
An extended abstract of this paper is published in the proceedings of the 16th International Con-
ference on Practice and Theory in Public-Key Cryptography – PKC 2013. This is the full version.

Rate-Limited Secure Function Evaluation:

Definitions and Constructions

Özgür Dagdelen1∗ Payman Mohassel2 Daniele Venturi3†

1 Technische Universität Darmstadt, Germany
oezguer.dagdelen@cased.de

2 University of Calgary, Canada
pmohasse@cpsc.ucalgary.ca
3 Aarhus University, Denmark

dventuri@cs.au.dk

Abstract. We introduce the notion of rate-limited secure function evaluation (RL-SFE).
Loosely speaking, in an RL-SFE protocol participants can monitor and limit the number of
distinct inputs (i.e., rate) used by their counterparts in multiple executions of an SFE, in a
private and verifiable manner. The need for RL-SFE naturally arises in a variety of scenarios:
e.g., it enables service providers to “meter” their customers’ usage without compromising their
privacy, or can be used to prevent oracle attacks against SFE constructions.

We consider three variants of RL-SFE providing different levels of security. As a stepping stone,
we also formalize the notion of commit-first SFE (cf-SFE) wherein parties are committed to their
inputs before each SFE execution. We provide compilers for transforming any cf-SFE protocol
into each of the three RL-SFE variants. Our compilers are accompanied with simulation-based
proofs of security in the standard model and show a clear tradeoff between the level of security
offered and the overhead required. Moreover, motivated by the fact that in many client-server
applications clients do not keep state, we also describe a general approach for transforming the
resulting RL-SFE protocols into stateless ones.

As a case study, we take a closer look at the oblivious polynomial evaluation (OPE) protocol of
Hazay and Lindell, show that it is commit-first and instantiate efficient rate-limited variants of
it.

Keywords. secure function evaluation, foundations, secure metering, oracle attacks, oblivious

polynomial evaluation

∗The author acknowledges support from CASED (www.cased.de).
†The author acknowledges support from the Danish National Research Foundation and The National Science

Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Compu-
tation, and also from the CFEM research center (supported by the Danish Strategic Research Council) within which
part of this work was performed.

1

www.cased.de


Contents

1 Introduction 3
1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 7

3 Commit-First Secure Function Evaluation 7

4 Rate-Limited Secure Function Evaluation 9

5 Compilers for Rate-Limited SFE 11
5.1 A Rate-Hiding Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 A Rate-Revealing Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 A Pattern-Revealing Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Making the Compilers Stateless 16

7 Rate-Limited OPE 18
7.1 ZK Proofs for Rate-Limited OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A Primitives 24
A.1 Instantiations of Commit-First SFE . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B Relation between Notions of Rate-Limited SFE 29

C Missing Proofs 30
C.1 Proof to Theorem 5.1 (Rate-hiding) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
C.2 Completing the Hybrid Argument for Rate-Revealing Compiler (Theorem 5.2) . . . 33
C.3 Proof to Theorem 5.3 (Pattern-revealing) . . . . . . . . . . . . . . . . . . . . . . . . 34
C.4 Proof to Theorem 6.1 (Stateless Rate-Revealing Compiler) . . . . . . . . . . . . . . . 37

D Instantiation of ZK-Proofs for our Compilers 39
D.1 The Case of Rate-Revealing OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
D.2 The Case of Rate-Hiding OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
D.3 DL-based Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



1 Introduction

Secure function evaluation (SFE) allows a set of mutually distrustful parties to securely compute
a function f of their private inputs. Roughly speaking, SFE protocols guarantee that the function
is computed correctly and that the parties will not learn any information from the interaction
other than their output and what is inherently leaked from it. Seminal results in SFE show that
one can securely compute any functionality [53, 54, 25, 2, 13]. There has been a large number of
follow-up work improving the security, strengthening adversarial models, and studying efficiency.
Recent work on practical SFE has also led to real-world deployments [7, 6], and the design and
implementation of several SFE frameworks [44, 5, 17, 36, 38].

In practice, most applications of SFE considered in the literature need to accommodate multiple
executions of a protocol.1 Consider a client that searches for multiple patterns in a large text via
a secure pattern matching protocol [32, 34], searches several keywords in a private database via an
oblivious keyword search [48, 20], or an individual who needs to run a software diagnostic program,
or an intrusion detection system (IDS) to analyze data via an oblivious branching program (OBP)
or an automaton evaluation (OAE) protocol [39, 52].

Invoking an SFE protocol multiple times raises important practical issues that are outside the
scope of standard SFE, and hence are not addressed by the existing solutions. We point out two
such issues and introduce rate-limited SFE as a means to address them. The reason for the choice of
name is that rate-limiting is commonly used in network and web applications to refer to restrictions
put on clients’ usage (on a per user, or a per IP address basis). In this work we consider similar
restrictions on a user’s inputs to services that maybe implemented using SFE.

Secure Metering of SFE. Service providers tend to charge their clients according to their level
of usage: a location-based service may wish to charge its clients based on the number of locations
they use the service from; a database owner based on the number of distinct search queries; an IDS
provider based on the number of suspicious files sent for vulnerability analysis. Service providers
would be more willing to adopt SFE protocols if it is possible to efficiently enforce such a metering
mechanism. The challenge is to do so without compromising the client’s privacy, or allowing the
server or the client to cheat the metering system.

Oracle attacks. Consider multiple executions of a two-party SFE protocol (such as those
mentioned above), where the first party’s input stays the same in different executions but the
second party’s input varies. A malicious second party who “adaptively” uses different inputs in
each execution, can gradually learn significant information about the first party’s input, and, in
the worst case, fully recover it. For instance, consider an oblivious polynomial evaluation (OPE)
protocol (e.g., used in oblivious keyword search) wherein the server holds a polynomial p while the
client holds a private point x and wants to learn p(x), but cannot learn more than it. Evaluating
the polynomial p on sufficiently many points allows a malicious client to interpolate and recover p.
A similar attack can be applied to OBP and OAE protocols to learn the private branching program
or automaton which may embed propriety information. Learning attacks of this sort are well-
understood and have been previously identified as important threats in the context of SFE; they

1Depending on the application, a subset of the participants may use the same input in different executions.

3



are sometimes referred to as oracle attacks since the attacker has black-box access to input/output
values from multiple executions (e.g., see the discussion in [1]).

A näıve solution to the problems discussed above is to limit the total number of executions
of an SFE protocol, ignoring the actual input values. However, this approach does not provide a
satisfactory solution in most scenarios. For example, in case of secure metering, fixing an a priori
upper bound on the total number of executions would mean charging legitimate clients multiple
times for using the service with the same input; a disadvantage for clients who may need to use
the same input from multiple devices, or reproduce a result due to communication errors, device
upgrades, or perhaps to prove the validity of the outcome to a third-party by re-running the
protocol. Similarly, in case of oracle attacks, clients need not be disallowed to use the same input
multiple times since querying the same input many times does not yield new information to an
attacker.

Rate-limited SFE. A more accurate (and challenging) solution is to limit and/or monitor the
number of distinct inputs used by an SFE participant in multiple executions. Obviously, this should
be done in a secure and efficient manner, i.e., a party should not be able to exceed an agreed-upon
limit, and its counterpart should not learn any additional information about his private inputs,
or impose a lower limit than the one they agreed on.2 We refer to the number of distinct inputs
used by a participant as his rate, and call a SFE protocol that monitors/limits this number, a
rate-limited SFE.

Of course, achieving RL-SFE is more costly than the näıve solution discussed above. However,
at a minimum we require the proposed solution to avoid storing and/or processing the complete
transcripts of all previous executions. (We discuss the exact overhead of our solutions in detail
below.)

We note that the complementary question of what functions are unsafe for use in SFE (leak too
much information) has also been studied, e.g., by combining SFE and differential privacy [3, 46], or
belief tracking techniques [45]. These works are orthogonal to ours, and can potentially be used in
conjunction with rate-limited SFE as an enforcement mechanism. For instance, the former works
can invoked to negotiate on a function f with a measurable “safeness” from which the rate for
each user can be derived. Subsequently, the abidance of this rate can be enforced through our
rate-limited SFE.

1.1 Our Contribution

Motivated by the discussion above, we initiate the study of rate-limited SFE. For simplicity, in
this paper we focus on the two-party case, but point out that the definitions and some of the
constructions are easily extendible to the multiparty setting. Our main contributions are as follows.

Definitions. We introduce three definitions for rate-limited secure function evaluation: (i) rate-
hiding, (ii) rate-revealing and (iii) pattern-revealing. All our definitions are in the real-world/ideal-
world simulation paradigm and are concerned with multiple sequential executions of an SFE proto-
col. They reduce to the standard simulation-based definition (stand alone) for SFE, when applied

2In fact the problem becomes significantly easier when the parties are assumed to be semi-honest.

4



to a single execution.
In a rate-hiding RL-SFE, in each execution, the only information revealed to the parties is

whether the agreed-upon rate limit has been exceeded or not. In a rate-revealing RL-SFE, the
parties additionally learn the current rate (i.e., the number of distinct inputs used by their coun-
terpart so far). In a pattern-revealing RL-SFE, parties also learn the pattern of occurrences of
each other’s inputs during the previous executions. These notions provide a useful spectrum of
tradeoffs between security and efficiency: our constructions become more efficient as we move to
the more relaxed notions, to the extent that our pattern-revealing transformation essentially adds
no overhead to the underlying SFE protocol.

Commit-first SFE. In order to design rate-limited SFE protocols, we formalize the auxiliary
notion of commit-first SFE (cf-SFE). Roughly speaking, a protocol is commit-first if it can be
naturally divided into a (i) committing phase, where each party becomes committed to its input
for the second phase, and (ii) a function evaluation phase, where the function f is computed on the
inputs committed to in the first phase.3

We utilize cf-SFE as a stepping stone to design rate-limited SFE. It turns out that the separation
between the input commitment phase and the function evaluation phase facilitates the design of
efficient rate-limited SFE. In particular, now a party only needs to provide some evidence of a
particular relation between the committed inputs in the first phase. In contrast, if we had not
started with a commit-first protocol, such an argument would have involved the complete history
of the transcripts for all the previous executions, rendering such an approach impractical.

The related notion of “evaluating on committed inputs” is well-known (e.g. see [25, 40]), but
we need and put forth a formal (and general) definition for cf-SFE in order to prove our RL-SFE
protocols secure (see Appendix ??). We then show that several existing SFE constructions are
either commit-first or can be efficiently transformed into one. Examples include variants of Yao’s
garbled circuit protocol, the oblivious polynomial evaluation of Hazay and Lindell [35], the private
set intersection protocol of Hazay and Nissim [33], and oblivious automaton evaluation of Gennaro
et al. [24]. We also show that the GMW compiler [29], outputs a commit-first protocol. This is of
theoretical interest as it provides a general compiler for transforming a semi-honest SFE protocol
into a malicious cf-SFE (and eventually a rate-limited SFE using the compilers in this paper). We
elaborate on these cf-SFE instantiations in Appendix A.1.

Compilers & Techniques. We design three compilers for transforming a cf-SFE into each of the
three variants of RL-SFE discussed above, and provide simulation-based proofs of their security.
All our compilers start from a cf-SFE protocol and add a “proof of repeated-input phase” between
the committing phase and the function evaluation phase. An exception is our pattern-revealing
compiler, where a proof of repeated-input is implicit given that we force the commitments to be
deterministic. In our first compiler (rate-hiding), whenever the j-th execution begins, party P1

first checks whether its input is “fresh” or has already been used in a previous run. In the former
case, P1 encrypts the value “1” and, otherwise, the value “0” using a semantically secure public-key
encryption scheme (E,D) for which it holds the secret key sk. Denote the resulting ciphertext with

3Note that adding input commitments to the beginning of a protocol does not automatically yield a cf-SFE, since
parties are not necessarily bound to using the committed inputs in their evaluation.

5



cj . Party P1 forwards to P2 a ZK proof of the following statement:

(“committed to old input” ∧ “encryption of 0”)

∨ (“committed to new input” ∧ “encryption of 1” ∧ “
∑

i≤j D(sk, ci) ≤ rate”).

Intuitively, the proof above only leaks the fact that the rate is not exceeded in the current exe-
cution, but nothing else. In order to generate this proof (resp. verify the proof generated by the
counterpart), P1 needs to store all the commitments and ciphertexts sent to (resp. received from)
P2 in previous executions.

For our second compiler (rate-revealing), we can do without the encryptions. Parties can instead
prove a simpler statement giving evidence that the current (committed) input corresponds to one
of the commitments the other party received earlier. Clearly, this approach reveals the current
rate, but as we prove nothing more.

Finally, our third compiler (pattern-revealing) exploits a PRF to generate the randomness used
in the committing phase of the underlying cf-SFE protocol. In this way, the commitment becomes
deterministic (given the input), allowing the other party to check whether the current input has
already been used and in which runs. This approach discloses the pattern of inputs used by the
parties; on the other hand, it is extremely efficient adding little computational overhead (merely
one invocation of a PRF) to the original cf-SFE protocol.

Making RL-SFE stateless. The above compilers suffer from the limitation that the parties
need to keep a state which grows linearly in the total number of executions of the underlying
SFE protocol. In many applications, clients do not keep state (and outsource this task to the
servers), either due to lack of resources or because they need to use the service from multiple
locations/devices. We show a general approach for transforming the stateful RL-SFE protocols
generated above into stateless ones. Here, the client keeps only a small secret (whose size is
independent of the total number of executions), but is still able to prevent cheating by a malicious
server, and preserve privacy of his inputs. At a high level, the transformation requires the client
to store its authenticated (MACed) state information on the server side and retrieve/verify/update
it on-the-fly as needed. We show how to apply this transformation to our rate-revealing compiler
to obtain a stateless variant and prove its security. A similar technique can be applied to our
rate-hiding compiler. Our pattern-revealing compiler is already stateless (client only needs to store
a PRF key) for the party who plays the role of the client.

Case Study. We take a closer look at the oblivious polynomial evaluation protocol of Hazay
and Lindell [35]. Their protocol is secure against malicious adversaries. We show that it is also a
commit-first OPE, by observing that a homomorphic encryption of the parties’ inputs together with
ZK proofs of their validity, can be interpreted as a commitment to their inputs. This immediately
yields an efficient pattern-revealing RL-SFE for the OPE problem, based on the compiler we design.
We also provide an efficient rate-hiding and rate-revealing RL-OPE by instantiating the ZK proofs
for membership in the necessary languages, efficiently.

6



1.2 Roadmap

We discuss some preliminaries in Section 2 and give our model for commit-first SFE in Section 3.
The definition of rate-limited SFE is introduced in Section 4. Our rate-hiding, rate-revealing and
pattern-revealing compilers are described and analyzed in Section 5, whereas Section 6 describes the
stateless version of the rate-revealing compiler. Finally, Section 7 deals with concrete instantiations
for the case of OPE.

2 Preliminaries

Notation. Throughout the paper, we denote the security parameter by λ. A function negl(λ) is
negligible in λ (or just negligible) if it decreases faster than the inverse of every polynomial in λ.
A machine is said to run in polynomial-time if its number of steps is polynomial in the security
parameter.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two distribution ensembles. We say X and Y are compu-
tationally indistinguishable (and we write X ≡c Y ) if for every non-uniform polynomial-time adver-
sary A there exists a negligible function negl such that |Pr [A(X) = 1]−Pr [A(Y ) = 1] | ≤ negl(λ).
Note that all our security statements can be straightforwardly proven for uniform polynomial-time
adversaries, as well.

If x is a string, |x| denotes the length of x. Vectors are denoted boldface; given vector x, we
write x[j] for the j-th element of x. If X is a set, #X represents the number of elements in X .
When x is chosen randomly in X , we write x ← X . When A is an algorithm, y ← A(x) denotes
a run of A on input x and output y; if A is randomized, then y is a random variable and A(x; r)
denotes a run of A on input x and random coins r.

Our compilers make use of standard cryptographic primitives. We define these primitives in
Appendix A.

3 Commit-First Secure Function Evaluation

In this section, we formally define the notion of commit-first secure function evaluation (cf-SFE).
Our three compilers ΨRH, ΨRR and ΨPR for designing rate-limited SFE, leverage commit-first
protocols as a building block. We call a protocol π commit-first if it can be naturally divided into
two phases. In the first phase (committing phase), both parties P1 and P2 become committed to
their inputs. At the end of this phase, no information about the parties’ inputs is revealed (the
hiding property), and neither party can use a different input than what it is committed to in the
remainder of the protocol (the binding property). In the second phase (function evaluation phase),
the function f will be computed on the inputs committed to in the last phase.

We now describe the two separate phases more precisely. Consider a polynomial-time function-
ality f = (f1, f2) with fi : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. Then, a cf-SFE protocol π = (π1, π2) for
evaluating f on parties’ inputs x1 and x2 proceeds as follows.

Committing Phase: Parties P1 and P2 execute π1 which is defined by the functionality ((x1, r1),

7



(x2, r2)) 7→ (C2(x2, r2),C1(x1, r1)). Note that the commitment schemes C1,C2 can be arbi-
trary schemes (often different for each cf-SFE protocol), as long as they satisfy the hiding
and the binding properties required.

Function Evaluation Phase: Afterwards, P1 and P2 execute π2 on the same inputs as in the
committing phase; π2 is defined by the functionality ((x1,C2(x2)), (x2,C1(x1))) 7→ (f1(x1, x2),
f2(x1, x2)). Note that P1 and P2, can use their state information from the previous phase in
the function evaluation phase, too.

Next, we formalize the security definition for a cf-SFE using the real/ideal world simulation
paradigm.

The real world. In each execution, a non-uniform adversaryA following an arbitrary polynomial-
time strategy can send messages in place of the corrupted parties (whereas the honest parties
continue to follow π). Let i ∈ {1, 2} be the index of the corrupted party. A real execution of
π = (π1, π2) on inputs (x1, x2), auxiliary input z to A and the security parameter λ, denoted by
realcf−SFEπ,A(z),i(x1, x2, λ) is defined as the output of the honest party and the adversary upon execution
of π.

The ideal world. Let i ∈ {1, 2} be the index of the corrupted party. We define the ideal world
in two steps. During the ideal execution, the honest party sends its input x3−i, and a uniformly
random string r3−i used by the commitment scheme, to the trusted party. Party Pi which is
controlled by the ideal adversary S, called the simulator, may either abort (sending a special
symbol ⊥) or send input x′i, and an arbitrary randomness r′i (not necessarily uniform) chosen based
on the auxiliary input z, and Pi’s original input xi. Denote by ((x′1, r

′
1), (x′2, r

′
2)) the values received

by the trusted party. If the trusted party receives ⊥, the value ⊥ is forwarded to both P1 and P2 and
the ideal execution terminates; else the trusted party computes γ1 = C1(x′1; r′1) and γ2 = C2(x′2; r′2),
respectively. The TTP sends γ3−i to S, which can either continue or abort by sending ⊥ to the
TTP. In case of an abort, the TTP sends ⊥ to the honest party; otherwise, it sends γi.

In the second phase, the honest party continues the ideal execution by sending to the TTP a
continue flag, or abort by sending ⊥. S sends either ⊥ or continue based on the auxiliary input z,
Pi’s original input, and the value γ3−i. If the trusted party receives ⊥, the value ⊥ is forwarded to
both P1 and P2 and the ideal execution terminates; else the trusted party computes y1 = f1(x′1, x

′
2)

(resp. y2 = f2(x′1, x
′
2)).

The TTP sends yi to S. At this point, S can decide whether the trusted party should continue,
and thus send the output y3−i to the honest party, or halt, in which case the honest party receives ⊥.
The honest party outputs the received value. The simulator S outputs an arbitrary polynomial-time
computable function of (z, xi, yi).

The ideal execution of f on inputs (x1, x2), auxiliary input z to S and security parameter
λ, denoted by idealcf−SFEf,C1,C2,S(z),i(x1, x2, λ) is defined as the output of the honest party and the
simulator.

Emulating the ideal world. We define a secure commit-first protocol π as follows:

Definition 3.1 (Commit-first Protocols) Let π and f be as above. We say that π is a commit-
first protocol for computing f = (f1, f2) in the presence of malicious adversaries with abort if for every

8



non-uniform probabilistic polynomial-time adversary A in the real world there exists a non-uniform
probabilistic polynomial-time simulator S in the ideal world, such that for every i ∈ {1, 2},{

realcf−SFEπ,A(z),i(x1, x2, λ)
}
x1,x2,z,λ

≡c
{
idealcf−SFEf,C1,C2,S(z),i(x1, x2, λ)

}
x1,x2,z,λ

where x1, x2, z ∈ {0, 1}∗ and λ ∈ N.

4 Rate-Limited Secure Function Evaluation

In this section, we introduce three notions for rate-limited secure function evaluation (RL-SFE). In
particular, we augment the standard notion of two-party SFE by allowing each player to monitor
and/or limit, the number of distinct inputs (the rate) the other player uses in multiple executions.
The idea is that each party can abort the protocol if the number of distinct inputs used in the
previous executions raises above a threshold �r� ∈ N. We call this threshold the rate limit, i.e. the
maximum number of allowable executions with distinct inputs.

Naturally, our security definitions for RL-SFE are concerned with multiple executions of an
SFE protocol and reduce to the standard simulation-based definition (stand alone) for SFE, when
applied to a single run. We call a sequence of executions of a protocol π (�r�1, �r�2)-limited if party P1

(resp. P2) can use at most �r�1 (resp. �r�2) distinct inputs in the executions. In this work, we assume
that the executions take place sequentially, i.e. one execution after the other. We emphasize that
the inputs used by the parties in each execution can depend on the transcripts of the previous
executions, but honest parties will always use fresh randomness in their computation.

We provide three security definitions for rate-limited SFE: (i) rate-hiding, (ii) rate-revealing and
(iii) pattern-revealing. In a rate-hiding RL-SFE, at the end of each execution, the only information
revealed to the parties (besides the output from the function being computed), is whether the
agreed-upon rate limit (threshold) has been exceeded or not, but nothing else. In a rate-revealing
RL-SFE, in addition to the above, parties also learn the current rates (i.e., the number of distinct
inputs used by their counterpart so far). Finally, in a pattern-revealing RL-SFE, parties further
learn the pattern of occurrences of each others’ inputs in the previous executions. In particular,
each party learns which executions were invoked by the same input and which ones used different
ones, but nothing else.

High Level Description. Let f = (f1, f2) be a pair of polynomial-time functions such that fi
is of type fi : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. Consider an arbitrary number ` of sequential executions
of two-party SFE protocol π for evaluating f on parties’ inputs. During the j-th execution, party
Pi has input xji and should learn yji = fi(x

j
1, x

j
2). We will define rate-limited SFE in the general

case where both parties are allowed to change their input in each execution. The case of oracle
attacks and secure metering, where one party’s input is fixed and the other party’s input changes,
are found as a special case. (In the case of secure metering one can also think that a change in the
service provider’s input reflects a software update.)

In the ideal world, during the j-th execution, each party sends its input to a trusted authority.
The following is then performed for both i = 1, 2. The trusted party checks whether value xji was

already sent in a previous execution; in case it was not, a new entry (xji , j) is stored in an initially

9



empty set Xi. Otherwise, the index j′ < j corresponding to such input is recovered. Whenever #Xi
exceeds �r�i the trusted party aborts. Otherwise, the current outputs yji = fi(x

j
1, x

j
2) are computed.

Finally: (i) in the rate-hiding definition party Pi learns only yji ; (ii) in the rate-revealing definition
party Pi learns also #X3−i, i.e. the (partial) total number of distinct inputs used by P3−i until the j-
th execution; (iii) in the pattern-revealing definition party Pi learns j′, i.e. the index corresponding
to the query where xji was asked for the first time. Note that if the rate is exceeded, the trusted
party aborts here, but, equivalently, we could simply ignore this execution and still allow to query
previous inputs in subsequent executions.

We formalize the above intuitive security notions for all three flavors using the simulation-based
ideal/real world paradigm. We first review the real execution which all three notions share.

The real world. In each execution, a non-uniform adversaryA following an arbitrary polynomial-
time strategy can send messages in place of the corrupted party (whereas the honest party continues
to follow π). Let i ∈ {1, 2} be the index of the corrupted party. The j-th real execution of π on in-
puts (xj1, x

j
2), auxiliary input zj to A and security parameter λ, denoted by real�r�

π,A(zj),i
(xj1, x

j
2, λ)j

is defined as the output of the honest party and the adversary in the j-th real execution of π. We
denote by real�r�

π,A(z),i(x1,x2, λ, `) the accumulative distribution at the end of the `-th execution,
i.e.,

real�r�

π,A(z),i(x1,x2, λ, `) = real�r�

π,A(z1),i(x
1
1, x

1
2, λ)1, . . . ,real

�r�

π,A(z`),i(x
`
1, x

`
2, λ)`

where x1 = (x1
1, . . . , x

`
1), x2 = (x1

2, . . . , x
`
2) and z = (z1, . . . , z`).

The ideal world. The trusted party keeps two sets X1, and X2 initially set to ∅. Let i ∈ {1, 2} be
the index of the corrupted party. During the j-th ideal execution, the honest party sends its input
to the trusted party. Party Pi, which is controlled by the ideal adversary S, called the simulator,
may either abort (sending a special symbol ⊥) or send input x′ji to the trusted party chosen based

on the auxiliary input zj , Pi’s original input xji , and its view in the previous j− 1 ideal executions.

Denote with (x′j1 , x
′j
2 ) the values received by the trusted party (note that if i = 2 then x′j1 = xj1).

If the trusted party receives ⊥, the value ⊥ is forwarded to both P1 and P2 and the ideal
execution terminates; else when the trusted party receives x′j1 as the first party’s input, it checks

whether an entry (x′j1 , j
′) ∈ X1 already exists; if so, it sets J1 = j′. Otherwise, it creates a new entry

(x′j1 , j), adds it to X1, and sets J1 = j. An identical procedure is applied to input of the second

party x′j2 to determine an index J2. At the end of the j-th ideal execution if σ1 := #X1 ≥ �r�1 or
σ2 := #X2 > �r�2, the value ⊥ is forwarded to both P1 and P2 and the ideal execution terminates.
Otherwise, the pair (yj1, y

j
2) = (f1(x′j1 , x

′j
2 ), f2(x′j1 , x

′j
2 )) is computed.

At this point, the ideal executions will be different depending on the variant of RL-SFE being
considered.

Rate-Hiding The trusted party forwards to the malicious party Pi the output yji . At this point,
S can decide whether the trusted party should continue, and thus send the pair y3−i to the
honest party, or halt, in which case the honest party receives ⊥.

Rate-Revealing The trusted party forwards to the malicious party Pi the pair (yji , σ3−i). At
this point, S can decide whether the trusted party should continue, and thus send the pair
(yj3−i, σi) to the honest party, or halt, in which case the honest party receives ⊥.

10



Pattern-Revealing The trusted party forwards to the malicious party Pi the pair (yji , J3−i). The

integer 1 ≤ J3−i ≤ j represents the index of the first execution where the input xj3−i has been
used. At this point, S can decide whether the trusted party should continue, and thus send
the pair (yj3−i, Ji) to the honest party, or halt, in which case the honest party receives ⊥.

The honest party outputs the received value. The simulator S outputs an arbitrary polynomial-time
computable function of (zj , xji , y

j
i ).

The j-th ideal execution of f on inputs (xj1, x
j
2), auxiliary input zj to S and security parameter λ,

denoted by ideal�r�−X
f,S(zj),i

(xj1, x
j
2, λ)j is defined as the output of the honest party and the simulator

in the above j-th ideal execution. Here, X ∈ {RH,RR,PR} determines the flavor of rate-limited
SFE. We denote by ideal�r�−X

f,S(z),i(x1,x2, λ, `) the accumulative distribution at the end of the `-th
execution, i.e.,

ideal�r�−X
f,S(z),i(x1,x2, λ, `) = ideal�r�−X

f,S(z1),i
(x1

1, x
1
2, λ)1, . . . , ideal

�r�−X
f,S(z`),i

(x`1, x
`
2, λ)`

where x1 = (x1
1, . . . , x

`
1), x2 = (x1

2, . . . , x
`
2) and z = (z1, . . . , z`).

Emulating the ideal world. Roughly speaking, ` sequential executions of a protocol π are
secure under the rate limit �r� = (�r�1, �r�2) if the real executions can be simulated in the above
mentioned ideal world. More formally, we define a secure (�r�1, �r�2)-limited protocol π as follows:

Definition 4.1 (RL-SFE) Let π and f be as above, and consider ` = poly(λ) sequential exe-
cutions of protocol π. For X ∈ {RH,RR,PR}, we say protocol π is a secure X �r�-limited SFE for
computing f = (f1, f2), in presence of malicious adversaries with abort with �r� = (�r�1, �r�2), if for ev-
ery non-uniform probabilistic polynomial-time adversary A there exists a non-uniform probabilistic
polynomial-time simulator S, such that for every i ∈ {1, 2},{

real�r�

π,A(z),i(x1,x2, λ, `)
}
x1,x2,z,λ

≡c
{
ideal�r�−X

f,S(z),i(x1,x2, λ, `)
}
x1,x2,z,λ

where x1,x2, z ∈ ({0, 1}∗)`, such that |x1[j]| = |x2[j]| for all j, and λ ∈ N.

It is easy to see that the rate-hiding notion is strictly stronger than the rate-revealing notion,
which in turn is strictly stronger than the pattern-revealing notion. A proof to this fact can be
found in Appendix B.

5 Compilers for Rate-Limited SFE

In this section, we introduce our three compilers to transform an arbitrary (two-party) cf-SFE
protocol into a rate-limited protocol for the same functionality.

Our first compiler ΨRH achieves the notion of rate-hiding RL-SFE through the use of general ZK
proofs and (additively) homomorphic public key encryption. Our second compiler ΨRR achieves the
notion of rate-revealing RL-SFE and is more efficient in that it needs to prove a simpler statement
and does not rely on homomorphic encryption. Our last compiler ΨPR introduces essentially no

11



overhead and avoids the use of general ZK proofs, yielding our third notion of pattern-revealing
RL-SFE.

Let πf be a two-party (single-run) commit-first protocol for secure function evaluation of a
function f = (f1, f2) (cf. Definition 3.1). Our compilers get as input (a description of) πf , to-
gether with the rate �r� = (�r�1, �r�2), and the number of executions `, and output (a description of)
π̂f ← Ψ(πf , �r�, `). The compilers are functionality preserving, meaning that protocol π̂ repeatedly
computes the same functionality f .

5.1 A Rate-Hiding Compiler

The Overview. We naturally divide the cf-SFE protocol into a committing phase and a function
evaluation phase and introduce a new phase in between where P1 and P2 convince each other
that they have not exceeded the rate limit. The latter step is achieved as follows. Whenever
one of the parties is going to use a “fresh” input, it transmits an encryption of “1” to the other
party; otherwise, it sends an encryption of “0”. The encryptions are obtained using a CPA-secure
(homomorphic) PKE scheme (G̃, Ẽ, D̃). Then, the party proves in ZK that “the last commitment
transmitted hides an already used input and it encrypted 0, or the last commitment transmitted
hides a fresh input and it encrypted 1 and the sum of all the plaintexts, encrypted until now,
does not exceed the rate”. A successful verification of this proof convinces the other party that
the rate is not exceeded, leaking nothing more than this. We instantiate such ZK proofs for the
OPE problem in Section 7. Notice that to generate such a proof each party needs to store all the
ciphertexts transmitted to the other player, together with all the inputs and randomness used to
generate the previous commitments. On the other hand, to verify the other party’s proof, one needs
to store the ciphertexts and the commitments received in all earlier executions. The remainder of
the messages exchanged during each execution, however, can be discarded.

The construction of our rate-hiding �r�-limited compiler ΨRH is depicted in Figure 1.

Theorem 5.1 Let πf = (π1
f , π

2
f ) be a commit-first protocol securely evaluating function f = (f1, f2)

and assume that (G̃, Ẽ, D̃) is a CPA-secure PKE scheme. Then π̂f ← ΨRH(πf , �r�1, �r�2, `) is a secure
rate-hiding (�r�1, �r�2)-limited protocol for the function f .

5.2 A Rate-Revealing Compiler

The Overview. Once again, we divide the cf-SFE protocol into a committing phase and a
function evaluation phase and introduce a new phase in between where P1 and P2 convince each
other that the current input has already been used in a previous execution. Note that the parties
need to maintain a state variable Γ collecting the input commitments sent and received in all earlier
executions. During the j-th execution, given a list of input commitments (and the corresponding
inputs and randomness) for all the previous executions, party Pi can prove in ZK that the input
commitment generated in the current execution is for the same value as one of the commitments
collected previously. Party P3−i also needs to collect the same set of commitments in order to verify
the statement proven by Pi. The remainder of the messages exchanged during each execution,

12



Rate-Hiding Compiler ΨRH:

Let (G̃, Ẽ, D̃) be a public key encryption scheme. Parties P1 and P2 hold an auxiliary key pair (p̃ki, s̃ki)← G̃(1λ).
Given as input a commit-first protocol πf = (π1

f , π
2
f ), a rate �r� = (�r�1, �r�2), and a number of executions `, the

compiled protocol π̂f is made of three phases, described below. Party P1 and P2 keep the state variables Σi :=
(Γi, (Ω1,Ω2),Λi) initially set to be empty. For each execution j ∈ [`], π̂f proceeds as follows:

Committing Phase: Parties P1 and P2, holding respectively inputs xj1 and xj2, run the protocol π1
f yielding the

output (γj2 = C(pk2, x
j
2; rj2), γj1 = C(pk1, x

j
1; rj1)).

Proof of Repeated-Input Phase: When the input xji of party Pi is not fresh—i.e., it has already been used

in a previous execution—Pi computes cji ← Ẽ(p̃ki, 0). Otherwise, Pi computes cji ← Ẽ(p̃ki, 1) and lets

Λi := Λi ∪ {(xji , r
j
i )}. Then, add also cji to the state, i.e., Ωi := Ωi ∪ {cji}. Consider the following languages:

Lrate
i =

{
Ωi ⊂ C̃p̃ki :

∑
c∈Ωi

D̃(s̃ki, c) ≤ �r�i

}
Lbi =

{
c ∈ C̃p̃ki : ∃r s.t. c = Ẽ(p̃ki, b; r)

}
Lold
i =

{
γ ∈ Cpki : ∃(x, r, r′) s.t. γ = C(pki, x; r) and C(pki, x; r′) ∈ Γ3−i

}
,

and let (Pr,Vr) be a ZK proof system for (Lold
i ∧ L0) ∨ (Lold

i ∧ L1) ∧ Lrate
i . If #Λi ≤ �r�i, party Pi sends cji

and plays the role of the prover in (Pr,Vr); otherwise, it outputs ⊥ and aborts. Also, party Pi receives cj3−i
from P3−i, updates the state as in Ω3−i := Ω3−i ∪ {cj3−i} and plays the role of the verifier in (Pr,Vr). If the

verification fails, it outputs ⊥ and aborts. Otherwise, it lets Γi := Γi∪{γj3−i} and proceeds to the next step.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on the same inputs as in the committing phase,

yielding the output (yj1, y
j
2).

Figure 1: A compiler for rate-hiding rate-limited SFE.

however, can be discarded. We note that while in general efficient ZK proofs of repeated inputs
might be hard to find, for discrete-logarithm based statements, there exist efficient techniques for
proving such statements. We refer the reader to Appendix D for more details. We also instantiate
such ZK proofs for the OPE problem in Section 7. A complete description of the compiler is
depicted in Figure 2. We prove the following result:

Theorem 5.2 Let πf = (π1
f , π

2
f ) be a commit-first protocol securely evaluating function f =

(f1, f2). Then π̂f ← ΨRR(πf , �r�1, �r�2, `) is a secure rate-revealing (�r�1, �r�2)-limited protocol for the
function f .

Proof. Consider an adversary A = (A1, . . . ,A`) corrupting party Pi during the ` executions of π̂f .

In particular, Aj represents A’s strategy during the j-th execution, and real�r�

π̂f ,A(zj),i
(xj1, x

j
2, λ)j

denotes the distribution of its output. We denote by real�r�

π̂f ,A(z),i(x1,x2, λ, `) the joint distribution

of the output of all the Ajs combined. Note that each Aj passes the necessary state information
(i.e., her view) to Aj+1.

We describe a simulator S = (S1, . . . ,S`) in the ideal world—as discussed in Section 4—
that mimics A’s output. Before doing so, note that we are given as input to the compiler ΨRR

(besides the rates and `) the commit-first SFE protocol πf . According to the security definition (cf.
Definition 3.1), for any admissible adversary against πf , there exists a simulator Scf that mimics her

13



Rate-Revealing Compiler ΨRR:

Given as input a commit-first protocol πf = (π1
f , π

2
f ), a rate �r� = (�r�1, �r�2), and a number of executions `, the

compiled protocol π̂f is made of three phases, described below. Party P1 and P2 keep the state variables Γ1,Γ2 := ∅,
respectively. For each execution j ∈ [`], π̂f proceeds as follows.

Committing Phase: Parties P1 and P2, holding respectively inputs xj1 and xj2, run the protocol π1
f yielding the

output (γj2 = C(pk2, x
j
2; rj2), γj1 = C(pk1, x

j
1; rj1)).

Proof of Repeated-Input Phase: Consider the following language: Li = {γ ∈ Cpki : ∃(x, r, r′) s.t. γ =
C(pki, x; r) ∧ C(pki, x; r′) ∈ Γ3−i}, and let (Pr,Vr) be a ZK proof system for Li. The following is executed
for all i ∈ {1, 2}. When the input xji of party Pi is not fresh—i.e., it has already been used in a previous

execution—Pi plays the role of the prover in (Pr,Vr). When the input xji is fresh, Pi just forwards the empty
string ε. Also, party Pi plays the role of the verifier in (Pr,Vr) (with P3−i being the prover and L3−i being
the underlying language). If the value ε is received or if the verification of the proof fails, Pi updates the rate
by letting �r�i := �r�i− 1 and the state by letting Γi := Γi ∪ {γj3−i}. Otherwise, if the verification is successful,
the state and rate information will not be modified.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on the same inputs as in the committing phase,

yielding the output (yj1, y
j
2).

Figure 2: A compiler for rate-revealing rate-limited SFE.

behavior in the cf-SFE’s ideal world. Moreover, due to the way the cf-SFE ideal world is defined,
Scf can be naturally written as Scf = (S1

cf ,S2
cf ) where basically S1

cf emulates the commit-first

phase (i.e., π1
f ), and passes its view to S2

cf who emulates the function evaluation phase (i.e., π2
f ).

The simulator S = (S1, . . . ,S`), runs a copy of A, and keeps a state Γi initially set to be empty.
The j-th execution is given below.

1. Sj takes (xji ,Γi, pk1, pk2, z
j) as input.

2. In the committing phase, Sj invokes S1
cf on input (xji , pk1, pk2). The simulator S1

cf invokes

Aj who controls party Pi in π1
f . If S1

cf sends ⊥ to its cf-SFE TTP, Sj sends ⊥ to its own

trusted party leading to an abort of the execution. Otherwise, Sj receives x′ji , r
′j
i from S1

cf

and computes γ′ji = C(pki, x
′j
i ; r′ji ). It also samples a random x′j3−i ∈ Mpk3−i

, computes

γ′j3−i = C(pk3−i, x
′j
3−i; r

j
3−i) using randomness r′j3−i and sends the result to Aj .

3. Sj sends x′ji to its TTP, and receives (yi = fi(x
′j
1 , x

′j
2 ), σ3−i) back, where x′j3−i = xj3−i. Recall

that σ3−i shows the number of distinct inputs used by the honest party P3−i. If σ3−i has
been incremented since the last execution (this information is passed from Sj−1 to Sj), then
Sj updates the state to Γi := Γi ∪ {γ′j3−i}. Otherwise, it internally runs4 the ZK simulator

SZK proving to Aj that γ′j3−i ∈ L3−i. (Note that the last step involves the state Γi.)

4Notice that SZK may itself need to rewind Aj . However, this is not an issue because our simulator S invokes
different simulators sequentially; in particular, Aj will be in a consistent state when SZK is done and S proceeds
with the rest of the simulation.

14



Sj also plays the role of the verifier in the zero-knowledge protocol (Pr,Vr) (with Aj being
the prover). If the value ε is received, or in case the corresponding input x′ji is not used in
one of the previous executions (note that Sj can determine this by inspecting Γi), then Sj
updates the state to Γi := Γi ∪ {x′ji , r

′j
i }. Otherwise, the state is not modified. (Note that at

this stage Sj is not updating the state on the basis of the verification of the proof itself).

4. Finally, Sj invokes S2
cf on input (x′ji , γ

′j
3−i, pk1, pk2); S2

cf itself runs Aj who controls party Pi
in π2

f .5 If S2
cf sends ⊥, Sj sends ⊥ to its trusted party leading to an abort of the execution.

Else, S2
cf sends the continue flag. Sj replies (on behalf of the cf-SFE TTP) by sending to

S2
cf , the output yi it obtained earlier in the simulation. At the end of this phase, Sj passes

(yi, σ3−i) to Aj and outputs whatever Aj does.

We now need to show that ideal�r�−RR
f,S(z),i(xi,x3−i, λ, `) ≡c real�r�

π̂f ,A(z),i(xi,x3−i, λ, `).

However, we focus on showing indistinguishability for a single execution (i.e., the j-th execution).
A standard hybrid argument (omitted here) shows that the accumulative distributions are also
computationally indistinguishable up to a negligible factor of 1/`. Next, we focus on showing that
for all i ∈ {1, 2} and j ∈ [`]

ideal�r�−RR
f,S(zj),i

(xji , x
′j
3−i, λ)j ≡c real�r�

π̂f ,A(zj),i(x
j
i , x

j
3−i, λ)j .

We consider a series of intermediate hybrid experiments. In the first experiment, we modify the
simulator by letting it update the state on the basis of the verification of the ZK proofs, as it would
be done in a real execution of the protocol. We argue that this modification is not distinguishable by
the adversary Aj due to the soundness of the ZK proof. In the second experiment, we assume that
in contrast to the simulation above, the real input of the honest party is used for the simulation. We
argue that this modification is not distinguishable by the adversary Aj due to the hiding property
of the commitment scheme. In the last experiment, we replace the simulated ZK proof, with an
actual ZK proof. The indistinguishability of the last two experiments, follows naturally from the
zero-knowledge property of the proof. Finally, it is easy to see that the distribution of Aj ’s output
in the last experiment is identical to the distribution of its output in the real protocol, which
concludes our proof. A detailed description of the hybrid argument appears in Appendix C.2.

5.3 A Pattern-Revealing Compiler

In this section, we introduce a more efficient compiler ΨPR for designing rate-limited SFE. Given
as input a cf-SFE protocol, our compiler ΨPR outputs a weaker form of rate-limited SFE where
each party not only learns the current rate for its counterpart during each execution, but also the
pattern of already used inputs. The main advantage is that this new compiler adds very little
overhead to the original cf-SFE.

The Overview. The idea is as follows. Besides their input, each party also stores a secret key for
a PRF (a different key for each party). Before invoking the commit-first SFE protocol, each player

5We emphasize S2
cf does not run a new instance of Aj but it continues running the same instance that has been

running so far.

15



Pattern-Revealing Compiler ΨPR:

Given as input a commit-first protocol πf = (π1
f , π

2
f ), a rate �r� = (�r�1, �r�2), and a number of executions `, the

compiled protocol π̂f consists of three phases, described below. Party P1 and P2 hold private keys k1 and k2 and
the state variables Γ1,Γ2 := ∅, respectively. For each execution j ∈ [`], π̂f proceeds as follows:

Randomness Generation Phase: Parties P1 and P2, holding respectively inputs xj1 and xj2 compute values

rj1 := PRF(k1, x
j
1) and rj2 := PRF(k2, x

j
2), respectively.

Committing Phase: Parties P1 and P2, run the protocol π1
f on the same inputs as in the first phase yielding

the output (γj2 = C(pk2, x
j
2; rj2), γj1 = C(pk1, x

j
1; rj1)) where rj1, and rj2 are from the first phase.

If γj3−i /∈ Γi, party Pi adjusts his rate by letting �r�i = �r�i − 1. Pi then updates its state Γi = Γi ∪ {(γj3−i, j)}.
If �r�i equals 0, abort execution.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on the same inputs as in the first phase, yielding

the output (yj1, y
j
2).

Figure 3: A compiler for pattern-revealing rate-limited SFE.

generates the randomness it needs for the committing phase by applying the PRF on the chosen
input for this execution. With this modification in place, the committing phase for each party
becomes deterministic. If a party uses the same input in two executions, the two commitments
its counterpart receives will be identical. As a result, to prove a repeated-input, each party can
compare the commitment for the current execution with those used in the previous ones, and
determine if the input is new or being repeated (hence also revealing the pattern). Note that the
commitments still provide the required hiding and binding properties. The only overhead imposed
by this compiler is the application of a PRF to generate the randomness for the committing phase.

Theorem 5.3 Let πf = (π1
f , π

2
f ) be a commit-first SFE securely evaluating function f = (f1, f2).

Then π̂f ← ΨPR(πf , �r�1, �r�2, `) is a secure pattern-revealing (�r�1, �r�2)-limited SFE for the function f .

6 Making the Compilers Stateless

One drawback of the compilers described in the previous section is that both P1 and P2 need to
maintain state. To some extent, this assumption is necessary. It is not too hard to see that RL-SFE
is impossible to achieve if neither party is keeping any information about the previous executions
(we omit a formal argument of this statement). However, as discussed earlier, in many natural
client-server applications of SFE in the real world, it is reasonable to assume that the servers keep
state, while the clients typically do not.

In this section, we show how to modify the compilers from Section 5 in such a way that only
one of the parties needs to keep state. Our solution is efficient and works for all three compilers we
discussed earlier. Throughout this section, we assume P1 is the client and P2 is the server. Server
P2 receives no output (as it is usually the case in the client-server setting) and wants to enforce the
rate limit �r� for the client. Although P1 does not maintain any state, it needs to make sure that

16



P2 handles the rate, honestly. On the other hand, the server also needs to be convinced that the
client is not cheating, by exceeding the rate limit �r�.

The Overview. Note that in the stateful versions of our compilers, P1 needs to keep state in order
to generate a ZK proof of repeated inputs, and verify the corresponding statement being proven
by P2. Since we are only enforcing the rate for P1, we can eliminate the latter ZK proofs, and
focus on the first one. Although our approach is general, for the sake of simplicity, we describe it
in relation to our rate-revealing compiler from Section 5.2. The same idea can be applied to make
the other compilers stateless. The basic idea is simple: We ask the server to store the list of all the
commitments previously sent by P1 sends the list to the client, during each run. For this simple
approach to work, we need to address several important issues:

• For the client to learn the current rate and the previously queried inputs before each execution,
it needs to store these values on the server side in a secure way. This can be easily addressed
by having P1 encrypt the message and randomness for each commitment (using a symmetric-
key encryption) and send it along with the commitment itself. P1 will just keep the private
key for the encryption scheme.

• The client needs to verify that the list of commitments it receives from the server are the
original commitments it sent in the previous executions. To do so, in each run P1 computes a
MAC φ of the string obtained by hashing all the commitments (i.e., the concatenation of the
list it obtains from the server and the one it creates in the current execution) and sends it to
the server.6 In each execution, it requests this MAC, the list of commitments along with the
ciphertext storing the inputs and random coins from the server. Due to the unforgeability of
the MAC, the server will only be able to use a correct list of commitments, previously issued
and MACed by the client itself.

• It may seem that the above solution still allows the server to cheat and only send a subset of
the commitment list along with a tag generated for that subset in one of the earlier executions,
to the client. This would potentially make the input to the current execution look “new” and
allow the server to decrease the rate. The client would not be able to detect this attack since
it does not keep state and does not know the total number of commitments. However, a more
careful inspection shows that the above does not really constitute an attack. In fact, the tag
φ already binds the current rate to the current list of commitments, and prevents the server
from decreasing the rate in this fashion. In particular, it is hard for the server to cook-up
a state such that the verification of the tag is successful, and the client will think its rate is
already exceeded when it is not. Essentially, coming up with such a state requires to find a
collision in H or forging a tag for a fake list of commitments.

A detailed description of the compiler is depicted in Figure 4, and the proof to the following
theorem is given in Appendix C.4.

6To save on computation, one could let the client obtain the previous hash value and compute the new one via
incremental hashing [14, 4].

17



Rate-Revealing Compiler ΨRR (stateless version):

Let (G,T,V) be a MAC, (G̃, Ẽ, D̃) be a SKE scheme and H be a CRHF. Party P1 stores values (pk, k, k̃) where
k ← G(1λ) and k̃ ← G̃(1λ). Given as input a commit-first protocol πf = (π1

f , π
2
f ) for function f = (f1,−), a rate

�r�, and a number of executions `, the compiled protocol π̂f consists of four phases, described below. Party P2

initializes the state variable Σ := ∅. For each execution j ∈ [`], π̂f proceeds as follows.

Recovery of State Phase: Party P1 receives the state Σ = {Γ,Ω, φ} from P2, where

Γ = {γ1, . . . , γj−1} Ω = {(c1, c̄1), . . . , (cj−1, c̄j−1)},

and φ is a tag. Hence, P1 computes h = H(γ1
1 , . . . , γ

j−1
1 ) and runs V(k, h, φ); if the verification fails, P1

sends ⊥ to P2 and halts the execution. Otherwise, it uses the key k̃ to extract xi1 = D̃(k̃, ci) and ri1 = D̃(k̃, c̄i)
for all i ∈ [j − 1]. Letting Λj−1 = {(xi1, ri1)}si=1, where s ∈ N denotes the number of distinct xi1’s values, P1

proceeds to the next step.

Committing Phase: Party P1 (holding input xj1) runs the protocol π1
f yielding the output (−, γj = C(pk, xj1; rj1)).

It also computes cj ← Ẽ(k̃, xj1), c̄j ← Ẽ(k̃, rj1) and sends the result to P2.

Proof of Repeated-Input Phase: If xj1 is indeed being repeated, party P1 proceeds to give a ZK proof of this
fact, as described in the protocol of Figure 2. (Notice that this involves the recovered state Λj−1.) Otherwise,
P1 checks that s ≤ �r� and forwards the empty string ε if this is the case. If the rate is exceeded, P1 outputs
⊥ and aborts. Provided that it did not abort, P1 updates the hash value h := H(γ1, . . . , γj), computes
φ← T(k, h) and forwards φ to P2.

Party P2 verifies the proof and updates the rate �r� as specified in the protocol from Figure 2. Moreover, it
updates Σ by letting Γ := Γ ∪ {γj}, Ω := Ω ∪ {(cj , c̄j)} and storing the new φ.

Protocol Emulation Phase: P1 and P2 run the protocol π2
f on input xj1 (the same as in the committing phase)

and xj2, yielding the output (yj1,−).

Figure 4: Stateless version of the rate-revealing compiler ΨRR from Section 5.

Theorem 6.1 Let πf = (π1
f , π

2
f ) be a commit-first protocol securely evaluating function f = (f1,−)

and assume that MAC (G,T,V) is UNF-CMA, (G̃, Ẽ, D̃) is CPA-secure and H is picked from a
family of CRHFs. Then, π̂f ← ΨRR(πf , �r�, `) of Figure 4 is a secure rate-revealing �r�-limited protocol
for the function f .

7 Rate-Limited OPE

Hazay and Lindell [35] design an efficient two-party protocol for oblivious polynomial evaluation
(OPE) with security against malicious adversaries. In an OPE protocol, the first party holds a value
t while the second party holds a polynomial p of degree d. Their goal is to let the first party learn
p(t) without revealing anything else. The protocol takes advantage of an additively homomorphic
encryption scheme (Paillier’s encryption) and efficient ZK proofs of a few statements related to
the encryption scheme. While the authors (only) prove security against malicious adversaries, we
observe that, with a small modification, their construction is indeed a commit-first protocol for
OPE as well.

18



First party’s commitment. Consider an additively homomorphic encryption scheme (G,E,D).
The first few steps performed by the first party (the party holding the value t) are as follows:
(i) it runs the key generation for the encryption scheme to generate a key pair (pk, sk) ← G(1λ),
accompanied by a ZK proof of knowledge of the secret key; (ii) then, it encrypts powers of t, i.e.
E(pk, t),E(pk, t2), . . . ,E(pk, td), and sends the resulting ciphertexts along with a ZK proof of the
validity of the ciphertexts to the other party.

We observe that sending E(pk, t) and a ZK proof of its validity constitutes a commitment by
the first party to its input t. This commitment scheme realizes the ideal functionality of the
first phase in our definition of commit-first protocols. (Recall that this means the simulator can
extract both the input and the randomness used to generate the commitment.) In particular, a
careful inspection of the security proof of [35] reveals that the simulator can extract both t and the
randomness used to encrypt it during the simulation. Extracting the randomness is possible since
in Paillier’s encryption scheme, given the secret key sk and a ciphertext c, one can recover both the
randomness and the message.

Second party’s commitment. The commitment of the second party to its input polynomial
is slightly more subtle, and requires a small modification to the original design. In the first few
steps, the second party does the following: (i) it runs the key generation to generate a key pair
(pk′, sk′) ← G(1λ), accompanied by a ZK proof of knowledge of the secret key; (ii) it computes
((E(pk′, q1),E(pk′, p − q1)), . . . , (E(pk′, qs),E(pk′, p − qs)) where qi’s are random polynomials of de-
gree d for some security parameter s; (iii) it sends all the ciphertext pairs along with ZK proofs
of the fact that the homomorphic addition of every pair encrypts the same polynomial (i.e., p), to
the first party. We need to slightly modify this step to realize our ideal commitment functional-
ity: For the first pair of ciphertexts, the second party will also include a ZK proof of validity of
(E(pk′, q1),E(pk′, p− q1)).

The pair of ciphertexts (E(pk′, q1),E(pk′, p−q1)) and the accompanied ZK proof of their validity,
constitute the commitment by the second party to its input polynomial p. Once again, we note that
the simulator in the proof is able to extract q1, p, and the randomness used in the two encryptions,
due to the randomness recovering property of Paillier’s encryption. The proof of security provided
in [35] can be easily modified to show the commit-first property of the above-mentioned variant of
their OPE construction.

Claim 7.1 The modified oblivious polynomial evaluation protocol of [35] is a commit-first SFE with
security against malicious adversaries.

7.1 ZK Proofs for Rate-Limited OPE

We now explain how to derive rate-limited OPE protocols from the scheme of [35], by giving
concrete instantiation of our compilers from Section 5 and 6.

Rate-Revealing OPE. Consider first our rate-revealing compiler from Figure 2. A proof of
repeated-input, here, is equivalent to proving a statement for the following language:

Lope(n) =

{
(pk, ĉ, c1, . . . , cn) : ∃λ, r s.t. (pk, sk)← G(1λ, r) and
(D(sk, ĉ) = D(sk, c1) ∨ D(sk, ĉ) = D(sk, c2) ∨ . . . ∨ D(sk, ĉ) = D(sk, cn))

}
,

19



where the ciphertexts c1, . . . , cn are encryptions of the inputs for n previous executions of the OPE
protocol. The ciphertext ĉ is the encryption of the input for the current execution.

Such a proof can be obtained by exploiting ZK proofs for the languages Lzero and Lmult defined
in [35]. Informally, a valid proof of a statement in the language Lzero says that a ciphertext is
an encryption of 0. Language Lmult allows us to prove that given three ciphertexts, one of them
decrypts to the product of the other two underlying plaintexts. Denote the plaintext for each ci
by mi and the one for ĉ by m̂. The high level idea is to have the prover compute E(pk, (m̂ −
m1) · · · (m̂ −mn)), prove correctness of this computation and show that the final ciphertext is an
encryption of zero. This clearly ensures correctness when the current input equals one of the inputs
used in previous executions. See Appendix D for a complete description.

Rate-Hiding OPE. Next, consider our rate-hiding compiler from Figure 1 in Appendix C.1. In
this case, besides a standard proof of the statement “a ciphertext is a valid encryption of bit b”,
the prover also needs to prove that: (i) “the current commitment corresponds to a fresh input”; (ii)
“given a collection of ciphertexts, the sum of the corresponding plaintexts is below some threshold
�r�”.

Note that a proof for the first statement is equivalent to proving that an element is not in Lope

(denoted by Lope). Moreover, we show that a proof for the second statement can also be reduced
to a proof of membership in Lope by relying on the homomorphic properties of the underlying
encryption scheme. It remains to show ZK proofs for Lope. It is possible to do so using range
proofs, but we show a simple and more efficient construction.

Using techniques of [15], the proofs discussed above can be combined (via conjuctive/disjunctive
formulas) to generate a ZK proof of membership for the language used in our rate-hiding compiler.
A more detailed description is given in Appendix D.

References

[1] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.R. Sadeghi, and T. Schneider. Secure
evaluation of private linear branching programs with medical applications. Computer Security–
ESORICS 2009, pages 424–439, 2009.

[2] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In CRYPTO89,
pages 589–590. Springer, 1990.

[3] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: On simulta-
neously solving how and what. CoRR, abs/1103.2626, 2011.

[4] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case of
hashing and signing. In CRYPTO ’94, volume 839 of LNCS, pages 216–233, 1994.

[5] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving
computations. Computer Security-ESORICS 2008, pages 192–206, 2008.

[6] D. Bogdanov, R. Talviste, and J. Willemson. Deploying secure multiparty computation for
financial data analysis. Technical report, Cryptology ePrint Archive, Report 2011/662, 2011.

20



[7] P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen,
J. Nielsen, K. Nielsen, J. Pagter, et al. Secure multiparty computation goes live. Financial
Cryptography and Data Security, pages 325–343, 2009.

[8] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In EUROCRYPT
2000, volume 1807 of LNCS, pages 431–444, 2000.

[9] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials (extended
version). Cryptology ePrint Archive, Report 2010/496, 2010. http://eprint.iacr.org/.

[10] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product
of two safe primes. In EUROCRYPT ’99, volume 1592 of LNCS, pages 107–122, 1999.

[11] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In CRYPTO, pages 126–144, 2003.

[12] Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete
logarithms. Technical report, 1997.

[13] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 11–19.
ACM, 1988.

[14] David Chaum, Eugène van Heijst, and Birgit Pfitzmann. Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In CRYPTO, pages 470–484, 1991.

[15] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In CRYPTO94, pages 174–187. Springer, 1994.

[16] Ronald Cramer, Ivan Damgrd, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO ’94, volume 839 of LNCS, pages
174–187, 1994.

[17] I. Damg̊ard, M. Geisler, M. Krøigaard, and J. Nielsen. Asynchronous multiparty computation:
Theory and implementation. PKC 2009, pages 160–179, 2009.

[18] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In Public Key Cryptography, pages 119–136, 2001.

[19] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols
secure in malicious model. ASIACRYPT 2010, pages 213–231, 2010.

[20] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudo-
random functions. Theory of Cryptography, pages 303–324, 2005.

[21] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
EUROCRYPT 2004, pages 1–19. Springer, 2004.

21

http://eprint.iacr.org/


[22] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO ’97, volume 1294 of LNCS, pages 16–30, 1997.

[23] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[24] Rosario Gennaro, Carmit Hazay, and Jeffrey S. Sorensen. Automata evaluation and text search
protocols with simulation based security. Cryptology ePrint Archive, Report 2010/484, 2010.
http://eprint.iacr.org/.

[25] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of
the nineteenth annual ACM symposium on Theory of computing, pages 218–229. ACM, 1987.

[26] Oded Goldreich. Foundations of Cryptography, Vol. 1: Basic Tools. Cambridge University
Press, 2001.

[27] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2009.

[28] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
STOC, pages 25–32, 1989.

[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[30] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
for all languages in np have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[31] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270 – 299, 1984.

[32] C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with
security against malicious and covert adversaries. Theory of Cryptography, pages 155–175,
2008.

[33] C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. PKC
2010, pages 312–331, 2010.

[34] C. Hazay and T. Toft. Computationally secure pattern matching in the presence of malicious
adversaries. ASIACRYPT 2010, pages 195–212, 2010.

[35] Carmit Hazay and Yehuda Lindell. Efficient oblivious polynomial evaluation with simulation-
based security. IACR Cryptology ePrint Archive, 2009:459, 2009.

[36] W. Henecka, S. Kogl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: tool for
automating secure two-party computations. In ACM CCS ’07, 2010.

22

http://eprint.iacr.org/


[37] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than
custom protocols. to appear in NDSS, 2012.

[38] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled
circuits. In USENIX Security, 2011.

[39] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. Theory of Cryp-
tography, pages 575–594, 2007.

[40] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed
inputs. In EUROCRYPT, pages 97–114, 2007.

[41] A.Y. Lindell. Efficient fully-simulatable oblivious transfer. In Proceedings of the 2008 The
Cryptographers’ Track at the RSA conference on Topics in cryptology, pages 52–70. Springer-
Verlag, 2008.

[42] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Eurocrypt, 2007.

[43] Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party computation.
Journal of Cryptology, 2009.

[44] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation
system. In USENIX Security, 2004.

[45] Piotr Mardziel, Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa. Knowledge-oriented
secure multiparty computation. In Proceedings of the ACM SIGPLAN Workshop on Program-
ming Languages and Analysis for Security (PLAS), June 2012.

[46] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar, and Salil P.
Vadhan. The limits of two-party differential privacy. Electronic Colloquium on Computational
Complexity (ECCC), 18:106, 2011.

[47] P. Mohassel and M. Franklin. Efficiency tradeoffs for malicious two-party computation. In
PKC, 2006.

[48] Wakaha Ogata and Kaoru Kurosawa. Oblivious keyword search. Cryptology ePrint Archive,
Report 2002/182, 2002. http://eprint.iacr.org/.

[49] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EU-
ROCRYPT ’99, pages 223–238. Springer, 1999.

[50] Torben Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer
Berlin / Heidelberg, 1992.

[51] Charles Rackoff and Daniel Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In CRYPTO 91, volume 576 of LNCS, pages 433–444, 1992.

23

http://eprint.iacr.org/


[52] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Utku Celik. Privacy
preserving error resilient dna searching through oblivious automata. In ACM Conference on
Computer and Communications Security, pages 519–528, 2007.

[53] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164, 1982.

[54] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.

A Primitives

Commitment Schemes. A (non-interactive) commitment scheme consists of a triple of efficient
algorithms (G,C,D) defined as follows. Upon input the security parameter λ, the probabilistic
algorithm G outputs a key pk. Associated to pk are a message spaceMpk and a commitment space
Cpk. Upon input the key pk and message m ∈Mpk (and implicit random coins r), the probabilistic
algorithm C outputs (γ, δ) ← C(pk,m; r) where γ belongs to Cpk, while δ is the decommitment
information needed to open the commitment. Typically δ = (m, r). Upon input the key pk, a
message m, and a commitment-pair (γ, δ), the deterministic algorithm D outputs a bit b ∈ {0, 1}.

A commitment scheme should be complete, i.e., for any security parameter λ, any pk← G(1λ),
for any message m ∈ {0, 1}∗ and any (γ, δ) ← C(pk,m) we have D(pk,m, δ, γ) = 1. In addition,
commitment schemes are defined by their security properties binding and hiding. Roughly speaking,
the binding property says that a sender is unable to change the message he committed to once the
commitment phase is over. The hiding property says that a receiver cannot learn the message from
the commitment. Note that one of the properties are satisfied statistically—and thus secure against
unbounded adversaries—whereas the other is computationally achieved.

Sometimes the public value pk is not needed; in this case a commitment scheme is simply
denoted as (C,D) omitting the algorithm G. Non-interactive commitment schemes exists based on
explicit hardness assumptions, e.g. Pedersen’s commitment [50], and more in general from any
one-way permutation [28].

Zero-Knowledge Proofs. A decision problem related to a language L ⊆ {0, 1}∗ requires to
determine if a given string x is in L or not. We can associate to any NP-language L a polynomial-
time recognizable relation R defining L itself, that is L = {x : ∃w s.t. R(x,w) = 1}, where |w| is
at most polynomial in |x|. The string w is called a witness for membership of x ∈ L.

A proof of membership (or simply a proof) for a language L, is a possibly interactive protocol
(Pr,Vr) between two parties where the prover Pr convinces the verifier Vr that some string x belongs
to a given language L. The prover and the verifier itself, constitute what is called a (possibly
interactive) proof system. Below, we give an high level overview of the main properties of a proof
system, referring the reader to, e.g., [26, Chapter 4] for formal definitions.

Informally, a proof should be convincing in the sense that a proof for an element x ∈ L is always
accepted (this is the so called completeness property) and that it should be hard to come up with
an accepting proof for an element x 6∈ L (this is the so called soundness property). An important

24



class of proof systems is the class of zero-knowledge (ZK) proof systems. Loosely speaking, a
proof is ZK if it does not yield any information beyond the validity of the statement being proven.
Non-interactive zero-knowledge is impossible without assuming some set-up, e.g. in the form of a
common reference string or an idealized function behaving as a random oracle.

An important result in the theory of zero-knowledge is that every language in NP admits a ZK
proof system [30]. In particular, if there exist proof systems for language L1,L2 in NP, then it is
possible to prove arbitrary combinations of statements from the two languages, e.g., it is possible
to prove statements of the form (x1 ∈ L1) ∧ (x2 ∈ L2) and (x1 ∈ L1) ∨ (x2 ∈ L2).

Pseudo-Random Functions. Roughly, a pseudo-random function PRF : K ×M → N is (com-
putationally) indistinguishable from a truly random function where K represents the key space,M
the message space, and N the output space. More precisely, we say that PRF is a pseudo-random
function if for all probabilistic polynomial-time distinguishers D, we have |Pr[DPRF(k,·)(1λ) =
1] − Pr[DR(·)(1λ) = 1] ≤ negl(λ), where k ∈ K is chosen uniformly at random and R is chosen
uniformly from the set of functions mapping to N .

Public Key Encryption. A public key encryption scheme is a triple of efficient algorithms
(G,E,D) defined as follows. Upon input the security parameter λ, the probabilistic algorithm G
outputs a pair (pk, sk). Associated to pk are a message spaceMpk and a ciphertext space Cpk. Upon
input the key pk and message m ∈Mpk (and implicit random coins r), the probabilistic algorithm
E outputs c ← E(pk,m; r) where c belongs to Cpk. Upon input the key sk and a ciphertext c, the
deterministic algorithm D outputs a message m ∈Mpk.

An encryption scheme should be complete, i.e., for any security parameter λ, any (pk, sk) ←
G(1λ), for any message m ∈Mpk and any c← E(pk,m) we have D(sk, c) = m.

The standard security notions for encryption are CPA-security [31] and CCA-security [51].
Roughly, an encryption scheme is CPA-secure if an adversary is not able to distinguish the encryp-
tion of two chosen messages; CCA-security require that the above holds even for an adversary who
is given access to the decryption algorithm.

Symmetric Key Encryption. A symmetric key encryption scheme is a triple of efficient algo-
rithms (G,E,D) and similar to its public key counterpart essentially differing merely that the key
generation algorithm only outputs the secret key, i.e., sk ← G. Correspondingly, the both algo-
rithms for encryption and decryption takes sk as input. Completeness as above should be provided
by the scheme. In addition, the standard security properties here are CPA [31] and CCA [51] with
respect to symmetric key encryption schemes.

Collision resistant hashing. Our compiler makes use of a collision-resistant hash function
(CRHF). For a set I ∈ {0, 1}∗ and integers l, l′ ∈ N such that l > l′, a family of hash functions
{Hκ}κ∈I is a collection of polynomial-time computable functions H : {0, 1}l → {0, 1}l′ , together
with an efficient algorithm that on input a security parameter λ outputs an index κ ∈ I indicating
a particular function in {Hκ}κ∈I . A family of hash functions is called collision-resistant if for any
efficient algorithm A that is given as input the index κ ∈ I, the probability that A outputs (m,m′)
such that Hκ(m) = Hκ(m′) with m 6= m′ is negligible (where the probability is taken over the coin
tosses of A and of the generation algorithm). To simplify notation, we say simply H(m) to denote
Hκ(m) where κ is sampled from the generation process and implicitly given.

25



Message Authentication Codes. A message authentication code (MAC) (G,T,V) is a triple
of efficient algorithms such that G upon input security parameter 1λ outputs a key k, and T for
input k and message m ∈ {0, 1}∗ deterministically outputs a tag φ = T(k,m). Correctness requires
that for any k ← G(1λ), any message m ∈ {0, 1}∗, the algorithm V(k,m,T(k,m)) outputs 1.

The standard security notion for message authentication codes is universal unforgeability under
chosen-message attacks (UNF-CMA). Roughly, a message authentication code is UNF-CMA if an
adversary A is not able to come up with a message m∗ and a tag φ∗ such that V(k,m∗, φ∗) = 1 for
k ← KGen(1λ), even if A is allowed to ask for tags of arbitrary chosen messages m 6= m∗.

A.1 Instantiations of Commit-First SFE

A.1.1 The GMW Compiler

The GMW compiler [29] is a general transformation for compiling any SFE with security against
semi-honest adversaries into one with security against malicious ones. We observe that the malicious
SFE resulting from the GMW compiler is also a commit-first protocol. This is of theoretical
interest: when combined with the compilers we introduce in this paper, it yields a general compiler
for transforming any semi-honest SFE into a rate-limited malicious SFE.

Recall the GMW compiler which consists of the following three phases: (i) Input-committing
phase: Each party commits to the input he will use in the protocol, (ii) Coin-generation phase:
Each party receives a uniformly random string to use in the protocol emulation phase, while others
obtain a commitment to that randomness (iii) Protocol emulation phase: Parties engage in a
protocol where each message of the semi-honest SFE is accompanied with proofs of correctness of
the computation and its consistency with the committed inputs and randomness.

We refer the reader to [27] for a complete description of the compiler and a proof that it yields an
SFE with security against malicious adversaries. It turns out that the input-committing phase of the
GMW compiler is exactly what we need in a commit-first protocol. In particular, the functionality of
the input-committing phase for the first party is defined in [27] as ((x, r), 1n)→ (λ,C(x, r)), where
C is a hiding and binding commitment scheme. Then, a construction is provided that realizes this
functionality in presence of malicious adversaries.7 This is identical to the functionality computed
by the trusted party (once for P1 and once for P2) in the first phase of the ideal execution for a
commit-first SFE we defined above. This observation yields the following claim.

Claim A.1 The GMW compiler transforms any SFE protocol with security against semi-honest
adversaries into a commit-first SFE protocol with security against malicious adversaries.

A.1.2 Yao’s Garbled Circuits Protocol

Here, we investigate the commit-first property of Yao’s garbled circuit protocol [53, 54]. Yao’s
protocol is one of the most important general-purpose two-party SFE constructions. In particular,

7Roughly speaking, the commitment is accompanied with a zero-knowledge proof of knowledge of the input and
the randomness fed to the commitment.

26



due to its desirable efficiency properties, it has been the subject of multiple software implementa-
tions [44, 36, 38]. Currently, the most efficient method for making Yao’s protocol secure against
malicious adversaries is the cut-and-choose approach [47, 42].

We observe that Yao’s protocol is one-sided commit-first. In other words, one of the parties
in the protocol commits to his input during the protocol in such a way that the simulator in the
ideal world is able to extract the corresponding message and randomness. We note that the one-
sided commit-first property is indeed sufficient for many applications of rate-limited SFE where
one is only interested in monitoring the rate for one party. For instance, this is the case in most
client-server applications, where the server enforces the rate limit on the client.

Commit-first Yao via commit-first OT. We do not discuss the details of Yao’s constructions
here and refer the reader to [43] for a detailed description. However, we recall that in the cut-
and-choose approach, the first party (garbler) computes multiple garbled circuits while the second
party (evaluator) evaluates a fraction of these circuits. To proceed with the evaluation, the first
step taken by the evaluator in the protocol is a series of oblivious transfers, one for each bit of its
input. The evaluator plays the role of the receivers in each OT, and uses one input bit in each.
The garbler plays the role of the sender, and uses two garbled values (corresponding to an input
wire) as its input. For Yao’s garbled circuit protocol to be one-sided commit-first (with respect
to the evaluator in this case), we simply need to make sure that the oblivious transfer being used
is commit-first itself (in addition to begin secure against malicious adversaries). In particular, we
need a guarantee that the receiver in the OT is committed to its input, and that the simulator in
the security proof is able to extract both the message and the randomness used in the commitment.

Commit-first OT. There are multiple OT constructions that satisfy the commit-first property.
For example, consider the general construction of [41] based on any homomorphic encryption.
We observe that if the homomorphic encryption scheme being used is randomness-recovering (i.e.
the decryption algorithm recovers both the message and the randomness), the resulting OT will
be commit-first. Consequently, the instantiation of their construction based on Paillier’s encryp-
tion [49] yields a commit-first OT.

A second option is to use the OPE construction we discussed in Section 7 to instantiate the
OT in the Yao’s protocol. Note that the OPE problem is a generalization of oblivious transfer.
The OT sender with an input pair (a0, a1) can let its polynomial be p(x) = a0(1− x) + a1x, while
the receiver can use its input bit b as the input to the polynomial. It is easy to see that p(b) = ab
for b ∈ {0, 1}. There is one small issue with this OT construction. It is not fully-secure against
malicious adversaries in the form we described. In particular, a malicious receiver can choose a
value for b that is not a bit. This issues can, however, be easily fixed by adding an efficient ZK
proof of the statement that the plaintext corresponding to E(pk, b) is either the message 0 or 1.
Since the OPE construction we discussed is commit-first, so is the resulting commit-first OT.

Summarizing the above discussion, we conclude with the following claim:

Claim A.2 When instantiated via a commit-first OT, cut-and-choose compilations of Yao’s gar-
bled circuit, are one-sided commit-first (with respect to the circuit evaluator) with security against
malicious adversaries.

27



A.1.3 Secure 2PC of Jarecki-Shmatikov

Jarecki and Shmatikov [40] design a variant of Yao’s garbled circuits protocol for securely computing
any two-party circuit on committed inputs. Their protocol is secure in a universally composable
way in the presence of malicious adversaries, in the common reference string model.

Their construction starts by having the two parties commit to their inputs. Then, a variant
of Yao’s protocol is design to operate on these committed inputs. Both the commitment scheme
and the symmetric-key encryption needed in Yao’s garbled circuit construction are instantiated
via a simplified variant of the Camenisch-Shoup (CS) encryption scheme [11]. The computation is
accompanied with efficient ZK proofs that are specially designed to work with the CS scheme. We
refer the reader to [40] for a complete description of their construction.

Their construction can be easily transformed to a commit-first protocol in the CRS model. The
protocol starts with each party committing to its input and proving the validity of the commitment.
As mentioned above, the commitment scheme used is a simplified CS encryption. Unfortunately,
knowing the secret key for the encryption scheme does not allow one to recover the randomness
used for encryption as well. However, our commit-first ideal execution requires this property. In
other words, the simulator in the proof needs to send both the message and the randomness used
by the commitment scheme to the TTP. However, as mentioned by the authors themselves, a wide
range of other commitment schemes can also be used for this purpose. To satisfy the commit-first
property, we simply need to make sure that the randomness used in the commitment is recoverable
given a trapdoor (or the secret key itself). This is efficiently realizable, for example, using Paillier’s
encryption scheme, in which the decryption algorithm recovers the randomness as well, hence
yielding a commit-first variant of their construction:

Claim A.3 The two-party protocol of [40] is a commit-first SFE with security against malicious
adversaries, in the CRS model.

A.1.4 PSI Protocol of Hazay and Nissim

In the private set intersection problem, two parties P1 and P2, hold the sets X and Y . Their goal is
for one or both parties to learn X∩Y without revealing additional information about their sets. The
PSI problem has been the focus of active research, and to date, many constructions with a variety
of efficiency and security properties have been designed and even implemented [21, 19, 33, 37].

Here, we focus on the protocol of Hazay and Nissim [33], since it is secure against malicious
adversaries and we can easily show it to be a one-sided commit-first protocol as well. Once again,
we do not describe the details of their construction but mostly focus on the components we need
to prove the commit-first property. In particular, we observe that one of the parties engaged in the
protocol, say P1 holding the set X = {x1, . . . , xn} starts by computing the commitments C(xi, ri)
for 1 ≤ i ≤ n and proving knowledge of xi and ri to P2. This indeed constitutes a commitment
to the set X, and allows the simulator in the proof to extract both the set X and the randomness
used in the commitments, hence yielding a commit-first protocol with respect to P1.

Claim A.4 The private set intersection protocol of [33] is one-sided commit-first with security
against malicious adversaries.

28



A.1.5 Oblivious Automata Evaluation of Gennaro, Hazay and Sorensen

In an oblivious automata evaluation (OAE) protocol, party P1 holds a description of an automation
Γ whereas party P2 holds a string t. After the execution of OAE, party P1 obtains Γ(t), and P2

learns nothing.
In [24], Gennaro, Hazay and Sorensen introduce a secure OAE protocol in presence of malicious

adversaries. At a high level, party P1 and P2 first agree on a public key for an encryption scheme.
Then, party P1 sends the transition table of Γ in encrypted form together with a ZK-proof of its
validity. Party P2 is then able to work on this ciphertext in order to evaluate its input string t.
Eventually, P2 proves validity of the last ciphertext.

Similar to the OPE protocol in Section 7, the encryption and its proof of validity can be seen
as a commitment by party P1 to his input. This takes place before the actual automata evaluation
is performed. However, party P2 proves validity at the end of the execution. Hence, we observe
here a one-sided commit-first oblivious automata evaluation protocol with respect to party P1.

Claim A.5 The oblivious automata evaluation protocol of [24] is a one-sided commit-first OAE
with security against malicious adversaries.

B Relation between Notions of Rate-Limited SFE

It is immediate to see that rate-hiding SFE is strictly stronger than rate-revealing SFE. In fact, the
simulator in the definition of rate-revealing SFE protocol can simply drop the outputs (σi, σ3−i) to
mimic the simulator in the definition of rate-hiding SFE. However, the opposite direction does not
hold.

As for the relationship between rate-revealing and pattern-revealing, we have the following
simple observation.

Observation 1 Any secure rate-revealing (�r�1, �r�2)-limited protocol π is also a secure pattern-
revealing (�r�1, �r�2)-limited protocol. The converse is not true in general.

Proof. Fix the functionality f underlying protocol π. To prove the first direction, it suffices to
show that the output of the simulator S in the rate-revealing definition can be efficiently produced
starting from the output of the simulator S ′ in the pattern-revealing definition; since the latter
simulator is stronger, it follows that any secure rate-revealing protocol is also a secure pattern-
revealing protocol (and so the latter notion is weaker). After j executions, for j = 1, . . . , `, S ′
knows vectors J1 = (J1

1 , . . . , J
j
1) and J2 = (J1

2 , . . . , J
j
2) and can mimic S’s output by letting

σj1 = max{J1
1 , . . . , J

j
1} and σj2 = max{J1

2 , . . . , J
j
2}.

On the other hand, it is easy to see that in general the output distribution of S ′ cannot be
simulated from the output of S. The reason is that S only knows a monotonically increasing
sequence of natural numbers σji . When two elements are repeated, S knows the corresponding
input has already been used in a previous execution, but is not necessarily able to determine
exactly in which execution and thus cannot derive the complete pattern. Consider for instance the
case where σ1

1 = 1 and σ2
1, . . . , σ

`
1 = 2; then S can mimic S ′’s output only with probability 2−`.

29



C Missing Proofs

C.1 Proof to Theorem 5.1 (Rate-hiding)

The construction of our rate-hiding �r�-limited compiler ΨRH is depicted in Figure 1. Next, we
provide the proof to Theorem 5.1 showing its security.

Proof. Consider an adversary A = (A1, . . . ,A`) corrupting party Pi during the ` executions of
π̂f . In particular, Aj represents A’s strategy during the jth execution, and real�r�

π̂f ,A(z),i(x1, x2, λ)j

denotes the distribution of its output. We denote by real�r�−RH
π̂f ,A(z),i(x1,x2, λ, `) the joint distribution

of the output of all the Ajs combined. Note that each Aj passes the necessary state information
(i.e., her view) to Aj+1.

We describe a simulator S = (S1, . . . ,S`) in the ideal world—as discussed in Section 4—
that mimics A’s output. Before doing so, note that we are given as input to the compiler ΨRH

(besides the rates and `) the commit-first SFE protocol πf . According to the security definition (cf.
Definition 3.1), for any admissible adversary against πf , there exists a simulator Scf that mimics her
behavior in the cf-SFE’s ideal world. Moreover, due to the way the cf-SFE ideal world is defined,
Scf can be naturally written as Scf = (S1

cf ,S2
cf ) where basically S1

cf emulates the commit-first

phase (i.e., π1
f ), and passes its view to S2

cf who emulates the function evaluation phase (i.e., π2
f ).

The simulator S = (S1, . . . ,S`) picks (p̃k, s̃k) ← G̃(1λ), runs a copy of A, and keeps a state
Σ = (Γ, (Ω1,Ω2),Λ) initially set to be empty. The jth execution is given below.

1. Sj takes (xji ,Σ, (pk1, pk2), (p̃k, s̃k), zj) as input.

2. In the committing phase, Sj invokes S1
cf on input (xji , pk1, pk2). The simulator S1

cf invokes

Aj who controls party Pi in π1
f . If S1

cf sends ⊥ to its cf-SFE TTP, Sj sends ⊥ to its own

trusted party leading to an abort of the execution. Otherwise, Sj receives x′ji , r
′j
i from S1

cf

and computes γ′ji = C(pki, x
′j
i ; r′ji ). It also samples a random x′j3−i ∈ Mpk3−i

, computes

γ′j3−i = C(pk3−i, x
′j
3−i; r

j
3−i) using randomness r′j3−i and sends the result to Aj . If (x′j3−i, ∗) 6∈ Λ,

update Λ := Λ ∪ {(x′j3−i, r
′j
3−i)}.

3. Sj sends x′ji to its TTP, and receives yi = fi(x
′j
1 , x

′j
2 ) back, where x′j3−i = xj3−i. Recall

that yi = ⊥ shows whether one of the parties has exceeded its own rate. If the returned
value is yi = ⊥, the simulator sends ⊥ to Aj and terminates the execution. On the other
hand, if the returned value is yi 6= ⊥ and x′j3−i has never been used before, Sj computes

c′j3−i ← Ẽ(p̃k, 1). Otherwise, it computes c′j3−i ← Ẽ(p̃k, 0) and stores the generated ciphertext,

i.e., Ω3−i := Ω3−i ∪ {c′j3−i}.

Hence, the simulator forwards c′j3−i to Aj and runs internally the ZK simulator SZK for the
proof system

(Lold
3−i ∧ L0

3−i) ∨ (Lold
3−i ∧ L

1
3−i ∧ Lrate

3−i ),

30



playing the role of the prover (with Aj being the verifier). (Note that the last step involves
the state Σ). Sj also receives c′ji from Aj , plays the role of the verifier in (Pr,Vr) (with Aj

being the prover) and updates the state to Ωi := Ωi ∪ {c′ji } and Γ = Γ ∪ {γ′ji }.

4. Finally, Sj invokes S2
cf on input (x′ji , γ

′j
3−i, pk1, pk2); S2

cf itself runs Aj who controls party Pi
in π2

f .8 If S2
cf sends ⊥, Sj sends ⊥ to its trusted party leading to an abort of the execution.

Else, S2
cf sends the continue flag. Sj replies (on behalf of the cf-SFE TTP) by sending to S2

cf ,
the output yi he obtained earlier in the simulation.

At the end of this phase, Sj passes yi to Aj and outputs whatever Aj does.

We now need to show that

ideal�r�−RH
f,S(z),i(xi,x3−i, λ, `) ≡c real�r�

π̂f ,A(z),i(xi,x3−i, λ, `).

However, we focus on showing indistinguishability for a single execution (i.e., the jth execution).
A standard hybrid argument (omitted here) shows that the accumulative distributions are also
computationally indistinguishable up to a negligible factor of 1/`. Next, we focus on showing that
for all i ∈ {1, 2} and j ∈ [`]

ideal�r�−RH
f,S(z),i(x

′
i, x
′
3−i, λ)j ≡c real�r�

π̂f ,A(z),i(xi, x
′
3−i, λ)j .

We consider a series of intermediate hybrid experiments. In the first experiment, we modify
the simulator by letting it abort the execution on the basis of the verification of the ZK proofs,
as it would be done in a real execution of the protocol. We argue that this modification is not
distinguishable by the adversaryAj due to the soundness of the ZK proof. In the second experiment,
we assume that in contrast to the simulation above, the real input of the honest party is used in the
simulation. We argue that this modification is not distinguishable by the adversary Aj due to the
hiding property of the commitment and the PKE schemes. In the last experiment, we replace the
simulated ZK proof, with an actual ZK proof. The indistinguishability of the last two experiments,
follows naturally from the zero-knowledge property of the proof. Finally, it is easy to see that the
distribution of Aj ’s output in the last experiment is identical to the distribution of its output in
the real protocol, which concludes our proof. Details follow:

Hybrid H1
A(z)(x

′j
i , x

′j
3−i, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who controls Pi in

the ideal world. Essentially Sj1 is different from Sj merely in the way it aborts the simulation
based on the execution of (Pr,Vr). Namely, in case the rate �r�3−i is not exceeded, instead of
looking at the output from the trusted party (cf. item 3. in the description of Sj), it first
plays the role of the verifier as party P3−i would do in a real execution of the protocol. Hence,
if the verification fails the value ⊥ is sent to Aj and the execution is halted. Everything else
is identical to the previous simulation. Next, we argue that

ideal�r�−RH
f,S(z),i(xi, x3−i, λ)j ≡c H1

f,A(z),i(xi, x3−i, λ)j .

8We emphasize S2
cf does not run a new instance of Aj but it continues with running the same instance that has

been running so far.

31



In fact, the modification above only affects the way the execution is halted. Denote with bad
the event that A is able to come up with an accepting proof for a false statement, i.e., A
is able to convince P3−i that the rate �r�i is not exceeded even though it already reached the
rate itself. Note that the distribution produced by the two experiments above is identical
provided that bad does not happen. Due to the soundness property of the ZK proof system,
we must conclude that bad happens at most with negligible probability, thus showing that
the two experiments are computationally indistinguishable.

Hybrid H2
A(z)(x

′
i, x3−i, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who controls

Pi in the ideal world and at the same time plays the role of the TTP playing all the roles by
itself. As a result, the simulator directly interacts with P3−i during the ideal execution of the
commit-first protocol. Essentially, Sj2 is identical to Sj1 with the exception that it is able to

compute and send the correct commitment γj3−i = C(pk3−i, x
j
3−i; r

j
3−i) to Aj . Also, Sj2 is able

to compute the correct ciphertext cj3−i on the basis of the “freshness” of the real input xj3−i.
Everything else is analogous to the previous simulation.

Next, we argue that

H1
f,A(z),i(x

′
i, x
′
3−i, λ)j ≡c H2

f,A(z),i(x
′
i, x3−i, λ)j .

Note that the only difference between the previous hybrid and the hybrid world described
above is that the real input of the honest party is used in the simulation.9 In particular, Sj2
feeds both S1

cf and S2
cf with the commitment C(pk3−i, x

j
3−i; r

j
3−i) to the real input xj3−i as

opposed to an arbitrary input x′j3−i; analogously the bit encrypted in cj3−i is chosen accordingly

to xj3−i. However, due to the hiding property of the commitment scheme, these two views
are computationally indistinguishable. (In particular any distinguisher can be turned into an
adversary breaking either the hiding property of the commitment or the CPA-security of the
PKE scheme.) It is worth noting that, we rely on the fact that in both worlds, the simulator
emulates the ZK proof using SZK as opposed to executing the real proof. In particular, the
ZK simulator does not need the parties’ private inputs for its simulation, and hence is not
affected by the aforementioned change in the inputs.

Hybrid H3
A(z)(x

′
i, x3−i, λ)j: We modify the previous hybrid world, by having Sj3 provide an actual

ZK proof that the rate is not exceeded or to output ⊥ if this is not case. For this purpose,
Sj3 uses the state Σ and the current inputs xj1, x

j
2. The zero-knowledge property of the

proof system automatically guarantees that the view generated using the real proof and the
simulator SZK are computationally indistinguishable which in turn implies the computational
indistinguishability of the output of the current hybrid experiment and the last. Thus, we
have

H2
f,A(z),i(x

′
i, x3−i, λ)j ≡c H3

f,A(z),i(x
′
i, x3−i, λ)j .

9In fact, the simulation of the values yi is perfect given that in the previous hybrid experiment the execution is
also halted depending on the verification of the ZK proofs.

32



To conclude the proof, it suffices to note that H3
f,A(z),i(xi, x3−i, λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← ΨRH(πf , �r�1, �r�2, `) is a secure rate-
hiding (�r�1, �r�2)-limited protocol for function f .

C.2 Completing the Hybrid Argument for Rate-Revealing Compiler (Theo-
rem 5.2)

Hybrid H1
A(z)(x

j
i , x

j
3−i, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who controls Pi

in the ideal world. Essentially Sj1 is different from Sj merely in the way it updates the state

Γi. Namely, instead of looking at the output σ3−i and checking that x′ji is not used in one
of the previous executions (cf. item 3. in the description of Sj), it first plays the role of
the verifier in (Pr,Vr) as party P3−i would do in a real execution of the protocol. Hence, if
the verification fails or the value ε is received, the state is updated as Γi := Γi ∪ {x′ji , r

′j
i }.

The verification process is also applied to the proof returned by the ZK simulator SZK , and
the value γ′j3−i is eventually added to the state depending on the outcome of the verification
procedure. Otherwise, the state is not modified. Everything else is identical to the previous
simulation. Next, we argue that

ideal�r�−RR
f,S(z),i(xi, x3−i, λ)j ≡c H1

f,A(z),i(xi, x3−i, λ)j .

In fact, the modification above only affects the way Γi is updated. Denote with bad the event
that A is able to come up with an accepting proof for a false statement, i.e., A is able to
convince P3−i that a fresh input is equal to one of the previously used inputs. Note that
the distribution produced by the two experiments above is identical provided that bad does
not happen. Due to the soundness property of the ZK proof system, we must conclude that
bad happens at most with negligible probability, thus showing that the two experiments are
computationally indistinguishable.

Hybrid H2
A(z)(x

j
i , x

j
3−i, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who controls

Pi in the ideal world and at the same time plays the role of the TTP playing all the roles by
itself. As a result, Sj2 directly interacts with P3−i during the ideal execution of the commit-first

protocol. Essentially, Sj2 is identical to Sj1 with the exception that it is able to compute and

send the correct commitment γj3−i = C(pk3−i, x
j
3−i; r

j
3−i) to Aj . Also, Sj2 needs to simulate

the values (σi, σ3−i) by itself. This is done as it would be done in a real execution of the
protocol. More precisely, σi (resp. σ3−i) is modified based on the verification of the ZK proof
(Pr,Vr) for language Li (resp. L3−i). Here, the simulator will also check whether the values
σ1, σ2 exceed the rates �r�1, �r�2 and output ⊥ if so. Finally, note that S2

cf is now invoked on the

correct inputs, i.e., xj3−i and γj3−i. Everything else is analogous to the previous simulation.
Next, we argue that

H1
f,A(z),i(xi, x3−i, λ)j ≡c H2

f,A(z),i(xi, x3−i, λ)j .

Note that the only difference between the previous hybrid and the hybrid world described

33



above is that the real input of the honest party is used in the simulation.10 In particular,
Sj2 feeds both S1

cf and S2
cf with the commitment C(pk3−i, x

j
3−i; r

j
3−i) to the real input xj3−i as

opposed to an arbitrary input x′j3−i. However, due to the hiding property of the commitment
scheme, these two views are computationally indistinguishable. It is worth noting that, we
rely on the fact that in both worlds, the simulator emulates the ZK proof using SZK as
opposed to executing the real proof. In particular, the ZK simulator does not need the
parties’ private inputs for its simulation, and hence is not affected by the aforementioned
change in the inputs.

Hybrid H3
A(z)(xi, x3−i, λ): We modify the previous hybrid world, by having Sj3 provide an actual

ZK proof that an input is re-used from a previous execution or to send an empty string ε if
this is not case. For this purpose, Sj3 uses the state (Γ1,Γ2) and the current inputs xj1, x

j
2.

The zero-knowledge property of the proof system automatically guarantees that the view
generated using the real proof and the simulator SZK are computationally indistinguishable
which in turn implies the computational indistinguishability of the output of the current
hybrid experiment and the last. Thus, we have

H2
f,A(z),i(xi, x3−i, λ)j ≡c H3

f,A(z),i(xi, x3−i, λ)j .

To conclude the proof, it suffices to note that H3
f,A(z),i(xi, x

′
3−i, λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← ΨRR(πf , �r�1, �r�2, `) is a secure rate-
revealing (�r�1, �r�2)-limited protocol for function f .

C.3 Proof to Theorem 5.3 (Pattern-revealing)

A detailed description of our pattern-revealing compiler appears in Figure 3.
We give now the formal proof of Theorem 5.3.

Proof. Similar to the proof of Theorem 5.2, we consider an adversary A = (A1, . . . ,A`) corrupting
party Pi during the ` executions of π̂f where Aj represents A’s strategy during the j-th execution.
Again, we denote by real�r�−PR

π̂f ,A(z),i(x1,x2, λ, `) the joint distribution of the output of all the Ajs
combined.

We describe a simulator S = (S1, . . . ,S`) in the ideal world that mimics A’s output. Our
simulator makes use of the simulator Scf which exists due to the fact, that our compiler was given
as input a commit-first SFE protocol πf . The simulator S = (S1, . . . ,S`), runs a copy of A, and
keeps a state Γi. In addition, S maintains a list Γ′. Both Γi and Γ′ are initially set to be empty.

The j-th execution is given below.

1. Sj takes (xji ,Γi, ki, pk1, pk2, z
j) as input.

2. In the randomness-generation phase, Sj does nothing.

10In fact, the simulation of the values (σi, σ3−i) is perfect given that in the previous hybrid experiment the state
is also updated depending on the verification of the ZK proofs.

34



3. In the committing phase, Sj invokes S1
cf on input (xji , pk1, pk2). The simulator S1

cf invokes

Aj who controls party Pi in π1
f . If S1

cf sends ⊥ to its cf-SFE TTP, Sj sends ⊥ to its own

trusted party leading to an abort of the execution. Otherwise, Sj receives x′ji , r
′j
i from S1

cf .

Now, Sj computes γ′ji = C(pki, x
′j
i ; rji ). If (γ′ji , ∗) /∈ Γi then Sj updates the state Γi by letting

Γi := Γi ∪ (γ′ji , j). Sj also samples a random x′j3−i ∈ Mpk3−i
. If there exists an element

(x′j3−i, r
′) ∈ Γ′, it computes γ′j3−i = C(pk3−i, x

′j
3−i; r

′); else it computes γ′j3−i = C(pk3−i, x
′j
3−i; r

′j
3−i)

using uniformly sampled randomness r′j3−i, and Γ′ (resp. Γ3−i) is updated by Γ′ := Γ′ ∪
(x′j3−i; r

′j
3−i) (resp. Γ3−i := Γ3−i ∪ (γ′j3−i, j)). Sj sends γ′j3−i to Aj .

4. Sj sends x′ji to its TTP, and receives (yji = fi(x
′j
1 , x

′j
2 ), J3−i) back, where x′j3−i = xj3−i. Recall

that J3−i indicates an index J3−i < j of an execution with its counterpart P3−i where P3−i
used the same input as in this jth execution.

5. Finally, Sj invokes S2
cf on input (x′ji , γ

′j
3−i, pk1, pk2); S2

cf itself runs Aj who controls party Pi
in π2

f . If S2
cf sends ⊥, Sj sends ⊥ to its trusted party leading to an abort of the execution.

Else, S2
cf sends the continue flag. Sj replies (on behalf of the cf-SFE TTP) by sending to S2

cf ,

the output yji he obtained earlier in the simulation.

At the end of this phase, Sj passes (yi, J3−i) to Aj and outputs whatever Aj does.

Similar to the proof of Theorem 5.2 it suffices to show that for all i ∈ {1, 2} and j ∈ [`]

ideal�r�−PR
f,S(z),i(x

′
i, x
′
3−i, λ)j ≡c real�r�

π̂f ,A(z),i(xi, x
′
3−i, λ)j .

and hence,
ideal�r�−PR

f,S(z),i(xi,x3−i, λ, `) ≡c real�r�

π̂f ,A(z),i(xi,x3−i, λ, `).

We consider two intermediate hybrid experiments. In the first experiment, we modify the simulator
by generating the random coins for the commitments by an application of a PRF on the input.
We argue that this modification is not distinguishable by the adversary Aj due to the pseudo-
randomness property of a PRF. In the second experiment, we assume that in contrast to the
simulation above, the real input of the honest party is used in the simulation. We argue that
this modification is not distinguishable by the adversary Aj due to the hiding property of the
commitment scheme. It is easy to see that the distribution of Aj ’s output in the last experiment is
identical to the distribution of its output in the real protocol, which concludes our proof. Details
follow:

Hybrid H1
A(z)(x

j
i , x

j
3−i, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who controls Pi

in the ideal world. Essentially, Sj1 is different from Sj merely in one point. Instead of

computing the commitment γ′j3−i = C(pk3−i, x
′j
3−i; r

j
3−i)—which in the simulation belongs the

honest party—using a uniformly sampled randomness rj3−i, it computes rj3−i by using a PRF

(cf. item 3 in the description of Sj). More precisely, Sj1 computes rj3−i := PRF(k3−i, x
′j
3−i)

using secret key k3−i which is given as input to the simulator. Note that we explicitly do not

35



instantiate the randomness of the malicious party Pi by a PRF since in the real world the
party would also use possibly non-uniform randomness.

Next, we argue that

ideal�r�−PR
f,S(z),i(xi, x3−i, λ)j ≡c H1

f,A(z),i(xi, x3−i, λ)j .

In fact, the modification above only affects the way the random coins of the commitments are
generated. Denote with bad the event that A is able to notice the difference between these
two hybrids, i.e., A guesses correctly γ′ji is computed by different randomness. Note that the
distribution produced by the two experiments above is identical provided that bad does not
happen.

The pseudo-randomness property of PRF says that without knowledge of the secret key used
by the PRF, the output of a PRF and a uniformly distributed value are indistinguishable.
Therefore, we must conclude that bad happens at most with negligible probability; otherwise,
the adversary would break the pseudo-randomness of PRF. Thus, we show that the two
experiments are computationally indistinguishable.

Note that using the same random coins r for the same inputs x does not harm the binding
and hiding properties of the commitment schemes.

Hybrid H2
A(z)(x

j
i , x

j
3−i, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who controls

Pi in the ideal world and at the same time plays the role of the TTP. As a result, Sj2 directly

interacts with P3−i during the ideal execution of the commit-first protocol. Essentially, Sj2 is

identical to Sj1 with the exception that it is able to compute and send the correct commitment

γj3−i = C(pk3−i, x
j
3−i; r

j
3−i).

Sj2 needs also to simulate the values (Ji, J3−i) by itself. This is done as it would be done
in a real execution of the protocol. More precisely, Ji (resp. J3−i) is the second entry of
(γi, ∗) ∈ Γi (resp. (γ3−i, ∗) ∈ Γ3−i). Note that an entry (γi, j

∗) must be in Γi since Sj1 , and

thus Sj2 updates Γi in Step 3 to ensure it. The simulator stores herewith the commitment
and the execution number it first was sent.

The simulator will also check whether the values J1, J2 exceed the rates �r�1, �r�2 and output
⊥ if so. Finally, note that S2

cf is now invoked on the correct inputs, i.e., xj3−i and γj3−i.
Everything else is analogous to the previous simulation.

Next, we argue that

H1
f,A(z),i(xi, x3−i, λ)j ≡c H2

f,A(z),i(xi, x3−i, λ)j .

Note that the only difference between the previous hybrid and the hybrid world described
above is that the real input of the honest party is used in the simulation.11 In particular,
Sj2 feeds both S1

cf and S2
cf with the commitment C(pk3−i, x

j
3−i; r

j
3−i) to the real input xj3−i as

opposed to an arbitrary input x′j3−i. However, due to the hiding property of the commitment
scheme, these two views are computationally indistinguishable.

11In fact, the simulation of the values (Ji, J3−i) is perfect.

36



To conclude the proof, it suffices to note that H2
f,A(z),i(xi, x

′
3−i, λ)j exactly equals the output

distribution of Aj in the real world, thus proving that π̂f ← ΨPR(πf , �r�1, �r�2, `) is a secure pattern-
revealing (�r�1, �r�2)-limited protocol for function f .

C.4 Proof to Theorem 6.1 (Stateless Rate-Revealing Compiler)

Figure 4 illustrates our stateless rate-revealing compiler in detail. Here, we provide the proof to
Theorem 6.1 showing security of our stateless rate-revealing compiler.

Proof. Since the compiler is asymmetric, we need to deal with the corruption of P1 and P2 sepa-
rately.

The client is corrupted. Assuming P2 is honest, in each execution j ∈ [`] party P1 can perfectly
reconstruct the state Λj−1 thanks to the auxiliary key k̃ for the SKE scheme. Apart from the way
the state is reconstructed, the compiler is essentially identical to the transformation of Figure 2.
Hence, the same simulator S in the proof of Theorem 5.2 will do here.

The server is corrupted. Consider an adversary A = (A1, . . . ,A`) corrupting party P2 during
the ` executions of π̂f . We describe a simulator S = (S1, . . . ,S`) in the ideal world —as discussed
in Section 4— that mimics A’s output. S initially picks k ← G(1λ) and k̃ ← G(1λ), runs a copy of
A, and keeps an array Σ initially set to be empty. The j-th execution is given below.

1. Sj takes (Σ, pk, k, k̃, xj2, z
j) as input.

2. In the recovery of state phase, Sj receives (Γ′,Ω′, φ′) from Aj . Hence, it checks whether there
exists an entry in Σ such that Σ[i] = (Γ′,Ω′, φ′), for i ∈ [j − 1]. If the check fails, Sj sends ⊥
to Aj and halts the simulation, otherwise, it proceeds to the next step.

3. In the committing phase, Sj invokes S1
cf on input (xj2, pk,−). The simulator S1

cf invokes Aj

who controls party P2 in π1
f . If S1

cf sends ⊥ to its cf-SFE TTP, Sj sends ⊥ to its own trusted

party leading to an abort of the execution. Otherwise, Sj receives x′j2 from S1
cf . Sj also

samples a random x′j1 ∈ Mpk, computes γ′j1 = C(pk, x′j1 ; rj1) using randomness r′j1 , encrypts

c′j ← E(k̃, x′j1 ), c̄′j ← E(k̃, r′j1 ), lets Ω := Ω ∪ {c′j , c̄′j} and sends (γ′j1 , c
′j , c̄′j) to Aj .

4. Sj sends x′j2 to its TTP. If the TTP returns ⊥, meaning that the rate is exceeded, the
simulator sends also ⊥ to Aj and aborts. Otherwise, Sj receives (−, σj) back. Recall that σj

shows the number of distinct inputs used by the honest party P1 until the jth execution. Let
Γ′ = {γ′11 , . . . , γ′t1 }, for some t ≤ j − 1. If σj has been incremented since the last execution
(this information is passed from Sj−1 to Sj), then Sj sends to Aj the value ε. Otherwise, the
simulator invokes the ZK simulator for the language

L = {γ ∈ Cpk : ∃(x′j1 , r
′j
1 , r

′′j
1 ) s.t. γ′j1 = C(pk, x′j1 ; r′j1 ) and C(pk, x′j1 ; r′′j1 ) ∈ Γ′},

(with Aj acting as the verifier). Finally, Sj computes φ = T(k′, H(γ′11 , . . . , γ
′t
1 , γ

′j
1 )). The

value φ′ is forwarded to Aj and the state is updated as Γ := Γ ∪ {γ′j} and Σ[j] := {Γ,Ω, φ}.

37



5. Sj invokes S2
cf on input (x′j2 , γ

′j
1 , pk,−); S2

cf itself runs Aj who controls party P2 in π2
f .12 If

S2
cf sends ⊥, Sj sends ⊥ to its trusted party leading to an abort of the execution. Else, S2

cf

sends the continue flag. Sj replies (on behalf of the cf-SFE TTP) by sending the empty string
to S2

cf .

6. Sj uses the trapdoor k̃ to recover x′i1 ← D̃(k̃, c′i) and r′i1 ← D̃(k̃, c̄′i1 ) for all i ∈ [t], and lets
Λj−1 = {(x′i1 , r′i1 )}s′i=1 for s′ ∈ N the number of distinct x′i1 ’s values. Then, the simulator
checks whether s′ + 1 = σj . If this is the case it sends (−, σj) to Aj , otherwise, it sends
(−, σj−1). Finally, Sj outputs whatever Aj does.

We need to argue that for all j ∈ [`]

ideal�r�−RR
f,S(z),2(x′1, x2, λ)j ≡c real�r�

π̂f ,A(z),2(x1, x2, λ)j .

We consider a series of intermediate hybrid experiments.

Hybrid H1
A(z)(x

′
1, x2, λ)j: In the first hybrid experiment, we replace Sj by Sj1 who controls P2

in the ideal world. Sj1 is identical to Sj , with the only difference that it verifies the state
(Γ′,Ω′, φ′) as P1 would do in a real execution. Namely, upon input (Γ′,Ω′, φ′), the simulator
computes h′ = H(γ′1, . . . , γ′t) and runs V(k, h′, φ′). If the verification fails, Sj1 sends ⊥ to Aj
and halts the simulation; otherwise, it continues the simulation as Sj would do. Next, we
show that

ideal�r�−RR
f,S(z),2(x′1, x2, λ)j ≡c H1

A(z)(x
′
1, x2, λ)j .

In fact, there is a difference in the two hybrid experiments only when the following bad events
happen: (i) Aj finds a collision in H corresponding to value h′; (ii) Aj forges a tag φ′ for
an arbitrary Γ′. It is not hard to show that any distinguisher from the two distributions can
be turned into an algorithm finding collisions in H or breaking unforgeability of the MAC.
Thus, the two hybrids experiments must be computationally close.

Hybrid H2
A(z)(x1, x2, λ)j: In the second hybrid experiment, we replace Sj1 by Sj2 who controls P2

in the ideal world and at the same time plays the role of the TTP playing all the roles by
itself. As a result, Sj2 directly interacts with P1 during the ideal execution of the commit-first

protocol. Essentially, Sj2 is identical to Sj1 with the exception that it is able to compute and

send the correct commitment γj1 = C(pk, xj1; rj1) to Aj . Also, Sj2 needs to simulate the value
σj by itself. This is done as it would be done in the real protocol, by extracting the inputs
in Λj−1 with the help of the auxiliary key k̃ and verifying the proof of Aj . Finally, note that
S2
cf is now invoked on the correct inputs, i.e., xj1 and γj1. Everything else is analogous to the

previous simulation.

Next, we claim that
H1
A(z)(x

′
1, x2, λ)j ≡c H2

A(z)(x1, x2, λ)j .

12We emphasize S2
cf does not run a new instance of Aj but it continues with running the same instance that has

been running so far.

38



A careful inspection shows that the simulation of the value σj is the same in the two exper-
iments. 13 Given this, the argument is the same used to prove indistinguishability of the
second and the third hybrids in the proof of Theorem 5.2 and is therefore omitted.

Hybrid H3
A(z)(x1, x2, λ): We modify the previous hybrid world, by having Sj3 provide an actual

ZK proof that an input is re-used with respect to the state Σ′ declared by the server, or
to send an empty string ε if this is not case. The zero-knowledge property of the proof
system automatically guarantees that the view generated using the real proof and the sim-
ulator SZK are computationally indistinguishable which in turn implies the computational
indistinguishability of the output of the current hybrid experiment and the last. Thus, we
have

H2
f,A(z),i(x1, x2, λ)j ≡c H3

f,A(z),i(x1, x2, λ)j .

To conclude the proof, it suffices to note that H3
f,A(z),i(x1, x2, λ)j exactly equals the output dis-

tribution of Aj in the real world, thus proving that π̂f ← ΨRR(πf , �r�, `) is a secure (stateless)
rate-revealing �r�-limited protocol for function f .

D Instantiation of ZK-Proofs for our Compilers

D.1 The Case of Rate-Revealing OPE

As described in Section 7.1, given language Lope, the idea is to have the prover compute E(pk, (m̂−
m1) · . . . · (m̂ −mn)), prove correctness of this computation and show that the final ciphertext is
an encryption of zero. Consider the following languages:

Lzero = {(pk, c) : ∃r s.t. c = E(pk, 0; r)},

Lmult =

{
(pk, c′, c′′, c) : ∃(m′,m′′, r′, r′′, r) s.t. c′ = E(pk,m′; r′)∧
∧c′′ = E(pk,m′′; r′′) ∧ c = E(pk,m′ ·m′′; r)).

}
Using the protocols in [18], a proof for Lmult requires 15 exponentiations and a proof for Lzero

requires 8 exponentiations.
Given proof systems for the above languages, our proof πope can be constructed as follows.

Protocol πope (ZK proof for Lope(n))

• Joint statement: pk and (ĉ, c1, . . . , cn)

• Auxiliary inputs for the prover: sk

• Execution steps:

13Strictly speaking, we would need to slightly change the description of the ideal world described in Section 4. In
fact, when Aj tries to cheat by sending only a subset of the state, it might be that the client will set the ZK proof
to ε even though its input is actually non fresh. However, when this happens, the client will perceive a higher rate,
without any risk to exceed the value �r�. For this reason, we preferred to ignore this technicality in the proof, sticking
to the previous definition.

39



1. The prover sets e1 := ĉ−h c1. Note that ĉ and c1 are encryptions obtained
from an additive homomorphic encryption scheme, and −h denotes addi-
tive subtraction. Therefore, the prover can derive the difference between
the corresponding plaintexts in encrypted form.

2. For i = 2 . . . n, the prover

(a) computes di := ĉ−h ci
(b) computes ei = E(pk,D(sk, ei−1) · D(sk, ei)).

(c) proves that (ei−1, di, ei) ∈ Lmult.

3. The prover proves that en ∈ Lzero.

Proposition D.1 Assume πmult (resp. πzero) implements a computational ZK proof for languages
Lmult (resp. Lzero). Then πope is a computational ZK proof for Lope(n) with perfect completeness.

Proof (Proof Sketch). We need to show completeness, soundness and zero-knowledge.
Completeness. Perfect correctness is easily shown. If there exists an index i ∈ [n] such that
D(sk, ĉ) = D(sk, ci), then di is an encryption of 0. Since in step (2c) the prover shows, using πmult,
that di is a divisor of ei and ei−1, this yields essentially that di is a factor of en. Thus, by correctness
of πzero the prover provides a valid proof.
Soundness. The prover is not able to proof a wrong statement but with negligible probability. In
particular, if ĉ encrypts a value different from all other plaintexts but en is indeed an encryption
of 0, then it must have given a valid proof for a wrong statement for Lmult. That is, one of the
divisors di’s (or e1) encrypts 0. This contradicts soundness of πmult. On the other hand, the prover
needs to provide a valid proof for en ∈ LZero, which is also computationally hard since πzero is
computationally zero-knowledge by assumption.
Zero-Knowledge. The prover communicates with the verifier only when invoking the ZK protocols
πmult and πzero. Since both protocols satisfy the zero-knowledge properties, the sequential execution
of both protocols preserves zero-knowledge.

D.2 The Case of Rate-Hiding OPE

Next, we explain how to derive a rate-hiding rate-limited OPE protocol from the scheme of [35],
by giving a concrete instantiation of our compiler from Section 5.1. Note that besides a standard
proof of the statement “a ciphertext is a valid encryption of bit b”, in our rate-hiding compiler we
also need proofs of membership in the following two languages:

Lrate
�r�

(n) =

{
(pk, c1, . . . , cn) : ∃λ, r s.t. (pk, sk)← G(1λ, r) and∑

1≤i≤n D(sk, ci) < �r�

}
and the complement of the Lope(n) language (see Section 7.1), i.e.:

Lope(n) =

{
(pk, ĉ, c1, . . . , cn) : ∃λ, r s.t. (pk, sk)← G(1λ, r) and
(D(sk, ĉ) 6= D(sk, c1) ∧ D(sk, ĉ) 6= D(sk, c2) ∧ . . . ∧ D(sk, ĉ) 6= D(sk, cn))

}

40



Given appropriate proofs for these languages, one can apply the techniques of [15], to efficiently
construct a proof for any conjunctive and/or disjunctive formula over statements proved in the
components. As result, we only need to show proofs for the above two languages.

We first show that in our case, proof of membership in Lrate
�r�

can in fact be reduced to a proof
for the language Lope(n), and then describe a proof for the latter. To observe why this is the case,
note that in our rate-hiding compiler ci’s are encryptions of 0 and 1. As a result, we compute
the following n ciphertexts c′i =

∑
1≤j≤i ci, where the sum represent the additive homomorphic

operation. It is easy to see that there is an encryption of t among the c′is if and only if there are at
least �r� encryptions of 1 among the cis. As a result, Lrate

�r�
(n) for (pk, c1, . . . , cn) reduces to Lope(n)

for (pk, c′1, . . . , c
′
n).

It remains to show a proof for Lope(n). The proof strategy is the same as the complement
language discussed above until the last step. In the last step, instead of proving that the resulting
ciphertext is encryption of 0, we need to prove that it is encryption of a non-zero. While it is
possible to show such a statement using “range proof” techniques, we show a direct and more
efficient technique for proving this statement for the language

Lzero = {(pk, c) : ∃r,m 6= 0 s.t. c = E(pk,m; r)}

The idea is to multiply the underlying plaintext with a random values in the message domain
(both parties contribute to the random value to avoid cheating). If the plaintext was a 0, so is
the product, but if not, the result is non-zero with high probability. Furthermore, revealing the
product does not reveal any information about the original plaintext (hence zero-knowledge).

Protocol πzero (ZK proof for Lzero)

• Joint statement: (pk, c)

• Auxiliary inputs for the prover: sk

• Execution steps:

1. The prover generates a uniformly random message rp from the message
space and sends cp = E(pk, rp; r) to verifier along with a standard proof of
knowledge of message and randomness.

2. Verifier generates a uniformly random message rv from the message space
and sends rv, r

′, cv = E(pk, rv; r
′) to prover.

3. Prover lets c1 = cv +h cp, and c2 = E(pk, (rv + rp)m; r′′), and runs πmult

for the tuple (pk, c, c1, c2). Prover also reveals (rv + rp)m and r′′.

4. Verifiers accepts if (rv + rp)m is non-zero and the ciphertext c2 generated
honestly.

The proof that the above protocol is indeed ZK, follows along the lines of the proof of Proposi-
tion D.1, and is therefore omitted.

D.3 DL-based Instantiations

Many other protocols, potentially, allow to obtain efficient ZK proofs to be used in our compilers.
For instance, if the underlying commitment scheme of the underlying cf-SFE is a discrete-log based

41



scheme (e.g., Pedersen [50] or ElGamal [23])—as in the case of the PSI construction of Hazay
and Nissim—or it accesses the commitment scheme in a black-box manner (i.e., the construction
does not rely on a specific commitment scheme unless the security properties are satisfied), then
we can derive a ZK-proof of repeated-input efficiently. Indeed, as stated in [12], building efficient
zero-knowledge proofs for all known discrete-logarithm-based statements is possible (with constant
overhead), and several previous works [16, 22, 10, 8, 9] propose techniques for proving statements
encoded as discrete logarithms, efficiently.

ZK-proofs of repeated-input work for statements in the language

Li = {γ ∈ Cpki : ∃(x, r, r′) s.t. γ = C(pki, x; r) and C(pki, x; r′) ∈ Γ3−i}.

Now, if C is, for instance, the Pedersen commitment scheme [50], then the above language is
equivalent to

Li = {(x, r, r′) : γ = gxhr ∧ γ′ = gxhr
′ ∧ γ′ ∈ Γ3−i}.

Note that this approach work for basically all commit-first protocols where either the commit-
ment scheme is based on the discrete-logarithm problem or the construction is not restricting the
choice of the commitment scheme.

42


	Introduction
	Our Contribution
	Roadmap

	Preliminaries
	Commit-First Secure Function Evaluation
	Rate-Limited Secure Function Evaluation
	Compilers for Rate-Limited SFE
	A Rate-Hiding Compiler
	A Rate-Revealing Compiler
	A Pattern-Revealing Compiler

	Making the Compilers Stateless
	Rate-Limited OPE
	ZK Proofs for Rate-Limited OPE

	Primitives
	Instantiations of Commit-First SFE

	Relation between Notions of Rate-Limited SFE
	Missing Proofs
	Proof to Theorem 5.1 (Rate-hiding)
	Completing the Hybrid Argument for Rate-Revealing Compiler (Theorem 5.2)
	Proof to Theorem 5.3 (Pattern-revealing)
	Proof to Theorem 6.1 (Stateless Rate-Revealing Compiler)

	Instantiation of ZK-Proofs for our Compilers
	The Case of Rate-Revealing OPE
	The Case of Rate-Hiding OPE
	DL-based Instantiations


