
Plain versus Randomized Cascading-Based Key-Length Extension
for Block Ciphers

Peter Gaži

ETH Zürich, Switzerland
Department of Computer Science

peter.gazi@inf.ethz.ch

Abstract. The security of cascading-based key-length extending constructions for block ciphers in
the ideal-cipher model has so far received considerable attention. Triple encryption was investigated
in [20,9], longer cascades were considered in [15] and a construction with comparable security as triple
encryption requiring only 2 block-cipher calls, so-called 2-XOR-cascade, was proposed and analyzed
in [17].
In this paper we put these results into perspective by completing the picture of the investigated land-
scape in various ways. We give the following attacks and security lower bounds for constructions using
a block cipher with key length κ and block length n:

– For the plain cascade of odd (resp. even) length ` we present a generic attack requiring roughly

2κ+ `−1
`+1

n (resp. 2κ+ `−2
`
n) queries. This is a generalization of both the meet-in-the-middle attack on

double encryption and the best known attack on triple cascade given in [20].

– For the general case of XOR-cascade of odd (resp. even) length ` we prove security up to 2κ+ `−1
`+1

n

(resp. 2κ+ `−2
`
n) queries and also an improved bound 2κ+ `−1

`
n for the special case ` ∈ {3, 4}. This is

achieved by relating the problem to an independent line of work on the security of key-alternating
ciphers in the random-permutation model.

– Finally, for a natural class of sequential constructions where block-cipher encryptions are interleaved

with key-dependent permutations, we show a generic attack requiring roughly 2κ+ `−1
`
n queries.

Since XOR-cascades are sequential, this proves tightness of our above result for XOR-cascades of
length ` ∈ {3, 4} as well as their optimal security within the class of sequential constructions.

These results suggest that XOR-cascades achieve a better security/efficiency trade-off than plain cas-
cades and should be preferred.

Keywords: Provable security, block ciphers, key-length extension, ideal-cipher model, cascade, XOR-cascade.

1 Introduction

1.1 Block Ciphers and the Key-Length Extension Problem

It is beyond question that block ciphers play a pivotal role in cryptographic practice, being the
basic building block for most constructions in the realm of symmetric cryptography. The first
standardized block cipher achieving huge popularity and wide-spread use was DES [1], nowadays
being replaced by the current standard AES [4].

Formally, a block cipher with keyspace {0, 1}κ and message space {0, 1}n is simply a family
of efficiently computable (and invertible) permutations Ek on the set of n-bit strings indexed by

a κ-bit key k, which is often emphasized by referring to it as a (κ, n)-block cipher. For example,
n = 64 and κ = 56 for DES, and n = 128 and κ ∈ {128, 192, 256} for AES.

In most applications that employ a block cipher as its underlying primitive, it is assumed (and
required) that it behaves as a pseudorandom permutation (PRP), i.e., if used with a random secret
key, it cannot be efficiently distinguished from a uniformly random permutation. To capture this
notion, the PRP security level of a block cipher is defined as the complexity required to distinguish
it from a random permutation with non-negligible advantage.

Key-Length Extension.The key length κ is a crucial security parameter of every block cipher E.
An attacker, given some plaintext-ciphertext pairs, can easily identify the secret key being used by
a brute-force attack if he is capable of performing roughly 2κ evaluations of E. This key-recovery
attack can be also transformed into a PRP distinguishing attack, implying that the bound of 2κ

evaluations limits the PRP security of every block cipher. This represents a problem for existing
block ciphers with small key length κ for which 2κ operations can no longer be considered beyond
the available computational power of a potential attacker.

A prominent example of such a design is the former standard DES, which however, apart from
its insufficient key size, is believed to contain no significant structural weaknesses. It also remains
attractive thanks to its short block length which allows enciphering short inputs and explains the
wide-spread use of DES-based constructions in the financial industry even today (see e.g. [6] for
the EMV standard).

Due to the above reasons, there exists a practical demand for constructions transforming any
(κ, n)-block cipher E into a (κ′, n)-block cipher CE while increasing both the key length (i.e., κ′ > κ)
and the generic security achieved (i.e., the PRP security of CE should be significantly higher than
2κ assuming that E itself contains no non-generic weaknesses). This is known as the key-length
extension problem for block ciphers and in this paper we contribute to the understanding and
analysis of several cascading-based constructions addressing this problem. Note that even though
the case of DES constituted the initial motivation for the study of key-length extension, we focus
on generic constructions that are applicable to any block cipher, making our results attractive also
from a theoretic perspective.

Ideal-Cipher Model.To assess the security level achieved by the key-length extension construc-
tions themselves, we assume the absence of any weaknesses of the underlying block cipher by
modelling it as the ideal block cipher E providing an independent uniformly random permutation
for each key. We consider a distinguisher D that is allowed to issue two types of queries:

- block-cipher queries to evaluate the block cipher E under any key and on any input block (both
in the encryption and the decryption direction).

- construction queries to evaluate either the key-length extending construction CE
K′ used with the

block cipher E and a uniformly random secret κ′-bit key K ′; or a uniform random permutation
P independent of E (again, both query directions are allowed).

Hence, the distinguisher is either given to interact with the combined system (E,CE
K′) or with (E,P)

and its goal is to decide which of these two situations has occurred. Its complexity is determined

2

solely by the sum of its queries of both types, leading to results of information-theoretic nature.
Note that the security of any key-length extension construction in this model can be upper-bounded
by 2κ+n which corresponds to the trivial attack asking all possible block cipher and construction
queries. This model has already been employed numerous times to analyze the security of key-length
extending constructions, e.g. in [18,9,15,17].

1.2 Plain and Randomized Cascades

Arguably the most natural way to approach the key-length extension problem is to simply apply the
block cipher several times using an independent key at each step – an approach known as cascading.
Its security has been a subject of extensive study in various models, including the information-
theoretic ideal-cipher model described above. It is well known that a cascade of length two does not
substantially increase security due to the meet-in-the-middle attack [11], even though a security
increase in terms of distinguishing advantage is achieved for low attack complexities, as shown
in [7]. This makes triple encryption the shortest cascade with a potential for significant security
gain, resulting into its widespread usage as the Triple-DES (3DES) standard [2,3,5]. Given keys
k1, k2, k3 ∈ {0, 1}56, 3DES encrypts a 64-bit message m as

3DESk1,k2,k3(m) = DESk3(DESk2(DESk1(m))) .

The security of 3DES (and its variant using decryption in the second step of the cascade) was
formally studied by Bellare and Rogaway [9], showing its security up to roughly 2κ+min{n,κ}/2

queries when DES is replaced by an ideal block cipher. Subsequently Gaži and Maurer [15] showed
that the security increases further with the length of the cascade for block ciphers where κ ≤ n,

approaching roughly 2min{ 2`κ
`+1

,κ+n
2 } queries for a cascade of odd length `. On the negative side,

Lucks [20] presented an attack on triple encryption that, once cast into the ideal-cipher model,
constitutes the best such attack known in this model by requiring roughly 2κ+n/2 queries.

An alternative approach to the keylength-extension problem is inspired by the key-whitening
technique, first employed in the DESX construction due to Rivest. Here, the input and output of
the block cipher is masked (“whitened”) by an XOR with additional key material as follows: given

a key tuple (ki, ko, k) ∈
(
{0, 1}64

)2 × {0, 1}56 a message m is mapped to

DESXki,ko,k(m) = ko ⊕DESk(ki ⊕m).

The generalization of DESX for arbitrary κ, n was shown to be secure up to 2
κ+n

2 queries by Kilian
and Rogaway [18] even if the same key is used in both whitening steps.

In an attempt to combine cascading and key whitening, Gaži and Tessaro [17] proposed the
so-called 2-XOR-cascade (or randomized cascade) construction. It consists of a cascade of length 2
interleaved with two whitening steps, mapping each n-bit message m under a key (k, z) ∈ {0, 1}k×
{0, 1}n to

2XORk,z(m) = E
k̃
(Ek(m⊕ z)⊕ z)

where k̃ is derived from k in a deterministic way (e.g. by flipping a single bit). They prove 2-XOR-
cascade to be secure up to 2κ+n/2 queries and also show that this bound is tight.

3

Other related work.There is a vast amount of literature on the security properties of different
cascading-based constructions for block ciphers in various security models, in the information-
theoretic setting [13,22,28,23,24,16] as well as in the computational setting [25,27,12]. The models
employed in these works are however orthogonal to ours and hence the results are not directly
comparable.

1.3 Our Contributions

Cascades. We start our investigation by looking at the case of a plain cascade construction of a
general length ` (see Fig. 2). As a complement to the above-mentioned positive result given in [15],

in Section 3 we present a generic attack on `-cascade in our model that requires roughly 2κ+ `−2
`
n

queries (2κ+ `−1
`+1

n queries) for even (odd) `. The well-known meet-in-the-middle attack [11] and the
attack of Lucks [20] turn out to be special cases of our attack for ` = 2 and ` = 3, respectively.
To the best of our knowledge, our result also constitutes the first formal analysis of the advantage
achieved by the often-cited attack on triple encryption [20].

XOR-Cascades.After upper-bounding the security of the seemingly simplest possible construction
— the cascade — we turn our attention to the more involved `-XOR-cascade constructions of
arbitrary length ` (see Fig. 4) which are a generalization of the 2-XOR-cascade proposed in [17].

In Section 4 we give a general method to reduce the security of XOR-cascades in our model to the
security of so-called key-alternating ciphers in the random-permutation model. A key-alternating
cipher (KAC) is a block cipher designed to alternate keyed XOR operations with fixed publicly
known permutations (see Fig. 5). Since AES represents a prominent practical example of this
design paradigm, its security has been extensively studied [10,26,19,8]. However, despite the seeming
closeness to the structure of XOR-cascades, these two topics were never related to each other
explicitly.

Our reduction relates the security of an XOR-cascade to the security of one step shorter KAC,
allowing for more modular security analysis of XOR-cascades. By combining it with recent lower
bounds on the security of KAC [10,26,19] we obtain a proof that 3-XOR-cascade and 4-XOR-cascade

are secure up to 2κ+ 2
3
n and 2κ+ 3

4
n queries, respectively; and finally, that a general `-XOR-cascade

of odd (even) length is secure at least up to 2κ+ `−1
`+1

n queries (2κ+ `−2
`
n queries), respectively.

Contrasting these results with the generic attacks on plain cascades given in Section 3, we see
that a 3-XOR-cascade is provably at least as secure as a 6-cascade and a 4-XOR-cascade is at
least as secure as an 8-cascade, while providing much better efficiency. This gives us a more robust
argument in favor of XOR-cascades as constructions providing security and efficiency at the same
time; a view that was already advocated in [17]. Note that here we are comparing security lower
bounds (for XOR-cascades) to best known attacks (for plain cascades), making an even stronger
case for the randomization. Alternatively, one can compare the upper bounds on distinguishing
advantages for the constructions considered, we present one such comparison in Fig. 1.

Sequential Constructions. Motivated by the question of tightness of the above-mentioned
bounds for XOR-cascades, we proceed by investigating generic attacks on a particular class of key-

4

Fig. 1. Upper bounds on distinguishing advantage versus log2 q (where q is the number of queries) for plain (blue)
and randomized (red) cascades of lengths 2–4, using κ = 56 and n = 64. Curves from left to right: (1) single
encryption for reference; (2) 2-cascade; (3) 3- and 4-cascade (same bound); (4) 2-XOR-cascade; (5) 3-XOR-cascade;
(6) 4-XOR-cascade.

length extending constructions that include them. In Section 5 we look at constructions issuing `
queries to the block cipher while working in a sequential way: they consist of ` block-cipher encryp-
tions interleaved with applications of arbitrary permutations that only depend on the key being
used. For this class of constructions that we call sequential we exhibit an attack requiring approxi-

mately 2κ+ `−1
`
n queries. Since XOR-cascades clearly belong to the class of sequential constructions,

an `-XOR-cascade cannot be secure beyond 2κ+ `−1
`
n queries. This shows that the obtained security

bounds for ` ∈ {3, 4} are tight and moreover, the `-XOR-cascades of this length are optimally
secure among the class of all sequential constructions, emphasizing that the extremely cheap XOR
operation is sufficient to achieve the full potential of sequential constructions. This was previously
only shown for ` = 2 in [17].

Summary.Table 1 summarizes the results of this paper in the context of previously known results.
To serve as an overview, most bounds are presented in a simplified form.

Finally, note that all generic attacks presented in this paper can be mounted even if the distin-
guisher is only allowed to ask forward construction queries. Moreover, these queries can be chosen
arbitrarily, resulting in known-plaintext attacks. In contrast, our security proofs are valid also with
respect to an adaptive adversary allowed to ask also inverse construction queries (CCA adversary).

2 Preliminaries

2.1 Basic Notation

We typically denote sets by calligraphic letters X ,Y, . . ., and by |·| we denote their cardinalities.
The set of all k-tuples xk = (x1, . . . , xk) of elements of X is denoted by X k. The symbols Func(m, `)
and Perm(n) refer to the sets of all functions from {0, 1}m to {0, 1}` and of all permutations of
{0, 1}n, respectively; while id ∈ Perm(n) represents the identity mapping when n is implicit. All
logarithms are understood to the base 2.

Random variables and concrete values they can take are usually denoted by upper-case letters
X,Y, . . . and lower-case letters x, y, . . ., respectively. For events A and B and random variables

5

` `-cascade
sequential

`-XOR- `-query
cascade construction

security attack security attack

2 min{κ, n} κ κ+ n
2

κ+ n
2

3 κ+ min
{
κ
2
, n

2

}
κ+ n

2
κ+ 2

3
n (?) κ+ 2

3
n (?)

4 κ+ min
{
κ
2
, n

2

}
κ+ n

2
(?) κ+ 3

4
n (?) κ+ 3

4
n (?)

odd min
{

2`κ
`+1

, κ+ n
2

}
κ+ `−1

`+1
n κ+ `−1

`+1
n
κ+ `−1

`
n (?)≥ 5 (?) (?)

even min
{

2(`−1)κ
`

, κ+ n
2

}
κ+ `−2

`
n κ+ `−2

`
n

Table 1. Best known security lower bounds and generic attacks for various key-length extension schemes. Each given
term is a logarithm of the respective number of queries and is parameterized by the key length κ and block size n
of the underlying block cipher. References and further details to all depicted bounds are given in the text. Results
denoted by (?) come from this paper.

U and V with ranges U and V, respectively, we denote by PUA|V B the corresponding conditional
probability distribution, seen as a (partial) function U × V → [0, 1]. The value PUA|V B(u, v) =
P[U = u∧A|V = v∧B] is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and undefined
otherwise. Two probability distributions PU and PU ′ on the same set U are equal, denoted PU = PU ′ ,
if PU (u) = PU ′(u) for all u ∈ U . Conditional probability distributions are equal if the equality holds
for all arguments for which both of them are defined. To emphasize the random experiment E in
consideration, we sometimes write it in the superscript, e.g. PEU |V (u, v). The expected value of a

discrete random variable X is denoted by E(X) =
∑

x∈X (x · P[X = x]). The complement of an
event A is denoted by A.

2.2 Random Systems

To present our results we make use of Maurer’s random systems framework [21], which we now
introduce in a self-contained exposition sufficient to follow the rest of the paper.

We start by observing that the input-output behavior of any kind of reactive discrete system
with inputs in X and outputs in Y can be described by an infinite family of functions specifying, for
each i ≥ 1, the probability distribution of the system’s i-th output Yi ∈ Y given the values of the
first i inputs Xi ∈ X i and the previous i−1 outputs Y i−1 ∈ Y i−1. Using this viewpoint, we say that
an (X ,Y)-(random) system F is an infinite sequence of functions pF

Yi|XiY i−1 : Y×X i×Y i−1 → [0, 1]

such that
∑

yi
pF
Yi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1, xi ∈ X i and yi−1 ∈ Y i−1. Note that

pF
Yi|XiY i−1 by itself does not represent a (conditional) probability distribution in any particular

random experiment with well-defined random variables Yi, X
i, Y i−1 until the system is connected

to a distinguisher (see below), in which case these random variables will exist and take the role

6

of the transcript. We shall typically define discrete systems by a high level description, as long as
the resulting conditional probability distributions could be derived easily from this description. A
system F is deterministic if the range of pF

Yi|XiY i−1 is {0, 1} for all i ≥ 1. Moreover, it is stateless if

the probability distribution of each output depends only on the current input, i.e., if there exists a
distribution pY |X : Y × X → [0, 1] such that pF

Yi|XiY i−1(yi, x
i, yi−1) = pY |X(yi, xi) for all yi, x

i and

yi−1.

A system F might often be used as a component (subsystem) in a construction C(·), resulting in
the composed system CF. While a construction C(·) does not define a random system by itself, CF

does define a random system. The notions of being deterministic and of being stateless naturally
extend to constructions.1 Two (possibly dependent) systems F and G can also be composed in
parallel, denoted (F,G), which simply results in a system that allows queries to both systems F
and G.

Examples.A special case of a random system is a random function F : X → Y that implements a
function f initially chosen according to some distribution on the set of all functions from X to Y.2 In
particular, the uniform random function (URF) R : {0, 1}m → {0, 1}` realizes a uniformly chosen
function f ∈ Func(m, `), and the uniform random permutation (URP) P : {0, 1}n × {+,−} →
{0, 1}n realizes a uniformly chosen permutation π ∈ Perm(n) allowing both forward queries of the
form (x,+) returning π(x) as well as backward queries (y,−) returning π−1(y). Throughout this
paper we meet the convention that any system realizing a random function (possibly by means
of a construction) which is a permutation will always allow both forward and backward queries.
Furthermore, by E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n we denote the random function realizing
an ideal block cipher that provides an independent uniform random permutation Ek ∈ Perm(n) for
each key k ∈ {0, 1}κ, allowing both forward and backward queries to each Ek. Finally, note that
with some abuse of notation, we often write Ek or P to refer to the randomly chosen permutation
P implemented by the system Ek or P, respectively.

Distinguishing Random Systems. A distinguisher D for an (X ,Y)-random system asking q
queries is a (Y,X)-random system which is “one query ahead:” its input-output behavior is defined
by the conditional probability distributions of its queries pD

Xi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (Its first

query is determined by pDX1
.) After the distinguisher asks all q queries, it outputs a bit Wq depending

on the transcript (Xq, Y q). Given a random system F and a distinguisher D, we denote by DF
the random experiment where D interacts with F, with the distributions of the transcript (Xq, Y q)
and of the bit Wq being uniquely defined by their conditional probability distributions. For two
(X ,Y)-random systems F and G, the distinguishing advantage of D in distinguishing systems F
and G by q queries is the quantity ∆D(F,G) = |PDF

Wq
(1)−PDG

Wq
(1)| and the maximal distinguishing

advantage over all distinguishers asking q queries is denoted by ∆q(F,G) = maxD∆
D(F,G) (with

D ranging over all such distinguishers).

1 We dispense with a formal definition. However, we point out that we allow a stateless construction to keep a state
during invocations of its subsystem.

2 As for the notion of a random variable or a random system, the word “random” does not imply any uniformity of
the distribution.

7

If a detailed description of some distinguisher’s internal workings is needed, we use standard
pseudocode notation (see e.g. Fig. 3). To capture that the distinguisher issues a query x to a system
F and stores the response as y we always use the explicit notation “query y := F(x)”.

Monotone Conditions. For a random system F, we often consider an internal monotone con-
dition defined on it. Such a condition is initially satisfied (true), but once it gets violated, it
cannot become true again (hence the name monotone). We use such conditions to capture whether
the behavior of the system meets some additional requirement (e.g. distinct outputs, consistent
outputs) or this was already violated during the interaction that occurred so far. A monotone
condition is formalized by a sequence of events A = A0, A1, . . . such that A0 always holds, and
Ai holds if the condition holds after answering the i-th query. The probability that a distin-
guisher D issuing q queries to F makes a monotone condition A fail in the random experiment DF
is denoted by νD(F, Aq) = PDF(Aq) and maximum over all such distinguishers is denoted by
ν(F, Aq) = maxD ν

D(F, Aq).
For any random system F with a monotone condition A defined on it, following [24] we define

F blocked by A to be a new random system that behaves exactly like F as long as the condition
A is satisfied; but once A is violated, it only outputs a special blocking symbol ⊥ not contained
in the output alphabet of F. We will make use of the following helpful claims on random systems
proven in previous works.

Lemma 1. Let C(·) and C′(·) be two constructions invoking a subsystem, and let F and G be random
systems. Let A and B be two monotone conditions defined on F and G, respectively.

(i) [15, Lemma 2] Let F⊥ denote the random system F blocked by A and let G⊥ denote G blocked
by B. Then for every distinguisher D asking q queries we have ∆D(F,G) ≤ ∆q(F

⊥,G⊥) +
νD(F, Aq).

(ii) [21, Lemma 5] ∆q(C
F,CG) ≤ ∆q′(F,G), where q′ is the maximum number of invocations of

any internal system H for any sequence of q queries to CH, if such a value is defined.
(iii) [15, Lemma 3] There exists a fixed permutation S ∈ Perm(n) (represented by a deterministic

stateless system) such that ∆q(C
P,C′P) ≤ ∆q(C

S ,C′S).

3 Plain Cascades

We start by investigating the security of the plain cascade construction. Having a lower bound on
the security of plain cascades given in [15], it is natural to approach the question from the opposite
direction and explore generic attacks on the cascade construction in our model. In this section we
describe such an attack for the general case of a cascade of arbitrary length ` ≥ 2. It shows that,

roughly speaking, plain cascade of length ` can be attacked in 2κ+ `−2
`
n queries (2κ+ `−1

`+1
n queries)

for even (odd) `.

Let Casc
(·)
` : ({0, 1}κ)`×{0, 1}n×{+,−} → {0, 1}n denote a (deterministic stateless) construc-

tion which expects a subsystem E : {0, 1}κ × {0, 1}n × {+,−} → {0, 1}n realizing a block cipher.
CascE` then realizes cascaded encryption of length ` using the block cipher E and the keys given,

8

x EK1 EK2 · · · EK`

K1 K2 K`

Fig. 2. The cascade construction realized by CascE`,K̄ .

i.e., CascE` answers each forward query (k1, . . . , k`, x,+) by Ek` (· · ·Ek1 (x) · · ·) and each backward
query (k1, . . . , k`, y,−) by E−1

k1
(· · ·E−1

k`
(y) · · ·). Moreover, we let CascE`,K̄ be the system that chooses

a uniformly random (secret) key tuple K̄ = (K1, . . . ,K`) ∈ ({0, 1}κ)` and then gives access to the
permutation CascE` (K̄, ·) in both directions (i.e., takes inputs from {0, 1}n×{+,−}). The evaluation
of a forward query by CascE`,K̄ is depicted in Fig. 2.

Theorem 1. For the cascade construction Casc
(·)
`,K̄

of even length ` ≥ 2 using an ideal block cipher

E and for any3 parameter 0 < t < 22n/`−1 there exists a distinguisher D such that

∆D
(

(E,CascE`,K̄), (E,P)
)
≥ 1− 2

t
− 2`κ−t(n−1)

and D asks at most ` · 2κ+ `−2
`
n queries to E and 2t · 2

`−2
`
n forward queries to either of CascE`,K̄

and P. For odd-length cascades, D requires at most ` · 2κ+ `−1
`+1

n queries to E and 2t · 2
`−1
`+1

n forward
queries to either of CascE`,K̄ and P.

Proof. Assume ` is even, we give the description of the distinguisher D in Fig. 3. It first chooses an
arbitrary set S0 ⊆ {0, 1}n and independent random sets S2,S4, . . . ,S`−2 ⊆ {0, 1}n of the given sizes

and issues 2t · 2
`−2
`
n queries to the construction (cascade or random permutation – let us denote

it S) to obtain S` := S(S0). Each Si will represent the subset of values {0, 1}n that D “cares about”

after i steps of the cascade. Then D issues ` · 2κ+ `−2
`
n block-cipher queries to obtain all the values

Ek(S0),E−1
k (S2),Ek(S2), . . . ,E−1

k (S`−2),Ek(S`−2),E−1
k (S`)

with all possible keys k ∈ {0, 1}κ. These are all the queries D makes, it remains to justify that
they are sufficient to expect that there is a constant number of values x ∈ {0, 1}n that, in case
the correct keys are guessed, can be traced through the whole cascade only with the information
obtained above. Each such path then allows us to compare its endpoint with S(x) which will most
probably only match if S is the cascade.

Let us analyze the probability that the set I is found on line 14 in the setting where S = CascE`.K̄
and the examined key is the correct one, i.e., for k̄ chosen on line 13 we have k̄ = K̄. Consider the

3 For some intuition about the bound obtained, consider e.g. κ ≈ n and t :≈ `+ 1.

9

Distinguisher D(E,S): where S ∈ {CascE`.K̄ ,P}

1: choose arbitrary S0 ⊆ {0, 1}n s.t. |S0| = 2t · 2
`−2
`
n

2: for i := 1 to `/2− 1 do

3: choose uniformly at random S2i ⊆ {0, 1}n s.t. |S2i| = 2
`−2
`
n

4: for all x ∈ S0 do
5: query y(x) := S(x,+)
6: S` := {y(x) | x ∈ S0}
7: for all x ∈ S0 ∪ S2 ∪ · · · ∪ S`−2 do
8: for all k ∈ {0, 1}κ do
9: query ek(x) := E(k, x,+)

10: for all y ∈ S2 ∪ S4 ∪ · · · ∪ S` do
11: for all k ∈ {0, 1}κ do
12: query e−1

k (y) := E(k, y,−)

13: for all k̄ = (k1, . . . , k`) ∈ ({0, 1}κ)` do
14: choose I ⊆ S0 s.t. |I| = t and ∀x ∈ I, ∀i ∈ {1, . . . , `} :

eki(· · · ek1(x)) is known from lines 9 and 12
15: if I exists ∧ ∀x ∈ I : y(x) = ek`(· · · ek1(x)) then
16: return 1
17: return 0

Fig. 3. Distinguisher D for the proof of Theorem 1 for the case of ` being even.

sets

P0 = S0

P2 = E−1
k1

(E−1
k2

(S2))

...

P`−2 = E−1
k1

(· · ·E−1
k`−3

(E−1
k`−2

(S`−2)) · · ·),

i.e., P2i for i ≥ 1 is the subset of the plaintext space {0, 1}n that gets mapped to S2i after applying
the first 2i steps of the cascade with the correct keys. Since the sets S2i for i ≥ 1 were chosen
independently at random, we can invoke Lemma 2 (given in Appendix A) to obtain that for P =⋂`/2−1
i=0 P2i we have

E(|P|) =

∏`/2−1
i=0 |P2i|
2n(

`
2
−1)

=

∏`/2−1
i=0 |S2i|
2n(

`
2
−1)

= 2t

and similarly Var(|P|) ≤ 2t. Using Chebyshev inequality, this gives us P(|P| < t) ≤ 2/t. If this does
not occur (i.e., if |P| ≥ t) then any t-element subset of P clearly satisfies all requirements imposed
on the set I on lines 14 and 15 (note that any such subset can be chosen, we assume that D has a
fixed way of doing so). Since the desired I exists, D will output 1 in this case. Overall, this gives
us that D(E,CascE`.K̄) outputs 1 with probability at least 1− 2/t.

On the other hand, if S = P then for each k̄ the condition on line 15 can only be satisfied with
probability at most 2−t(n−1), hence by union bound D(E,P) outputs 1 with probability at most
2`κ−t(n−1), which concludes the proof for the case of even `.

10

For odd ` we just start by choosing S0,S1,S3, . . . ,S`−2 ⊆ {0, 1}n with |S0| = 2t ·2
`−1
`+1

n and each

of the remaining sets having size 2
`−1
`+1

n. The rest of the attack and its analysis is analogous and
therefore omitted. ut

Interestingly, for ` = 2 our attack corresponds to the well-known meet-in-the-middle attack
against double encryption [11] and for ` = 3 it corresponds to one of the attacks given in [20].

Note that there is a trade-off between the number of construction queries and block cipher
queries required for the attack presented in Theorem 1. The attack can be generalized to require

a lower number 2tm of construction queries and 2κ+n− 2 logm
`−2 block cipher queries. Moreover, the

construction queries can be chosen arbitrarily, making it a known-plaintext attack.

4 XOR-Cascades

We now turn to investigate the so-called XOR-cascades that, loosely speaking, consist of several
encryption steps interleaved with key-whitening steps using the XOR operation.

This design paradigm still offers several degrees of freedom: the addition or omission of the key-
whitening step at the beginning and at the end; as well as repetition or dependence of keys across
the encryption and whitening steps. We resolve the first choice by including the first XOR operation
and omitting the last one, see Fig. 4 and the formal definition below. In the choice of key-scheduling
we consider the variant that derives all keys used in the encryption steps from a single one in a
fixed deterministic way such that they are distinct. This is safe thanks to the properties of the
ideal-cipher model that we are working in that postulates the independence of the permutations
realized for each key by the block cipher. In order to weaken this assumption, one could also
consider independent keys for each of the encryption steps. Finally, we assume the whitening keys
to be random and independent. A formal definition of the `-XOR-cascade construction follows.

Let us fix a deterministic way to derive ` distinct κ-bit keys (k(1), . . . , k(`)) from a given κ-bit
key k in such a way that each mapping k 7→ k(i) is a bijection. For example, if we assume ` ≤ κ then
we can simply set k(i) := k ⊕ 0i−110κ−i, i.e., k(i) will differ from k in the i-th bit. The definition
extends naturally to random variables K(1), . . . ,K(`) derived from a uniformly random key K.

In the following discussion, let us model the XOR-Cascade of length ` by a (deterministic

stateless) construction X
(·)
` : {0, 1}κ × ({0, 1}n)`+1 × {+,−} → {0, 1}n which expects to access a

subsystem E : {0, 1}κ×{0, 1}n×{+,−} → {0, 1}n realizing a block cipher. The combined system XE
`

then answers each forward query (k, z1, . . . , z`, x,+) by Ek(`) (· · ·Ek(2) (Ek(1) (x⊕ z1)⊕ z2) · · · ⊕ z`)
and each backward query (k, z1, . . . , z`, y,−) by E−1

k(1)(· · ·E−1
k(`−1)(E

−1
k(`)(y) ⊕ z`) ⊕ z`−1 · · ·) ⊕ z1.

Again, we let XE
`,K,Z̄

be the system that first chooses uniformly random (secret) keys (K, Z̄) ∈
{0, 1}κ × ({0, 1}n)` where Z̄ = (Z1, . . . , Z`) and then gives access to the permutation XE

` (K, Z̄, ·)
in both directions (i.e., takes inputs from {0, 1}n × {+,−}). The evaluation of a forward query by
XE
`,K,Z̄

is depicted in Fig. 4.

11

x
⊕

EK(1)

⊕
EK(2) · · ·

⊕
EK(`) XE

`,K,Z̄(x)

Z1 K(1) Z2 K(2) Z` K(`)

Fig. 4. The XOR-cascade construction realized by XE
`,K,Z̄ .

x
⊕

P1

⊕
P2 · · ·

⊕
P`

⊕
AP̄`

`,Z̄
(x)

Z1 Z2 Z` Z`+1

Fig. 5. The key-alternating cipher realized by AP̄`

`,Z̄
.

Before presenting our results, we introduce the notion of key-alternating ciphers. This concept,
studied for example in [14,10,26,19,8], is surprisingly close to the notion of XOR-cascades, how-
ever introduced with a very different motivation. It refers to a construction of a block cipher by
alternating two types of steps: an XOR of a secret key and an application of a publicly known
permutation (see Fig. 5 and the formal definition below). A prominent example of a block cipher
having this structure is the current standard AES [4]. This approach to block-cipher construction is
then typically studied in the random-permutation model where one assumes that the permutation
steps consist of applications of uniformly random and independent, publicly accessible permuta-
tions. Below we model the key-alternating ciphers under this assumption. Note that in this setting
it is natural to consider constructions that both start and end with the XOR operation.

Let us denote by A
(·)
`,Z̄

the key-alternating cipher as it is formalized in the random permutation

model (e.g. in [14,10,26,19]). More precisely, let A
(·)
` : ({0, 1}n)`+2×{+,−} → {0, 1}n be a construc-

tion which expects to access a subsystem P̂` giving bidirectional access to ` arbitrary permutations
(denoted P1, . . . , P`), using some fixed addressing mechanism for the queries. The combined system

AP̂`
` then answers each forward query (z1, . . . , z`+1, x,+) by P` (· · ·P2 (P1 (x⊕ z1)⊕ z2) · · · ⊕ z`)⊕

z`+1 and each backward query (z1, . . . , z`+1, y,−) by P−1
1 (· · ·P−1

`−1(P−1
` (y⊕z`+1)⊕z`)⊕z`−1 · · ·)⊕z1.

Again, we let AP̂`
`,Z̄

be the system that first chooses uniformly random (secret) keys Z̄ ∈ ({0, 1}n)`+1

where Z̄ = (Z1, . . . , Z`+1) and then gives access to the permutation AP̂`
` (Z̄, ·) in both directions

(taking inputs from {0, 1}n × {+,−}). Finally, let P̄i denote a system that provides bidirectional
access to i independent uniformly random permutations. The evaluation of a forward query by

AP̄`
`,Z̄

is depicted in Fig. 5 and some known results on the security of key-alternating ciphers in the

random-permutation model are summarized using our formalism in Appendix B.

We are now ready to present the reduction of the security of XOR-cascades in the ideal-cipher
model to the problem of the security of one step shorter key-alternating ciphers in the random-

12

permutation model. This reduction allows one to analyze the problem in a simpler setting without
considering the block-cipher keys, as well as invoke existing results on key-alternating ciphers. The
proof modularizes the approach used in [17] to analyze the security of XOR-cascade of length 2
and generalizes it to arbitrary lengths.

Theorem 2. For ` ≥ 2, for the constructions X
(·)
`,K,Z̄

and A
(·)
`−1,Z̄

defined as above, and for every

distinguisher D making q queries to E,

∆D
((

E,XE
`,K,Z̄

)
, (E,P)

)
≤ min

h

{
`q

h2κ
+∆h

((
P̄`−1,A

P̄`−1

`−1,Z̄

)
, P̄`

)}
.

In particular, D can make arbitrarily many queries to either of XE
`,K,Z̄

and P.

Proof. In accordance with [9,15,17] we first reduce the original distinguishing problem to a sim-
pler one, involving only block-cipher queries. Overall, the system (E,XE

`,K,Z̄
) provides an interface

to query 2κ + 1 (dependent) permutations: 2κ of them correspond to the block cipher E being
used under all possible keys and the last permutation is provided by XE

`,K,Z̄
, where the values K

and Z̄ are chosen at the beginning by the construction X`,K,Z̄ . (All these permutations can be
queried both in forward and backward direction.) Since the last permutation is also uniformly
distributed and Perm(n) forms a group under composition, the joint distribution of these per-
mutations does not change if we first choose the last permutation uniformly at random, i.e., we
replace it by P, then pick random K and Z̄ and finally choose the permutations of the block ci-
pher independently and uniformly for all keys except K(`), for which we choose the permutation
x 7→ P(E−1

K(1)(· · ·E−1
K(`−2)(E

−1
K(`−1)(x ⊕ Z`) ⊕ Z`−1) · · ·) ⊕ Z1). To formalize this transition, let G(·)

be a construction that expects a single permutation as its subsystem (let us denote it P) and itself
provides an interface to a block cipher (let us denote it G). Any query to G is answered in the
following way: in advance, G chooses random keys (K, Z̄) and then generates random independent
permutations for G used with any key except K(`). For K(`), G instead realizes the permutation
x 7→ P (G−1

K(1)(· · ·G−1
K(`−2)(G

−1
K(`−1)(x⊕ Z`)⊕ Z`−1) · · ·)⊕ Z1), querying P for any necessary values.

By the above argument we then have
(
E,XE

`,K,Z̄

)
= (GP,P) and hence also

∆q

((
E,XE

`,K,Z̄

)
, (E,P)

)
= ∆q

((
GP,P

)
, (E,P)

)
.

Now we can apply claim (iii) in Lemma 1 to obtain ∆q

((
GP,P

)
, (E,P)

)
≤ ∆q

((
GS , S

)
, (E, S)

)
where S denotes the fixed permutation whose existence is guaranteed by this claim. Since S is fixed
and hence can be seen as known to the distinguisher, it makes no sense to query it and therefore
we only have to bound ∆q

(
GS ,E

)
for an arbitrary permutation S. To simplify the notation, we

shall denote the system GS by G.

Let us call a (forward or backward) query to G relevant if it involves any of the keys K(1), . . . ,K(`).
Similarly, we can see the system E as also choosing some random key K (and hence also all K(i))

13

that does not affect its behavior, it just serves to define relevant queries for E in an analogous way.
We now define monotone conditions Ah and Bh on systems E and G respectively, such that each
of these conditions remains satisfied as long as at most h of the queries asked so far were relevant.
In E the probability of violating this condition can be upper-bounded easily since the keys K(i)

do not affect the system’s behavior and hence it suffices to consider non-adaptive strategies. The
expected number of relevant queries among any given q queries asked by the distinguisher is `q ·2−κ

and from Markov inequality we obtain ν(E,Ahq) ≤ `q/h2κ. Hence by claim (i) of Lemma 1 we have

∆q(G,E) ≤ ∆q(G
⊥,E⊥) + ν(E,Ahq) ≤ ∆q(G

⊥,E⊥) + `q/h2κ

where E⊥ and G⊥ denote the systems E and G blocked by Ah and Bh, respectively.
In order to upper-bound the term ∆q(G

⊥,E⊥), we notice that the systems G⊥ and E⊥ only
differ in a small part. Moreover, this part corresponds to the systems considered in the security
definition of key-alternating ciphers in the random-permutation model. More precisely, G⊥ = CS

and E⊥ = CT where:

- S denotes a system that chooses ` random keys Z̄ ∈ ({0, 1}n)` and then provides access (by
means of both forward and backward queries) to ` randomly chosen permutations π1, . . . , π` ∈
Perm(n) such that they satisfy the equation

π−1
` (π`−1(· · ·π2(π1(· ⊕ Z1)⊕ Z2)⊕ Z3 · · ·)⊕ Z`) = id;

i.e., π1, . . . , π`−1 are chosen independently at random and π` is set to

x 7→ π`−1(· · ·π2(π1(x⊕ Z1)⊕ Z2)⊕ Z3 · · ·)⊕ Z`.

Note that this corresponds to the system
(
P̄`−1,A

P̄`−1

`−1,Z̄

)
.

- T denotes a system that provides access (by means of both forward and backward queries)
to ` uniformly random permutations π1, . . . , π` ∈ Perm(n) that are independent. This in turn
corresponds to the system P̄`.

- C(·) denotes a randomized construction expecting a subsystem providing bidirectional access to
` permutations π1, . . . , π`. The construction C(·) itself then provides access to a block cipher (let
us denote it C) as follows: it first chooses a uniformly random key K and then sets CK(i) := πi
for all i ∈ {1, . . . , ` − 1} and CK(`)(·) := S(π−1

` (·)). (C only queries its subsystem once it is
necessary in order to answer a relevant query to C). The permutations for all other keys are
chosen independently at random and maintained by C. Moreover, C only allows h relevant
queries, after that it returns ⊥.

It is now straightforward to verify that we indeed have G⊥ = CS and E⊥ = CT. Since C(·) issues
at most h queries to its subsystem, we can invoke Lemma 1(ii) to obtain

∆q(G
⊥,E⊥) ≤ ∆h(S,T) = ∆h

((
P̄`−1,A

P̄`−1

`−1,Z̄

)
, P̄`

)
.

The whole argument holds for any parameter h, hence we can minimize over it to conclude the
proof of the theorem. ut

14

Combining our Theorem 2 with the known results on the security of key-alternating ciphers in
the random permutation model [10,26,19] given in Appendix B we obtain the following corollary.

Corollary 1. Let X
(·)
`,K,Z̄

denote the `-XOR-cascade construction as above. Then we have:

1. 3-XOR-cascade is secure up to roughly 2κ+ 2
3
n queries; more precisely, for n ≥ 20 we have

∆q

((
E,XE

3,K,Z̄

)
, (E,P)

)
≤ 3 ·

(
q

2κ+ 2
3
n

) 1
2

+ 9 ·
(

q

2κ+ 2
3
n

) 3
2

+ 3 · q

2κ+ 2
3
n
.

2. `-XOR-cascade is secure up to roughly 2κ+ 3
4
n queries for ` ≥ 4; more precisely, for n ≥ 27 we

have

∆q

((
E,XE

`,K,Z̄

)
, (E,P)

)
≤ ` ·

(
q

2κ+ 3
4
n

) 1
2

+ 9 · q

2κ+ 3
4
n

+ 4 ·
(

q

2κ+ 3
4
n

) 3
2

.

3. `-XOR-cascade is secure up to roughly 2κ+ `−1
`+1

n queries for odd `; more precisely, we have

∆q

((
E,XE

`,K,Z̄

)
, (E,P)

)
≤ (`+ 1) ·

(
q

2κ+ `−1
`+1

n

) 1
2

+ 23+ `−1
4 ·

(
q

2κ+ `−1
`+1

n

) `+1
8

.

For even ` one can prove the same security as for one step shorter odd-length XOR-cascade.

Proof (sketch). We combine the statement of Theorem 2 with the bounds on the security of the

key-alternating cipher listed in Theorem 4, choosing the value h to be q
1
2 2

n
3
−κ

2 , q
1
2 2

3n
8
−κ

2 and

q
1
2 2

(`−1)n
2(`+1)

−κ
2 in the three cases above, respectively. The statements for constructions with more

rounds follow from the fact that

∆h

((
P̄`,A

P̄`
`,Z̄

)
, P̄`+1

)
≤ ∆h

((
P̄`−1,A

P̄`−1

`−1,Z̄

)
, P̄`

)
which can be shown by a straightforward reduction. ut

Note that our result implies that with increasing length `, XOR-cascade approaches the security
level 2κ+n which is optimal in our model.

5 Sequential Constructions

To obtain an upper bound on the security achievable by the `-XOR-cascade construction, in this
section we consider keylength-extending constructions having a particular natural form which we
call sequential.

A construction C : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n is sequential if, given an underlying
block cipher E, the mapping it realizes can be written as

CE(k′, x,+) = Q`,k′
(
Ek`

(
Q`−1,k′

(
· · ·Ek2

(
Q1,k′

(
Ek1

(
Q0,k′(x)

)))
· · ·
)))

15

Distinguisher D(E,S): where S ∈ {CE
K′ ,P}

1: for all x ∈ {0, 1}n do
2: query y(x) := S(x,+)

3: choose uniformly at random S1 ⊆ {0, 1}n s.t. |S1| = 2t · 2
`−1
`
n

4: for i := 2 to ` do
5: choose uniformly at random Si ⊆ {0, 1}n s.t. |Si| = 2

`−1
`
n

6: for all x ∈ S1 ∪ S2 ∪ · · · ∪ S` do
7: for all k ∈ {0, 1}κ do
8: query ek(x) := E(k, x,+)

9: for all k′ ∈ {0, 1}κ
′
do

10: choose I ⊆ {0, 1}n s.t. |I| = t and ∀x ∈ I, ∀i ∈ {1, . . . , `} :
eki(Qi−1,k′(· · · ek2(Q1,k′(ek1(Q0,k′(x)))) · · ·)) is known from line 8

11: if I exists ∧ ∀x ∈ I : y(x) = Q`,k′(ek`(Q`−1,k′(· · · ek2(Q1,k′(ek1(Q0,k′(x)))) · · ·))) then
12: return 1
13: return 0

Fig. 6. Distinguisher D for the proof of Theorem 3.

where all keys ki are determined by k′ and Qi,k′ is a fixed permutation for all (i, k′) ∈ {0, . . . , `} ×
{0, 1}κ′ . Again, we let CE

K′ be the system that first chooses a uniformly random (secret) key K ′ ∈
{0, 1}κ′ and then gives access to the permutation CE(K ′, ·) in both directions (i.e., takes inputs
from {0, 1}n × {+,−}).

The attack on a class of so-called injective 2-query constructions given in [17] can be generalized
to sequential `-query constructions for arbitrary `, resulting in the statement below. Note that this
attack can also be seen as a lifting of an attack presented in [10] into the ideal block-cipher setting.

Theorem 3. Let C(·) : {0, 1}κ′ × {0, 1}n × {+,−} → {0, 1}n be a sequential `-query construction.
For any parameter 0 < t < 2n/`−1 there exists a distinguisher D such that

∆D((E,CE
K′), (E,P)) ≥ 1− 2/t− 2κ

′−t(n−1),

where D makes at most (2t + `) · 2κ+ `−1
`
n block-cipher queries as well as 2n forward construction

queries.

Proof. The distinguisher D is depicted in Fig. 6, the keys ki and permutations Qi,k′ refer to those
guaranteed to exist by the definition of a sequential construction.

The distinguisher uses a similar approach as the one considered in the proof of Theorem 1. It
first evaluates the given construction (denoted S) on all possible values x ∈ {0, 1}n and then collects
responses to block-cipher queries on a sufficient amount of inputs (organized in sets S1, . . . ,S`) for
all possible keys k ∈ {0, 1}κ. Without issuing any further queries, D then tries to internally simulate
the evaluation of the construction C under all possible keys k′ ∈ {0, 1}κ′ . Whenever this simulated
C would issue its i-th query to E, if the queried value is in Si then D can continue the simulation
by answering this query using the value obtained during its initial batch of block-cipher queries.
It remains to show that with sufficient probability there will be a set I ⊆ {0, 1}n of size at least t

16

containing inputs for which the whole evaluation of the construction C can be simulated successfully
in the above-described way. Upon successfully completing the simulation, D can compare its results
to the responses obtained to its construction queries and these will most probably match only if
S = CE

K′ .

To analyze the probability of the existence of the set I (formally described on line 10), we
consider the setting where S = CE

K′ and the correct key was chosen on line 9, i.e., k′ = K ′. We can
again define the sets

P1 = Q−1
0,k′(S1)

P2 = Q−1
0,k′(E

−1
k1

(Q−1
1,k′(S2)))

...

P` = Q−1
0,k′(E

−1
k1

(Q−1
1,k′(· · ·Q

−1
`−2,k′(E

−1
k`−1

(Q−1
`−1,k′(S`))) · · ·)))

where each Pi is the set of inputs from {0, 1}n that get mapped to an element in Si after applying
the first i permutations Q0, . . . , Qi−1 of the sequential construction C interleaved with the first
i−1 encryptions. The sets Si were uniformly random and so are their images under a permutation,
hence we again can apply Lemma 2 to see that for P =

⋂`
i=1 Pi we have

E(|P|) =

∏`
i=1 |Pi|

2n(`−1)
=

∏`
i=1 |Si|

2n(`−1)
= 2t

and Var(|P|) ≤ 2t. Chebyshev inequality then gives us P(|P| < t) ≤ 2/t and otherwise (i.e., if
|P| ≥ t) the set P (or any its t-element subset) will serve as the set I on line 10, passing the test on
line 11 and making D output 1 in this case. Hence D(E,CE

K′) outputs 1 with probability at least
1 − 2/t. On the other hand, D(E,P) outputs 1 with probability at most 2κ

′−t(n−1) for the same
reason as in the proof of Theorem 1, concluding the proof. ut

Again, a trade-off between the number of construction queries and block cipher queries is pos-
sible: an analogous attack can be mounted with a lower number m of construction queries and at

most (2t+ `) · 2κ+n− logm
` block cipher queries. Also here the construction queries can be arbitrary,

resulting in a known-plaintext attack.

Acknowledgements. I would like to thank Stefano Tessaro for useful discussions and helpful
feedback to earlier versions of this work.

References

1. Data encryption standard. In In FIPS PUB 46, Federal Information Processing Standards Publication, 1977.
2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation, 1998.
3. FIPS PUB 46-3: Data Encryption Standard (DES). National Institute of Standards and Technology, 1999.
4. Advanced encryption standard. In FIPS PUB 197, Federal Information Processing Standards Publication, 2001.

17

5. Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher. National Institute of Stan-
dards and Technology, Special Publication 800-67, 2004.

6. EMV Integrated Circuit Card Specification for Payment Systems, Book 2: Security and Key Management, v.4.2.
June 2008.

7. William Aiello, Mihir Bellare, Giovanni Di Crescenzo, and Ramarathnam Venkatesan. Security amplification by
composition: The case of doubly-iterated, ideal ciphers. In Advances in Cryptology — CRYPTO ’98, volume
1462 of Lecture Notes in Computer Science, pages 390–407. Springer Berlin Heidelberg, 1998.

8. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Steinberger. On the indifferentia-
bility of key-alternating ciphers. Cryptology ePrint Archive, Report 2013/061, 2013. http://eprint.iacr.org/.

9. Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security of triple encryption. In
Advances in Cryptology — EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–
426. Springer Berlin Heidelberg, 2006. Full version at http://eprint.iacr.org/2004/331.

10. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert, John Steinberger, and Elmar
Tischhauser. Key-alternating ciphers in a provable setting: encryption using a small number of public permu-
tations. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology — EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 45–62. Springer Berlin Heidelberg, 2012.

11. W. Diffie and M. E. Hellman. Exhaustive Cryptanalysis of the NBS Data Encryption Standard. Computer,
10(6):74–84, 1977.

12. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of composite problems, with
applications to cryptanalysis, knapsacks, and combinatorial search problems. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 719–740. Springer Berlin Heidelberg, 2012.

13. S. Even and O. Goldreich. On the power of cascade ciphers. ACM Trans. Comput. Syst., 3(2):108–116, 1985.
14. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom permutation. In

Journal of Cryptology, pages 151–161. Springer Berlin Heidelberg, 1991.
15. Peter Gaži and Ueli Maurer. Cascade encryption revisited. In M. Matsui, editor, Advances in Cryptology —

ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 37–51. Springer Berlin Heidelberg,
December 2009.

16. Peter Gaži and Ueli Maurer. Free-start distinguishing: Combining two types of indistinguishability amplification.
In K. Kurosawa, editor, The 4th International Conference on Information Theoretic Security - ICITS 2009,
volume 5973 of Lecture Notes in Computer Science, pages 28–44. Springer Berlin Heidelberg, 2010.

17. Peter Gaži and Stefano Tessaro. Efficient and optimally secure key-length extension for block ciphers via random-
ized cascading. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology — EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 63–80. Springer Berlin Heidelberg, 2012.

18. Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an Analysis of DESX).
Journal of Cryptology, 14:17–35, 2001.

19. Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An Asymptotically Tight Security Analysis of the
Iterated Even-Mansour Cipher. To appear at ASIACRYPT 2012, 2012.

20. Stefan Lucks. Attacking triple encryption. In Serge Vaudenay, editor, Fast Software Encryption, volume 1372 of
Lecture Notes in Computer Science, pages 239–253. Springer Berlin Heidelberg, 1998.

21. Ueli Maurer. Indistinguishability of random systems. In Lars Knudsen, editor, Advances in Cryptology — EU-
ROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 110–132. Springer Berlin Heidelberg,
May 2002.

22. Ueli Maurer and James L. Massey. Cascade ciphers: The importance of being first. Journal of Cryptology,
6(1):55–61, 1993.

23. Ueli Maurer and Krzysztof Pietrzak. Composition of random systems: When two weak make one strong. In Moni
Naor, editor, Theory of Cryptography — TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages
410–427. Springer Berlin Heidelberg, February 2004.

24. Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability amplification. In Alfred Menezes,
editor, Advances in Cryptology — CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
130–149. Springer Berlin Heidelberg, August 2007.

18

http://eprint.iacr.org/
http://eprint.iacr.org/2004/331

25. Ueli Maurer and Stefano Tessaro. Computational indistinguishability amplification: Tight product theorems for
system composition. In Shai Halevi, editor, Advances in Cryptology — CRYPTO 2009, volume 5677 of Lecture
Notes in Computer Science, pages 350–368. Springer Berlin Heidelberg, August 2009.

26. John Steinberger. Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance. Cryptology
ePrint Archive, Report 2012/481, 2012. http://eprint.iacr.org/.

27. Stefano Tessaro. Security amplification for the cascade of arbitrarily weak PRPs: Tight bounds via the interactive
Hardcore Lemma. In Theory of Cryptography — TCC 2011, volume 6597 of Lecture Notes in Computer Science,
pages 37–54. Springer Berlin Heidelberg, 2011.

28. Serge Vaudenay. Decorrelation: a theory for block cipher security. Journal of Cryptology, 16(4):249–286, 2003.

A Intersections of Random Subsets

The following lemma is a generalization of Lemma 6 given in the full version of [17] and is used in
our proofs. Let E, Var and Cov denote the usual notions of expected value, variance and covariance,
respectively.

Lemma 2. Let U be a set such that |U| = N and for m ∈ N let A1, · · · ,Am be sets of size a1, . . . , am
respectively, such that each Ai for i ≥ 2 is chosen independently uniformly at random from all
subsets of U having ai elements; A1 may be chosen arbitrarily. If the random variable X denotes
the number of elements of the intersection A1 ∩ · · · ∩ Am then we have E(X) = (

∏m
i=1 ai)/N

m−1

and Var(X) ≤ (
∏m
i=1 ai)/N

m−1.

Proof. It is easy to see that X can be expressed as
∑a1

i=1Xi where Xi is the indicator random
variable equal to 1 iff ei ∈ A2∩ · · ·∩Am (ei being the i-th element of A1 in some ordering). For the
expected value we clearly have E(Xi) =

∏m
i=2(ai/N) due to the independent random choice of the

sets A2, . . . ,Am. By linearity of expectation this gives us E(X) =
∑a1

i=1 E(Xi) = (
∏m
i=1 ai)/N

m−1.
We then obtain the variance as

Var(X) =

a1∑
i=1

Var(Xi) + 2 ·
∑

1≤i<j≤a1

Cov(Xi, Xj)

and by bounding the terms in this equation by

Var(Xi) = E(X2
i)− (E(Xi))

2 =
m∏
i=2

ai
N
−

(
m∏
i=2

ai
N

)2

≤
∏m
i=2 ai
Nm−1

Cov(Xi, Xj) = E(Xi ·Xj)− E(Xi) · E(Xj) < 0

we obtain the desired result. ut

B Security of Key-Alternating Ciphers

In this appendix we present several bounds recently proved for the security of key-alternating
ciphers in the random-permutation model, recast into our formalism.

19

http://eprint.iacr.org/

Theorem 4. Let A`,Z̄ denote the key-alternating cipher of length ` as described above.

1. [10] For any q < 2n/100 we have

∆q((P̄2,A
P̄2

2,Z̄
), P̄3) ≤ 8.6q3

22n
+

3q2

2
4
3
n
.

2. [26] For any ` ≥ 1 and q < 2n/100 we have

∆q((P̄`,A
P̄`
`,Z̄

), P̄`+1) ≤ 3` · q
2

2
3
2
n

+ (`+ 1) · q`

2
`2

`+1
n
.

3. [19] For any even ` ≥ 1 we have

∆q((P̄`,A
P̄`
`,Z̄), P̄`+1) ≤ 2

`
4

+3 ·
(
q`+2

2`n

) 1
4

.

20

	Plain versus Randomized Cascading-Based Key-Length Extension for Block Ciphers

