈ {0, 1}`(n), O(m) returns (σ, τ) such that Ver′vk(m,σ, τ) = 1 with probability at least
1− µ(n).

We note that oracles that use arbitrarily biased randomness for commitments are also considered
valid sig-com oracles. (These are precisely the kind of oracles we will be forced to use later on).

De�nition 15. An OSIG-aided universal argument (P, V) has (SIG′, `)-completeness if there exists
a prover P ′ such that the completeness condition holds for (P ′, V) when the oracle OSIG is replaced
by any valid (SIG′, `) oracle O′.

We now have the following theorem.

Theorem 7. Let SIG′ be a canonical sig-com scheme with SIG and Com being its underlying signa-
ture scheme and commitment scheme. Then there exists a (SIG′, `)-complete OSIG-aided universal
argument with `(n) = 2n.

The proof of the theorem identically follows that of Barak and Goldreich [BG02], with a minor
modi�cation to deal with adaptively chosen statements when proving the weak argument of knowl-
edge property. For completeness, we provide a full proof in Appendix B (very closely following the
presentation of [BG02]).

4.2 Oracle-aided Zero-Knowledge Protocols

We now turn to constructing oracle-aided resettably-sound zero-knowledge protocols. We start by
de�ning a strong notion of an O-oracle-aided version of ZK. First of all, we restrict to protocols
where the honest prover does not access the oracle. Secondly, we require that simulation can be
performed given oracle access to any valid SIG′ oracle. These two restrictions will be important
when we later instantiate the oracle-aided protocol in the plain model.

De�nition 16 (Oracle-aided Zero-Knowledge). A pair of algorithms (P, V) is (SIG′, `)-oracle
aided zero-knowledge for a NP language L with witness relation RL if for every polynomial-
time adversarial veri�er V ∗, there exists a simulator S, such that for every valid (SIG′, `)-oracle O′,
the following ensembles are indistinguishable over x ∈ L,

{pp, O ← O′(1|x|) : (pp,ViewV ∗(P (w), V ∗(z))(x, pp))}x∈L,w∈RL(x),z∈{0,1}∗

≈ {pp, O ← O′(1|x|) : (pp, SO(x, z, pp))}x∈L,w∈RL(x),z∈{0,1}∗

We now turn to the question of constructing a protocol that satis�es the above requirements.
Note that, as a �rst attempt, we could try constructing a constant-round public-coin ZK protocol by
replacing the tree hashing in Barak's protocol [Bar01] with sig-com trees, and then apply the PRF
transformation of [BGGL01] to achieve resettable soundness. While this indeed could be used to get
a resettably-sound ZK protocol in the oracle-aided model, the resulting protocol would require the
honest prover to make polynomially many queries to the oracle (to complete the WIUARG). To get
around this, we instead rely on a variant of Barak's protocol used in Pass and Rosen [PR05], which
provides a �special-purpose� implementation of the WIUARG used in Barak's protocol in which the
honest prover does not need to perform any �hashing�.8

8In fact, early versions of Barak's protocol also relied on such a special-purpose implementation of WIUARG.

16

More precisely, our protocol proceeds as follows. In Stage 1, P sends a commitment c =
Com(02n), and then V sends back a challenge r ∈ {0, 1}n as in Barak's protocol. In Stage 2, P
and V �rst execute an �encrypted� universal argument (PUA, VUA) of the statement that �c is a
commitment to a sig-com tree root of a program M and M(c) = r,� where instead of sending the
message in the clear, the prover sends commitments to the messages. The honest prover simply
sends commitments to 0 (and thus will fail in this encrypted universal argument). Finally, P and V
execute a witness-indistinguishable argument of knowledge of the statement that �x ∈ L OR VUA
accepts in the encrypted universal argument.

Common Input: An instance x of a language L ∈ NP with witness relation RL.

Auxiliary input to P : A witness w such that (x,w) ∈ RL.

Primitives Used: A canonical sig-com scheme SIG′ with SIG and Com as the underlying signature
and commitment schemes, and a (SIG′, `)-complete OSIG-aided universal argument (PUA, VUA)
with `(n) = 2n.

Set Up: Run (pp, O)← OSIG(1n), add pp to common input for P and V . Furthermore, allow P oracle
access to O.

Stage One (Trapdoor):

P1: Send c0 = Com(02n, τ0) to V with uniform τ0

V1: Send r
$←{0, 1}n to P

Stage Two (Encrypted Universal Argument):

P2: Send c1 = Com(02n, τ1) for uniformly selected τ1

V3: Send r
′, uniformly chosen random tape for VUA

P3: Send c2 = Com(0k, τ2) for uniformly selected τ2, where k is the length of PUA's second
message.

Stage Three: (Main Proof)

P ⇔ V : A WI-AOK 〈PWI, VWI〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈ RL.

2. ∃ 〈p1, p2, τ1, τ2〉 s.t. (〈c0, r, c1, c2, r′, pp〉, 〈p1, p2, τ1, τ2〉) ∈ RL2
(de�ned in Fig. 2).

Figure 1: OSIG-aided ZK Argument of Knowledge.

A formal description of the protocol can be found in Fig. 1 and Fig. 2. Note that, in this
construction, the honest prover P can convince the veri�er by proving x ∈ L in the �nal witness
indistinguishable argument without making any oracle queries. This leads to the following theorem.
The proof of the theorem closely follows [Bar01, PR05] but the proof of the �argument of knowledge�
property requires special care to deal with the fact that a cheating prover may adaptively choose
the statements to be proved in the encrypted universal argument (after having interacted with its
oracle).9 A formal proof of the theorem can be found in Appendix C.

9In [Bar01, PR05] these issue does not arise since di�erent, independently chosen hash-functions are used in Stage
1 and in Stage 2.

17

Relation 1: Let SIG′ a sig-com scheme, with underlying signature scheme SIG and commitment scheme
Com. Let ECC be a binary error-correcting code with constant min-distance and e�cient encoding
algorithm. We say that 〈c0, r, pp〉 ∈ L1 if ∃〈τ0, d, lλ, C, {~ρi}i∈[2d]〉 such that

• c0 = Com((d, lλ), τ0)

• (d, lλ) are the depth and root of a sig-com tree for C w.r.t. pp

• Each ~ρi is a valid sig-com path for leaf i of this sig-com tree. That is,

PATHSIG′
(~ρi, Ci, i, lλ, pp) = 1 for each i.

• C = ECC(Π) for some circuit Π

• Π(c0) = r.

We let RL1
be the witness relation corresponding to L1.

Relation 2: Let L1 be described as above, with respect to SIG′ and ECC. Let (PUA, VUA) be a (SIG′, `)-
complete OSIG-aided universal argument with `(n) = 2n. We say that 〈c0, r, c1, c2, r′, pp〉 ∈ L2 if
∃〈p1, p2, τ1, τ2〉 such that

• c1 = Com(p1, τ1), c2 = Com(p2, τ2).

• (p1, r
′, p2) constitutes an accepting (PUA, VUA) transcript for 〈c0, r〉 ∈ L1.

We let RL2 be the witness relation corresponding to L2.

Figure 2: Relations used in the OSIG-aided ZK protocol in Fig. 1.

Theorem 8. Let SIG′ be a canonical sig-com scheme with SIG and Com being its underlying signature
scheme and commitment scheme. Then there exists an OSIG-oracle aided argument of knowledge
(P, V) for NP; additionally,

1. (P, V) is constant-round and public-coin;

2. P does not make any queries to its oracle;

3. (P, V) is (SIG′, `)-oracle-aided zero-knowledge for `(n) = 2n.

Finally, we apply the PRF transformation of [BGGL01] to the OSIG-oracle aided ZK protocol
(P, V) constructed above to achieve OSIG-oracle aided resettable soundness More precisely, we mod-
ify the public-coin veri�er V to a �PRF-veri�er� Ṽ that samples a seed s for a PRF fs at beginning
and then generates each veri�er message by applying fs to the current transcript. The proof in
[BGGL01] relativizes and as a consequence we have the following theorem:

Theorem 9. Let SIG′ be a canonical sig-com scheme with SIG and Com being its underlying signature
scheme and commitment scheme. Then there exists an OSIG-aided constant-round resettably-sound
argument of knowledge (P, V) for NP; additionally,

1. P does not make any queries to its oracle;

2. (P, V) is (SIG′, `)-oracle-aided zero-knowledge for `(n) = 2n.

18

5 Resettably-sound Zero Knowledge in the Plain Model

Let SIG′ be a canonical sig-com scheme with SIG and Com being its underlying signature scheme
and commitment scheme. Let (P, V) be an OSIG-aided resettably sound argument of knowledge for
a language L with witness relation RL, where P does not make any queries to its oracle. Consider
the protocol (P̃ , Ṽ) that on common input x, and auxiliary prover input w proceeds as follows.

1. Init: Ṽ runs (sk, vk)← Gen(1n) and sends vk to P̃ .

2. Signing Slot:

• P̃ generates c = Com(02n; τ), where τ is uniformly sampled, and sends c to Ṽ .

• Ṽ replies with σ = Signsk(c).

• P̃ aborts if σ is not a valid signature of c.

3. Body: Invoke the protocol (P (w), V)(x, pp) with pp = vk.

Lemma 10. If (P, V) is (SIG′, 2n)-oracle-aided zero-knowledge for L with witness relation RL, then
(P̃ , Ṽ) is a �xed-input resettably-sound zero-knowledge argument of knowledge for L with witness
relation RL.

Note that here we only obtain a �xed-input resettably sound argument of knowledge (de�ned in
De�nition 3), but this can be transformed into a "full-�edged" resettably sound one by using the
transformation in Claim 2, which thus establishes our main Theorem 1.

Before proving Lemma 10 formally, we provide a high-level sketch �rst. Completeness of (P̃ , Ṽ)
follows directly from the completeness of (P, V). Resettable-soundness and the argument of knowl-
edge property, roughly speaking, follow by emulating all signature slot messages using the oracle.
The zero-knowledge simulator proceeds by �rst honestly emulating the signature slot for the mali-
cious veri�er V ∗, and if V ∗ provides an accepting signature, we next run the oracle-aided simulator,
and appropriately rewinding the malicious veri�er during the signature slot to appropriately imple-
ment some valid sig-com oracle. The veri�er may not always answer, but we can �keep rewinding�
him, sending fresh commitments until he does. Roughly speaking, the key point is that if V ∗ did
provide a valid signature during the �rst pass, then in expectation, by the hiding property of the
commitment scheme, we only need a polynomial number of rewindings. This �almost� works: just
as in [GK96], we need to take special care to deal with veri�er's that only provide valid signatures
with very small probability. We proceed with a formal proof.

Proof. Completeness of (P̃ , Ṽ) follows directly from the completeness of (P, V) since by assumption,
P never makes any oracle queries.

To prove the �xed-input resettable-soundness of (P̃ , Ṽ), we show how to convert a malicious
prover P̃ ∗ for (P̃ , Ṽ) into an oracle-aided malicious prover P ∗ for (P, V) that succeeds with the
same probability. P ∗O(1n, pp) internally emulates an execution of P̃ ∗ as follows:

• Upon invocation P ∗ feeds P̃ ∗ the message pp (corresponding to the �Init message� of the
protocol.

• Whenever P̃ ∗ makes a signing slot query, that is, whenever it requests a signature on some
message c from Ṽ , P ∗ forwards c to its oracle O, and relays the answer back to P̃ ∗ as Ṽ 's
reply.

19

• All other messages are forwarded externally to the veri�er, and the veri�er's replies are relayed
back.

It follows by inspection that P ∗ succeeds in convincing V (during a reset attack) with identically
the same probability as P̃ ∗ convinces Ṽ , since the view of P̃ ∗ in the emulation by P ∗ is identical to
its view in the execution with Ṽ .

By the same argument we have that (P̃ , Ṽ) is an argument of knowledge: Let E be the extractor
for (P, V), and de�ne the extractor Ẽ for (P̃ , Ṽ) that given oracle access to P̃ ∗, proceeds as follows:
Ẽ runs pp, O ← O, and then Ẽ emulates the execution of E given oracle access to P ∗ described
above, while 1) internally emulating all oracle queries by P ∗ (using O) and 2) externally querying
(and relaying back the answer) P̃ ∗ on all queries made by E to P ∗. Since P̃ ∗ succeeds in convincing
Ṽ with identically the same probability as P ∗ convinces V , it follows by the argument of knowledge
property of (P, V) that (P̃ , Ṽ) also is an argument of knowledge.

Let us turn to zero-knowledge. Consider some malicious (w.l.o.g. deterministic) veri�er Ṽ ∗ for
(P̃ , Ṽ) of size TṼ ∗ . We construct a simulator S̃ for Ṽ ∗. Roughly speaking, S̃ starts by simulating

(P̃ , Ṽ ∗) honestly up to the end of the Signing Slot, and if P̃ does not abort, S̃ continue to simulate
the view of Ṽ ∗ in the Body part by 1) viewing the �residual� Ṽ ∗ as a malicious V ∗ for (P, V), 2)
preparing a valid (SIG′, 2n) oracle O′ (by rewinding Ṽ ∗ at the Signing Slot in the spirit of Goldreich-
Kahan [GK96]), and 3) invoking the simulator S for V ∗ with oracle O′.

More precisely, S̃ �rst receives vk from Ṽ ∗, generates and sends to Ṽ ∗ an honest commitment
c = Com(02n; τ) with uniform τ , and then receives back a signature σ from Ṽ ∗. If σ is not a valid
signature of c, then the simulation halts immediately and outputs the transcript upto that point.
Otherwise, let V ∗ be the residual Ṽ ∗ at the end of the Signing Slot (which is a malicious veri�er for
(P, V)), and construct an oracle O′ as follows.

• S̃ repetitively queries Ṽ ∗ at the Signing Slot with fresh commitments Com(02n; τ) until it
collects 2n valid signatures. Let t be the number of queries S̃ makes.

• De�ne O′ that outputs pp = vk, and an oracle O that on input a message m ∈ {0, 1}2n,
proceeds as follows: O repetitively queries Ṽ ∗ at the Signing Slot with fresh commitments
Com(m; τ) for at most t times. If Ṽ ∗ ever replies a valid signature σ for Com(m, τ), then O
outputs (σ, τ). Otherwise, O returns ⊥.

If t ≥ 2n/2, then S̃ aborts. Otherwise, S̃ invokes the simulator S for V ∗ with oracle O′, while
emulating the oracle for S during its execution, and outputs the view of V ∗ (which is also a view
of Ṽ ∗) generated by S at the end.

To analyze S̃, we introduce some notation. Let p(m) be the probability that Ṽ ∗ on query a
random commitment c = Com(m, τ) of m ∈ {0, 1}2n at the Signing Slot, returns a valid signature
of c. Let p = p(02n).

We �rst show that S̃ runs in expected polynomial time. To start, note that S̃ aborts at the
end of the Signature Slot with probability 1− p, and in this case, S̃ runs in polynomial time. With
probability p, S̃ continues to invoke a strictly polynomial-time simulator S for the residual V ∗,
which has size bounded by TṼ ∗ . Thus, S runs in some T = poly(TṼ ∗) time and makes at most
T queries to its oracle O, which in turn runs in time t · poly(n) to answer each query. Also note
that S̃ runs in time at most 2n, since S̃ aborts when t ≥ 2n/2. Now, we claim that t ≤ 10n/p with
probability at least 1− 2−n, and thus the expected running time of S̃ is at most

(1− p) · poly(n) + p · T · (10n/p) · poly(n) + 2−n · 2n ≤ poly(TṼ ∗ , n).

20

To see that t ≤ 10n/p with overwhelming probability, let X1, . . . , X10n/p be i.i.d. indicator variables

on the event that Ṽ ∗ returns a valid signature for a random Com(02n; τ), and note that t ≤ 10n/p
implies

∑
iXi ≤ 2n, which by a standard Cherno� bound, can only happen with probability at

most 2−n.
Finally, we argue indistinguishability. First, the computational hiding property of Com implies

that there exists some negligible ν(·) such that |p(m) − p| ≤ ν(n) for every m ∈ {0, 1}2n. Now we
consider two cases. If p ≤ 2ν, then the indistinguishability trivially holds since the interaction aborts
at the end of the Signature Slot (in this case, the view is perfectly simulated) with all but negligible
probability. On the other hand, if p ≥ 2ν, we show that O′ generated by S̃ is a valid (SIG′, 2n)
oracle for SIG′ with overwhelming probability, and thus the indistinguishability of S̃ follows by the
indistinguishability of S.

To see that O′ is a valid (SIG′, 2n) oracle for SIG′ with overwhelming probability, note again by
a Cherno� bound that n/p ≤ t ≤ 2n/2 with probability at least 1 − 2−Ω(n). In this case, for every
m ∈ {0, 1}2n, p(m) ≥ p−ν ≥ p/2 implies that t ≥ n/2p(m), and thus O(m) learns a valid signature
of Com(m; τ) from Ṽ ∗ with probability at least 1− 2−Ω(n).

6 Applications

By plugging our resettably-sound zero-knowledge argument of knowledge into the constructions of
[CGGM00, PRS02, BGGL01], with some minor modi�cations that we discuss shortly, we immedi-
ately obtain the following theorem. (Roughly speaking, in a resettably-witness indistinguishable
(resp., zero-knowledge) argument, the witness-indistinguishability (resp., zero-knowledge) property
is required to hold also in the presence of a resetting veri�er; see [CGGM00, BGGL01] for formal
de�nitions.)

Theorem 11. Assume the existence of one-way functions. Then

• there exists a constant-round resettably-witness-indistinguishable argument of knowledge for
all of NP,

• there exists a Õ(log n)-round resettable-zero-knowledge argument of knowledge for all of NP.

The construction of a constant-round resettably-witness-indistinguishable argument of knowl-
edge follows directly from the results of [BGGL01]. For the construction of a resettably-zero-
knowledge argument of knowledge, recall that [BGGL01] (following [CGGM00]) construct resettably-
zero-knowledge arguments of knowledge by compiling (using a resettably-sound zero-knowledge
argument of knowledge) some underlying concurrent zero-knowledge protocols of the �committed-
veri�er type� where the veri�er commits to its �challenges� at the beginning of the protocol, and then
reveals them one by one in sequential �slots�. The underlying concurrent zero-knowledge protocol,
however, relies on commitment in use being statistically-hiding. We note that by a minor tweak of
the concurrent zero-knowledge protocol of [PRS02], we can use also computationally-hiding com-
mitments (that exists based on one-way functions). More precisely, we can replace the statistically-
hiding commitment that the veri�er uses with computationally-hiding commitments if the veri�er
in the �nal stage of the protocol, instead of opening up all commitments, simply reveals the com-
mitted values and provides a resettably-sound zero-knowledge argument of knowledge of the value.
In fact, the same trick of replacing statistically-hiding commitments with computationally-hiding
commitmetns, but using just a �plain�, as opposed to resettably-sound, zero-knowledge argument of

21

knowledge in the �nal stage in the protocol, was used in [PRS02] to get a concurrent zero-knowledge
argument from one-way functions, and soundness follows in exactly the same way as in [PRS02]
(but to preserve resettable-zero-knowledge, we here need to use a resettably-sound zero-knowledge
argument of knowledge).

We proceed to discuss how to remove the need for CRHs in the simultaneously resettable zero-
knowledge argument protocol of Deng, Goyal and Sahai [DGS09] (referred to as DGS hereafter).

Theorem 12. Assume the existence of one-way permutations and trapdoor permutations. Then
there exists a simultaneously-resettable zero-knowledge argument for NP.

We start by reviewing the construction of DGS, which proceeds in two step. First, DGS con-
structs a �main protocol� that satis�es a weak notion of resettable soundness (so called �hybrid
soundness�) and a weak notion of resettable zero-knowledge (so called �relaxed concurrent zero-
knowledge). Then general transformations are applied to compile the main protocol to a simulta-
neously resettable one. The second step relies only on the existence of a simultaneously resettable-
witness indistinguishable argument, whereas the �rst step additionally requires the existence of
CRHs and one-way permutations. Therefore, to achieve our goal, it su�ces to remove the use of
CRHs (by replacing it with signature trees) in the construction of their main protocol.

In more detail, the main protocol of DGS consists of the following high-level structure.

1. The protocol start by the prover P committing to 2n2 �challenges� ch1, . . . , ch2n2 .

2. Then the veri�er V sends P a �trapdoor� trap = Com(1; τ).

3. Then (P, V) proceed with 2n2 �rewinding slots� as follows. For each i ∈ [2n2],

• P sends chi to V .

• (P, V) engage in a (variant of) resettably-sound zero-knowledge argument10 where P
proves to V that either chi is the correct challenge committed in the �rst prover message,
or x ∈ L.
• V replies an answer ansi to chi if the rs-ZK argument is accepting.

4. Finally, P proves to V using a simultaneously resettable WI that either x ∈ L or trap =
Com(1; τ) for some τ .

The 2n2 slots are used by the simulator S to extract a �fake witness� τ to complete the �nal
WI (i.e., to �solve� the session), where S rewinds the slots to collect two challenge-answer pairs
(chi, ansi), (ch

′
i, ans

′
i) to extract τ . For �honest� challenge chi (i.e., the one committed in the �rst

prover message), S simply completes the rs-ZK honestly, whereas for �fake� challenge ch′i, S relies
on the rs-ZK simulator to convince the veri�er to provide the answer. Roughly speaking, DGS uses
a variant of RK-style [RK99] simulation strategy, where for each session, the simulator selects 2n
slots of the same �level� (such slots always exist unless the session already aborts) and rewinds each
of the slots once, and demonstrates that the simulation never �gets stuck,� except with negligible

10The variant here allows the committed program Π in Barak's protocol to access to a �decommitment oracle,�
which is used by the non-black-box rs-ZK simulator to take �short-cuts� for resolved sessions in generating the proof
in the universal argument (so that the complexity of UAs does not blow up). For the variant rs-ZK protocol to be
sound, the commitment scheme in use needs to have unique opening; such commitment schemes can be constructed
based on one-way permutation.

22

probability. At a high level, the crux is to show that for the simulator to get stuck, there must be
at least n out of the 2n slots where a certain �FAILURE� pattern occurs, and for each slot, such
FAILURE pattern occurs with probability at most 1/2; thus, the chance of getting stuck on each
session is at most 2−n.

In the above protocol, CRHs are used in the rs-ZK arguments (as in Barak's protocol) in each
slot. We remove the use of CRHs by instantiating the rs-ZK arguments with sig-com trees, in exactly
the same way as Barak's protocol. However, recall that our rs-ZK simulator needs to rewind the
veri�er polynomially many times to construct the sig-com tree (say, g(n) = poly(|V ∗|) signatures
are needed, where |V ∗| is the size of the veri�er11), rewinding each slot just once does not su�ce to
solve a session. A more subtle issue is that the slots for the �local� rs-ZK simulator and the �global�
DGS simulator are di�erent � the rs-ZK slot is the signature slot inside a rs-ZK argument, whereas
the DGS slot is the challenge-answer slot that contains the whole rs-ZK argument.

We deal with both issues in a straightforward way. For the second issue, we let all rs-ZK argu-
ments share the same �global� signature veri�cation key vk chosen by the veri�er at the beginning of
a session, and identify the rs-ZK slot with the DGS slot. Namely, our rs-ZK simulator also rewinds
the whole DGS slot (with a random challenge and properly chosen commitment to be signed) to
obtain a signature.12 This allows us to unify the two versions of slots and thus, to solve a session, it
su�ces to successfully rewinds a DGS slot g(n) + 1 times (g(n) times for constructing the sig-com
tree, and one more time to obtain the fake challenge-answer pair). To achieve this, we use exactly
the same rewinding strategy as in DGS but instead rewind each slot (that was being rewound once
in DGS) 3g(n) times. To see why this works, we �rst review the analysis in the original DGS setting
and generalize it to our context.

We start by describing the FAILURE pattern mentioned above. Recall that in the RK-style
simulation strategy, whether a rewinding succeeds or not depends on the �length� of the slot (i.e.,
the number of messages before the slot gets closed), as the rewinding gets cut o� if the length of a
slot exceeds a certain threshold (depending on the level of the slot). The FAILURE pattern de�ned
in DGS refers to the case where in the main thread, the slot is �short� but in the rewinding, the slot
gets too �long.� By the choice of parameters of DGS, the simulator can get stuck on a session only
when at least n FAILURE patterns occur (out of the 2n slots). Now, since the main thread and
the rewinding thread are computationally indistinguishable, the probability of getting a short/long
slot in both threads are negligibly close. As a consequence, the FAILURE pattern occurs with
probability at most 1/4 + ngl(n) ≤ 1/2, and the simulator only gets stuck with probability at most
2−n.

In our context, we can generalize the de�nition of FAILURE pattern for a slot to be that the
slot is short in the main thread but is short in only < g(n) + 1 rewinding threads (out of the 3g(n)
ones). By an identical argument to DGS, our simulator only get stuck on a session when at least n
FAILURE patterns occur (out of the 2n slots). Now, it is easy to argue that the FAILURE pattern
occurs with probability at most 1/2: Let p be the probability of a slot being short in the main
thread (which implies the slot begin short in the rewinding thread with probability p± ngl(n)). By
de�nition, the FAILURE pattern occurs with probability at most p. Thus, if p < 1/2, then we

11The size of the tree is proportional to the complexity of the universal argument, which as demonstrated by DGS,
is upper bounded by poly(|V ∗|).

12Note that in the rewinding for the signatures, the simulator would get stuck in completing the UA inside the
rs-ZK argument, but for the purpose of obtaining the signature, it su�ces to simulate up to the end of the signature
slot. On the other hand, choosing random challenge is crucial to make the main thread and the rewinding thread
independent and computationally indistinguishable.

23

are done. On the other hand, if p ≥ 1/2, then by a Cherno� bound, the slot will also be short in
≥ g(n)+1 out of 3g(n) rewinding threads with overwhelming probability, and clearly, the FAILURE
pattern occurs with probability < 1/2.

To summarize, by instantiating the rs-ZK arguments with sig-com trees we remove the use of
CRHs in the main protocol of [DGS09]. By further plugging in the general transformations in
the second step of [DGS09], we obtain simultaneously resettable zero-knowledge arguments for NP
based on the existence of one-way permutations and trapdoor permutations.

6.1 Acknowledgements

We are very grateful to Ran Canetti for pointing out the connection to [CGH04].

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS '01, pages
106�115, 2001.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In Com-
putational Complexity, pages 162�171, 2002.

[BGGL01] Boaz Barak, Oded Goldreich, Sha� Goldwasser, and Yehuda Lindell. Resettably-sound
zero-knowledge and its applications. In FOCS'02, pages 116�125, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6,
2012.

[BP12a] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-
black-box simulation technique. In FOCS, 2012.

[BP12b] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. Cryptology ePrint Archive, Report 2012/729,
2012.

[CGGM00] Ran Canetti, Oded Goldreich, Sha� Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC '00, pages 235�244, 2000.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as
applied to length-restricted signature schemes. In TCC, pages 40�57, 2004.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires ω̃(log n) rounds. In STOC '01, pages 570�579, 2001.

[CL01] J. Camenisch and A. Lysyanskaya. An e�cient system for non-transferable anonymous
credentials with optional anonymity revocation. Advances in Cryptologyâ��EURO-
CRYPT 2001, pages 93�118, 2001.

[DGS09] Y. Deng, V. Goyal, and A. Sahai. Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In Foundations of Computer Science,
2009. FOCS'09. 50th Annual IEEE Symposium on, pages 251�260. IEEE, 2009.

24

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC '90, pages 416�426, 1990.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167�190, 1996.

[GM84] Sha� Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270�299, 1984.

[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186�208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691�
729, 1991.

[GO94] Oded Goldreich and Yair Oren. De�nitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7:1�32, 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography � Basic Tools. Cambridge University
Press, 2001.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28:12�24, 1999.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any
one-way function. In STOC, pages 705�714, 2011.

[Mer89] R.C. Merkle. Digital signature system and method based on a conventional encryption
function, November 14 1989. US Patent 4,881,264.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253�
1298, 2000.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151�
158, 1991.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In STOC '89, pages 33�43, 1989.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Theory and Computing Systems, 1993, pages 3�17, 1993.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In STOC '04, pages 232�241, 2004.

[PR05] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryp-
tographic protocols. In STOC '05, pages 533�542, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS '02, pages 366�375, 2002.

25

[PTV08] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishan Venkitasubramaniam.
Concurrent zero knowledge: Simpli�cations and generalizations. Manuscript, 2008.
http://hdl.handle.net/1813/10772.

[PTW09] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström. On the composition of
public-coin zero-knowledge protocols. In CRYPTO '09, pages 160�176, 2009.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt '99, pages 415�432, 1999.

[Rom90] John Rompel. One-way functions are necessary and su�cient for secure signatures,
1990.

A Additional Preliminaries

A.1 Computational Indistinguishability

The following de�nition of computational indistinguishability originates in the seminal paper of
Goldwasser and Micali [GM84]. Let X be a countable set of strings. A probability ensemble

indexed by X is a sequence of random variables indexed by X. Namely, any element of A =
{Ax}x∈X is a random variable indexed by X.

De�nition 17 (Indistinguishability). Let X and Y be countable sets. Two ensembles {Ax,y}x∈X,y∈Y
and {Bx,y}x∈X,y∈Y are said to be computationally indistinguishable over X, if for every prob-
abilistic machine D (the distinguisher) whose running time is polynomial in its �rst input, there
exists a negligible function ν(·) so that for every x ∈ X, y ∈ Y :

|Pr [D(x, y,Ax,y) = 1]− Pr [D(x, y,Bx,y) = 1]| < ν(|x|)

(In the above expression, D is simply given a sample from Ax,y and Bx,y, respectively.)

A.2 Interactive Arguments

De�nition 18 (Interactive Arguments). A pair of interactive algorithms (P, V) is an interactive

argument for a NP language L with witness relation RL if it satis�es the following properties:

• Completeness: There exists a negligible function µ(·), such that for all x ∈ L, if w ∈ RL(x),

Pr[(P (w), V)(x) = 1] = 1− µ(|x|)

• Soundness: For all non-uniform polynomial-time adversarial prover P ∗, there exists a negli-
gible function µ(·) such that for every all x /∈ L,

Pr[(P, V)(x) = 1] ≤ µ(|x|)

If the following condition holds, (P, V) is an argument of knowledge:

• Argument of knowledge: There exists an expected PPT algorithm E such that for every polynomial-
size P ∗, there exists a negligble function µ(·) such that for every x,

Pr[w ← EP
∗(x)(x);w ∈ RL(x)] ≥ Pr[(P ∗, V)(x) = 1]− µ(|x|)

26

A.3 Witness Indistinguishability

An interactive protocol is witness indistinguishable (WI) [FS90] if the veri�er's view is �inde-
pendent� of the witness used by the prover for proving the statement. In this context, we focus on
languages L ∈ NP with a corresponding witness relation RL. Namely, we consider interactions in
which on common input x the prover is given a witness in RL(x). For any adversarial veri�er V ∗,
let ViewV ∗ 〈P (w), V (z)〉 (x) be the random variable that denotes V ∗'s view in an interaction with
P , when V ∗ is given auxiliary input z, P is given witness w, and both parties are given common
input x.

De�nition 19 (Witness-indistinguishability). An interactive protocol (P, V) for L ∈ NP is witness
indistinguishable for RL if for every PPT adversarial veri�er V ∗, and for every two sequences
{w1

x}x∈L and {w2
x}x∈L, such that w1

x, w
2
x ∈ RL(x) for every x ∈ L, the following ensembles are

computationally indistinguishable over x ∈ L:

{ViewV ∗
〈
P (w1

x), V ∗(z)
〉

(x)}x∈L,z∈{0,1}∗

≈ {ViewV ∗
〈
P (w2

x), V ∗(z)
〉

(x)}x∈L,z∈{0,1}∗

(The de�nition of resettable-witness indistinguishability follows that of resettable zero knowledge
analogously: witness indistinguishability under a resetting attack as described in De�nition 2.)

A.4 Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it secret from the
receiver ; this property is called hiding. At a later time, the commitment can only be opened to
a single value as determined during the commitment protocol; this property is called binding.
Commitment schemes come in two di�erent �avors, statistically binding and statistically hiding; we
only make use of statistically binding commitments in this paper. Below we sketch the properties
of a statistically binding commitment; full de�nitions can be found in [Gol01].

In statistically binding commitments, the binding property holds against unbounded adversaries,
while the hiding property only holds against computationally bounded (non-uniform) adversaries.
The statistical-binding property asserts that, with overwhelming probability over the randomness
of the receiver, the transcript of the interaction fully determines the value committed to by the
sender. The computational-hiding property guarantees that the commitments to any two di�erent
values are computationally indistinguishable.

Non-interactive statistically-binding commitment schemes can be constructed using any one-to-
one one-way function (see Section 4.4.1 of [Gol01]). Allowing some minimal interaction (in which
the receiver �rst sends a single random initialization message), statistically-binding commitment
schemes can be obtained from any one-way function [Nao91, HILL99].

B Construction of an Oracle-Aided UA

In this section, we prove Theorem 7, which is restated below.

Theorem 13 (Theorem 7 restated). Let SIG′ be a canonical sig-com scheme with SIG and Com being
its underlying signature scheme and commitment scheme. Then there exists a (SIG′, `)-complete
OSIG-aided universal argument with `(n) = 2n.

27

Proof. We construct such a universal argument in Fig. 3, which is essentially identical to the con-
struction of [BG02], except that the Merkle hash tree is replaced by a sig-com tree. Note that
both the e�cient veri�cation property and the completeness property (with a relatively e�cient
prover) follow by inspection. Furthermore, note that the (SIG′, `)-completeness holds as well, since
the prover P only need to access an arbitrary valid (SIG′, `) oracle to produce the sig-com tree.

Common Input: An instance y = (M,x, t) of LU ; let n := |y|.

Auxiliary input to prover: w such that (y, w) ∈ RU holds.

Primitives used:

• A PCP scheme for LU with auxiliary properties as de�ned in [BG02], where

� PPCP(y, w) generates a PCP proof π for (y, w) ∈ RU .

� VPCP is the non-adaptive veri�er for the PCP system, which makes m queries to the
PCP proof.

� QPCP(y, r, i) generates the i-th query of VPCP with random tape r, common input y.

• A canonical sig-com scheme SIG′ with SIG and Com as the underlying signature and com-
mitment schemes; let OSIG be the corresponding signature oracle.

Set Up: Run (pp, O) ← OSIG(1n), add pp to common input for P and V . Further, allow P oracle
access to O.

Protocol:

P1 : Generate π ← PPCP(y, (w, 1t
′
)), where t′ is the runtime of M on input (x,w). Use O to

generate a sig-com tree for π w.r.t. pp, recording sig-com paths for each leaf. Send (d, lλ),
the depth and the root of the sig-com tree, to V .

V1 : Uniformly select randomness r for VPCP , and send it to P .

P2 : Generate queries {qi}i∈m by using QPCP(y, r, i) to generate the i-th query for every i ∈ [m].
Generate sig-com paths {~ρi}i∈m for the bits {bi = πqi}i∈[m] of π in the sig-com tree. Send
the sig-com paths {~ρi}i∈m to V .

V accepts when:

• PATHSIG′
(~ρi, bi, qi, lλ, pp) = 1 for every i ∈ [m].

• VPCP accepts when receiving {bi}i∈[m] as the responses to its oracle queries.

Figure 3: An OSIG-aided Universal Argument.

It remains to prove the weak proof of knowledge property (for adaptively chosen statements).
Our proof is almost identical to that given by Barak and Goldreich in Section 3 of [BG02]. In fact,
if we simply replace hash trees with sig-com trees and following their argument exactly, we have the
following lemma:

Lemma 14 (implicit in Lemma 3.5 of [BG02]). Let (P, V) be the OSIG-aided protocol de�ned in
Fig. 3. For every polynomial p, there exist oracle PPT algorithms E and CF and a polynomial q

28

such that for every n ∈ N and every non-uniform PPT adversary P ∗, if

Pr[pp, O ← O(1n);R← {0, 1}∞; y ← P ∗OR (pp) :

(P ∗OR (pp), V (y, pp)) = 1] > 1/p(n),

then with probability at least 1/q(n) over (pp, O,R)← O(1n)× {0, 1}∞, it holds that either

Pr[r ← {0, 1}∞; y ← P ∗OR (pp) : ∃w = w1, . . . wt ∈ RU (y)

s.t. ∀i ∈ [t], E
P ∗OR (pp)
r (pp, y, i) = wi] >

1

q(n)
,

or

Pr[(~ρ0, ~ρ1, γ, lλ)← CFP
∗O
R (pp)(pp);∀b ∈ {0, 1}

PATHSIG′(~ρb, b, γ, lλ, pp) = 1] ≥ 1/q(n)

Given the above lemma, we observe that, for any P ∗O, except for �nitely many n ∈ N, the
latter condition can only hold with probability at most 1/2q(n) over (pp, O,R)← O(1n)×{0, 1}∞.
Otherwise, we will be able to use CFP

∗O
R as an oracle aided adversary that succeeds in breaking the

sig-com tree collision resistance of SIG′ for in�nitely many n ∈ N with probability ≥ 1/2(q(n))2 over
O(1n), R, and the randomness of CF.

Thus, assuming that SIG′ is a secure sig-com scheme, the former condition of the lemma must
hold with probability ≥ 1/2q(n) over (pp, O,R)← O(1n)×{0, 1}∞ for all but �nitely many n ∈ N.

Pr[pp, O ← O(1n);R, r ← {0, 1}∞; y ← P ∗OR (pp) : ∃w = w1, . . . wt ∈ RU (y) s.t.

∀i ∈ [t], E
P ∗OR
r (pp, y, i) = wi] >

1

2(q(n))2

Setting p′(n) = 2(q(n))2, we have that E is a su�cient extractor for the weak proof of knowledge
property.

C Proof of Theorem 8

Here we proof Theorem 8, which is restated below.

Theorem 15 (Theorem 8 restated). Let SIG′ be a canonical sig-com scheme with SIG and Com
being its underlying signature scheme and commitment scheme. Then there exists an OSIG-oracle
aided argument of knowledge (P, V) for NP; additionally,

1. (P, V) is constant-round and public-coin;

2. P does not make any queries to its oracle;

3. (P, V) is (SIG′, `)-oracle-aided zero-knowledge for `(n) = 2n.

Proof. We show that the construction provided in Fig. 1 and 2 satis�es the desired properties.
By inspection, (P, V) is constant-round and public-coin, and P does not make any queries to its
oracle. For the (SIG′, `)-oracle-aided zero-knowledge property, we construct a simulator identically

29

to [PR05]. In brief, the straight-line simulator S that will provide a proof to V ∗ using the second
witness for Stage Three, and will use the oracle O to produce a sig-com tree for ECC(Π) in Stage
One with Π = V ∗rV , and also to complete the encrypted UA in Stage Two. We further observe that
the ZK simulator will work even with any valid (SIG′, `)-oracle, since such an oracle is su�cient to
produce a correct sig-com tree in Stage One, and to complete the (SIG′, `)-oracle complete UA in
Stage Two.

It remains to show the argument of knowledge property. We start by constructing a knowledge
extractor E for (P, V). E(x, pp) proceeds as follows: Given oracle access to a malicious prover
P ∗O(x, pp), E internally emulates the role of the honest veri�er V for P ∗O(x, pp) up to the be-
ginning of Stage Three (i.e., the beginning of WI-AOK). Let α denote the partial transcript, and
P ∗O(x, pp;α) be the �residual� prover. Then E applies the witness extractor EWI for (PWI, VWI) on
P ∗O(x, pp;α), and outputs EWI's output. Note that since O ← OSIG is e�cient, P ∗O(x, pp;α) is a
polynomial size adversary in the plain model.

Clearly by inspection, E runs in expected polynomial time. Let ε be the success probability
of P ∗ in convincing V . We �rst show that EWI outputs a valid witness (either a true witness
w ∈ RL(x) or a false witness (p1, p2, τ1, τ2) ∈ RL2(c0, r, c1, c2, r

′, pp)) with probability ε− ngl(|x|).
Let ε(pp, O, α) = Pr[(P ∗O, VWI)(x, pp;α) = 1], i.e., the probability that the residual prover

P ∗O(x, pp;α) convinces VWI in Stage Three. By de�nition, Epp,O,α[ε(pp, O, α)] = ε. By the argu-

ment of knowledge property of the WI-AOK (PWI, VWI), E
P ∗O(x,pp;α)
WI outputs a valid witness with

probability at least ε(pp, O, α)− ngl(|x|). It follows that in the execution of E, EWI outputs a valid
witness with probability at least Epp,O,α[ε(pp, O, α)− ngl(|x|)] ≥ ε− ngl(|x|).

We proceed to argue that in the execution of E, EWI can only output a false witness with
negligible probability. Suppose not, that is, EWI outputs a false witness with some noticeable
probability ε′. Then we will use this fact to contradict the collision resistance property of SIG′. We
do so in the following two steps:

1. We construct an e�cient cheating UA prover P ∗UA for (PUA, VUA) that convinces VUA with
probability poly(ε(n)).

2. We use the extractor EUA from the weak argument of knowledge property of (PUA, VUA)
together with this P ∗UA to build a collision-�nder for SIG′.

Step 1: Constructing P ∗UA. P
∗
UA internally emulates P ∗ and proceeds as follows.

• P ∗OUA (pp) runs c0 ← P ∗O(x, pp), samples r ← {0, 1}n and outputs y = (c0, r, pp) as the
adaptively chosen statement.

• P ∗OUA (pp) generates the �rst prover message p1 as follows: P ∗OUA (pp) feeds r to P ∗O, receives
c1 ← P ∗O(x, pp; r), and continues to emulate the interaction of P ∗O with an honest V up
to the end of Stage Two; let α be the partial transcript and P ∗O(x, pp;α) be the �residual�
prover. Then P ∗UA applies EWI on P

∗O(x, pp;α). If EWI outputs a valid (p1, p2, τ1, τ2) ∈ RL2 ,
then P ∗UA outputs p1, otherwise, P

∗
UA aborts.

• Upon receiving r′ from VUA, P
∗
UA rewinds P ∗ until the point where it awaits the message r′,

feeds r′ to P ∗O, and receives c2 ← P ∗O(x, pp; r); let α′ denotes the partial transcript. Then
P ∗UA applies EWI on P ∗O(x, pp;α′). If EWI outputs a valid (p′1, p

′
2, τ
′
1, τ
′
2) ∈ RL2 , then P ∗UA

outputs p′2, otherwise, P
∗
UA aborts.

30

Clearly by inspection, P ∗UA runs in expected polynomial time. Furthermore, we can make P ∗UA
run in strict polynomial time by cutting it o� after a certain polynomial time bound with only a
small loss in its success probability. It follows by an identical argument to [BG02, PR05] that P ∗UA
convinces VUA to accept with probability poly(ε′). Roughly, the argument consists of counting �good�
oracles and veri�er messages, i.e., those that will let the prover succeeds with �high� probability (see
Claim 4.2.1 in [BG02]), together with applying the binding property of the commitment scheme to
show that the witnesses extracted by the two executions of EWI have consistent �rst prover messages
(i.e., p1 = p′1) except with negligible probability (See Lemma A.3 in [PR05]).

Step 2: Finding collision. We now use P ∗UA to break the collision resistant property of sig-com
tree corresponding to SIG′, which contradicts Lemma 6. Let 1/p be a lower bound on the success
probability of P ∗UA for some polynomial p. Let EUA be the corresponding weak knowledge extractor
for (PUA, VUA). Recall the weak argument of knowledge property guarantees that

Pr[pp, O ← O(1n);ω, ν ← {0, 1}∞; y ← P ∗OUA,ω(pp) : ∃w = w1, . . . wt ∈ RL1(y) s.t.

∀i ∈ [t], E
P ∗OUA,ω

UA,ν (pp, y, i) = wi] >
1

p′(n)
,

where ω, ν denote the random tapes of P ∗UA and EUA, respectively, p
′ is some polynomial, and the

witness w is of the form (τ0, d, lλ, C, {~ρi}i∈[2d]). To simplify the notation, let suc(pp,O, ν, ω) = 1 if
the extraction successfully extracts a valid witness w ∈ RL1(y).

We construct a PPT adversary A that breaks the collision resistance property of sig-com tree
corresponding to SIG′. A on input 1n and vk with oracle access to a signing oracle Signsk(·) proceeds
as follows.

• A uses vk and its signing oracle to emulate an OSIG oracle with pp = vk and O = Signsk(·).

• A samples ω, ω̃, and let y ← P ∗OUA,ω(pp), ỹ ← P ∗OUA,ω̃(pp); recall from our de�nition of P ∗UA that
y = (c0, r, pp), ỹ = (c0, r̃, pp) will each contain the same c0 and pp components, while r and r̃
are selected independently uniformly at random.

• A samples ν, ν̃, and applies E
P ∗OUA,ω

UA,ν (pp, y, ·) and E
P ∗OUA,ω̃

UA,ν̃ (pp, ỹ, ·) to extract (part of) witnesses

w = (τ0, d, lλ, C, {~ρi}i∈[2d]) and w̃ = (τ̃0, d̃, l̃λ, C̃, {~̃ρi}i∈[2d]) as follows: (1) A �rst extracts

(d, lλ) and (d̃, l̃λ). A aborts if the extraction fails at any point. (Note that by the binding
property of the commitment, (d, lλ) = (d̃, l̃λ) except with negligible probability.) (2) Then A
samples i← [2d], and extracts (Ci, ~ρi) and (C̃i, ~̃ρi)

• If Ci 6= C̃i, then A outputs (~ρi, ~̃ρi, i, lλ) if Ci = 0, and (~̃ρi, ~ρi, i, lλ) if Ci = 1.

We now show that A can breaks the collision resistance property with non-negligible probability.
Note that A runs the knowledge extraction twice with respect to the same pp, O but independent
copies of (ν, ω) and (ν̃, ω̃). Recall that the extraction succeeds with probability at least 1/p′. For at
least 1/(2p′)-fraction of (pp, O), it holds that Pr[suc(pp, O, ν, ω) = 1|(pp, O)] ≥ 1/(2p′). Therefore,
with probability at least (1/2p′)3 over (pp, O, ν, ω, ν̃, ω̃), both suc(pp, O, ν, ω) = suc(pp, O, ν̃, ω̃) = 1,
i.e., both extractions invoked by A succeed.

Finally, we note that the independently drawn r and r̃ are di�erent with overwhelming proba-
bility, and so the Π and Π̃ underlying C and C̃ will also be di�erent with overwhelming probability.

31

Since we used an error-correcting code ECC with constant min-distance, if Π 6= Π̃, then for a ran-
domly chosen i, Ci 6= C̃i with constant probability c, meaning the two paths outputted by A will
have di�erent leaf labels. Thus with probability ≥ c/(2p′)3, A successfully outputs a pair of colliding
paths with the same root but di�erent leaf labels, breaking the collision resistance of sig-com trees
corresponding to SIG′.

32

