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Abstract

We present a new practical Identity-Based Encryption (IBE) system that can be another candidate for
standard IBE techniques. Our construction is based on a new framework for realizing an IBE trapdoor
from pairing-based groups, which is motivated from the ‘two equation’ revocation technique suggested
by Lewko, Sahai, and Waters. The new framework enables our IBE system to achieve a tight security
reduction to the Decision Bilinear Diffie-Hellman assumption. Due to its the tightness, our system can
take as input the shorter size of security parameters than the previous practical BF, SK, and BB1 sys-
tems, which provides better efficiency to our system in terms of computational cost. With appropriate
parametrization at 80-bit security level (considering security loss), our IBE system can obtain 11 times
faster decryption than the previous ones and 77 times faster encryption than the BF system. We prove
that our system is fully secure against chosen ciphertext attacks in the random oracle model. From com-
putational variant of Naor’s observation, we can also suggest a new signature scheme that features a tight
security reduction to the Computational Diffie-Hellman assumption and provides strong unforgeability
simultaneously.

Keywords: Identity-based encryption, Bilinear maps.

1 Introduction

Identity-Based Encryption (IBE) [48] is a special type of public key encryption where a public key can be
any string that carries its own meaning to a user’s identity, such as an e-mail address. As such a meaningful
string can be naturally associated with a user, an IBE system does not need a certifying mechanism to ensure
that a public key (as the meaningful string) is bound to a user (as the owner of the public key). As opposed
to an IBE system, a traditional public key encryption system needs the certifying mechanism to securely
distribute public keys, and indeed it must run on a complex architecture called ‘Public Key Infrastructure’.

By virtue of the advantage over the public key encryption, IBE had received considerable interest to
cryptographic researchers since Shamir [48] posed the initial question about the existence of such an IBE
system. In 2001, Boneh and Franklin [15] proposed the first practical IBE system based on groups with
efficiently computable bilinear maps (i.e., paring), along with a formal security definition of IBE. Since
then, a large body of work [46, 24, 25, 10, 49, 32, 41, 42, 50] has been devoted to constructing pairing-based
IBE systems to improve in terms of security and efficiency. Among the previous IBE systems, three of them
have been perceived as practical constructions, which are works by Boneh-Franklin [15], Sakai-Kasahara
[46, 24, 25], and Boneh-Boyen1 [10], and thereafter they have been submitted to the IEEE P1363.3 standard
for “Identity-Based Cryptographic Techniques using Pairings”.
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1This is denoted as ‘BB1’.
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1.1 Our Contribution

In this work we present a new practical IBE system that can be another candidate for standard IBE tech-
niques. Our IBE system results from a new framework for realizing the IBE trapdoor, which is motivated
by the ‘two equation’ technique recently suggested by Lewko, Sahai, and Waters [43]. One notable ad-
vantage of the new framework is that our construction is also pairing-based like BF, SK, and BB1 systems,
yet it has a tight security reduction to the Decision Bilinear Diffie-Hellman (DBDH) assumption. In order
to encrypt arbitrary-length messages, we also suggest a new Identity-Based Key Encapsulation Mechanism
(IBKEM) combined with one-time symmetric-key encryption. Our IBE systems are all proven to be fully
secure against chosen ciphertext attacks in the random oracle model. In particular, one-time symmetric-
key encryption secure against passive attacks is sufficient for the latter IBE system without the need of the
‘encrypt-then-MAC’ or ‘authenticated symmetric encryption’ paradigm.

Prior to our result, none of the three practical BF, SK, and BB1 systems provided tightness in their
respective security analysis, and in fact there existed significant security gaps between security assumptions
and their IBE systems. One might wonder what the benefit from such tightness in security reduction is. The
benefit is that we can achieve security of our system straightforwardly from that of the underlying DBDH
assumption at the same security level. This means that if we want to instantiate our IBE system at current
80-bit security level, we can use a DBDH-hard group at the same security level. However, this is not the
case in BF, SK, and BB1 systems where security is loosely reduced to each security assumption by a factor
of (at least) 250 if we consider a reasonable number of adversarial hash queries as 250. The loose security
reduction forces us to choose a larger security parameter (regarding DBDH-hard groups) than the 80-bit one
even if we want to instantiate them at the 80-bit security level. Importantly, the larger security parameter
tends to have an unfavorable effect on computational cost of resulting IBE systems [19]. For instance, when
comparing BF, SK, and BB1 systems at 128-bit security level with our system at 80-bit security level, ours
has about (at least) 11 times faster decryption than the three systems, and about 77 times faster encryption
than the BF system. To add credence to this result, we give more concrete comparison results in terms of
security reduction and efficiency in Section 5.

From variant of Naor’s observation (stated in [15]), our new framework gives rise to a new public-
key signature scheme whose security relies on the Computational Diffie-Hellman (CDH) assumption in the
random oracle model. Two favorable features of our signature scheme are that (1) it has a tight security
reduction to the CDH assumption and (2) it is secure in the sense of strong unforgeability. BF, SK, and
BB1 systems also gave rise to signature schemes [17, 11, 49] derived from each one, but none of them have
the two properties at the same time. Until now, it has been known that the Katz-Wang [36, 40] technique
(combined with BF key generation framework) is only the one for achieving the two goals, but it is worth
mentioning that our result can give an alternative method.

1.2 Overview of Our New Technique

BF, SK, and BB1 systems have their unique frameworks to realize IBE trapdoors from paring-based groups,
respectively. Following Boyen’s naming in [19], each framework is called ‘full-domain-hash’ (for BF),
‘exponent-inversion’ (for SK), and ‘commutative-blinding’ (for BB1). Each framework determines both the
distinct structure of a private key and different kinds of security assumptions. Also, most of the subsequent
paring-based IBE systems fall into one of the three paradigms.

To build our new IBE system, we also come up with a new framework for realizing the IBE trapdoor.
As we mentioned before, our framework is motivated by the two equation technique of Lewko, Sahai, and
Waters [43]. Roughly speaking, the original LSW technique is to use private key elements (gr,(g1uID)r) and
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ciphertext elements (gs,(g1uID
′
)s) to compute a pairing value e(g,u)sr. Here, g, g1, and u are from public

parameters. The value e(g,u)sr is then used to recover a message blinding factor e(g,g)αs by pairing gs with
an additional key element gαur. The point is that such a pairing value can be obtained only if ID ̸= ID′,
and this gives the revocation system [43] where only users whose identities are different from ID′ are able
to compute the pairing value. On the other hand, our two equation technique is slightly changed in a way
that computing the value e(g,u)sr is possible only if ID = ID′. This can be done by setting private key
elements as (gr,(H(ID)utagk)r) and ciphertext elements as (gs,(H(ID′)utagc)s), where H is a cryptographic
hash function and (as we explain below) the probability that tagk = tagc is negligible.

As in the BF system, our framework requires a cryptographic hash function H that maps an identity
string ID∈ {0,1}∗ to a group elementH(ID), but unlike the BF system a private key for an identity ID is not
uniquely determined. A private key skID consists of three groups (gαur, gr, (H(ID)utagk)r), which differs by
a randomly-chosen exponent r in Zp. Here, α is the master secret key known only to a key generation center.
At this moment, one may wonder how the value tagk is decided. Indeed, we have that tagk = h(gαur,gr)∈Zp

by introducing another cryptographic hash function h. Similarly, when encrypting a message M, a ciphertext
under ID is constructed as

(
Me(g,g)αs, gs, (H(ID)utagc)s

)
using the hash value tagc = h(Me(g,g)αs,gs).

In case of our IBKEM, an arbitrary length message M is encrypted as
(
EK(M), gs, (H(ID)utagc)s

)
using

a one-time symmetric-key encryption algorithm E , where K = e(g,g)αs and tagc = h(EK(M),gs). If we
use a collision-resistant hash function h, the correctness error caused by the equality tagk = tagc becomes
acceptable in practice. Another characteristic of our framework is to use the hash function h to protect the
ciphertext element Me(g,g)αs or EK(M) related to M. Indeed, the distinct usage of h enables our system to
directly obtain chosen ciphertext security without resorting to other methods such as ‘encrypt-then-MAC’
or ‘authenticated symmetric encryption’.

We now explain how our IBE system can achieve a tight security reduction under the DBDH assump-
tion. In our security proofs, the two hash functions H and h are modeled as random oracles. Somewhat
surprisingly, being able to use two hash functions in generating one group element enables our reduction
algorithm to generate private keys for all identities and use any identity as a challenge identity ID∗. Never-
theless, a private key for ID∗ is not helpful to decrypt the challenge ciphertext (that can be constructed under
ID∗), which is necessary for solving the so-called ‘self-decryption’ paradox. Notice that similar reductions
can be found in [32, 50] that provided full security without random oracles. Let (g,ga,gb,gc,T ) be a DBDH
instance. Given an identity IDi, the random oracle H outputs H(IDi) = (ga)γigπi for two randomly-chosen
exponents γi and πi in Zp. The important point is that the value γi per each identity can be information-
theoretically hidden from an adversary’s view and later used for an output value of another random oracle
h. When creating a private key for IDi, our reduction algorithm is able to generate the key as

(
gαur̃, gr̃,

(H(IDi)utagk)r̃
)

by setting tagk = h(gαur̃,gr̃) = γi and r̃ = b+ r for a random r in Zp. The validity of the
private key is checked under the condition that α = ab and u = g−agδ for a random δ ∈ Zp. A similar
manipulation is taken when generating the challenge ciphertext under ID∗. As skID∗ must not be asked, the
value γ∗ embedded into H(ID∗) will be hidden until the challenge phase (with overwhelming probability)
and thus can be reserved for setting tagc = γ∗ (as well as s = c for the DBDH problem). In case when
trying to decrypt the challenge ciphertext using skID∗ , it should be the case that tagk = γ∗ that was already
embedded intoH(ID∗). Therefore, the decryption is not possible because tagk = tagc, and this explains how
the self-decryption paradox can be solved.

To achieve the chosen ciphertext security, our reduction algorithm needs to deal with adversarial de-
cryption queries. In our security analysis, this is not a big problem as private keys for all identities can be
generated and ill-formed ciphertexts are detected via consistency check using pairing. The only problem
is that in the event that tagk = tagc happens, normal decryption cannot be performed. However, as an out-
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put of h as a random oracle is determined by choosing a random value in Zp and p is exponentially large
(e.g., p is a 160-bit prime), our reduction can avoid such a troublesome case in all decryption queries with
overwhelming probability.

1.3 Related Work

Boneh and Franklin [15] presented the first practical IBE system based on groups with efficiently computable
pairings and defined the formal security notion for IBE known as full security against chosen ciphertext
attacks. Most of the subsequent IBE systems followed the notion depending on different kinds of security
assumptions. Until now, BF[15], SK[46, 24, 25], and BB1 [10] systems have been considered as practical
constructions and their security was all demonstrated in the random oracle model.

In an attempt to prove security without random oracles, Canetti et al. [21] suggested a weaker security
notion for IBE, known as selective-ID security. Following the weaker notion, Boneh and Boyen [10] pro-
posed two efficient IBE systems, one of which was the basis for BB1. Many IBE systems [49, 32, 41, 42, 50]
were later suggested to achieve full security without random oracles, but they all become less efficient than
the random oracle constructions in practical aspects such as public parameter size or achieving chosen ci-
phertext security.

Regarding tight security reduction, Attrapadung et al.[5] proposed a Katz-Wang variant of the BF system
whose security is tightly reduced to the DBDH assumption. Their construction is fully secure against chosen
ciphertext attacks in the random oracle model, but impractical especially in terms of both encryption and
decryption costs. On the other hand, Gentry IBE [32] achieved the full security without random oracles.
Tightness in its security reduction was achieved by relying on a (non-standard) q-type assumption where q
depends on the number of private key queries that an adversary makes.

The notion of IBE has been extended in two flavors. In a vertical (and hierarchical) extension, IBE can
provide a ‘delegation’ mechanism [39, 35] by which private keys for lower-level identities are created from
an upper-level identity but the reverse is not possible. Many works [35, 10, 12, 49, 20, 47, 33, 50] have
been suggested to realize such a delegation mechanism, also known as Hierarchical IBE (HIBE). In a hori-
zontal extension, IBE becomes the special case of the Attribute-Based Encryption (ABE) [45, 38, 9], where
attributes (instead of a single identity) are associated with private keys and ciphertexts, respectively, and
decryption works only if attributes satisfy a function depending on each ABE system. Furthermore, when
attributes (an identity) embedded into ciphertexts are encrypted, ABE (IBE) can also be extended for pro-
viding searchable techniques [14, 1] on encrypted data. Recently, the horizontal extensions are conceptually
united under the notion of Functional Encryption (FE) [18].

Finally, we notice that there exist other approaches to build IBE trapdoors without pairings. Cocks [27]
and Boneh et al. [16] constructed IBE systems based on the quadratic-residuosity problem and Gentry et
al. [34] demonstrated how to build an IBE system based on lattice. Recently, lattice-based IBE can also be
extended toward HIBE [23, 2, 3] and FE [4] constructions.

2 Preliminaries

2.1 Identity-Based Encryption

An Identity-Based Encryption (IBE) system consists of four algorithms:

• Setup(k) takes a security parameter k as input and outputs a public parameter PP and a master secret
key msk.

4



• KeyGen(msk, PP, ID) takes a master secret key msk, a public parameter PP and an identity ID ∈ ID
as inputs, where ID is an identity space. It outputs skID, a private key for ID.

• Encrypt(PP, M, ID′) takes a public parameter PP, a message M ∈M, and an identity ID ∈ ID as
inputs, whereM is a message space. It outputs CT under ID, a ciphertext under ID.

• Decrypt(CT, PP, skID) takes a ciphertext CT under ID′, a public parameter PP, and a private key skID
as inputs. It outputs a message M or ⊥.

Correctness. For all ID, ID′ ∈ID and all M ∈M, let (PP, msk)← Setup(k), skID←KeyGen(msk,PP, ID),
CT← Encrypt(PP,M, ID′). We have M← Decrypt(skID, PP, CT).

We next define the chosen ciphertext security [15] of an IBE system, which is commonly accepted. The
security is defined via the following game interacted by a challenger C and an adversary A:

• Setup: C runs the setup algorithm to obtain a public parameter PP and a master secret key msk. C
gives PP to A.

• Query Phase 1: A adaptively issues a number of queries where each query is one of:

– Private key query on ID: C runs the key generation algorithm to obtain a private key for ID and
gives the key skID to A.

– Decryption query on (CT, ID): C runs the key generation algorithm to obtain skID toA and then
runs the decryption algorithm using CTID and skID. It gives the resulting message to A.

• Challenge: A outputs two equal-length messages M0,M1 and an identity ID∗ on which it wishes to be
challenged. The only restriction is that ID is not queried in Query Phase 1. C flips a coin σ ∈ {0,1}.
C gives CT∗← Encrypt(PP,Mσ , ID

∗) as a challenge ciphertext to A.

• Query Phase 2: A adaptively issues a number of additional queries where each query is one of:

– Private key query on ID, where ID ̸= ID∗: C responds as in Query Phase 1.
– Decryption query on (CT, ID), where (CT, ID) ̸= (CT∗, ID∗): C responds as in Query Phase 1.

• Guess: A outputs a guess σ ′ ∈ {0,1}. A wins if σ ′ = σ .

The advantage of the adversary A in breaking the chosen ciphertext security of an IBE system IBE is
defined as AdvCCA

IBE ,A =
∣∣Pr[b′ = b]−1/2

∣∣.
Definition 1. We say that an IBE system is (t,ε,qK ,qD)-IND-ID-CCA secure if for any polynomial time
adversary A that runs in time at most t, issues at most qK private key queries and at most qD decryption
queries in chosen ciphertext security games, we have that AdvCCA

IBE ,A < ε .

2.2 One-time Symmetric-key Encryption

A one-time symmetric-key encryption scheme consists of two algorithms: a deterministic encryption algo-
rithm E takes a message M ∈ {0,1}∗ and a key K ∈ K as inputs and outputs a ciphertext C = EK(M). Here,
K is a key space that is determined by a security parameter k ∈ Z+. Another deterministic algorithm D is a
decryption algorithm that takes a ciphertext C and a key K as inputs and outputs a message M =DK(C).

We define security for a one-time symmetric-key encryption scheme SKE = (E ,D), which is security
against passive attacks [28]. The security is defined via the following game interacted by a challenger C and
an adversary A:
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• Setup: C chooses a random key K in key space K(k).

• Challenge: A outputs two equal-length messages M0 and M1. C flips a coin σ ∈ {0,1} and gives
C∗←EK(Mσ ) as a challenge ciphertext to A.

• Guess: A outputs a guess σ ′ ∈ {0,1}. A wins if σ ′ = σ .

The advantage of the adversary A in breaking the passive security of a one-time symmetric-key encryption
scheme SKE is defined as AdvOT-IND

SKE ,A =
∣∣Pr[b′ = b]−1/2

∣∣.
Definition 2. We say that a one-time symmetric-key encryption scheme is (t,ε)-secure against passive at-
tacks if for any polynomial time adversary A that runs in time at most t in passive attack games, we have
that AdvOT-IND

SKE ,A < ε .

2.3 Bilinear Maps and Complexity Assumptions

We briefly review bilinear maps and the complexity assumptions. Here, we simply consider symmetric
pairings in prime-order groups.

Bilinear Maps: We follow the standard notation in [15, 10]. Let G and GT be two (multiplicative) cyclic
groups of prime order p. We assume that g is a generator of G. Let e : G×G→ GT be a function that has
the following properties:

1. Bilinear: for all u,v ∈G and a,b ∈ Z, we have e(ua,vb) = e(u,v)ab.

2. Non-degenerate: e(g,g) ̸= 1.

3. Computable: there is an efficient algorithm to compute the map e.

Then, we say that G is a bilinear group and the map e is a bilinear pairing in G. Note that e(,) is symmetric
since e(ga,gb) = e(g,g)ab = e(gb,ga).

The Decisional Bilinear Diffie-Hellman (DBDH) Problem: The DBDH problem [15] is defined as fol-
lows: given (g,ga,gb,gc,T ) ∈G4×GT as input, output 1 if T = e(g,g)abc and 0 otherwise. We say that an
algorithm A that outputs σ ∈ {0,1} has an advantage AdvDBDH

G,A = ε in solving the DBDH problem in G if∣∣∣Pr
[
A(g,ga,gb,gc,e(g,g)abc) = 0

]
−Pr

[
A(g,ga,gb,gc,R) = 0

]∣∣∣≥ ε ,

where the probability is taken over the random choice of a, b, c ∈ Zp, the random choice of R ∈GT , and the
random bits used by A.

Definition 3. We say that the (t,ε)-DBDH assumption holds in G if no polynomial time adversary A that
runs in time at most t has at least advantage ε in solving the DBDH problem in G.

3 Our IBE System

3.1 Construction

Setup(k): Given a security parameter k ∈ Z+, the setup algorithm runs G(k) to obtain a tuple (p,G,GT ,e).
The algorithm selects a random generator g ∈ G, a random group element u ∈ G, and a random exponent
α ∈ Zp. The algorithm sets A = e(g,g)α and chooses two cryptographic hash functions H1 : {0,1}∗→ G
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and H2 : {0,1}∗ → Zp. The public parameters PP (with the description of (p,G,GT ,e)) and the master
secret key msk are generated as

PP=
(
g,u,A,H1,H2

)
, msk= α.

KeyGen(msk, PP, ID): To create a private key skID for an identity ID ∈ ID, the key generation algorithm
does the following:

1. Pick a random exponent r ∈ Zp.

2. Compute d0 = gαur ∈G, d1 = gr ∈G, and tagk = H2(d0,d1) ∈ Zp.

3. Compute d2 =
(
H1(ID)utagk

)r ∈G.

4. Output a private key skID = (d0,d1,d2, tagk) ∈G3×Zp.

Encrypt(PP, ID, M): To encrypt a message M ∈ GT under an identity ID ∈ ID, the encryption algorithm
does as follows:

1. Pick a random exponent s ∈ Zp.

2. Compute C0 = AsM ∈GT , C1 = gs ∈G, and tagc = H2(C0,C1) ∈ Zp.

3. Compute C2 =
(
H1(ID)utagc

)s ∈G.

4. Output a ciphertext CT= (C0,C1,C2) ∈GT ×G2.

Decrypt(PP, CT, skID): To decrypt a ciphertext CT=(C0,C1,C2) using a private key skID=(d0,d1,d2, tagk)
for ID, the decryption algorithm does as follows:

1. Compute tagc = H2(C0,C1) ∈ Zp and check if e
(
H1(ID)utagc , C1

) ?
= e(C2,g).

2. If the equality above fails, output ⊥.

3. Otherwise, check if tagc
?
= tagk in Zp.

4. If the equality above holds, output ⊥.

5. Otherwise, compute

M =C0

/
e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

. (1)

Correctness. If tagc = tagk in Zp, the decryption algorithm does not work, so that it has the correctness
error 1/p on each decryption. Otherwise, we can verify that the decryption algorithm works correctly for
well-formed ciphertexts as follows:

e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

= e
(
gαur, gs) ·(e

(
(H1(ID)utagc)s, gr

)
e
(
(H1(ID)utagk)r, gs

)) −1
tagc−tagk

= e(g,gα)se(u,g)sr · e
(
utagc−tagk , gsr) −1

tagc−tagk

= As.
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Encryption and Decryption Costs. In encryption, the three exponentiations As, gs, and utagc·s can be calcu-
lated in fixed bases A, g, and u, respectively. Instead, the hashing H1(ID) and its exponentiation H1(ID)

s

will be done separately without precomputation in usual situations. Thus, the encryption cost becomes 3
fixed-base exponentiations plus 1 hashing and 1 general exponentiation.

Upon decryption, it seems that the decryption algorithm requires computing 5 pairings, but these can be
saved into 1.2 parings. We first can change the above formula (1) into:

e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

=
e
(

C2, d
−1

tagc−tagk
1

)
e
(

d−1
0 d

−1
tagc−tagk
2 , C1

) .
Next, by using the implicit consistency check [41], we do not need to perform the pairing consistency
test explicitly. Instead, the decryption algorithm randomizes two elements H1(ID)utagc and g by raising a
randomly chosen exponent r̃ ∈ Zp and performs the following computation:

e
(

C2, d
−1

tagc−tagk
1 gr̃

)
e
(

d−1
0 d

−1
tagc−tagk
2 (H1(ID)utagc)r̃, C1

) . (2)

If the pairing test passes, the output of the above equation becomes the same as that of the original decryption
algorithm. Otherwise, the fresh random value r̃ chosen by the decryption algorithm survives and thus
prevents an adversary from gaining any information on an ill-formed ciphertext. As a consequence, the
decryption cost is determined by the computation in the equation (2) that shows five exponentiations and
two pairing computations. All the exponentiations can be done in fixed bases such as g, d1, d2, u, and
H1(ID). Notice that a user with identity ID can compute H1(ID)∈G and prepare for fixed bases related with
it, regardless of any received ciphertext. Also, a ratio of two pairings can be estimated into 1.2 pairings [19].
Thus, the decryption cost is concluded with 5 fixed-base exponentiations plus 1.2 parings.

Achieving Perfect Correctness. Upon decryption, our decryption algorithm cannot proceed in the event
that tagc = tagk occurs. Obviously, the probability that the event happens is negligible when the value tag
is in Zp and p is represented by approximately 160 bits. However, in order to avoid even the negligible
correctness error, we can locate a suitable approach in a recent tag-based dual system encryption [50] where
a similar decryption process to ours appears. A possible solution is to simply run an efficient selectively
(chosen-ciphertext) secure IBE system [10] in parallel. When a message is encrypted under ID with tagc,
an encryptor also encrypts the message under the tagc in the second selective system. When the two tags
are different, we can use our original IBE system. In the unlikely event that the two tags are equal, we can
use the second ciphertext. An alternative approach in [50] such as giving two private keys for an identity ID
seems to not be applicable to our system, because we can assign a hash value H1(ID) to only one tag value
in our security analysis.

Construction under Asymmetric Parings. The system can be instantiated in bilinear groups where asym-
metric pairing e : G× Ĝ→ GT is defined over different groups G and Ĝ. In that case, we need to hash an
identity into a group element in either G or Ĝ. If we choose G, then a private key consists of group elements
in G× Ĝ×G and a ciphertext has elements in GT × Ĝ×G. The reverse is also possible, and the selection
of each option affects the efficiency of the IBE system when instantiated with MNT [19] or BN [26] curves.
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3.2 Security

Theorem 1. Let H1 and H2 be modeled as random oracles. Suppose the (t ′,ε ′)-DBDH assumption holds in
G. Then our IBE system is (t,ε ,qK ,qD)-IND-ID-CCA secure, where

ε ≤
(

1− qH2

p
− qD

p

)
· ε ′,

t ≥ t ′−O(qK · te)−O(qD · tp).

Here, te is the cost of an exponentiation in G and tp is the cost of a pairing computation in G.

Proof. Suppose that there exists an adversary A which can break the CCA security of our IBE system. We
can then build an algorithm B which uses A to solve a DBDH problem in G. On input (g, ga, gb, gc, T ), B
attempts to output 1 if T = e(g,g)abc and 0 otherwise. B interacts with A as follows.

Setup B selects a random element δ ∈ Zp and sets u = g−agδ and A = e(ga,gb). Note that α = ab ∈ Zp,
which is unknown to B. Then, A is given the public key PK = (g,u,A,H1,H2), where H1 and H2 are
modeled as random oracles.

Query Phase 1 A issues H1, H2, private key, and decryption queries. B responds as follows:

H1 queries: To respond to H1 queries, B maintains a list of tuples < IDi,γi,πi,H1(IDi) > as explained
below. We refer to this list as the H list

1 . When B is given an identity IDi as an input to H1, B first scans
through the H list

1 to see if the input IDi appears in a tuple < IDi,γi,πi,H1(IDi)>. If it does, B responds with
H1(IDi). Otherwise, B picks two random exponents γi,πi ∈ Zp and sets H1(IDi) = (ga)γigπi ∈ G. B adds
the new tuple < IDi,γi,πi,H1(IDi)> to the H list

1 and responds with H1(IDi). Recall that the values {γi} are
information-theoretically hidden to A’s view.

H2 queries: To respond to H2 queries, B maintains a list of tuples <Wi,Qi,µi > as explained below. We
refer to this list as the H list

2 . When B is given values (Wi,Qi), which is in either G2 or GT ×G, as an input
to H2, B first scans through the H list

2 to see if the input (Wi,Qi) appears in a tuple <Wi,Qi,µi >. If it does,
B responds with H2(Wi,Qi) = µi. Otherwise, B picks a random exponent µi ∈ Zp and sets H2(Wi,Qi) = µi.
B adds the new tuple <Wi,Qi,µi > to the H list

2 and responds with H2(Wi,Qi).

Key queries: When B is given an identity IDi ∈ ID as an input to a private key query, B selects a
random exponent r ∈ Zp and (implicitly) sets r̃ = b+ r ∈ Zp. B generates key elements (d0,i,d1,i) as d0,i =
(ga)−r(gb)δ gδ r and d1,i = gbgr. The validity of those elements can be verified as follows:

d0,i = (ga)−r(gb)δ gδ r = gab(g−agδ )b+r = gαur̃, d1,i = gbgr = gr̃.

Next, B refers to the H list
1 to find out the tuple < IDi,γi,πi,H1(IDi) >. (If no tuple exists, B can run the

H1-query process before replying to the key query.) At this moment, B’s goal is to set H2(d0,i,d1,i) = γi.
Thus, if there is a tuple < d0,i,d1,i,γi > in the H list

2 , B can continue the key query process.
In fact, B can make such a (favorable) tuple always exist in the H list

2 as follows: whenever B adds a
new tuple < IDi, γi, πi, H1(IDi) > to the H list

1 , B generates skIDi by choosing a random r, constructing key
elements (d0,i,d1,i) as above, setting H2(d0,i,d1,i) = γi, and adding the tuple < d0,i,d1,i,γi > to the H list

2 .
On the other hand, if H2(d0,i,d1,i) has already be set to µi, then B simply adds a new tuple < IDi, µi, πi,
H1(IDi)> to the H list

1 .
Without loss of generality, let the tuple H2(d0,i,d1,i,d2,i,d3,i) = γi (where γi is from the tuple in the H list

1
above) be in the H list

2 . B generates the element d2,i, using H2(d0,i,d1,i) = γi, as d2,i = (gb)πi+γiδ g(πi+γiδ )r.

9



The validity of d2,i can be verified as follows:

d2,i = (gb)πi+γiδ g(πi+γiδ )r =
(
(ga)γigπi · (g−a+δ )γi

)b+r
=
(
H1(IDi)uH2(d0,i,d1,i)

)r̃
.

Then, B responds with a private key skIDi = (d0,i,d1,i,d2,i) for the requested identity IDi.

Decryption queries: When B is given a ciphertext CTi = (C0,i,C1,i,C2,i) (as well as an identity IDi) as
an input to a decryption query, B first refers to the H list

1 to find out the tuple < IDi,γi,πi,H1(IDi) >. (If no
tuple exists, B can run the H1-query process in advance as explained above.) Next, B generates a private key
skIDi = (d0,i,d1,i,d2,i) for the identity IDi or uses the private key skIDi that was generated before. B performs
the normal decryption using skIDi and replies with the resulting message.

Challenge A outputs two messages M0,M1 ∈ GT and an identity ID∗ on which it wishes to be challenged.
If necessary, B runs the algorithm for responding to H1 query on ID∗. Let < ID∗,γ∗,π∗,H1(ID

∗) > be the
tuple in the H list

1 regarding the challenged identity ID∗. Notice that A cannot query a private key for ID∗.
This means that the exponent γ∗ in the tuple is not revealed to A (with overwhelming probability) until the
Challenge phase.
B picks a random bit σ ∈ {0,1} and sets C∗0 = Mσ T and C∗1 = gc. It sets H2(C∗0 ,C

∗
1) = γ∗. If the

tuple < C∗0 ,C
∗
1 ,γ j > are already in the H list

2 and γ j ̸= γ∗, then B aborts. (We refer to this event as abort1.)
Otherwise, B generates the ciphertext CT∗= (C∗0 ,C

∗
1 ,C

∗
2) =

(
Mσ T , gc, (gc)π∗+δγ∗). B (implicitly) sets s= c.

The validity of C∗2 can then be verified as follows:

(gc)π∗+δγ∗ =
(
(ga)γ∗gπ∗ · (g−a+δ )γ∗)c

=
(
H1(ID

∗)uH2(C∗0 ,C
∗
1)
)s
.

Query Phase 2A issues more {Hi}i=1,2, private key, and decryption queries. B responds as in Query Phase
1. At this phase, however, there are challenging decryption queries B has to deals with. That happens
when A issues valid ciphertexts such as CTi = (C0,i,C∗1 ,C2,i), where C∗1 is the same as in CT∗. Here, we
call a ciphertext CT = (C0,C1,C2) under an identity ID valid if the pairing test upon decryption holds, i.e.,
e
(
H1(ID)uH2(C0,C1), C1

)
= e(C2,g). In such a case, B should decrypt it correctly using the value e(g,g)abc,

which is infeasible. More precisely, there are four cases:
[Case 1.] CTi = (C∗0 ,C

∗
1 ,C2,i) on ID∗, where C2,i ̸= C∗2 . As the ciphertext is valid, it passes the pairing

test upon decryption. Thus, B has that e
(
H1(ID

∗)uH2(C∗0 ,C
∗
1), C∗1

)
= e(C2,i,g). Since C∗1 = gc, the equation

shows C2,i = (H1(ID
∗)uH2(C∗0 ,C

∗
1))c, which must be the same as C∗2 . This means that such a valid ciphertext in

the form of (C∗0 ,C
∗
1 ,C2,i) such that C2,i ̸=C∗2 is not possible.

[Case 2.] CTi =(C0,i,C∗1 ,C
∗
2) on ID∗, where C0,i ̸=C∗0 . This case can happen only if B sets H2(C0,i,C∗1)=

γ∗ ∈Zp. In this case, B aborts. (We refer to this event as abort2.) This is because otherwise, i.e., B returns⊥
as the decryption result and this gives the information of γ∗ (as tagk) in the skID∗ . γ∗ (as tag∗c) is already used
for the challenge ciphertext, which gives the knowledge that γ∗ is used two times in both skID∗ and CT∗.
Naturally, such a unusual leakage can cause A to distinguish between the simulation and the real attack.

[Case 3.] CTi = (C0,i,C∗1 ,C2,i) on ID∗, where C0,i ̸=C∗0 and C2,i ̸=C∗2 . As the ciphertext is valid, B has
that e

(
H1(ID

∗)uH2(C0,i,C∗1), C∗1
)
= e(C2,i,g). Since C∗1 = gc, the equation shows C2,i = (H1(ID

∗)uH2(C0,i,C∗1))c.
Also, since C2,i ̸=C∗2 , we know that H2(C0,i,C∗1) ̸= γ∗. Then, B has that

C2,i =
(
H1(ID

∗)uH2(C0,i,C∗1)
)s

=
(
(ga)γ∗gπ∗ · (g−a+δ )H2(C0,i,C∗1)

)c

= (gac)γ∗−H2(C0,i,C∗1)(gc)π∗+δH2(C0,i,C∗1),

in which case B can obtain gac by computing
[
C2,i/(C∗1)

π∗+δH2(C0,i,C∗1)
]1/(γ∗−H2(C0,i,C∗1)). It follows that B can

solve the given DBDH problem immediately.
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[Case 4.] CTi = (C0,i,C∗1 ,C2,i) on ID(̸= ID∗). Let < ID,γ,π,H1(ID)> be the tuple in the H list
1 regarding

ID. From the pairing test equation, B has that e
(
H1(ID)uH2(C0,i,C∗1), C∗1

)
= e(C2,i,g). Since C∗1 = gc, the

equation shows that C2,i = (H1(ID)uH2(C0,i,C∗1))c. If H2(C0,i,C∗1) = γ , B outputs ⊥ as the result of normal
decryption.2 Otherwise, B has that

C2,i =
(
H1(ID)uH2(C0,i,C∗1)

)s
=
(
(ga)γgπ · (g−a+δ )H2(C0,i,C∗1)

)c

= (gac)γ−H2(C0,i,C∗1)(gc)π+δH2(C0,i,C∗1),

in which case B can obtain gac by computing
[
C2,i/(C∗1)

π+δH2(C0,i,C∗1)
]1/(γ−H2(C0,i,C∗1)). It follows that B can

solve the given DBDH problem immediately.

GuessA outputs a guess σ ′ ∈ {0,1}. B then outputs its guess σ ′ ∈ {0,1} as the solution to the given DBDH
instance.

Analysis. The dominated additional computation that B requires is both the exponentiations for handling
qK private key queries and the pairings for handling qD decryption queries. Thus, the inequality about
computational time can easily be obtained.

Next, we assume Cases 3 and 4 described in the Query Phase 2 do not happen (which would rather
increase B’s success probability to solve the DBDH problem). To analyze B’s advantage, we first prove the
following claim that argues that the probability that B aborts in the simulation is at most qH2

p + qD
p , which is

negligible.

Claim 1: Pr[abort] = Pr[abort1∨abort2] in the simulation is at most qH2
p + qD

p .

Proof. The event abort1 can occur if the value (Mσ T,gc) already exists in the H list
2 as the input value queried

by A. There are p possibilities in picking a value as an input to the H2 query, because it is determined by a
randomly chosen exponent c ∈ Zp. This gives the probability at most qH2/p that the event abort1 happens.
(If we consider the possible cases from the selection of a value in GT , then the probability will be much
smaller.)

Regarding the event abort2, the event happens if B sets H2(C0,i,C∗1) = γ∗ for any queried ciphertext
CTi = (C0,i,C∗1 ,C

∗
2) on ID∗, where C0,i ̸=C∗0 . Here, the value γ∗ is the pre-determined value and the output

of H2 query is just set by choosing a random value in Zp. Thus, the probability that the event abort2 happens
is at most 1/p. Since B has to handle qD decryption queries, the probability that the event abort2 occurs
throughout the simulation becomes at most qD/p.

We know that all the events that B aborts are relatively independent. As a result, the probability
Pr[abort1∨abort2] in the simulation is at most qH2

p + qD
p . �

From Claim 1, we can see that the probability that B aborts in the simulation is negligible (under the
appropriate selection of security parameters). We argue that as long as B does not abort, B provides A with
a perfect simulation whose distribution is identical to the distribution in a real attack. This is because (1)
the simulation of H1 and H2 oracles are obviously perfect as the output values are determined by randomly
chosen values in G and Zp, respectively, and (2) the simulation of private key oracles is also perfect as each
key on an identity IDi is generated with a randomly chosen exponent r ∈ Zp such that r̃ = b+ r, and (3) the
simulation of decryption oracles is also perfect as it is done via normal decryption using private keys, and
(4) the values {γi} in the H list

1 are uniformly distributed and information-theoretically hidden fromA’s view
until private keys and CT∗ are given to A.

2We do not need to consider any event that B aborts in the case of ID(̸= ID∗), since the distribution of tag values depending on
the H2(·) random oracle is statistically identical to that in the real attack.
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As long as B does not abort in the simulation, B can use theA’s advantage to break the chosen ciphertext
security straightforwardly. This can be checked as follows: if T = e(g,g)abc, then the challenge ciphertext
CT∗ is a valid encryption of Mσ under ID∗. Otherwise, i.e., if T is random in GT , then Mσ T is independent
of the bit σ . Thus, if A distinguishes between the two ciphertexts, then B can distinguish between the two
possible values of T with the same advantage. Therefore, unless B does not abort, we have the following
result:

AdvCCA
IBE ,A(k)≤

(
1− qH2

p
− qD

p

)
·AdvDBDH

G,B (k),

as required. This concludes the proof of Theorem 1. �

3.3 Hash-BDH and BDH Construction

Our IBE system can be slightly modified to encrypt arbitrary n-bit message strings such as M ∈ {0,1}n. To
do this, we consider a family of hash functions of the form H3 : GT →{0,1}n (where n ∈ Z+ is determined
by the security parameter). A resultant ciphertext is then computed as C0 = H3(As)⊕M, C1 = gs, and
C3 =

(
H1(ID)utagc

)s where tagc = H2(C0,C1). Decryption can be performed by hashing the pairing value in
the equation (2) and XOR-ing the result with C0.

The security of the modified system can be proven in two flavors: if H3 is a random selection of the (ap-
propriate) hash family, then the modified system is IND-ID-CCA secure under the Hash-BDH [10] assump-
tion and the security reduction becomes tight. The proof is almost identical to that of Theorem 1. On the
other hand, if H3 is modeled as a random oracle, then the modified system is IND-ID-CCA secure under the
BDH [15] assumption and the security loss becomes O(qH3). In this case, B maintains additional H list

3 with
respect to H3, and the challenge ciphertext is constructed as CT∗ = (C∗0 = R,C∗1 = gc,C∗2 =

(
H1(ID

∗)utag∗c
)c
)

where R is a randomly chosen string in {0,1}n and tag∗c = H2(C∗0 ,C
∗
1). C∗0 is not relevant to any of two

challenged messages, and B just wants to employ the adversary’s advantage to issue the correct answer of a
BDH problem as the input of H3 query. At the end of the simulation, B selects a random input value among
tuples in the H list

3 as its answer to the BDH problem, which causes the security loss of O(qH3). We notice
that a similar proof strategy was already used to prove IND-ID-CPA security of ‘BasicIdent’ in [15]. The
rest of the proof can be completed based on the proof of the BasicIdent as well as Theorem 1.

4 Extension for Arbitrary length Messages

In this section we extend our IBE system to deal with arbitrary length messages. Our extended system is
based on the well-known framework using the key encapsulation mechanism (KEM) and data encapsulation
mechanism (DEM). Identity-Based KEM (IBKEM) encrypts a symmetric key under which an arbitrarily
long message is encrypted under a symmetric-key cipher DEM. Usually, to achieve CCA security of an
entire IBE system, both IBKEM and DEM should be CCA-secure respectively [8] or DEM should be an
authenticated symmetric-key encryption [42]. However, a slight difference resides in the part of DEM of
our extended IBE system where it is sufficient for DEM to be a one-time symmetric-key encryption secure
against passive attacks [28]. In practice, such a weak DEM can easily be instantiated with a block cipher
using a so-called ‘counter mode’. The reason for the difference is that our IBE system is able to provide
a consistency check (using pairing) to see if ciphertext elements including the DEM part are the same as
what an encryptor constructed. We remark that a similar result concerning a weak DEM was achieved in [8]
where BF-IBKEM is converted into a CCA-secure IBE system using the Fujisaki-Okamoto transform [30].
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4.1 Construction

Setup(k): As in the previous IBE system. Additionally, the setup algorithm chooses a one-time symmetric-
key encryption scheme SKE = (E ,D). The public parameters PP and the master secret key msk are gener-
ated as

PP=
(
g,u,A,H1,H2,SKE

)
, msk= α.

KeyGen(msk, PP, ID): As in the previous IBE system.

Encrypt(PP, ID, M): To encrypt an arbitrary length message M ∈ {0,1}∗ under an identity ID ∈ ID, the
encryption algorithm does as follows:

1. Pick a random exponent s ∈ Zp.

2. Compute a key K = As ∈GT .

3. Compute C0 = EK(M), C1 = gs, and tagc = H2(C0,C1) ∈ Zp.

4. Compute C2 =
(
H1(ID)utagc

)s.

5. Output a ciphertext CT= (C0,C1,C2) ∈ {0,1}|M|×G2.

Decrypt(PP, CT, skID): To decrypt a ciphertext CT=(C0,C1,C2) using a private key skID=(d0,d1,d2, tagk)
for ID, the decryption algorithm does as follows:

1. Compute tagc = H2(C0,C1) and check if e
(
H1(ID)utagc , C1

) ?
= e(C2,g).

2. If the equality above fails, output ⊥.

3. Otherwise, check if tagc
?
= tagk.

4. If the equality above holds, output ⊥.

5. Otherwise, compute a key

K = e(d0,C1) ·

(
e(C2,d1)

e(d2,C1)

) −1
tagc−tagk

.

6. Output a message M =DK(C0).

Remark. The efficiency of the IBE system above is almost the same as that in the previous section. No-
tice that the KEM part in a ciphertext is not expanded and the DEM part C0 = EK(M) is also hashed and
embedded into the ciphertext element C3. As a result, we can check the consistency of ciphertext elements
including the DEM part and therefore avoid relying on an authenticated encryption scheme with the help of a
secure message authentication code (MAC). In practice, a one-time symmetric-key encryption scheme SKE
with key-space K ∈ {0,1}k can be implemented by AES with a counter mode, and a real symmetric key for
E can be obtained via a key-derivation function [28] that maps an element from GT into 2k-bit strings.

13



4.2 Security

Theorem 2. Let H1 and H2 be modeled as random oracles. Suppose the (t ′,ε ′)-DBDH assumption holds in
G and the one-time symmetric-key encryption scheme SKE is (t ′′,ε ′′)-secure against passive attacks. Then
our IBE system is (t,ε ,qK ,qD)-IND-ID-CCA secure, where

ε ≤
(

1− qH2

p
− qD

p

)
· (ε ′+ ε ′′),

t ≥ t ′+ t ′′−O(qK · te)−O(qD · (tp + tsymD)).

Here, te is the cost of an exponentiation in G, tp is the cost of a pairing computation in G, and tsymD is the
cost of symmetric-key decryption in the SKE .

Proof. The proof of Theorem 2 is almost similar to that of Theorem 1. For clarity, we reconstruct the entire
proof by creating a sequence of hybrid games. If necessary, we will adapt several notations that appeared in
the proof of Theorem 1 without explicit explanation.

Let A be an adversary on the chosen ciphertext security of our IBE system above. We will consider two
games, Game 0 and Game 1, each game interacting withA. Let Xi (for i = 0,1) be the event that in Game i,
A wins the game.

Game 0. The game is a real attack game of chosen ciphertext security, so that (for a security parameter k)
we have

|Pr[X0]−1/2|= AdvCCA
IBE ,A(k). (3)

Game 1. The game is the same as Game 0, except that the value K∗ used for a symmetric key in CT∗ is
replaced by a random value K ∈GT . Unless the events abort1 and abort2 (defined in the proof of Theorem
1) occur in Game 1, we have

|Pr[X1]−Pr[X0]|= AdvDBDH
G,B1

(k), (4)

where B1 is an algorithm whose goal is to solve a DBDH problem.
The proof of (4) is almost the same as that of Theorem 1. On an input (g,ga,gb,gc,T ), we describe

how B1 constructs CT∗: when A outputs two messages M0,M1 ∈ {0,1}∗ of the same length and an identity
ID∗, B1 picks a random bit σ ∈ {0,1}. Let < ID∗,γ∗,π∗,H1(ID

∗)> be the tuple in the H list
1 regarding ID∗.

B1 sets C∗0 = ET (Mσ ), C∗1 = gc, and H2(C∗0 ,C
∗
1) = γ∗. If the tuple < C∗0 ,C

∗
1 ,γ j > are already in the H list

2
and γ j ̸= γ∗, then B1 aborts. (In the proof of Theorem 1 (and thus Game 1 above), the event has already
been taken into consideration under the event abort1.) Otherwise, the challenge ciphertext is generated as
CT∗ = (C∗0 ,C

∗
1 ,C

∗
2) =

(
ET (Mσ ), gc, (gc)π∗+δγ∗). Other slight differences reside in handling decryption and

H2 queries. Answering decryption queries needs to run D of SKE , and inputs (Wi,Qi) to H2 queries are in
either G2 or {0,1}∗×G (instead of G2 or GT ×G). However, the way of answering H2 queries is the same
as in the proof of Theorem 1. Thus, the probability that the event abort1 happens in proving the equation
(4) is the same as that in Theorem 1.

Finally, in Game 1 we have the following relation that directly comes from the definition of ciphertext
indistinguishability for SKE unless the event abort2 occur in Game 1:

|Pr[X1]−1/2|= AdvOT-IND
SKE ,B2

(k), (5)

where B2 is an algorithm whose goal is to break SKE .
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Table 1: Security assumptions and reductions for IBE systems

Assumption Security Security reduction
Asymptotic bound Concrete loss♠

BF DBDH IND-ID-CCA qKqH > 250

BB1
♡ DBDH IND-ID-CCA qH 250

SK q-DBDHI IND-ID-CCA q2
H > 250

Ours DBDH IND-ID-CCA 1 1

qH : the number of (random-oracle) hash queries; qK : the number of private key queries;
♠: estimated with qH = 250 and qK = 225; q≈ qH +qK ;
♡: we borrow the CCA-secure variant of BB1 system from [19];

One thing we want to clarify is that B2 does not need to deal with any decryption query on the one-time
symmetric-key encryption scheme SKE . To prove the equation (5), B2 relays the two messages M0,M1 ∈
{0,1}∗ to its challenger and is given a challenge ciphertext EK∗(Mσ ) for a random (unknown) key K∗ ∈GT .
B2 then reconstructs its challenge ciphertext CT∗ as explained above and gives it toA. WheneverA requests
any decryption query on CTi, B2 can use private keys (generated by B2) to perform normal decryption. The
only troublesome queries happen when A issues decryption queries on valid CTi = (C0,i,C∗1 ,C2,i), in which
case B2 would have to decrypt CTi with the unknown symmetric-key K∗. Fortunately, those troublesome
queries can be handled as in Query Phase 2 of Theorem 1. More precisely, there are four cases:

[Case 1.] CTi = (C∗0 ,C
∗
1 ,C2,i) on ID∗, where C2,i ̸= C∗2 . As before, it is impossible to generate a valid

ciphertext (C∗0 ,C
∗
1 ,C2,i) such that C2,i ̸=C∗2 .

[Case 2.] CTi = (C0,i,C∗1 ,C
∗
2) on ID∗, where C0,i ̸=C∗0 . This happens only if B sets H2(C0,i,C∗1) = tag∗c ∈

Zp. In this case, B aborts. (This event has already been referred to as abort2.)3

[Case 3.] CTi = (C0,i,C∗1 ,C2,i) on ID∗, where C0,i ̸= C∗0 and C2,i ̸= C∗2 . We have shown that the A’s
ability to issue such a valid ciphertext can be used to compute a computational Diffie-Hellman (CDH) value
in the previous Query Phase 2.

[Case 4.] CTi = (C0,i,C∗1 ,C2,i) on ID(̸= ID∗). B generates skID and performs normal decryption. If
H2(C0,i,C∗1) = tagk where tagk is from skID, then B outputs ⊥ as the result of normal decryption. Other-
wise, we also have shown that the A’s ability to issue such a valid ciphertext can be used to compute a
computational Diffie-Hellman (CDH) value in the previous Query Phase 2.

Analysis. It is easy to see that time complexity is obviously achieved as argued in Theorem 2. As long as
the events abort1 and abort2 do not happen throughout the simulation, the equations (4) and (5) hold. As
a result, by putting the results of all relations (3), (4), and (5) above together, we gain a bound on the A’s
advantage as follows:

AdvCCA
IBE ,A(k)≤

(
1− qH2

p
− qD

p

)
·
(
AdvDBDH

G,B1
(k)+AdvOT-IND

SKE ,B2
(k)
)
,

which concludes the proof of Theorem 2. �
3Notice that B can handle this ciphertext if the one-time symmetric-key encryption scheme SKE is CCA-secure. However, we

simply consider SKE as being secure against passive attacks by adding qD/p into the probability that B2 aborts.
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Table 2: Representation sizes and estimated calculation times for various algebraic operations

Representation sizes (bits) Relative timings
Zp G Ĝ GT G Ĝ GT

E♣f E♢ E f E H♡ E f E P♭ P♠r
SS / 80 160 512 512 1024 2 10 2 10 10 2 10 100 120

MNT / 80 160 171 1026 1026 0.2 1 8 40 40 2 10 100 120
MNT / 128 256 512 3072 3072 3 15 100 500 500 30 150 1500 1800

♣: fix-base exponentiation; ♢: general exponentiation; ♡: hashing; ♭: single pairing; ♠: ration of pairings;

5 Comparison to previous IBE systems

In this section we compare our IBE system with the previous practical IBE systems such as BF [15], SK
[46, 24, 25], and the variant4 of BB1 [19] in terms of security and efficiency. For more detailed comparison
between the three previous ones, we refer to Boyen’s work [19]. Following Bellare and Rogaway [6, 42],
we estimate the number of (random oracle) hash queries as qH = 250 and the number of private key queries
as qK = 225. For a fair comparison we consider the decisional type of security assumptions in each system,
so that BF and BB1 systems are based on the Decisional BDH assumption and the SK system relies on
the q-Decisional Bilinear Diffie-Hellman Inversion (DBDHI) assumption5 [10] for q ≈ qH + qK . We also
refer to [31] for correcting a flawed security analysis of BF system. Table 1 presents the comparison result
with respect to security assumptions and reductions, which was also addressed by [19, 42]. The ‘asymptotic
bound’ in the security reduction means that the advantage of breaking the CCA security of an IBE system
is larger than that of solving a security assumption in comparable time, by a factor of each bound. In other
words, the larger the bound is, the bigger the security loss (i.e., gap) is between an IBE system and a security
assumption. In Table 1, a concrete bound at each IBE system is estimated when considering the reasonable
number of adversarial queries qH and qK as 250 and 225, respectively. The respective bound tells us that,
roughly speaking,

AdvCCA
IBE ,A ≤ (bound) ·AdvAssumption

B (6)

for algorithms A and B. When the bound is quite large, we have to choose a larger security parameter k
for a security assumption so that we can make (bound) ·AdvAssumption

B small and consequently AdvCCA
IBE ,A

small enough at a desired security level. This is the reason why we have to choose a larger system security
parameter than an idealized security level when a large security loss arises at reduction. In contrast to the
BF, SK, and BB1 systems, ours has a tight security reduction to the standard DBDH assumption and thus we
can say that our IBE system is as secure as the DBDH assumption. We notice that security of the previous
three IBE systems as well as ours is all proven in the random oracle model.

When assuming the interactive version of the Gap-BDH assumption 6, BF and BB1 systems can be
modified into their respective KEMs [44, 19] that allow for shorter size of ciphertexts and the asymptotic

4We are not sure that the CCA security proof about the variant is correct because we cannot find any security proof for the
variant. [19] stated that the proof of CCA security was adapted by [10], but in any part of [10] there exists no security proof related
to the variant.

5It is defined from the problem: given (g,gx,gx2
, . . . ,gxq

,T ), decide whether T = e(g,g)1/x or T is random in GT .
6It is defined by the following problem: given (g,ga,gb,gc,O), output e(g,g)abc. Here, the O is a decision oracle that takes as

inputs four arbitrary elements (gx,gy,gz,T ) in G3×GT , outputs 1 if T = e(g,g)xyz and otherwise 0.

16



Table 3: Efficiency comparison between CCA-secure IBE systems for SS curves at 80-bit security level (not
considering security loss)

Curves / security level Overheads (bits) Relative computational costs
Public params. Ciphertext♠ Key extraction Encryption Decryption

BF SS / 80 1024 672 20 114 100
BB1 SS / 80 2560 1184 4 8 124
SK SS / 80 2048 672 2 6 106

Ours SS / 80 2048 1024 28 26 130

♠: considering only KEM part;

bound for BF-KEM is improved to qK . However, the Gap-BDH assumption has been perceived as being
a non-standard one, and we have no way of comparing it with the DBDH assumption in a fair manner.
Also, their corresponding DEMs need authenticated symmetric encryption, which causes a MAC tag to
be included into a ciphertext. Indeed, requiring such an additional tag weakens the merit of the shorter
ciphertexts. For these reasons, we do not consider their KEMs in our efficiency comparison.

Based on the result of Table 1, we give an efficiency comparison between the previous IBE systems and
ours. We consider 80-bit security as a desired security level of IBE systems. As previously mentioned, BF,
SK, and BB1 systems all have concrete security loss of at least 250 so that they must have a larger system
security parameter than 80 bits. Obviously, it will be unfair to straightforwardly compare ours with the
previous systems at the same security level. However, as a warm-up case, we first give a comparison result
when instantiated in supersingular (SS) curves at an 80-bit security level. We notice that our comparison is
based on Boyen’s work [19] that investigates relatively estimated calculation times for various operations
and representation sizes for group elements. Table 2 presents the result (see Table 7 and 8 in [19] for more
details) when considering SS curves at the 80-bit security level and MNT curves at security levels 80 and
128. The numerical results of our comparison are given in Table 3. In doing so, we estimate that the
encryption algorithm in our system requires three fixed-base exponentiations, one hashing H1(ID) for an
identity ID, and one general exponentiation involving H1(ID)

s, which makes relative encryption cost 26.
Upon decryption, such hashing and general exponentiation do not need to be counted as a decryptor is able
to compute H1(ID) for its identity ID beforehand. As discussed in Section 3.1, the decryption algorithm
then needs to compute five fixed-base exponentiations plus 1.2 parings. Table 3 demonstrates that our
system is comparable to the other IBE systems in terms of all efficiency respects, even though the relative
computational costs are slightly more expensive than others. We again emphasize that the comparison above
does not take into account the security losses caused by the security reductions on Table 1.

For a fairer comparison, we try to compensate for such security losses by boosting the security parameter
of the underlying assumptions. There is no general rule of such compensation, but we might be able to use
conjectures that were made by Bellare and Rogaway [7] for advantage functions of various block ciphers.
For instance, the advantage of DES with 128-bit keys was conjectured as (roughly speaking) AdvCPA

AES ≤
c/2128 for some constant c. A similar approach can be made for advantages of IBE systems, so that we
want to make AdvCCA

IBE ,A ≤ c/280 at the 80-bit security level. In that case, equation (6) tells us that we
have to make AdvAssumption

B ≤ c/2130 when considering that the security loss is bounded under 250. For
simplicity, we assume that the reduction bounds in both BF and SK systems are 250 (although they are
much larger than it). Under these assumptions, the actual security parameter must be of 130 bits in size
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Table 4: Efficiency comparison between CCA-secure IBE systems at corrected 80-bit security level

Curves / security level Overheads (bits) Relative computational costs
Public params. Ciphertext♠ Key extraction Encryption Decryption

BF MNT / 128 1024 768 1000 2006 1503
BB1 MNT / 128 4608 1280 200 39 1833
SK MNT / 128 4096 768 100 36 1536

Ours SS / 80 2048 1024 28 26 130

♠: considering only KEM part;

(approximately) to gain the real system security of an IBE system at the desired 80-bit security level. To
accomplish this, we consider that the BF, BB1, and SK systems are instantiated in MNT curves at the 128-bit
security level, whereas ours is based on SS curves at the 80-bit security level as before. Table 4 shows the
efficiency comparison result between CCA-secure IBE systems. We can see that the computational cost in
ours becomes superior to the other systems. In particular, decryption time becomes at least 11 times faster
than the others and encryption time becomes roughly 77 times faster than the BF system.

6 Discussion

6.1 A New Public Key Signature Scheme

According to Naor’s observation [15], any IBE system can be converted into a secure (public key) signature
scheme under the same assumptions. Naturally, we can have a signature scheme based on our IBE system,
the security of which is proven under the DBDH assumption in the random oracle model. However, by
using the private key structure of the IBE system, we can derive a new signature scheme whose security
relies on the Computational Diffie-Hellman (CDH) assumption. Similar derivations have already been used
for obtaining previous signature schemes such as BLS [17], Waters [49], and Boyen and Boneh [11]. One
favorable feature of our derived signature scheme is that ours can have a tight security reduction to the CDH
assumption. Prior to our work, BLS signature can be modified into a scheme that has a tighter security
reduction to the CDH assumption with the help of the Katz-Wang technique [40]. Our signature scheme
gives an alternative method for achieving such a tight security reduction. Another favorable feature is
that ours is secure in the sense of strong unforgeability. Informally, the ‘strong’ means that an adversary
cannot even generate a new signature for a previously-signed message. This notion is stronger than the
standard notion of GMR unforgeability [37] and can be used for providing CCA security [22, 13] of various
encryption schemes.

Construction. We describe our signature scheme for completeness.
Setup(k): Given a security parameter k ∈ Z+, the setup algorithm runs G(k) to obtain a tuple (p,G,GT ,e).
The algorithm selects a random generator g ∈ G, a random group element u ∈ G, and a random exponent
α ∈ Zp. The algorithm sets A = e(g,g)α and chooses two cryptographic hash functions H1 : {0,1}∗→ G
and H2 : {0,1}∗→ Zp. The public key PK (with the description of (p,G,GT ,e)) and the secret key sk are
generated as

PK=
(
g,u,A,H1,H2

)
, sk= α.
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Sign(m,sk,PK): To sign a message m ∈ {0,1}∗, the signing algorithm does the following:

1. Choose a random r ∈ Zp.

2. Compute σ1 = gαur, σ2 = gr, and tag = H2(σ1,σ2) ∈ Zp.

3. Compute σ3 =
(
H1(m)utag

)r.

4. Output a signature σ = (σ1,σ2,σ3) ∈G3.

Verify(PK,m,σ): To verify a signature σ = (σ1,σ2,σ3) on a message m, the verification algorithm does the
following:

1. Compute tag = H2(σ1,σ2).

2. Output accept if the following two equations hold:

e(σ1,g)
?
= A · e(u,σ2), e(σ3,g)

?
= e(H1(m)utag,σ2).

If either check fails, output reject.

The number of pairings in the verification algorithm is four, but it can be reduced to two by the similar
calculation to the one as in the decryption algorithm of the IBE system. To do this, the verification algorithm
picks a random s ∈ Zp and checks if the following equation holds:

e(σ1 ·σ s
3, g) ?

= A · e
(
u ·
(
H1(m)utag)s

, σ2
)
.

We can prove the security of our signature scheme. The proof of Theorem 3 will be given in Appendix
A, along with definitions of public key signature and strong unforgeability.

Theorem 3. Let H1 and H2 be modeled as random oracles. Suppose the (t ′,ε ′)-CDH assumption holds in
G. Then our signature scheme is (t,ε ,qS)-secure in the sense of strong unforgeability under adaptive chosen
message attacks, where

ε ′ =
(

1− 2
p

)
· ε, t ≈ t ′−O(qS · te).

Here, te is the cost of an exponentiation in G.

6.2 On Extension for Hierarchical IBE system

In a hierarchical IBE (HIBE) system [39, 35], a user’s identity ID can be hierarchically scalable by delegating
a private key skID to lower-level identities. For instance, a user with identity ID1 can generate a private
key skID′ for a lower-level identity ID′ = (ID1, ID2) using its own private key skID1 . The reverse of key
generation (i.e., from lower level to upper level) is not possible. This is called the ‘delegation mechanism’.
Using it, an HIBE system can be used for several applications including forward-secure encryption [21] and
conversion for public key broadcast encryption [29]. In a security analysis for HIBE, an adversary is given
the capability to request either private keys generated by a key generation center or ones delegated from
upper-level identities of its choice.
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One may wonder if our IBE system can be extended for supporting hierarchical identities. As far as we
know, the answer is no. Since the private key structure of our system has similarity to that of Waters’ tag-
based dual system encryption [50], it may seem possible that a similar extension method can be applied to
ours. However, the problem occurs because of the ‘locked’ tag values associated with upper-level identities.
In the security analysis of the resulting HIBE system, an adversary requests a private key for an identity
ID = (ID1, . . . , IDℓ). In order to generate a private key skID, we have to use one of the hidden values7 that
are embedded into {Hi(IDi)} for i = 1, . . . , ℓ. Assume we use a hidden value in Hk(IDk) for k ≤ ℓ. In that
case, the tag values corresponding to j for j < k are chosen at random and mapped to H2-query outputs in an
appropriate sense. However, those random tag values are locked and cannot be changed into other different
values. The adversary can still query private keys for upper-level identities, e.g., ID′ = (ID1, . . . , IDk−1),
in which skID′ should be generated using those locked tags. Unfortunately, such a private key cannot be
generated. One solution would be to use hidden values for each level of hierarchy, but instead it can reveal
all hidden tag values that must be secretly reserved for challenge ciphertext. We leave it as an open problem
to build a hierarchical version from our IBE system.
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A Public Key Signature

A.1 Definition of Public Key Signature

A (public key) signature scheme is a tuple of three algorithms PKS = (Setup,Sign,Verify) over a message
spaceM.
Setup(k): takes as input a security parameter k and outputs a public key PK and a secret key sk.
Sign(sk, PK, m): takes a secret key sk, the public key PK, and a message m ∈M as input and returns a
signature σ .
Verify(PK, m, σ ): takes a public key PK, a message m , and a signature σ as input and returns accept or
reject.

We make the standard correctness requirement: for all (PK,sk) output by Setup and all m ∈M, we
have Verify(PK,m,Sign(sk,PK,m)) = accept.

A.2 Security: strong unforgeability

We give the definition of strong unforgeability under adaptive chosen message attacks [11]. This security
notion states that an adversary cannot even generate a new signature for a previously-signed message. The
security is defined via an interaction between an adversary A (i.e., a forger against a signature scheme) and
a challenger C:
Setup: C runs the setup algorithm to obtain a pair (PK,sk). It gives PK to A and keeps sk secret.
Query Phase : A issues signature queries on messages {mi} that can be adaptively chosen, depending on
previous signatures and messages. Using sk, C runs the signing algorithm for each message and returns a
resulting signature as a response.
Output : A outputs a valid signature σ∗ and a message m∗ such that: (1) Verify(PK,m∗,σ∗) = accept, and
(2) (m∗,σ∗) /∈ Σ, where Σ is the set of pairs (mi,σi) such that σi was the response to a signature query.

The advantage of an adversary A that breaks the strong unforgeability of a signature scheme PKS is
defined as

Advsuf
PKS,A(k) = Pr

[
A→ (m∗,σ∗) : Verify(PK,m∗,σ∗) = accept

∧
(m∗,σ∗) /∈ Σ

]
.

Definition 4. We say that signature schemePKS is (t,ε,qS)-secure in the sense of strong unforgeability if no
adversary that runs in time at most t and issues at most qS signature queries breaks the strong unforgeability
with advantage at most ε .

A.3 CDH assumption

The Computational Diffie-Hellman (CDH) Problem: The well-known CDH problem is defined as fol-
lows: given (g,ga,gb) ∈G3 as input, output gab. We say that an algorithm A has advantage AdvCDH

G,A = ε in
solving the CDH problem in G if AdvCDH

G,A = Pr
[
A(g,ga,gb) = gab

]
, where the probability is taken over the

random choice of a, b ∈ Zp and the random bits used by A.
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Definition 5. We say that the (t,ε)-CDH assumption holds in G if for any polynomial time adversaryA that
runs in time at most t in solving the CDH problem in G, we have that AdvCDH

G,A < ε .

A.4 Proof of Theorem 3

Proof. Suppose that there exists an adversary A which can break the strong unforgeability of our signature
scheme. We can then build an algorithm B which uses A to solve a CDH problem in G. On input (g, ga,
gb), B tries to output gab. B interacts with A as follows.

Setup B selects a random element δ ∈ Zp and sets u = g−agδ and A = e(ga,gb). Note that α = ab ∈ Zp,
which is unknown to B. ThenA is given the public key PK= (g,u,A,H1,H2), where H1 and H2 are modeled
as random oracles.

Query Phase A issues {Hi}i=1,2 and signature queries. B responds as follows:

H1 queries: To respond to H1 queries, B maintains a list of tuples < mi,γi,πi,H1(mi) > as explained
below. We refer to this list as the H list

1 . When B is given a message mi ∈ {0,1}∗ as an input to H1, B first
scans through the H list

1 to see if the input mi appears in a tuple < mi,γi,πi,H1(mi)>. If it does, B responds
with H1(mi). Otherwise, B picks two random exponents γi,πi ∈ Zp and sets H1(mi) = (ga)γigπi ∈G. B adds
the new tuple < mi,γi,πi,H1(mi) > to the H list

1 and responds with H1(mi). Recall that the values {γi} are
information-theoretically hidden to A’s view.

H2 queries: To respond to H2 queries, B maintains a list of tuples <Wi,Qi,µi > as explained below. We
refer to this list as the H list

2 . When B is given values (Wi,Qi)∈G2 as an input to H2, B first scans through the
H list

2 to see if the input (Wi,Qi) appears in a tuple <Wi,Qi,µi >. If it does, B responds with H2(Wi,Qi) = µi.
Otherwise, B picks a random exponent µi ∈Zp and sets H2(Wi,Qi) = µi. B adds the new tuple <Wi,Qi,µi >
to the H list

2 and responds with H2(Wi,Qi).

Signature queries: When B is given a message mi ∈ {0,1}∗ as an input to a signature query, B selects
a random exponent r ∈ Zp and (implicitly) sets r̃ = b+ r ∈ Zp. B computes σ1,i = (ga)−r(gb)δ gδ r and
σ2,i = gbgr. The validity of those elements can be verified as follows:

σ1,i = (ga)−r(gb)δ gδ r = gab(g−agδ )b+r = gαur̃, σ2,i = gbgr = gr̃.

Next, B refers to the H list
1 to find out the tuple < mi,γi,πi,H1(mi) >. (If no tuple exists, B can run the H1-

query process before replying to the signature query.) At this moment, B’s goal is to set H2(σ1,i,σ2,i) = γi.
Thus, if there is a tuple < σ1,i,σ2,i,γi > in the H list

2 , B can continue the signature query process. As in the
proof of Theorem 1, B can make such a (favorable) tuple always exist in the H list

2 as follows: whenever
B adds a new tuple < mi, γi, πi, H1(mi) > to the H list

1 , B generates a signature by choosing a random r,
constructing elements (σ1,i,σ2,i) as above, setting H2(σ1,i,σ2,i) = γi, and adding the tuple < σ1,i,σ2,i,γi > to
the H list

2 . On the other hand, if H2(σ1,i,σ2,i) has already be set to µi, then B simply adds a new tuple < mi,
µi, πi, H1(mi)> to the H list

1 .
Without loss of generality, let the tuple H2(σ1,i,σ2,i) = γi (where γi is from the tuple in the H list

1 above)
be in the H list

2 . B generates the element σ3,i as σ3,i = (gb)πi+γiδ g(πi+γiδ )r. The validity of σ3,i can be verified
as follows:

σ3,i = (gb)πi+γiδ g(πi+γiδ )r =
(
(ga)γigπi · (g−a+δ )γi

)b+r
=
(
H1(mi)uH2(σ1,i,σ2,i)

)r̃
.

Then, B responds with a signature σi = (σ1,i,σ2,i,σ3,i) for the requested message mi.
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Output At this moment, A outputs a valid forgery (m∗,σ∗) where σ∗ = (σ∗1 ,σ∗2 ,σ∗3 ). There are two
possible cases:

[Case 1.] m∗ is not queried during the signature queries. B refers to the H list
1 and finds the tuple <

m∗,γ∗,π∗,H1(m∗)> and it also refers to the H list
2 to find the tuple < σ∗1 ,σ∗2 ,µ∗ >. If γ∗ = µ∗, then B aborts.

(We refer to this event as abort1.) The probability that the event abort1 happens during the simulation is
at most 1/p, because the exponent γ∗ (regarding m∗) is predetermined and each output corresponding to a
H2 query can map to the γ∗ with probability at most 1/p. If γ∗ ̸= µ∗, we know that H2(σ∗1 ,σ∗2 ) = µ∗ ̸= γ∗.
From the two equality checks in the verification algorithm, B has that for some unknown exponent r̂ ∈ Zp

such that σ∗2 = gr̂:

σ∗1 = gα ·ur̂, σ∗2 = gr̂, σ∗3 =
(
H1(m∗)uµ∗)r̂

.

We know that H1(m∗) = (ga)γ∗gπ∗ and u = g−agδ , which leads to σ∗3 = (ga)(γ
∗−µ∗)r̂g(π

∗+δ )r̂. Thus, B can

obtain the value gar̂ by computing
(
σ∗3 /(σ∗1 )π∗+δ)(γ∗−µ∗)−1

. Next, we know that σ∗1 = gab ·
(
g−agδ)r̂. It

follows that B can obtain gab as σ∗1 ·gar̂/(σ∗1 )δ .

[Case 2.] m∗ is one of queried messages. Say m∗ = mt for some t ∈ {1, . . . ,qS} and the corresponding
signature (that was generated in Query Phase) is σt = (σ1,t ,σ2,t ,σ3,t). Again, B refers to the H list

1 and
finds the tuple < mt ,γt ,πt ,H1(mt)> and also it refers to the H list

2 to find the two tuples < σ∗1 ,σ∗2 ,µ∗ > and
< σ1,t ,σ2,t ,γt >. Notice that γt regarding mt was used to generate the signature σt . In this case, the two
signatures should be different, i.e., (σ∗1 ,σ∗2 ,σ∗2 ) ̸= (σ1,t ,σ2,t ,σ3,t). We consider all seven possible cases:

[Case 2.1.] σ∗1 ̸= σ1,t , σ∗2 ̸= σ2,t , σ∗3 ̸= σ3,t . If µ∗ = γt , B aborts. (We refer to this event as abort2.)

The probability that the event abort3 happens during the simulation is at most 1/p as in Case 1. Otherwise,
B can compute gab as in Case 1.

[Case 2.2.] σ∗1 ̸= σ1,t , σ∗2 = σ2,t , σ∗3 = σ3,t . In this case, we know from the first equality check in the

verification algorithm that σ∗1 should be of the form gαur̃ for some exponent r̃ ∈Zp such that σ∗2 = gr̃. Also,
we had that σ1,t = gαur̃ so that it should be that σ∗1 = σ1,t , which is a contradiction.

[Case 2.3.] σ∗1 = σ1,t , σ∗2 ̸= σ2,t , σ∗3 = σ3,t . In this case, we know from the first equality check in the

verification algorithm that σ∗1 should be of the form gαur′′ for some exponent r′′ ∈ Zp such that σ∗2 = gr′′ .
Also, we had that σ1,t = gαur̃ for some exponent r̃ ∈ Zp such that σ2,t = gr̃. Since σ∗2 ̸= σ2,t , this means that
r′′ ̸= r̃. Nevertheless, it should be that gαur′′ = gαur̃, which is a contradiction.

[Case 2.4.] σ∗1 = σ1,t , σ∗2 = σ2,t , σ∗3 ̸= σ3,t . In this case, we know that µ∗ = γt . Then, from the second

equality check in the verification algorithm, σ∗3 should be of the form (H(mt)uµ∗)r̃ for some exponent r̃ ∈Zp

such that σ∗2 = gr̃. Also, we had that σ3,t = (H(mt)uγt )r̃. Since µ∗ = γt , it should be that σ∗3 = σ3,t , which is
a contradiction.

[Case 2.5.] σ∗1 = σ1,t , σ∗2 ̸= σ2,t , σ∗3 ̸= σ3,t . This cannot happen because of the same reason for Case

2.3.
[Case 2.6.] σ∗1 ̸= σ1,t , σ∗2 = σ2,t , σ∗3 ̸= σ3,t . This cannot happen because of the same reason for Case

2.2.
[Case 2.7.] σ∗1 ̸= σ1,t , σ∗2 ̸= σ2,t , σ∗3 = σ3,t . If µ∗ = γt , we know from the second equality check in

the verification algorithm that σ∗3 should be of the form
(
H1(mt)uµ∗)r′′ for some exponent r′′ ∈ Zp such

that σ∗2 = gr′′ . Also, we had that σ3,t =
(
H1(mt)uγt

)r̃ for some exponent r̃ ∈ Zp such that σ2,t = gr̃. Since

σ∗2 ̸= σ2,t , this means that r′′ ̸= r̃. Nevertheless, it should be that
(
H1(mt)uµ∗)r′′

=
(
H1(mt)uγt

)r̃, which is a
contradiction. Otherwise, i.e., if µ∗ ̸= γt , then B can compute gab as in Case 1.
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Analysis. The computational time that B requires is dominated by exponentiations for handling qS signature
queries. Thus, the inequality concerning the computational time can easily be obtained. Next, it is easy to
see that the probability that B aborts in the simulation is at most 2

p .
Next, we can see that as long as B does not abort in the simulation, B provides A with a perfect simula-

tion whose distribution is identical to the distribution in a real interaction with a signer. This is because (1)
the simulation of both H1 and H2 oracles are obviously perfect as the output values are chosen by randomly
chosen values in G and Zp, respectively, and (2) the simulation of signature oracles are also perfect as each
signature on a message is generated with a randomly chosen exponent r ∈Zp such that r̃ = b+r, and (3) the
values {γi} in the H list

1 are uniformly distributed and information-theoretically hidden from A’s view until
signatures answered by B are given to A.

It follows that as long as B does not abort in the simulation, B can useA’s advantage to break the strong
unforgeability of our signature scheme straightforwardly. Then, B’s success probability is given as follows:

AdvCDH
G,B (k) =

(
1− 2

p

)
·Advsuf

PKS,A(k),

as required. This concludes the proof of Theorem 3. �
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