
A New Practical Identity-Based Encryption System

Jong Hwan Park∗ Dong Hoon Lee†

Abstract

We present a new practical Identity-Based Encryption (IBE) system that can be another candidate for
standard IBE techniques. Our construction is based on a new framework for realizing an IBE trapdoor
from pairing-based groups, which is motivated from the ‘two equation’ revocation technique suggested
by Lewko, Sahai, and Waters. The new framework enables our IBE system to achieve a tight security
reduction to the standard Decision Bilinear Diffie-Hellman assumption. Due to its the tightness, our sys-
tem can take as input the shorter size of security parameters than the previous practical BF, SK, and BB1
systems, which provides better efficiency to our system in terms of computational cost. With appropriate
parametrization at the current 80-bit security level, our IBE system can obtain 11 times faster decryption
than the previous ones and 77 times faster encryption than the BF system. We prove that our system is
fully secure against chosen ciphertext attacks in the random oracle model. From computational variant
of Naor’s observation, we can also suggest a new signature scheme that features a tight security reduction
to the Computational Diffie-Hellman assumption and provides strong unforgeability simultaneously.

Keywords: Identity-based encryption, Bilinear maps.

1 Introduction

Identity-Based Encryption (IBE) [47] is a special type of public key encryption where a public key can be
any string that carries its own meaning to a user’s identity, such as an e-mail address. As such a meaningful
string can be naturally associated with a user, an IBE system does not need a certifying mechanism to ensure
that a public key (as the meaningful string) is bound to a user (as the owner of the public key). As opposed
to an IBE system, a traditional public key encryption system needs the certifying mechanism to securely
distribute private keys, and indeed it must run on a complex architecture called ‘Public Key Infrastructure’.

By virtue of the advantage over the public key encryption, IBE had received considerable interest to
cryptographic researchers since Shamir [47] posed the initial question about the existence of such an IBE
system. In 2001, Boneh and Franklin [15] proposed the first practical IBE system based on groups with
efficiently computable bilinear maps (i.e., parings), along with a formal security definition of IBE. Since
then, a large body of work [45, 24, 25, 10, 48, 31, 40, 41, 49] has been devoted to constructing pairing-based
IBE systems to improve in terms of security and efficiency. Among the previous IBE systems, three of them
have been perceived as practical constructions, which are works by Boneh-Franklin [15], Sakai-Kasahara
[45, 24, 25], and Boneh-Boyen1 [10], and thereafter they have been submitted to the IEEE P1363.3 standard
for “Identity-Based Cryptographic Techniques using Pairings”.

∗Korea University, Seoul, Korea. Email: decartian@korea.ac.kr
†Korea University, Seoul, Korea. Email: donghlee@korea.ac.kr
1This is denoted as ‘BB1’.

1



1.1 Our Contribution

In this work we present a new practical IBE system that can be another candidate for standard IBE tech-
niques. Our IBE system results from a new framework for realizing the IBE trapdoor, which is motivated by
the ‘two equation’ technique recently suggested by Lewko, Sahai, and Waters [42]. One notable advantage
of the new framework is that our construction is also pairing-based like BF, SK, and BB1 systems, yet it has
a tight security reduction to the standard Decision Bilinear Diffie-Hellman (DBDH) assumption. In order
to encrypt arbitrary-length messages, we also suggest a new Identity-Based Key Encapsulation Mechanism
(IBKEM) combined with one-time symmetric-key encryption. Our IBE systems are all proven to be fully
secure against chosen ciphertext attacks in the random oracle model. In particular, one-time symmetric-
key encryption secure against passive attacks is sufficient for the latter IBE system without the need of the
‘encrypt-then-MAC’ or ‘authenticated symmetric encryption’ paradigm.

Prior to our result, none of the three practical BF, SK, and BB1 systems provided tightness in their
respective security analysis, and in fact there existed significant security gaps between security assumptions
and their IBE systems. One might wonder what the benefit from such tightness in security reduction is. The
benefit is that we can achieve security of our system straightforwardly from that of the underlying DBDH
assumption at the same security level. This means that if we want to instantiate our IBE system at current
80-bit security level, we can use a DBDH-hard group at the same security level. However, this is not the
case in BF, SK, and BB1 systems where security is loosely reduced to each security assumption by a factor
of (at least) 250 if we consider a reasonable number of adversarial hash queries as 250. The loose security
reduction forces us to choose a larger security parameter (regarding DBDH-hard groups) than the 80-bit one
even if we want to instantiate them at the 80-bit security level. Importantly, the larger security parameter
tends to have an unfavorable effect on computational cost of resulting IBE systems [19]. For instance, when
comparing BF, SK, and BB1 systems at 128-bit security level with our system at an 80-bit security level, ours
has about (at least) 11 times faster decryption than the three systems, and about 77 times faster encryption
than the BF system. To add credence to this result, we give more concrete comparison results in terms of
security reduction and efficiency in Section 5.

From variant of Naor’s observation (stated in [15]), our new framework gives rise to a new public-key
signature scheme whose security relies on the standard Computational Diffie-Hellman (CDH) assumption in
the random oracle model. Two favorable features of our signature scheme are that (1) it has a tight security
reduction to the CDH assumption and (2) it is secure in the sense of strong unforgeability. BF, SK, and
BB1 systems also gave rise to signature schemes [17, 11, 48] derived from each one, but none of them have
the two properties at the same time. It is also worth mentioning that it has been known that the Katz-Wang
[35, 39] technique is only the one for the tightness of (1), but our result can give an alternative method.

1.2 Overview of Our New Technique

BF, SK, and BB1 systems have their unique frameworks to realize IBE trapdoors from a paring, respec-
tively. Following Boyen’s naming in [19], each framework is called ‘full-domain-hash’ (for BF), ‘exponent-
inversion’ (for SK), and ‘commutative-blinding’ (for BB1). Each framework determines both the distinct
structure of a private key and different kinds of security assumptions. Also, most of the subsequent paring-
based IBE systems fall into one of the three paradigms.

To build our new IBE system, we also come up with a new framework for realizing the IBE trapdoor.
As we mentioned before, our framework is motivated by the two equation technique of Lewko, Sahai, and
Waters [42]. Roughly speaking, the original LSW technique is to use private key elements (gr,(g1uID)r) and
ciphertext elements (gs,(g1uID

′
)s) to compute a pairing value e(g,u)sr. Here, g, g1, and u are from public

2



parameters. The value e(g,u)sr is then used to recover a message blinding factor e(g,g)αs by pairing gs with
an additional key element gαur. The point is that such a pairing value can be obtained only if ID 6= ID′,
and this gives the revocation system [42] where only users whose identities are different from ID′ are able
to compute the pairing value. On the other hand, our two equation technique is slightly changed in a way
that computing the value e(g,u)sr is possible only if ID = ID′. This can be done by setting private key
elements as (gr,(H(ID)utagk)r) and ciphertext elements as (gs,(H(ID′)utagc)s), where H is a cryptographic
hash function and (as we explain below) the probability that tagk = tagc is negligible.

As in the BF system, our framework requires a cryptographic hash function H that maps an identity
string ID∈ {0,1}∗ to a group elementH(ID), but unlike the BF system a private key for an identity ID is not
uniquely determined. A private key skID consists of three groups (gαur, gr, (H(ID)utagk)r), which differs by
a randomly-chosen exponent r in Zp. Here, α is the master secret key known only to a key generation center.
At this moment, one may wonder how the value tagk is decided. Indeed, we have that tagk = h(gαur,gr)∈Zp

by introducing another cryptographic hash function h. Similarly, when encrypting a message M, a ciphertext
under ID is constructed as

(
Me(g,g)αs, gs, (H(ID)utagc)s

)
using the hash value tagc = h(Me(g,g)αs,gs).

In case of our IBKEM, an arbitrary length message M is encrypted as
(
EK(M), gs, (H(ID)utagc)s

)
using

a one-time symmetric-key encryption algorithm E , where K = e(g,g)αs and tagc = h(EK(M),gs). If we
use a collision-resistant hash function h, the correctness error caused by the equality tagk = tagc becomes
acceptable in practice. Another characteristic of our framework is to use the hash function h to protect the
ciphertext element Me(g,g)αs or EK(M) related to M. Indeed, the distinct usage of h enables our system to
directly obtain chosen ciphertext security without resorting to other methods such as ‘encrypt-then-MAC’
or ‘authenticated symmetric encryption’.

We now explain how our IBE system can achieve a tight security reduction under the DBDH assump-
tion. In our security proofs, the two hash functions H and h are modeled as random oracles. Somewhat
surprisingly, being able to use two hash functions in generating one group element enables our reduction
algorithm to generate private keys for all identities and use any identity as a challenge identity ID∗. Never-
theless, a private key for ID∗ is not helpful to decrypt the challenge ciphertext (that can be constructed under
ID∗), which is necessary for solving the so-called ‘self-decryption’ paradox. Notice that similar reductions
can be found in [31, 49] that provided full security without random oracles. Let (g,ga,gb,gc,T ) be a DBDH
instance. Given an identity IDi, the random oracle H outputs H(IDi) = (ga)γigπi for two randomly-chosen
exponents γi and πi in Zp. The important point is that the value γi per each identity can be information-
theoretically hidden from an adversary’s view and later used for an output value of another random oracle
h. When creating a private key for IDi, our reduction algorithm is able to generate the key as

(
gαur̃, gr̃,

(H(IDi)utagk)r̃
)

by setting tagk = h(gαur̃,gr̃) = γi and r̃ = b+ r for a random r in Zp. The validity of the
private key is checked under the condition that α = ab and u = g−agδ for a random δ ∈ Zp. A similar
manipulation is taken when generating the challenge ciphertext under ID∗. As skID∗ must not be asked, the
value γ∗ embedded into H(ID∗) will be hidden until the challenge phase (with non-negligible probability)
and thus can be reserved for setting tagc = γ∗ (as well as s = c for the DBDH problem). In case when trying
to decrypt the challenge ciphertext using skID∗ , the decryption is not possible because tagk = tagc.

To achieve the chosen ciphertext security, our reduction algorithm needs to deal with adversarial de-
cryption queries. In our security analysis, this is not a big problem as private keys for all identities can be
generated and ill-formed ciphertexts are detected via consistency check using pairing. The only problem
is that in the event that tagk = tagc happens, normal decryption cannot be performed. However, as an out-
put of h as a random oracle is determined by choosing a random value in Zp and p is exponentially large
(e.g., p is a 160-bit prime), our reduction can avoid such a troublesome case in all decryption queries (with
non-negligible probability).

3



1.3 Related Work

Boneh and Franklin [15] presented the first practical IBE system based on groups with efficiently computable
pairings and defined the formal security notion for IBE known as full security against chosen ciphertext
attacks. Most of the subsequent IBE systems followed the notion depending on different kinds of security
assumptions. Until now, BF[15], SK[45, 24, 25], and BB1 [10] systems have been considered as practical
constructions and their security was all demonstrated in the random oracle model.

In an attempt to prove security without random oracles, Canetti et al. [21] suggested a weaker security
notion for IBE, known as selective-ID security. Following the weaker notion, Boneh and Boyen [10] pro-
posed two efficient IBE systems, one of which was the basis for BB1. Many IBE systems [48, 31, 40, 41, 49]
were later suggested to achieve full security without random oracles, but they all become less efficient than
the random oracle constructions in practical aspects such as public parameter size or achieving chosen ci-
phertext security.

Regarding tight security reduction, Attrapadung et al.[5] proposed a Katz-Wang variant of the BF system
whose security is tightly reduced to the DBDH assumption. Their construction is fully secure against chosen
ciphertext attacks in the random oracle model, but impractical especially in terms of both encryption and
decryption costs. On the other hand, Gentry IBE [31] achieved the full security without random oracles.
Tightness in its security reduction was achieved by relying on a (non-standard) q-type assumption where q
depends on the number of private key queries that an adversary makes.

The notion of IBE has been extended in two flavors. In a vertical (and hierarchical) extension, IBE can
provide a ‘delegation’ mechanism [38, 34] by which private keys for lower-level identities are created from
an upper-level identity but the reverse is not possible. Many works [34, 10, 12, 48, 20, 46, 32, 49] have
been suggested to realize such a delegation mechanism, also known as Hierarchical IBE (HIBE). In a hori-
zontal extension, IBE becomes the special case of the Attribute-Based Encryption (ABE) [44, 37, 9], where
attributes (instead of a single identity) are associated with private keys and ciphertexts, respectively, and
decryption works only if attributes satisfy a function depending on each ABE system. Furthermore, when
attributes (an identity) embedded into ciphertexts are encrypted, ABE (IBE) can also be extended for pro-
viding searchable techniques [14, 1] on encrypted data. Recently, the horizontal extensions are conceptually
united under the notion of Functional Encryption (FE) [18].

Finally, we notice that there exist other approaches to build IBE trapdoors without pairings. Cocks [26]
and Boneh et al. [16] constructed IBE systems based on the quadratic-residuosity problem and Gentry et
al. [33] demonstrated how to build an IBE system based on lattice. Recently, lattice-based IBE can also be
extended toward HIBE [23, 2, 3] and FE [4] constructions.

2 Preliminaries

2.1 Identity-Based Encryption

An Identity-Based Encryption (IBE) system consists of four algorithms:

• Setup(k) takes a security parameter k as input and outputs a public parameter PP and a master secret
key msk.

• KeyGen(msk, PP, ID) takes a master secret key msk, a public parameter PP and an identity ID ∈ ID
as inputs, where ID is an identity space. It outputs skID, a private key for ID.

4



• Encrypt(PP, M, ID′) takes a public parameter PP, a message M ∈M, and an identity ID ∈ ID as
inputs, whereM is a message space. It outputs CT under ID, a ciphertext under ID.

• Decrypt(CT, PP, skID) takes a ciphertext CT under ID′, a public parameter PP, and a private key skID
as inputs. If ID′ = ID, it outputs a message M.

Correctness. For all ID, ID′ ∈ID and all M ∈M, let (PP, msk)← Setup(k), skID←KeyGen(msk,PP, ID),
CT← Encrypt(PP,M, ID′). If ID′ = ID, we have M← Decrypt(skID, PP, CT) otherwise ⊥.

We next define the chosen ciphertext security [15] of an IBE system, which is commonly accepted. The
security is defined via the following game interacted by a challenger C and an adversary A:

• Setup: C runs the setup algorithm to obtain a public parameter PP and a master secret key msk. C
gives PP to A.

• Query Phase 1: A adaptively issues a number of queries where each query is one of:

– Private key query on ID: C runs the key generation algorithm to obtain a private key for ID and
gives the key skID to A.

– Decryption query on (CT, ID): C runs the key generation algorithm to obtain skID toA and then
runs the decryption algorithm using CTID and skID. It gives the resulting message to A.

• Challenge: A outputs two equal-length messages M0,M1 and an identity ID∗ on which it wishes to be
challenged. The only restriction is that ID is not queried in Query Phase 1. C flips a coin σ ∈ {0,1}.
C gives CT∗← Encrypt(PP,Mσ , ID

∗) as a challenge ciphertext to A.

• Query Phase 2: A adaptively issues a number of additional queries where each query is one of:

– Private key query on ID, where ID 6= ID∗: C responds as in Query Phase 1.

– Decryption query on (CT, ID), where (CT, ID) 6= (CT∗, ID∗): C responds as in Query Phase 1.

• Guess: A outputs a guess σ ′ ∈ {0,1}. A wins if σ ′ = σ .

The advantage of the adversary A in breaking the chosen ciphertext security of an IBE system IBE is
defined as AdvCCA

IBE ,A =
∣∣Pr[b′ = b]−1/2

∣∣.
Definition 1. We say that an IBE system is (t,ε,qK ,qD)-IND-ID-CCA secure if for any polynomial time
adversary A that runs in time at most t, issues at most qK private key queries and at most qD decryption
queries in chosen ciphertext security games, the advantage AdvCCA

IBE ,A is negligible.

2.2 One-time Symmetric-key Encryption

A one-time symmetric-key encryption scheme consists of two algorithms: a deterministic encryption algo-
rithm E takes a message M ∈ {0,1}∗ and a key K ∈ K as inputs and outputs a ciphertext C = EK(M). Here,
K is a key space that is determined by a security parameter k ∈ Z+. Another deterministic algorithm D is a
decryption algorithm that takes a ciphertext C and a key K as inputs and outputs a message M = DK(C) or
⊥.

We define security for a one-time symmetric-key encryption scheme SKE = (E ,D), which is security
against passive attacks [27]. The security is defined via the following game interacted by a challenger C and
an adversary A:

5



• Setup: C chooses a random key K in key space K(k).

• Challenge: A outputs two equal-length messages M0 and M1. C flips a coin σ ∈ {0,1} and gives
C∗←EK(Mσ ) as a challenge ciphertext to A.

• Guess: A outputs a guess σ ′ ∈ {0,1}. A wins if σ ′ = σ .

The advantage of the adversary A in breaking the passive security of a one-time symmetric-key encryption
scheme SKE is defined as AdvOT-IND

SKE ,A =
∣∣Pr[b′ = b]−1/2

∣∣.
Definition 2. We say that a one-time symmetric-key encryption scheme is (t,ε)-secure against passive at-
tacks if for any polynomial time adversary A that runs in time at most t in passive attack games, the advan-
tage AdvOT-IND

SKE ,A is negligible.

2.3 Bilinear Pairings and Complexity Assumption

We briefly review bilinear pairings and the complexity assumption. Here, we simply consider symmetric
pairings in prime-order groups.

Bilinear Pairings: We follow the standard notation in [15, 10]. Let G and GT be two (multiplicative) cyclic
groups of prime order p. We assume that g is a generator of G. Let e : G×G→GT be a function that has
the following properties:

1. Bilinear: for all u,v ∈G and a,b ∈ Z, we have e(ua,vb) = e(u,v)ab.

2. Non-degenerate: e(g,g) 6= 1.

3. Computable: there is an efficient algorithm to compute the map e.

Then, we say that G is a bilinear group and the map e is a bilinear pairing in G. Note that e(,) is symmetric
since e(ga,gb) = e(g,g)ab = e(gb,ga).

The Decisional Bilinear Diffie-Hellman (DBDH) Problem: The DBDH problem [15] is defined as fol-
lows: given (g,ga,gb,gc,T ) ∈G4×GT as input, output 1 if T = e(g,g)abc and 0 otherwise. We say that an
algorithm A that outputs σ ∈ {0,1} has an advantage AdvDBDH

G,A = ε in solving the DBDH problem in G if∣∣∣Pr
[
A(g,ga,gb,gc,e(g,g)abc) = 0

]
−Pr

[
A(g,ga,gb,gc,R) = 0

]∣∣∣≥ ε,

where the probability is taken over the random choice of a, b, c ∈ Zp, the random choice of R ∈GT , and the
random bits used by A.

Definition 3. We say that the (t,ε)-DBDH assumption holds in G if for any polynomial time adversary A
that runs in time at most t in solving the DBDH problem in G, the advantage AdvDBDH

G,A is negligible.

3 Our IBE System

3.1 Construction

Setup(k): Given a security parameter k ∈ Z+, the setup algorithm runs G(k) to obtain a tuple (p,G,GT ,e).
The algorithm selects a random generator g ∈ G, a random group element u ∈ G, and a random exponent
α ∈ Zp. The algorithm sets A = e(g,g)α and chooses two cryptographic hash functions H1 : {0,1}∗→ G

6



and H2 : {0,1}∗ → Zp. The public parameters PP (with the description of (p,G,GT ,e)) and the master
secret key msk are generated as

PP=
(
g,u,A,H1,H2

)
, msk= α.

KeyGen(msk, PP, ID): To create a private key skID for an identity ID ∈ ID, the key generation algorithm
does the following:

1. Pick a random exponent r ∈ Zp.

2. Compute d0 = gαur, d1 = gr, and tagk = H2(d0,d1) ∈ Zp.

3. Compute d2 =
(
H1(ID)utagk

)r.

4. Output a private key skID = (d0,d1,d2) ∈G3.

Encrypt(PP, ID, M): To encrypt a message M ∈ GT under an identity ID ∈ ID, the encryption algorithm
does as follows:

1. Pick a random exponent s ∈ Zp.

2. Compute C0 = MAs, C1 = gs, and tagc = H2(C0,C1) ∈ Zp.

3. Compute C2 =
(
H1(ID)utagc

)s.

4. Output a ciphertext CT= (C0,C1,C2) ∈GT ×G2.

Decrypt(PP, CT, skID): To decrypt a ciphertext CT= (C0,C1,C2) using a private key skID = (d0,d1,d2) for
ID, the decryption algorithm does as follows:

1. Compute tagc = H2(C0,C1) and tagk = H2(d0,d1).

2. Check if e
(
H1(ID)utagc , C1

) ?
= e(C2,g).

3. If the equality above fails, output ⊥.

4. Otherwise, check if tagc
?
= tagk.

5. If the equality above holds, output ⊥.

6. Otherwise, compute

M =C0

/
e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

. (1)

Correctness. If tagc 6= tagk, we can verify that the decryption algorithm works correctly for well-formed
ciphertexts as follows:

e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

= e
(
gαur, gs) ·(e

(
(H1(ID)utagc)s, gr

)
e
(
(H1(ID)utagk)r, gs

)) −1
tagc−tagk

= e(g,gα)se(u,g)sr · e
(
utagc−tagk , gsr) −1

tagc−tagk

= As.

7



Encryption and decryption Costs. In encryption, the three exponentiations As, gs, and utagc·s can be calculated
in fixed bases A, g, and u, respectively. Instead, the hashing H1(ID) and its exponentiation H1(ID)

s will be
done separately without precomputation in usual situations. Thus, the encryption cost becomes 3 fixed-base
exponentiations plus 1 hashing and 1 general exponentiation.

Upon decryption, it seems that the decryption algorithm requires computing 5 pairings, but these can be
saved into 1.2 parings. We first can change the above formula (1) into:

e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

=
e
(

C2, d
−1

tagc−tagk
1

)
e
(

d−1
0 d

−1
tagc−tagk
2 , C1

) .
Next, by using the implicit consistency check [40], we do not need to perform the pairing consistency
test explicitly. Instead, the decryption algorithm randomizes two elements H1(ID)utagc and g by raising a
randomly chosen exponent r̃ ∈ Zp and performs the following computation:

e
(

C2, d
−1

tagc−tagk
1 gr̃

)
e
(

d−1
0 d

−1
tagc−tagk
2 (H1(ID)utagc)r̃, C1

) . (2)

If the pairing test passes, the output of the above equation becomes the same as that of the original decryption
algorithm. Otherwise, the fresh random value r̃ chosen by the decryption algorithm survives and thus
prevents an adversary from gaining any information on an ill-formed ciphertext. As a consequence, the
decryption cost is determined by the computation in the equation (2) that shows five exponentiations and
two pairing computations. All the exponentiations can be done in fixed bases such as g, d1, d2, u, and
H1(ID). Notice that a user with identity ID can compute H1(ID)∈G and prepare for fixed bases related with
it, regardless of any received ciphertext. Also, a ratio of two pairings can be estimated into 1.2 pairings [19].
Thus, the decryption cost is concluded with 5 fixed-base exponentiations plus 1.2 parings.

Achieving Perfect Correctness. Upon decryption, our decryption algorithm cannot proceed in the event
that tagc = tagk occurs. Obviously, the probability that the event happens is negligible when the value tag
is in Zp and p is represented by approximately 160 bits. However, in order to avoid even the negligible
correctness error, we can locate a suitable approach in a recent tag-based dual system encryption [49] where
a similar decryption process to ours appears. A possible solution is to simply run an efficient selectively
(chosen-ciphertext) secure IBE system [10] in parallel. When a message is encrypted under ID with tagc,
an encryptor also encrypts the message under the tagc in the second selective system. When the two tags
are different, we can use our original IBE system. In the unlikely event that the two tags are equal, we can
use the second ciphertext. An alternative approach in [49] such as giving two private keys for an identity ID
seems to not be applicable to our system, because we can assign a hash value H1(ID) to only one tag value
in our security analysis.

Construction under Asymmetric Parings. The system can be instantiated in asymmetric bilinear groups
where we have asymmetric pairing e : G× Ĝ→GT defined over different groups G and Ĝ. In that case, we
need to hash an identity into a group element in either G or Ĝ. If we choose G, then a private key consists
of group elements in G× Ĝ×G and a ciphertext has elements in GT × Ĝ×G. The reverse is also possible,
and the selection of each option affects the efficiency of the IBE system when instantiated with MNT curves
[19].

8



3.2 Security

Theorem 1. Let H1 and H2 be modeled as random oracles. Suppose the (t ′,ε ′)-DBDH assumption holds in
G. Then our IBE system is (t,ε,qK ,qD)-IND-ID-CCA secure, where

ε ≤
(

1−
(qH2(qK +qD)

p
+

qH2

p
+

3qD

p

))
· ε ′,

t ≥ t ′−O(qK · te)−O(qD · tp).

Here, te is the cost of an exponentiation in G and tp is the cost of a pairing computation in G.

Proof. Suppose that there exists an adversary A which can break the CCA security of our IBE system. We
can then build an algorithm B which uses A to solve a DBDH problem in G. On input (g, ga, gb, gc, T ), B
attempts to output 1 if T = e(g,g)abc and 0 otherwise. B interacts with A as follows.

Setup B selects a random element δ ∈ Zp and sets u = g−agδ and A = e(ga,gb). Note that α = ab ∈ Zp,
which is unknown to B. Then, A is given the public key PK = (g,u,A,H1,H2), where H1 and H2 are
modeled as random oracles.

Query Phase 1 A issues H1, H2, private key, and decryption queries. B responds as follows:

H1 queries: To respond to H1 queries, B maintains a list of tuples < IDi,γi,πi,H1(IDi) > as explained
below. We refer to this list as the H list

1 . When B is given an identity IDi as an input to H1, B first scans
through the H list

1 to see if the input IDi appears in a tuple < IDi,γi,πi,H1(IDi)>. If it does, B responds with
H1(IDi). Otherwise, B picks two random exponents γi,πi ∈ Zp and sets H1(IDi) = (ga)γigπi ∈ G. B adds
the new tuple < IDi,γi,πi,H1(IDi)> to the H list

1 and responds with H1(IDi). Recall that the values {γi} are
information-theoretically hidden to A’s view.

H2 queries: To respond to H2 queries, B maintains a list of tuples <Wi,Qi,µi > as explained below. We
refer to this list as the H list

2 . When B is given values (Wi,Qi), which is in either G2 or GT ×G, as an input
to H2, B first scans through the H list

2 to see if the input (Wi,Qi) appears in a tuple <Wi,Qi,µi >. If it does,
B responds with H2(Wi,Qi) = µi. Otherwise, B picks a random exponent µi ∈ Zp and sets H2(Wi,Qi) = µi.
B adds the new tuple <Wi,Qi,µi > to the H list

2 and responds with H2(Wi,Qi).

Key queries: When B is given an identity IDi ∈ ID as an input to a private key query, B selects a
random exponent r ∈ Zp and (implicitly) sets r̃ = b+ r ∈ Zp. B generates key elements (d0,i,d1,i) as d0,i =
(ga)−r(gb)δ gδ r and d1,i = gbgr. The validity of those elements can be verified as follows:

d0,i = (ga)−r(gb)δ gδ r = gab(g−agδ )b+r = gαur̃, d1,i = gbgr = gr̃.

Next, B refers to the H list
1 to find out the tuple < IDi,γi,πi,H1(IDi) >. (If no tuple exists, B can run the

H1-query process before replying to the key query.) At this moment, B’s goal is to set H2(d0,i,d1,i) = γi.
Thus, if there is a tuple < d0,i,d1,i,γi > in the H list

2 , B can continue the key query process. However, there
could be the case where A already issued (d0,i,d1,i) to the H2 query and set H2(d0,i,d1,i) = µi 6= γi, in which
case B cannot generate the element d2,i. To see whether there already exists the tuple < d0,i,d1,i,µi > such
that µi 6= γi, B refers to the H list

2 .
[Case 1.] If the tuple exists, B aborts. (We refer to this event as abort1.)
[Case 2.] If the tuple does not exist, B sets H2(d0,i,d1,i) = γi (where γi is from the tuple in the H list

1
above) and adds the tuple < d0,i,d1,i,γi > to the H list

2 . B generates the element d2,i, using H2(d0,i,d1,i) = γi,
as d2,i = (gb)πi+γiδ g(πi+γiδ )r. The validity of d2,i can be verified as follows:

d2,i = (gb)πi+γiδ g(πi+γiδ )r =
(
(ga)γigπi · (g−a+δ )γi

)b+r
=
(
H1(IDi)uH2(d0,i,d1,i)

)r̃
.

9



Then, B responds with a private key skIDi = (d0,i,d1,i,d2,i) for the requested identity IDi.

Decryption queries: When B is given a ciphertext CTi = (C0,i,C1,i,C2,i) (as well as an identity IDi) as
an input to a decryption query, B first refers to the H list

1 to find out the tuple < IDi,γi,πi,H1(IDi) >. (If no
tuple exists, B can run the H1-query process in advance as explained above.) Next, B generates a private
key skIDi = (d0,i,d1,i,d2,i) for the identity IDi or uses the private key skIDi that was generated before. During
the key generation process, the event that B aborts can take place as in the key queries. That is, there could
already exist a tuple < d0,i,d1,i,µi > in the H list

2 such that H2(d0,i,d1,i) = µi 6= γi. (We refer to this event as
abort2.)
B tries to perform normal decryption using skIDi . Before checking whether H2(C0,i,C1,i) = tagc

?
=

tagk = H2(d0,i,d1,i), B refers to the H list
2 to search for a tuple < C0,i,C1,i, µ̃i >. If such a tuple regarding

(C0,i,C1,i) does not exist, B sets H2(C0,i,C1,i) = µ̃i by choosing a random µ̃i ∈ Zp and adds the new tuple
<C0,i,C1,i, µ̃i > to the H list

2 . Observe that in generating skIDi , B has to set H2(d0,i,d1,i) = γi.
[Case 1.] If µ̃i = γi, B aborts. (We refer to this event as abort3.) Notice that γi is from the tuple

< IDi,γi,πi,H1(IDi) > in the H list
1 . In the real decryption, the equality means that H2(C0,i,C1,i) = tagc =

tagk = H2(d0,i,d1,i) and thus the normal decryption is expected to output ⊥, but B simply aborts in our
simulation. Thus, if the equality happens, A can easily tell between the real attack and the simulation. We
will give the reason below. Fortunately, the probability that the event abort3 happens is negligible while H2
acts like a random oracle.

[Case 2.] If µ̃i 6= γi, B performs the normal decryption using skIDi and replies with the resulting message.

Challenge A outputs two messages M0,M1 ∈ GT and an identity ID∗ on which it wishes to be challenged.
If necessary, B runs the algorithm for responding to H1 query on ID∗. Let < ID∗,γ∗,π∗,H1(ID

∗) > be the
tuple in the H list

1 regarding the challenged identity ID∗. Notice that A cannot query a private key for ID∗.
This means that the exponent γ∗ in the tuple is not revealed to A (with overwhelming probability) until the
Challenge phase.
B picks a random bit σ ∈ {0,1} and sets C∗0 = Mσ T and C∗1 = gc. It sets H2(C∗0 ,C

∗
1) = γ∗. If the

tuple < C∗0 ,C
∗
1 ,γ j > are already in the H list

2 and γ j 6= γ∗, then B aborts. (We refer to this event as abort4.)
Otherwise, B generates the ciphertext CT∗= (C∗0 ,C

∗
1 ,C

∗
2) =

(
Mσ T , gc, (gc)π∗+δγ∗

)
. B (implicitly) sets s= c.

The validity of C∗2 can then be verified as follows:

(gc)π∗+δγ∗ =
(
(ga)γ∗gπ∗ · (g−a+δ )γ∗

)c
=
(
H1(ID

∗)uH2(C∗0 ,C
∗
1)
)s
.

Query Phase 2A issues more {Hi}i=1,2, private key, and decryption queries. B responds as in Query Phase
1. At this phase, however, there are challenging decryption queries B has to deals with. That happens
when A issues valid ciphertexts such as CTi = (C0,i,C∗1 ,C2,i), where C∗1 is the same as in CT∗. Here, we
call a ciphertext CT = (C0,C1,C2) under an identity ID valid if the pairing test upon decryption holds, i.e.,
e
(
H1(ID)uH2(C0,C1), C1

)
= e(C2,g). In such a case, B should decrypt it correctly using the value e(g,g)abc,

which is infeasible. More precisely, there are four cases:
[Case 1.] CTi = (C∗0 ,C

∗
1 ,C2,i) on ID∗, where C2,i 6= C∗2 . As the ciphertext is valid, it passes the pairing

test upon decryption. Thus, B has that e
(
H1(ID

∗)uH2(C∗0 ,C
∗
1), C∗1

)
= e(C2,i,g). Since C∗1 = gc, the equation

shows C2,i = (H1(ID
∗)uH2(C∗0 ,C

∗
1))c, which must be the same as C∗2 . This means that such a valid ciphertext in

the form of (C∗0 ,C
∗
1 ,C2,i) such that C2,i 6=C∗2 is not possible.

[Case 2.] CTi = (C0,i,C∗1 ,C
∗
2) on ID∗, where C0,i 6=C∗0 . In this case, B aborts. (We refer to this event as

abort5.) Observe that this case can happen only if B sets H2(C0,i,C∗1) = γ∗ ∈ Zp.
[Case 3.] CTi = (C0,i,C∗1 ,C2,i) on ID∗, where C0,i 6=C∗0 and C2,i 6=C∗2 . As the ciphertext is valid, B has

that e
(
H1(ID

∗)uH2(C0,i,C∗1), C∗1
)
= e(C2,i,g). Since C∗1 = gc, the equation shows C2,i = (H1(ID

∗)uH2(C0,i,C∗1))c.

10



Also, since C2,i 6=C∗2 , we know that H2(C0,i,C∗1) 6= γ∗. Then, B has that

C2,i =
(
H1(ID

∗)uH2(C0,i,C∗1)
)s

=
(
(ga)γ∗gπ∗ · (g−a+δ )H2(C0,i,C∗1)

)c

= (gac)γ∗−H2(C0,i,C∗1)(gc)π∗+δH2(C0,i,C∗1),

in which case B can obtain gac by computing
[
C2,i/(C∗1)

π∗+δH2(C0,i,C∗1)
]1/(γ∗−H2(C0,i,C∗1)). It follows that B can

solve the given DBDH problem immediately.
[Case 4.] CTi = (C0,i,C∗1 ,C2,i) on ID 6= ID∗. Let < ID,γ,π,H1(ID)> be the tuple in the H list

1 regarding
ID. From the pairing test equation, B has that e

(
H1(ID)uH2(C0,i,C∗1), C∗1

)
= e(C2,i,g). Since C∗1 = gc, the

equation shows that C2,i = (H1(ID)uH2(C0,i,C∗1))c. Notice that A has not queried a private key for ID until the
CTi is queried. This is because as soon as A is given the private key for ID, any decryption query regarding
ID is not allowed under the rule of the security game. Therefore, the exponent γ in the tuple is not revealed
to A (with overwhelming probability) and B has that H2(C0,i,C∗1) 6= γ with high probability. In the unlikely
event that H2(C0,i,C∗1) = γ , B aborts. (We refer to this event as abort6.) Otherwise, B has that

C2,i =
(
H1(ID)uH2(C0,i,C∗1)

)s
=
(
(ga)γgπ · (g−a+δ )H2(C0,i,C∗1)

)c

= (gac)γ−H2(C0,i,C∗1)(gc)π+δH2(C0,i,C∗1),

in which case B can obtain gac by computing
[
C2,i/(C∗1)

π+δH2(C0,i,C∗1)
]1/(γ−H2(C0,i,C∗1)). It follows that B can

solve the given DBDH problem immediately.

GuessA outputs a guess σ ′ ∈ {0,1}. B then outputs its guess σ ′ ∈ {0,1} as the solution to the given DBDH
instance.

Comment. The reason why B aborts in the event abort3 is that the equality can leak the information on
the input-output relation such that H2(d∗0 ,d

∗
1) = γ∗, where γ∗ is from the tuple < ID∗,γ∗,π∗,H1(ID

∗)> and
(d∗0 ,d

∗
1) are from the private key skID∗ = (d∗0 ,d

∗
1 ,d
∗
2). Whenever A issues a ciphertext CTi = (C0,i,C1,i,C2,i)

(and the identity ID∗) as a decryption query, B checks if H2(C0,i,C1,i) = γ∗. If that is the case (and B outputs
⊥), A is able to know that the value γ∗ is used under the relation H2(d∗0 ,d

∗
1) = γ∗, even though all elements

in skID∗ are not revealed to A. At this moment, however, A can also observe that H2(C∗0 ,C
∗
1) = γ∗ in the

challenge ciphertext CT∗, which gives the knowledge that γ∗ is used two times in both skID∗ and CT∗.
Naturally, such a leakage can cause A to distinguish between the simulation and the real attack.

Analysis. The dominated additional computation that B requires is both the exponentiations for handling
qK private key queries and the pairings for handling qD decryption queries. Thus, the inequality about
computational time can easily be obtained.

Next, we assume Cases 3 and 4 described in the Query Phase 2 do not happen (which would rather
increase B’s success probability to solve the DBDH problem). To analyze B’s advantage, we first prove the
following claim that argues that the probability that B aborts in the simulation is at most qH2 (qK+qD)

p +
qH2

p +
3qD

p , which is negligible.

Claim 1: Pr[abort] = Pr[abort1∨ abort2∨ abort3∨ abort4∨ abort5∨ abort6] in the simulation is at most
qH2 (qK+qD)

p +
qH2

p + 3qD
p .

Proof. The first equality is obvious since all events in the right-hand side are relatively independent. The
event abort1 or abort2 can happen when the tuple < d0,i,d1,i,µi > already exists but µi 6= γi. Here, d0,i and
d1,i are elements comprised of the private key skIDi and γi is from the tuple < IDi,γi,πi,H1(IDi) > in the
H list

1 . In those events B wants to set H2(d0,i,d1,i) = γi by using the γi that is pre-determined but randomly

11



distributed fromA’s view. However, this setting is hindered byA whenA makes H2 query on the (d0,i,d1,i)
before B generates the same input values during key generation procedures. In other words, the events
happen if the value (d0,i,d1,i) generated by B exists in the H list

2 beforehand as an input value queried by
A. There are p possibilities of (d0,i,d1,i) values, since those are solely determined by a randomly chosen
exponent in Zp. Therefore, for one input (d0,i,d1,i) generated, the probability that the event abort1 or abort2
happens is at most qH2/p, respectively. Since B has to deal with at most (qK +qD) H2 queries, the probability
that the events occur throughout the simulation becomes at most qH2(qK +qD)/p.

A similar argument can be made for the event abort4 when generating the challenge ciphertext. The
event can occur if the value (Mσ T,gc) already exists in the H list

2 as the input value queried by A. There are
p possibilities in picking a value as an input to the H2 query, because it only relates to one random exponent
c ∈ Zp. This gives the probability at most qH2/p that the event abort4 happens.

Regarding the event abort3, the event happens if B sets H2(C0,i,C1,i) = γi for any queried ciphertext
CTi = (C0,i,C1,i,C2,i), where γi is from the tuple < IDi,γi,πi,H1(IDi) > in the H list

1 . γi is a pre-determined
value and the output of H2 query is just set by choosing a random value in Zp, so the probability that the
event abort3 happens is at most 1/p. Since B has to handle qD decryption queries, the probability that the
event abort3 occurs throughout the simulation becomes at most qD/p.

Regarding the event abort5, the event happens if B sets H2(C0,i,C∗1) = γ∗ for any queried ciphertext
CTi = (C0,i,C∗1 ,C

∗
2) on ID∗, where C0,i 6=C∗0 . Also, regarding the event abort6, the event happens if B sets

H2(C0,i,C∗1) = γ for any queried ciphertext CTi = (C0,i,C∗1 ,C
∗
2) on ID 6= ID∗. Here, the values γ∗ and γ are

pre-determined values. The output of H2 query is just set by choosing a random value in Zp so that the
probability that the event abort5 or abort6 happens is at most 1/p, respectively. Since B has to handle qD

decryption queries, the probability that the event abort5 or abort6 occurs throughout the simulation becomes
at most 2qD/p.

All the events that B aborts are relatively independent. As a result, the probability Pr[abort1∨abort2∨
abort3∨abort4∨abort5∨abort6] in the simulation is at most qH2 (qK+qD)

p +
qH2

p + 3qD
p . �

From Claim 1, we can see that the probability that B aborts in the simulation is negligible (under the
appropriate selection of security parameters). This means that such an artificial abort is a negligible factor
that cannot substantially affect the distinction between the simulation and the real attack. Therefore, as long
as B does not abort in the simulation, B can use the A’s advantage to break the chosen ciphertext security
straightforwardly. This can be checked as follows: if T = e(g,g)abc, then the challenge ciphertext CT∗ is a
valid encryption of Mσ under ID∗. Otherwise, i.e., if T is random in GT , then Mσ T is independent of the bit
σ . Thus, if A distinguishes between the two ciphertexts, then B can distinguish between the two possible
values of T with the same probability. Thus, the the success probability of B is given as follows:

Pr[B wins] = Pr[B wins|abort] Pr[abort]+Pr[B wins|abort] Pr[abort]

= Pr[B wins|abort] ·
(
1−δ

)
+Pr[B wins|abort] ·δ

≤ Pr[A wins] ·
(
1−δ

)
+

1
2
·δ ,

where δ =
qH2 (qK+qD)

p +
qH2

p + 3qD
p . For a security parameter k, we have the following result:

AdvDBDH
G,B (k)≤ (1−δ ) ·AdvCCA

IBE ,A(k),

as required. This concludes the proof of Theorem 1. �

12



4 Extension for Arbitrary length Messages

In this section we extend our IBE system to deal with arbitrary length messages. Our extended system is
based on the well-known framework using the key encapsulation mechanism (KEM) and data encapsulation
mechanism (DEM). Identity-Based KEM (IBKEM) encrypts a symmetric key under which an arbitrarily
long message is encrypted under a symmetric-key cipher DEM. Usually, to achieve CCA security of an
entire IBE system, both IBKEM and DEM should be CCA-secure respectively [8] or DEM should be an
authenticated symmetric-key encryption [41]. However, a slight difference resides in the part of DEM of
our extended IBE system where it is sufficient for DEM to be a one-time symmetric-key encryption secure
against passive attacks [27]. In practice, such a weak DEM can easily be instantiated with a block cipher
using a so-called ‘counter mode’. The reason for the difference is that our IBE system is able to provide
a consistency check (using pairing) to see if ciphertext elements including the DEM part are the same as
what an encryptor constructed. We remark that a similar result concerning a weak DEM was achieved in [8]
where BF-IBKEM is converted into a CCA-secure IBE system using the Fujisaki-Okamoto transform [29].

4.1 Construction

Setup(k): As in the previous IBE system. Additionally, the setup algorithm chooses a one-time symmetric-
key encryption scheme SKE = (E ,D). The public parameters PP and the master secret key msk are gener-
ated as

PP=
(
g,u,A,H1,H2,SKE

)
, msk= α.

KeyGen(msk, PP, ID): As in the previous IBE system.

Encrypt(PP, ID, M): To encrypt an arbitrary length message M ∈ {0,1}∗ under an identity ID ∈ ID, the
encryption algorithm does as follows:

1. Pick a random exponent s ∈ Zp.

2. Compute a key K = As ∈GT .

3. Compute C0 = EK(M), C1 = gs, and tagc = H2(C0,C1) ∈ Zp.

4. Compute C2 =
(
H1(ID)utagc

)s.

5. Output a ciphertext CT= (C0,C1,C2) ∈ {0,1}|M|×G2.

Decrypt(PP, CT, skID): To decrypt a ciphertext CT= (C0,C1,C2) using a private key skID = (d0,d1,d2) for
ID, the decryption algorithm does as follows:

1. Compute tagc = H2(C0,C1) and tagk = H2(d0,d1).

2. Check if e
(
H1(ID)utagc , C1

) ?
= e(C2,g).

3. If the equality above fails, output ⊥.

4. Otherwise, check if tagc
?
= tagk.

5. If the equality above holds, output ⊥.

13



6. Otherwise, compute a key

K = e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

.

7. Output a message M =DK(C0).

Remark. The efficiency of the IBE system above is almost the same as that in the previous section. No-
tice that the KEM part in a ciphertext is not expanded and the DEM part C0 = EK(M) is also hashed and
embedded into the ciphertext element C3. As a result, we can check the consistency of ciphertext elements
including the DEM part and therefore avoid relying on an authenticated encryption scheme with the help of a
secure message authentication code (MAC). In practice, a one-time symmetric-key encryption scheme SKE
with key-space K ∈ {0,1}k can be implemented by AES with a counter mode, and a real symmetric key for
E can be obtained via a key-derivation function [27] that maps an element from GT into 2k-bit strings.

4.2 Security

Theorem 2. Let H1 and H2 be modeled as random oracles. Suppose the (t ′,ε ′)-DBDH assumption holds in
G and the one-time symmetric-key encryption scheme SKE is (t ′′,ε ′′)-secure against passive attacks. Then
our IBE system is (t,ε,qK ,qD)-IND-ID-CCA secure, where

ε ≤
(

1−
(qH2(qK +qD)

p
+

qH2

p
+

3qD

p

))
· (ε ′+ ε

′′),

t ≥ t ′+ t ′′−O(qK · te)−O(qD · (tp + tsymD)).

Here, te is the cost of an exponentiation in G, tp is the cost of a pairing computation in G, and tsymD is the
cost of symmetric-key decryption in the SKE .

Proof. The proof of Theorem 2 is similar to that of Theorem 1. For clarity, we reconstruct the entire proof
by creating a sequence of hybrid games. If necessary, we will adapt several notations that appeared in the
proof of Theorem 1 without explicit explanation.

Let A be an adversary on the chosen ciphertext security of our IBE system above. We will consider two
games, Game 0 and Game 1, each game interacting withA. Let Xi (for i = 0,1) be the event that in Game i,
A wins the game.

Game 0. The game is a real attack game of chosen ciphertext security, so that (for a security parameter k)
we have

|Pr[X0]−1/2|= AdvCCA
IBE ,A(k). (3)

Game 1. The game is the same as Game 0, except that the value K∗ used for a symmetric key in CT∗ is
replaced by a random value K ∈GT . Unless the events abort1, . . . ,abort6 (defined in the proof of Theorem
1) occur in Game 1, we have

|Pr[X1]−Pr[X0]|=
(

1−
(

qH2 (qK+qD)

p +
qH2

p + 3qD
p

))
·AdvDBDH

G,B1
(k), (4)

where B1 is an algorithm whose goal is to solve a DBDH problem.

14



The proof of the above relation is almost the same as that of Theorem 1. WhenB1 is given (g,ga,gb,gc,T )
as an input, we describe how CT∗ is computed: whenA outputs two messages M0,M1 ∈ {0,1}∗ of the same
length and an identity ID∗, B1 picks a random bit σ ∈ {0,1}. Let < ID∗,γ∗,π∗,H1(ID

∗)> be the tuple in the
H list

1 regarding ID∗. B1 sets C∗0 = ET (Mσ ), C∗1 = gc, and H2(C∗0 ,C
∗
1) = γ∗. If the tuple <C∗0 ,C

∗
1 ,γ j > are al-

ready in the H list
2 and γ j 6= γ∗, then B1 aborts. (In Game 1, the event has already been taken into consideration

under the event abort4.) Otherwise, the challenge ciphertext is generated as CT∗ = (C∗0 ,C
∗
1 ,C

∗
2) =

(
ET (Mσ ),

gc, (gc)π∗+δγ∗
)
. Other slight differences reside in handling decryption and H2 queries. Answering decryp-

tion queries needs to runD of SKE , and inputs (Wi,Qi) to H2 queries are in either G2 or {0,1}∗×G (instead
of G2 or GT ×G). However, the way of answering H2 queries is the same as in the proof of Theorem 1.
Therefore, the probability that appeared in (4) is the same as that in Theorem 1.

Finally, in Game 1 we have the following relation that directly comes from the definition of ciphertext
indistinguishability for SKE unless the events abort1, . . . ,abort6 (defined in the proof of Theorem 1) occur
in Game 1.

|Pr[X1]−1/2|=
(

1−
(

qH2 (qK+qD)

p +
qH2

p + 3qD
p

))
·AdvOT-IND

SKE ,B2
(k), (5)

where B2 is an algorithm whose goal is to break SKE .
One thing we want to clarify is that B2 does not need to deal with any decryption query on the one-time

symmetric-key encryption scheme SKE . In Game 1, B2 relays the two messages M0,M1 ∈ {0,1}∗ to its
challenger and is given a challenge ciphertext EK∗(Mσ ) for a random key K∗ ∈GT . B2 then reconstructs its
challenge ciphertext CT∗ as explained above and gives it to A. Whenever A requests any decryption query
on CTi, B2 can use private keys (generated by B2) to perform normal decryption. The only troublesome
queries happen whenA issues decryption queries on valid CTi = (C0,i,C∗1 ,C2,i), in which case B2 has to use
the unknown symmetric-key K∗ to retrieve a message. Fortunately, those troublesome ones can be addressed
in Query Phase 2 of Theorem 1, where B2 can use such queries to solve the DBDH problem unless the event
abort5 occurs.

Analysis. It is easy to see that time complexity is obviously achieved as argued in Theorem 2. Throughout
the simulation, we assume that Cases 3 and 4 described in Query Phase 2 of Theorem 1 do not happen
(which would rather increase our success probability to solve the DBDH problem). Putting the results of all
relations (3), (4), and (5) above together, we gain a bound on the advantage of the adversary breaking the
CCA security as follows:

AdvCCA
IBE ,A(k)≤

(
1−
(qH2(qK +qD)

p
+

qH2

p
+

3qD

p

))
·
(
AdvDBDH

G,B1
(k)+AdvOT-IND

SKE ,B2
(k)
)
,

which concludes the proof of Theorem 2. �

5 Comparison to previous IBE systems

In this section we compare our IBE system with the previous practical IBE systems such as BF [15], SK
[45, 24, 25], and BB1 [10] in terms of security and efficiency. For more detailed comparison between the
three previous ones, we refer to Boyen’s work [19]. Following Bellare and Rogaway [6, 41], we estimate the
number of (random oracle) hash queries as qH = 250 and the number of private key queries as qK = 225. For
a fair comparison we consider the decisional type of security assumptions in each system, so that BF and
BB1 systems are based on the Decisional BDH assumption and the SK system relies on the q-Decisional

15



Table 1: Security assumptions and reductions for IBE systems

Assumption Security reduction
Asymptotic bound Concrete loss♠

BF DBDH q2
H > 250

BB1
♥ DBDH qH 250

SK q-DBDHI q2
H > 250

Ours DBDH 1 1

qH : the number of (random-oracle) hash queries; qK : the number of private key queries;
♠: estimated with qH = 250 and qK = 225; q≈ qH +qK ;
♥: we borrow CCA-secure BB1 system from [19];

Table 2: Representation sizes and estimated calculation times for various algebraic operations

Representation sizes (bits) Relative timings
Zp G Ĝ GT G Ĝ GT

E♣f E♦ E f E H♥ E f E P[ P♠r
SS / 80 160 512 512 1024 2 10 2 10 10 2 10 100 120

MNT / 80 160 171 1026 1026 0.2 1 8 40 40 2 10 100 120
MNT / 128 256 512 3072 3072 3 15 100 500 500 30 150 1500 1800

♣: fix-base exponentiation; ♦: general exponentiation; ♥: hashing; [: single pairing; ♠: ration of pairings;

Bilinear Diffie-Hellman Inversion (DBDHI) assumption2 [10] for q ≈ qH + qK . We also refer to [30] for
correcting a flawed security analysis of BF system. Table 1 presents the comparison result with respect
to security assumptions and reductions, which was also addressed by [19, 41]. The ‘asymptotic bound’ in
the security reduction means that the advantage of breaking the CCA security of an IBE system is larger
than that of solving a security assumption in comparable time, by a factor of each bound. In other words,
the larger the bound is, the bigger the security loss (i.e., gap) is between an IBE system and a security
assumption. In Table 1, a concrete bound at each IBE system is estimated when considering the reasonable
number of adversarial queries qH and qK as 250 and 225, respectively. The respective bound tells us that,
roughly speaking,

AdvCCA
IBE ,A ≤ (bound) ·AdvAssumption

B (6)

for algorithms A and B. When the bound is quite large, we have to choose a larger security parameter k
for a security assumption so that we can make (bound) ·AdvAssumption

B small and consequently AdvCCA
IBE ,A

small enough at a desired security level. This is the reason why we have to choose a larger system security
parameter than an idealized security level when a large security loss arises at reduction. In contrast to the
BF, SK, and BB1 systems, ours has a tight security reduction to the standard DBDH assumption and thus we
can say that our IBE system is as secure as the DBDH assumption. We notice that security of the previous
three IBE systems as well as ours is all proven in the random oracle model.

2It is defined from the problem: given (g,gx,gx2
, . . . ,gxq

,T ), decide whether T = e(g,g)1/x or T is random in GT .

16



Table 3: Efficiency comparison between CCA-secure IBE systems for SS curves at 80-bit security level (not
considering security loss)

Curves / security level Overheads (bits) Relative computational costs
Public params. Ciphertext♠ Key extraction Encryption Decryption

BF SS / 80 1024 672 20 114 100
BB1 SS / 80 2560 1184 4 8 124
SK SS / 80 2048 672 2 6 106

Ours SS / 80 2048 1024 28 26 130

♠: considering only KEM part;

When assuming the interactive version of the Gap-BDH assumption 3, BF and BB1 systems can be
modified into their respective KEMs [43, 19] that allow for shorter size of ciphertexts and the asymptotic
bound for BF-KEM is improved to qK . However, the Gap-BDH assumption has been perceived as being
a non-standard one, and we have no way of comparing it with the DBDH assumption in a fair manner.
Also, their corresponding DEMs need authenticated symmetric encryption, which causes a MAC tag to
be included into a ciphertext. Indeed, requiring such an additional tag weakens the merit of the shorter
ciphertexts. For these reasons, we do not consider their KEMs in our efficiency comparison.

Based on the result of Table 1, we give an efficiency comparison between the previous IBE systems and
ours. We consider 80-bit security as a desired security level of IBE systems. As previously mentioned, BF,
SK, and BB1 systems all have concrete security loss of at least 250 so that they must have a larger system
security parameter than 80 bits. Obviously, it will be unfair to straightforwardly compare ours with the
previous systems at the same security level. However, as a warm-up case, we first give a comparison result
when instantiated in supersingular (SS) curves at an 80-bit security level. We notice that our comparison is
based on Boyen’s work [19] that investigates relatively estimated calculation times for various operations
and representation sizes for group elements. Table 2 presents the result (see Table 7 and 8 in [19] for more
details) when considering SS curves at the 80-bit security level and MNT curves at security levels 80 and
128. The numerical results of our comparison are given in Table 3. In doing so, we estimate that the
encryption algorithm in our system requires three fixed-base exponentiations, one hashing H1(ID) for an
identity ID, and one general exponentiation involving H1(ID)

s, which makes relative encryption cost 26.
Upon decryption, such hashing and general exponentiation do not need to be counted as a decryptor is able
to compute H1(ID) for its identity ID beforehand. As discussed in Section 3.1, the decryption algorithm
then needs to compute five fixed-base exponentiations plus 1.2 parings. Table 3 demonstrates that our
system is comparable to the other IBE systems in terms of all efficiency respects, even though the relative
computational costs are slightly more expensive than others. We again emphasize that the comparison above
does not take into account the security losses caused by the security reductions on Table 1.

For a fairer comparison, we try to compensate for such security losses by boosting the security parameter
of the underlying assumptions. There is no general rule of such compensation, but we might be able to use
conjectures that were made by Bellare and Rogaway [7] for advantage functions of various block ciphers.
For instance, the advantage of DES with 128-bit keys was conjectured as (roughly speaking) AdvCPA

AES ≤
c/2128 for some constant c. A similar approach can be made for advantages of IBE systems, so that we

3It is defined by the following problem: given (g,ga,gb,gc,O), output e(g,g)abc. Here, the O is a decision oracle that takes as
inputs four arbitrary elements (gx,gy,gz,T ) in G3×GT , outputs 1 if T = e(g,g)xyz and otherwise 0.

17



Table 4: Efficiency comparison between CCA-secure IBE systems at corrected 80-bit security level

Curves / security level Overheads (bits) Relative computational costs
Public params. Ciphertext♠ Key extraction Encryption Decryption

BF MNT / 128 1024 768 1000 2006 1503
BB1 MNT / 128 4608 1280 200 39 1833
SK MNT / 128 4096 768 100 36 1536

Ours SS / 80 2048 1024 28 26 130

♠: considering only KEM part;

want to make AdvCCA
IBE ,A ≤ c/280 at the 80-bit security level. In that case, equation (6) tells us that we

have to make AdvAssumption
B ≤ c/2130 when considering that the security loss is bounded under 250. For

simplicity, we assume that the reduction bounds in both BF and SK systems are 250 (although they are
much larger than it). Under these assumptions, the actual security parameter must be of 130 bits in size
(approximately) to gain the real system security of an IBE system at the desired 80-bit security level. To
accomplish this, we consider that the BF, BB1, and SK systems are instantiated in MNT curves at the 128-bit
security level, whereas ours is based on SS curves at the 80-bit security level as before. Table 4 shows the
efficiency comparison result between CCA-secure IBE systems. We can see that the computational cost in
ours becomes superior to the other systems. In particular, decryption time becomes at least 11 times faster
than the others and encryption time becomes roughly 77 times faster than the BF system.

6 Discussion

6.1 A New Public Key Signature Scheme

According to Naor’s observation [15], any IBE system can be converted into a secure (public key) signature
scheme under the same assumptions. Naturally, we can have a signature scheme based on our IBE system,
the security of which is proven under the DBDH assumption in the random oracle model. However, by
using the private key structure of the IBE system, we can derive a new signature scheme whose security
relies on the Computational Diffie-Hellman (CDH) assumption. Similar derivations have already been used
for obtaining previous signature schemes such as BLS [17], Waters [48], and Boyen and Boneh [11]. One
favorable feature of our derived signature scheme is that ours can have a tight security reduction to the CDH
assumption. Prior to our work, BLS signature can be modified into a scheme that has a tighter security
reduction to the CDH assumption with the help of the Katz-Wang technique [39]. Our signature scheme
gives an alternative method for achieving such a tight security reduction, which is different from the Katz-
Wang technique. Another favorable feature is that ours is secure in the sense of strong unforgeability.
Informally, the ‘strong’ means that an adversary cannot even generate a new signature for a previously-
signed message. This notion is stronger than the standard notion of GMR unforgeability [36] and can be
used for providing CCA security [22, 13] of various encryption schemes.

Construction. We describe our signature scheme for completeness.
Setup(k): Given a security parameter k ∈ Z+, the setup algorithm runs G(k) to obtain a tuple (p,G,GT ,e).
The algorithm selects a random generator g ∈ G, a random group element u ∈ G, and a random exponent
α ∈ Zp. The algorithm sets A = e(g,g)α and chooses two cryptographic hash functions H1 : {0,1}∗→ G

18



and H2 : {0,1}∗→ Zp. The public key PK (with the description of (p,G,GT ,e)) and the secret key sk are
generated as

PK=
(
g,u,A,H1,H2

)
, sk= α.

Sign(m,sk,PK): To sign a message m ∈ {0,1}∗, the signing algorithm does the following:

1. Choose a random r ∈ Zp.

2. Compute σ1 = gαur, σ2 = gr, and tag = H2(σ1,σ2) ∈ Zp.

3. Compute σ3 =
(
H1(m)utag

)r.

4. Output a signature σ = (σ1,σ2,σ3) ∈G3.

Verify(PK,m,σ): To verify a signature σ = (σ1,σ2,σ3) on a message m, the verification algorithm does the
following:

1. Compute tag = H2(σ1,σ2).

2. Output accept if the following two equations hold:

e(σ1,g)
?
= A · e(u,σ2), e(σ3,g)

?
= e(H1(m)utag,σ2).

If either check fails, output reject.

The number of pairings in the verification algorithm is four, but it can be reduced to two by the similar
calculation to the one as in the decryption algorithm of the IBE system. To do this, the verification algorithm
picks a random s ∈ Zp and checks if the following equation holds:

e(σ1 ·σ s
3, g) ?

= A · e
(
u ·
(
H1(m)utag)s

, σ2
)
.

We can prove the security of our signature scheme. The proof of Theorem 3 will be given in Appendix
I, along with definitions of public key signature and strong unforgeability.

Theorem 3. Let H1 and H2 be modeled as random oracles. Suppose the (t ′,ε ′)-CDH assumption holds in
G. Then our signature scheme is (t,ε,qS)-secure in the sense of strong unforgeability under adaptive chosen
message attacks, where

ε =
(

1−
(qH2qS

p
+

2qH2

p

))
· ε ′, t ≈ t ′−O(qS · te).

Here, te is the cost of an exponentiation in G.

6.2 On Extension for Hierarchical IBE system

In a hierarchical IBE (HIBE) system [38, 34], a user’s identity ID can be hierarchically scalable by delegating
a private key skID to lower-level identities. For instance, a user with identity ID1 can generate a private
key skID′ for a lower-level identity ID′ = (ID1, ID2) using its own private key skID1 . The reverse of key
generation (i.e., from lower level to upper level) is not possible. This is called the ‘delegation mechanism’.
Using it, an HIBE system can be used for several applications including forward-secure encryption [21] and

19



conversion for public key broadcast encryption [28]. In a security analysis for HIBE, an adversary is given
the capability to request either private keys generated by a key generation center or ones delegated from
upper-level identities of its choice.

One may wonder if our IBE system can be extended for supporting hierarchical identities. As far as we
know, the answer is no. Since the private key structure of our system has similarity to that of Waters’ tag-
based dual system encryption [49], it may seem possible that a similar extension method can be applied to
ours. However, the problem occurs because of the ‘locked’ tag values associated with upper-level identities.
In the security analysis of the resulting HIBE system, an adversary requests a private key for an identity
ID = (ID1, . . . , ID`). In order to generate a private key skID, we have to use one of the hidden values4 that
are embedded into {Hi(IDi)} for i = 1, . . . , `. Assume we use a hidden value in Hk(IDk) for k ≤ `. In that
case, the tag values corresponding to j for j < k are chosen at random and mapped to H2-query outputs in an
appropriate sense. However, those random tag values are locked and cannot be changed into other different
values. The adversary can still query private keys for upper-level identities, e.g., ID′ = (ID1, . . . , IDk−1),
in which skID′ should be generated using those locked tags. Unfortunately, such a private key cannot be
generated. One solution would be to use hidden values for each level of hierarchy, but instead it can reveal
all hidden tag values that must be secretly reserved for challenge ciphertext. We leave it as an open problem
to build a hierarchical version from our IBE system.

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous ibe, and extensions. In Victor Shoup, editor, CRYPTO, volume
3621 of Lecture Notes in Computer Science, pages 205–222. Springer, 2005.

[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard model. In
Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 553–
572. Springer, 2010.

[3] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical ibe. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in
Computer Science, pages 98–115. Springer, 2010.

[4] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for in-
ner product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 21–40. Springer, 2011.

[5] Nuttapong Attrapadung, Jun Furukawa, Takeshi Gomi, Goichiro Hanaoka, Hideki Imai, and Rui
Zhang. Efficient identity-based encryption with tight security reduction. In David Pointcheval, Yi Mu,
and Kefei Chen, editors, CANS, volume 4301 of Lecture Notes in Computer Science, pages 19–36.
Springer, 2006.

[6] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to sign with rsa and
rabin. In Ueli M. Maurer, editor, EUROCRYPT, volume 1070 of Lecture Notes in Computer Science,
pages 399–416. Springer, 1996.

4Those are γi values that appear in the H list
1 in the proof of Theorem 1 and 2.

20



[7] Mihir Bellare and Phillip Rogaway. In Introduction to Modern Cryptography. University of California
at San Diego, 2005.

[8] Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions of
identity-based and certificateless kems. IACR Cryptology ePrint Archive, 2005:58, 2005.

[9] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

[10] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes
in Computer Science, pages 223–238. Springer, 2004.

[11] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science, pages 56–73.
Springer, 2004.

[12] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer
Science, pages 440–456. Springer, 2005.

[13] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-
based encryption. SIAM J. Comput., 36(5):1301–1328, 2007.

[14] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of
Lecture Notes in Computer Science, pages 506–522. Springer, 2004.

[15] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian,
editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

[16] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption without
pairings. IACR Cryptology ePrint Archive, 2007:177, 2007.

[17] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In Colin Boyd,
editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 514–532. Springer,
2001.

[18] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 253–273. Springer, 2011.

[19] Xavier Boyen. A tapestry of identity-based encryption: practical frameworks compared. IJACT,
1(1):3–21, 2008.

[20] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science,
pages 290–307. Springer, 2006.

[21] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Eli
Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 255–271.
Springer, 2003.

21



[22] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryp-
tion. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 207–222. Springer, 2004.

[23] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice
basis. In Henri Gilbert, editor, EUROCRYPT, pages 523–552, 2010.

[24] Liqun Chen and Zhaohui Cheng. Security proof of sakai-kasahara’s identity-based encryption scheme.
In Nigel P. Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, pages
442–459. Springer, 2005.

[25] Liqun Chen, Zhaohui Cheng, John Malone-Lee, and Nigel P. Smart. An efficient id-kem based on the
sakai-kasahara key construction. IACR Cryptology ePrint Archive, 2005:224, 2005.

[26] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram Honary,
editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science, pages 360–363. Springer,
2001.

[27] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. IACR Cryptology ePrint Archive, 2001:108, 2001.

[28] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for stateless receivers. In Joan
Feigenbaum, editor, Digital Rights Management Workshop, volume 2696 of Lecture Notes in Com-
puter Science, pages 61–80. Springer, 2002.

[29] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science,
pages 537–554. Springer, 1999.

[30] David Galindo. Boneh-franklin identity based encryption revisited. In Luı́s Caires, Giuseppe F. Ital-
iano, Luı́s Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture
Notes in Computer Science, pages 791–802. Springer, 2005.

[31] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay, editor,
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 445–464. Springer, 2006.

[32] Craig Gentry and Shai Halevi. Hierarchical identity based encryption with polynomially many levels.
In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 437–456.
Springer, 2009.

[33] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Cynthia Dwork, editor, STOC, pages 197–206. ACM, 2008.

[34] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.

[35] Eu-Jin Goh and Stanislaw Jarecki. A signature scheme as secure as the diffie-hellman problem. In
Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 401–415.
Springer, 2003.

22



[36] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[37] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89–98.
ACM, 2006.

[38] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Lars R. Knudsen,
editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 466–481. Springer,
2002.

[39] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight security
reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM Conference on
Computer and Communications Security, pages 155–164. ACM, 2003.

[40] Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key encapsulation with-
out random oracles. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP, volume
4058 of Lecture Notes in Computer Science, pages 336–347. Springer, 2006.

[41] Eike Kiltz and Yevgeniy Vahlis. Cca2 secure ibe: Standard model efficiency through authenticated
symmetric encryption. In Tal Malkin, editor, CT-RSA, volume 4964 of Lecture Notes in Computer
Science, pages 221–238. Springer, 2008.

[42] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems with very small private keys. In
IEEE Symposium on Security and Privacy, pages 273–285. IEEE Computer Society, 2010.

[43] Benoı̂t Libert and Jean-Jacques Quisquater. Identity based encryption without redundancy. In John
Ioannidis, Angelos D. Keromytis, and Moti Yung, editors, ACNS, volume 3531 of Lecture Notes in
Computer Science, pages 285–300. Springer, 2005.

[44] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005.

[45] Ryuichi Sakai and Masao Kasahara. Id based cryptosystems with pairing on elliptic curve. IACR
Cryptology ePrint Archive, 2003:54, 2003.

[46] Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In Stanislaw Jarecki and Gene Tsudik, edi-
tors, Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 215–234.
Springer, 2009.

[47] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO, volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

[48] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

[49] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 619–636.
Springer, 2009.

23



A Public Key Signature

A.1 Definition of Public Key Signature

A (public key) signature scheme is a tuple of three algorithms PKS = (Setup,Sign,Verify) over a message
spaceM.
Setup(k): takes as input a security parameter k and outputs a public key PK and a secret key sk.
Sign(sk, PK, m): takes a secret key sk, the public key PK, and a message m ∈M as input and returns a
signature σ .
Verify(PK, m, σ ): takes a public key PK, a message m , and a signature σ as input and returns accept or
reject.

We make the standard correctness requirement: for all (PK,sk) output by Setup and all m ∈M, we
have Verify(PK,m,Sign(sk,PK,m)) = accept.

A.2 Security: strong unforgeability

We give the definition of strong unforgeability under adaptive chosen message attacks [11]. This security
notion states that an adversary cannot even generate a new signature for a previously-signed message. The
security is defined via an interaction between an adversary A (i.e., a forger against a signature scheme) and
a challenger C:
Setup: C runs the setup algorithm to obtain a pair (PK,sk). It gives PK to A and keeps sk secret.
Query Phase : A issues signature queries on messages {mi} that can be adaptively chosen, depending on
previous signatures and messages. Using sk, C runs the signing algorithm for each message and returns a
resulting signature as a response.
Output : A outputs a valid signature σ∗ and a message m∗ such that: (1) Verify(PK,m∗,σ∗) = accept, and
(2) (m∗,σ∗) /∈ Σ, where Σ is the set of pairs (mi,σi) such that σi was the response to a signature query.

The advantage of an adversary A that breaks the strong unforgeability of a signature scheme PKS is
defined as

Advsuf
PKS,A(k) = Pr

[
A→ (m∗,σ∗) : Verify(PK,m∗,σ∗) = accept

∧
(m∗,σ∗) /∈ Σ

]
.

Definition 4. We say that signature scheme PKS is (t,ε,qS)-secure in the sense of strong unforgeabil-
ity if no adversary that runs in time at most t and issues at most qS signature queries breaks the strong
unforgeability with advantage at most ε .

A.3 CDH assumption

The Computational Diffie-Hellman (CDH) Problem: The well-known CDH problem is defined as fol-
lows: given (g,ga,gb) ∈G3 as input, output gab. We say that an algorithm A has advantage AdvCDH

G,A = ε in
solving the CDH problem in G if AdvCDH

G,A = Pr
[
A(g,ga,gb) = gab

]
, where the probability is taken over the

random choice of a, b ∈ Zp and the random bits used by A.

Definition 5. We say that the (t,ε)-CDH assumption holds in G if for any polynomial time adversaryA that
runs in time at most t in solving the CDH problem in G, the advantage AdvCDH

G,A is negligible.

24



A.4 Proof of Theorem 3

Proof. Suppose that there exists an adversary A which can break the strong unforgeability of our signature
scheme. We can then build an algorithm B which uses A to solve a CDH problem in G. On input (g, ga,
gb), B tries to output gab. B interacts with A as follows.

Setup B selects a random element δ ∈ Zp and sets u = g−agδ and A = e(ga,gb). Note that α = ab ∈ Zp,
which is unknown to B. ThenA is given the public key PK= (g,u,A,H1,H2), where H1 and H2 are modeled
as random oracles.

Query Phase A issues {Hi}i=1,2 and signature queries. B responds as follows:

H1 queries: To respond to H1 queries, B maintains a list of tuples < mi,γi,πi,H1(mi) > as explained
below. We refer to this list as the H list

1 . When B is given a message mi ∈ {0,1}∗ as an input to H1, B first
scans through the H list

1 to see if the input mi appears in a tuple < mi,γi,πi,H1(mi)>. If it does, B responds
with H1(mi). Otherwise, B picks two random exponents γi,πi ∈ Zp and sets H1(mi) = (ga)γigπi ∈G. B adds
the new tuple < mi,γi,πi,H1(mi) > to the H list

1 and responds with H1(mi). Recall that the values {γi} are
information-theoretically hidden to A’s view.

H2 queries: To respond to H2 queries, B maintains a list of tuples <Wi,Qi,µi > as explained below. We
refer to this list as the H list

2 . When B is given values (Wi,Qi)∈G2 as an input to H2, B first scans through the
H list

2 to see if the input (Wi,Qi) appears in a tuple <Wi,Qi,µi >. If it does, B responds with H2(Wi,Qi) = µi.
Otherwise, B picks a random exponent µi ∈Zp and sets H2(Wi,Qi) = µi. B adds the new tuple <Wi,Qi,µi >
to the H list

2 and responds with H2(Wi,Qi).

Signature queries: When B is given a message mi ∈ {0,1}∗ as an input to a signature query, B selects
a random exponent r ∈ Zp and (implicitly) sets r̃ = b+ r ∈ Zp. B computes σ1,i = (ga)−r(gb)δ gδ r and
σ2,i = gbgr. The validity of those elements can be verified as follows:

σ1,i = (ga)−r(gb)δ gδ r = gab(g−agδ )b+r = gαur̃, σ2,i = gbgr = gr̃.

Next, B refers to the H list
1 to find out the tuple < mi,γi,πi,H1(mi) >. (If no tuple exists, B can run the H1-

query process before replying to the signature query.) At this moment, B’s goal is to set H2(σ1,i,σ2,i) = γi.
Thus, if there is a tuple < σ1,i,σ2,i,γi > in the H list

2 , B can continue the signature query process. However,
there could be the case where A already issued (σ1,i,σ2,i) to the H2 query and set H2(σ1,i,σ2,i) = µi 6= γi, in
which case B cannot generate the element σ3,i. To see whether there already exists the tuple < σ1,i,σ2,i,µi >
such that µi 6= γi, B refers to the H list

2 .
[Case 1.] If the tuple exists, B aborts. (We refer to this event as abort1.) From the proof of Theorem 1,

we know that the probability that the event abort1 happens during the simulation is at most qSqH2/p.
[Case 2.] If the tuple does not exist, B sets H2(σ1,i,σ2,i) = γi (where γi is from the tuple in the H list

1
above) and adds the tuple < σ1,i,σ2,i,γi > to the H list

2 . B generates the element σ3,i, using H2(σ1,i,σ2,i) = γi,
as σ3,i = (gb)πi+γiδ g(πi+γiδ )r. The validity of σ3,i can be verified as follows:

σ3,i = (gb)πi+γiδ g(πi+γiδ )r =
(
(ga)γigπi · (g−a+δ )γi

)b+r
=
(
H1(mi)uH2(σ1,i,σ2,i)

)r̃
.

Then, B responds with a signature σi = (σ1,i,σ2,i,σ3,i) for the requested message mi.
Output At this momentA outputs a valid forgery (m∗,σ∗), where σ∗= (σ∗1 ,σ

∗
2 ,σ

∗
3 ). There are two possible

cases:
[Case 1.] m∗ is not queried during the signature queries. B refers to the H list

1 and finds the tuple
< m∗,γ∗,π∗,H1(m∗) > and it also refers to the H list

2 to find the tuple < σ∗1 ,σ
∗
2 ,µ

∗ >. If γ∗ = µ∗, then

25



B aborts. (We refer to this event as abort2.) The probability that the event abort2 happens during the
simulation is at most qH2/p, because the exponent γ∗ (regarding m∗) is predetermined so that each output
corresponding to a H2 query can map to the γ∗ with probability at most 1/p. If γ∗ 6= µ∗, then B has that
H2(σ

∗
1 ,σ

∗
2 ) = µ∗ 6= γ∗. From the two equality checks in the verification algorithm, B has that for some

unknown exponent r̂ ∈ Zp such that σ∗2 = gr̂:

σ
∗
1 = gα ·ur̂, σ

∗
2 = gr̂, σ

∗
3 =

(
H1(m∗)uµ∗

)r̂
.

We know that H1(m∗) = (ga)γ∗gπ∗ and u = g−agδ , which leads to σ∗3 = (ga)(γ
∗−µ∗)r̂g(π

∗+δ )r̂. Thus, B can

obtain the value gar̂ by computing
(
σ∗3 /(σ

∗
1 )

π∗+δ
)(γ∗−µ∗)−1

. Next, we know that σ∗1 = gab ·
(
g−agδ

)r̂. It
follows that B can obtain gab as σ∗1 ·gar̂/(σ∗1 )

δ .

[Case 2.] m∗ is one of queried messages. Say m∗ = mt for some t ∈ {1, . . . ,qS} and the corresponding
signature (that was generated in Query Phase) is σt = (σ1,t ,σ2,t ,σ3,t). Again, B refers to the H list

1 and
finds the tuple < mt ,γt ,πt ,H1(mt)> and also it refers to the H list

2 to find the two tuples < σ∗1 ,σ
∗
2 ,µ

∗ > and
< σ1,t ,σ2,t ,γt >. Notice that γt regarding mt was used to generate the signature σt . In this case, it should be
the case that σ∗ 6= σt . We further consider all seven different cases:

[Case 2.1.] σ∗1 6= σ1,t , σ∗2 6= σ2,t , σ∗3 6= σ3,t . If µ∗ = γt , B aborts. (We refer to this event as abort3.) The

probability that the event abort3 happens during the simulation is at most qH2/p as in Case 1. Otherwise, B
can compute gab as in Case 1.

[Case 2.2.] σ∗1 6= σ1,t , σ∗2 = σ2,t , σ∗3 = σ3,t . In this case, we know from the first equality check in the

verification algorithm that σ∗1 should be of the form gαur̃ for some exponent r̃ ∈Zp such that σ∗2 = gr̃. Also,
we had that σ1,t = gαur̃ so that it should be that σ∗1 = σ1,t , which is a contradiction.

[Case 2.3.] σ∗1 = σ1,t , σ∗2 6= σ2,t , σ∗3 = σ3,t . In this case, we know from the first equality check in the

verification algorithm that σ∗1 should be of the form gαur′′ for some exponent r′′ ∈ Zp such that σ∗2 = gr′′ .
Also, we had that σ1,t = gαur̃ for some exponent r̃ ∈ Zp such that σ2,t = gr̃. Since σ∗2 6= σ2,t , this means that
r′′ 6= r̃. Nevertheless, it should be that gαur′′ = gαur̃, which is a contradiction.

[Case 2.4.] σ∗1 = σ1,t , σ∗2 = σ2,t , σ∗3 6= σ3,t . In this case, we know that µ∗ = γt . Then, from the second

equality check in the verification algorithm, σ∗3 should be of the form (H(mt)uµ∗)r̃ for some exponent r̃ ∈Zp

such that σ∗2 = gr̃. Also, we had that σ3,t = (H(mt)uγt )r̃. Since µ∗ = γt , it should be that σ∗3 = σ3,t , which is
a contradiction.

[Case 2.5.] σ∗1 = σ1,t , σ∗2 6= σ2,t , σ∗3 6= σ3,t . This cannot happen because of the same reason for Case

2.3.
[Case 2.6.] σ∗1 6= σ1,t , σ∗2 = σ2,t , σ∗3 6= σ3,t . This cannot happen because of the same reason for Case

2.2.
[Case 2.7.] σ∗1 6= σ1,t , σ∗2 6= σ2,t , σ∗3 = σ3,t . If µ∗ = γt , we know from the second equality check in

the verification algorithm that σ∗3 should be of the form
(
H1(mt)uµ∗

)r′′ for some exponent r′′ ∈ Zp such

that σ∗2 = gr′′ . Also, we had that σ3,t =
(
H1(mt)uγt

)r̃ for some exponent r̃ ∈ Zp such that σ2,t = gr̃. Since

σ∗2 6= σ2,t , this means that r′′ 6= r̃. Nevertheless, it should be that
(
H1(mt)uµ∗

)r′′
=
(
H1(mt)uγt

)r̃, which is a
contradiction. Otherwise, i.e., if µ∗ 6= γt , then B can compute gab as in Case 1.

Analysis. The computational time that B requires is dominated by exponentiations for handling qS signature
queries. Thus, the inequality concerning the computational time can easily be obtained. Next, to analyze

26



B’s advantage, we prove the following claim that argues that the probability that B aborts in the simulation
is at most qH2 qS

p +
2qH2

p , which is negligible.

Claim 2: Pr[abort] = Pr[abort1∨abort2∨abort3] in the simulation is at most qH2 qS

p +
2qH2

p .

Proof. The proof is similar to that of Claim 1. Analyzing each probability is addressed in the simulation.
As all the events that B aborts are relatively independent, it follows that the probability Pr[abort1∨abort2∨
abort3] in the simulation is at most qH2 qS

p +
2qH2

p . �

Next, we can see that as long as B does not abort in the simulation, B provides A with a perfect simula-
tion whose distribution is identical to the distribution in a real interaction with a signer. This is because (1)
the simulation of both H1 and H2 oracles are obviously perfect as the output values are chosen by randomly
chosen values in G and Zp, respectively, and (2) the simulation of signature oracles are also perfect as each
signature on a message is generated with a randomly chosen exponent r ∈Zp such that r̃ = b+r, and (3) the
values {γi} in the H list

1 are uniformly distributed and information-theoretically hidden from A’s view until
signatures answered by B are given to A.

It follows that as long as B does not abort in the simulation, B can useA’s advantage to break the strong
unforgeability of our signature scheme straightforwardly. Then, from Claim 2, B’s success probability is
given as follows:

AdvCDH
G,B (k) =

(
1−
(qH2qS

p
+

2qH2

p

))
·Advsuf

PKS,A(k),

as required. This concludes the proof of Theorem 3. �

27


	Introduction
	Our Contribution
	Overview of Our New Technique
	Related Work

	Preliminaries
	Identity-Based Encryption
	One-time Symmetric-key Encryption
	Bilinear Pairings and Complexity Assumption

	Our IBE System
	Construction
	Security

	Extension for Arbitrary length Messages
	Construction
	Security

	Comparison to previous IBE systems
	Discussion
	A New Public Key Signature Scheme
	On Extension for Hierarchical IBE system

	Public Key Signature
	Definition of Public Key Signature
	Security: strong unforgeability
	CDH assumption
	Proof of Theorem 3


