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Abstract. SAT solvers are being used more and more in Cryptanalysis,
with mixed results regarding their e�ciency, depending on the structure
of the algorithm they are applied. However, when it comes to integer
factorization, or more specially the RSA problem, SAT solvers prove to
be at least ine�cient. The running times are too long to be compared
with any well known integer factorization algorithm, even when it comes
to small RSA moduli numbers.
The recent work on cold boot attacks has sparkled again the interest on
partial key exposure attacks and in RSA key reconstruction. In our work,
contrary to the lattice-based approach that most of these works use, we
use SAT solvers. For the special case where the public exponent e is equal
to three, we provide a more e�cient modeling of RSA as an instance of a
satis�ability problem, and manage to reconstruct the private key, given
a part of the key, even for public keys of 1024 bits in few seconds.

Keywords: SAT solvers, RSA, partial key exposure, factoring, public-key cryp-
tography

1 Introduction

1.1 Background

The past decades, cryptanalysis has followed the path of Cryptography, evolving
from art to science. Its scope is to analyze cryptographic primitives, allowing the
cryptanalyst to:

� can �nd weaknesses that expose the key or part of it,
� expose part of the encrypted content,
� relations to other content,
� expose the used key,
� forge authenticated content.

Obviously, its history starts more over the same period with cryptography, how-
ever, its methods di�er, as the attacker has to try several ways to �nd a �good�



entry point, that will allow him to �break� the cipher. Therefore, we have an
endless loop, with the introduction of advanced encryption algorithms, for which
more sophisticated attacks are designed and so on.

Satis�ability problem is in the core of Computer Science, as there are links
with very basic problems in Algorithms and Complexity Theory. It is quite
easy to set the problem: �For a given logic formula C, decide whether C is
satis�able�, which in other words means, either �nd values (True/False) for the
logical variables that so that C evaluates to True, or prove that there is no such
combination. The problem, contrary to its statement, is one of the hardest to
solve, actually, the Satis�ability problem is the �rst one to be proved as NP-
complete Cook [4], Levin [24].

SAT solvers are programs that try to solve SAT problems, usually given
in their conjunctive normal form (CNF). One of the �rst steps towards their
e�cient implementations was the introduction of the DPLL algorithm Davis and
Putnam [7]. Afterwards, the introduction of SAT planning Selman and Kautz
[37], WalkSAT algorithm Selman and Kautz [37], phase transition Gent and
Walsh [15], as well the Discrete Lagrangian Method (DLM) Wah et al. [41] gave
the necessary theoretical background to develop the modern SAT solvers, which
have very good performance.

Therefore, SAT solvers started having many applications in a wide range
of areas like model checking, automated theorem proving, software veri�cation,
planning in AI, drug design and testing, test pattern generation, scheduling
and protocol design. Recently, there is a trend towards using SAT solvers in
cryptanalysis, mainly in block ciphers and hash functions with mixed results,
however, the attempt seems quite promising as it gives a new tool to study
the underlying structures of cryptographic primitives, possibly revealing several
unknown vulnerabilities.

1.2 Attack scenario

Most of the cryptographic primitives that are used in modern applications, have
been proved immune to many theoretical attacks. However, the attacker in many
attack scenarios, not only knows which cryptographic primitives are being used,
but has access to the implementation as well, whether this is a device or the
code used, giving him extra weapons to its arsenal.

Let's assume that Alice is encrypting her partition, in order to further protect
her data in an event of a physical security breach. However, for as long as her
PC is working, the partition is mounted and the key is loaded in RAM. The
motivation behind the cold boot attacks in Halderman et al. [17] was to recover
this key from RAM. When the computer is shutting down, RAM is not deleted, it
is corrupted. Gradually, depending on the manufacturer and the medium, either
0s are turning to 1s or 1s are turning to 0s. If the attacker freezes the RAM,
he is able to delay this corruption. Therefore, after rebooting the machine, the
memory dump will contain a corrupted version of its previous state. The quicker
and colder RAM is, the less corrupted this version will be. Thus, the attacker
can �nd many bits of the used key.



In other attack scenarios, the attacker can guess parts of the bits of the
decryption key judging from the power consumption of the processor (power
analysis), from the time it takes to perform encryption/decryption (time anal-
ysis) Brumley and Boneh [3]. Of course, there are even more powerful attacks,
like the direct memory access from FireWire devices that are plugged to exploit
the features of this port.

Under these assumptions, it is realistic to assume that an attacker may have
access to part of the decryption key. Therefore, it is very important that the
following questions must be addressed to:

Question 1. How much information about the decryption key is leaked by a
speci�c implementation?

Question 2. How much information about the decryption key the attacker has
to know for a speci�c algorithm, in order to break it in reasonable time?

Question 3. Can we construct algorithms that are immune to such attacks? The
idea here is that the attacker even if he as access to part of the decryption key,
has to resolve to brute force attack for the rest of the bits.

This work focuses on the second question. More precisely, we address to the
following:

Question 4. How many random bits of the private key d and p, q of RSA are
needed in order to recover the private key?

1.3 Contributions of this paper

The main contributions of this work can be summarized as follows:

� A new, more e�cient CNF model for RSA.
Currently, only two CNF converters exist for integer factorization. Both of
them do not manage to provide any applicable results/solid solution to inte-
ger factorization. The provided modeling might focus on a speci�c instance
of RSA, however, it outperforms current implementations, using simple re-
placements, which decrease drastically the complexity of the problem.

� A logical cryptanalysis of RSA with partial key exposure.
The illustrated attack in this area.

� A novel powerful use of SAT solvers in cryptanalysis.
So far, there are no signi�cant results in the use of SAT solvers in public key
cryptanalysis.

� New attacks with fewer requirements.
The launched attacks, even if the improvement in key size is small, manage
to extract the private key, with fewer bit of keys disclosed in reasonable time.



1.4 Plan of the paper

In this context, the next section provides the necessary background for the ap-
plications of SAT solvers in cryptanalysis, partial key exposure and cold boot
attacks. In the third section we provide a more e�cient modeling of RSA for
SAT solvers, which adds several new equations, that can help solving the prob-
lem more e�ciently, when part of the private key is known. The next section
focuses on experimental results. It is illustrated that SAT solvers are a powerful
tool for public key cryptanalysis, not yet adequately explored. Even if the prob-
lem is very hard, containing several thousands of binary variables and equations,
partial exposure of the private key can lead to full key exposure with the use
of SAT solvers, in reasonable time. Finally, we conclude discussing the results,
the contributions and the drawbacks of this new attack, as well as some remarks
and ideas for future work.

2 Related work

2.1 SAT solvers in cryptanalysis

Massacci was the �rst one to talk about logical cryptanalysis in Massacci [26].
His next step was to provide the logical model of DES and attack it with a
SAT solver Massacci and Marraro [27]. In his point of view, we can describe all
the encryption algorithms as logical problems, which can be converted to the
according system of CNFs. The created system will then be passed to a SAT
solver, which will try to solve it. However, the generated SAT problem in the
case of DES was very hard to be solved, therefore, SAT solvers couldn't break it.
Nonetheless� several interesting results on simpli�ed versions of DES are given.

In the following years, there was an increasing interest in SAT problems, as
it managed to solve many industrial problems. This resulted to the development
of several very good SAT solvers like: Cha�, Glucose, Minisat, Picosat , SAT4J,
SATzilla to name a few implementations.

This development, showed the potential use of SAT solvers as a tool for
cryptanalysis, as at that moment, not only the tools where more e�cient, but
several attempts were made to make SAT solvers more cryptanalytic-friendly
Soos et al. [40]. Soon, several tools were developed using SAT solvers to crypt-
analyze cryptographic primitives like, CryptoMiniSat Soos [38], a SAT solver for
cryptographic problems, or Grain of SALT Soos [39], a toolkit to analyze stream
ciphers both developed by M. Soos.

Having these tools, soon several cryptanalytic attacks using SAT solvers
emerged having di�erent impact on each algorithm they were applied, like Eibach
et al. [10], Golle and Wagner [16], Mironov and Zhang [28], Morawiecki and Sre-
brny [30], Erickson et al. [11], Homsirikamol et al. [20], De et al. [8], Courtois
et al. [6], Mohamed et al. [29], Kamal and Youssef [21].

SAT solvers in cryptanalysis, in once sense, start where Gröebner bases stop.
When a non-linear system of equations is too di�cult to be solved algebraically,
SAT solvers come to the rescue. Hence, if SAT solvers o�er a very quick attack,



there must be an underlying problem in the algebraic system that the cipher
creates, which Gröebner bases cannot trace. After all, SAT solvers, are a �smart�
brute force attack, they evaluate all the possible combinations of values of the
variables, subject to several constraints, trying at each step to eliminate variables
and possible combinations of variable values.

The only references to our knowledge on results regarding applications of
SAT solvers to asymmetric ciphers are Fiorini et al. [14], Dylkeyt et al. [9] and
Faizullin et al. [13]. In the �rst case, the focus is on forging RSA signature, by
proper encoding of the modular root �nding as a SAT problem. In the second case
the researchers try to approximate the number of CNFs that are generated by
the conversion of an integer factorization problem to its analogous SAT problem.
In the last case, the authors reformulate the CNF, reducing the SAT problem
to a minimization problem. The resulting problem can have a more elegant
representation, with fewer variables and disjunctions. Moreover, for the case of
512 bit integer factorization, the authors can determine bits in speci�c positions
with very high probability.

2.2 Partial key exposure and cold boot attacks

Quite ironically, one of the �rst partial key exposures attacks in RSA was made
two of its creators, namely Rivest and Shamir, showing that a RSA moduli
number n can be factored in polynomial time, given 2/3 of the LSBs of one of
its primes Rivest and Shamir [34].

In 1996 Coppersmith presented one of the most signi�cant theorems in alge-
braic cryptanalysis, which is named after him, proving that with proper use of
the LLL algorithm, one can recover in polynomial time, the roots of a polyno-
mial modulo n, even when the factorization of n is not known Coppersmith [5].
One of the corollaries of this theorem is that if n is a RSA moduli, then it can
be factored in polynomial time, given 1/2 of the MSBs of one of its primes.

Two years later, using Coppersmith's theorem, it was proved that if n is a
RSA moduli, then it can be factored in polynomial time, given 1/2 of the LSBs
of one of its primes, or logn

4 bits of d Boneh et al. [2]. In the same work, the
researchers provided many results on how many bits of d need to be known to
factor the RSA modulus n, when e <

√
n. These results were later improved in

2003, by Blömer and May for e < N0.725 in Blömer and May [1].
In Ernst et al. [12], the authors showed that if d has N bits and e has αN

bits, if 0 < δ < 1
2 < α < 1, then given (1− δ)N MSBs of d, n can be factored in

polynomial time if:

−δ ≤ 1

3
+

1

3
α− 1

3

√
4α2 + 2α− 2− ε

In 2008, the researchers focused on cold boot attacks, showing that several
disk encryption systems as BitLocker, FileVault, dm-crypt, and TrueCrypt, store
information in RAM that can be restored with no special hardware, even after
shutdown. The stored keys in the RAM, even if they are partially corrupted, can
be used in order to recover the original key Halderman et al. [17]. Following this



work, in Heninger and Shacham [19], the authors showed that it is possible to
recover the RSA private key given a random fraction of its bits. More precisely:

� 27% of the bits of p, q, d, dp, and dq,
� 42% of the bits of p, q, and d,
� 57% of the bits of p and q.

In another approach of the same scenario, Henecka et al. [18] studied the recon-
struction of the private key when all the bits are known, with some probability
of error.

Improving the results of Heninger and Shacham [19] in Maitra et al. [25], the
researchers use lattices, given only knowledge of random bits in the LSB halves
of the primes, or blocks of bits in the MSB halves of the primes.

Sarkar tried to reconstruct the RSA private key when there is a pattern in
the unknown corrupted version of d, so most of d is considered known and some
contiguous blocks are unknown Sarkar [36]. The complexity of the proposed
algorithm is polynomial in the length of the key, but exponential in the number
of unknown blocks of the key.

In Santanu et al. [35], the researchers reconstruct the private key using partial
information with error that they have for the MSBs of the secret parameters and
going down to the �rst bits.

Recently, two independent works Paterson et al. [31] and Kunihiro et al. [22]
use a code theoretic approach to recover the private key of RSA, given a �noisy�
version of the key. This means that the attacker has access to the private key,
but not all of the bits are correct, some of them contain errors. However, in the
latter work, the authors not only deal with �noisy� keys, but with with erasures
as well, which means that there are �gaps� in the given private key. Therefore
in order to recover it, one has to �ll the gaps with the proper values and detect
and correct the erroneous bits as well.

3 Modeling RSA for SAT solvers

In many partial key exposure attacks of RSA, the main tools that are being used
are lattice based. They mainly focus on trying to formulate modular equations
that have relatively small solutions, so that Coppersmith univariate or bivariate
theorem can be applied. The motivation for this work was that this way some
information that is provided could be �lost�, in the sense of not being used.
However, the bits of n are related to the bits of p and q, as n is their product.
Translating this fact to mathematical formulas will give us a very hard system of
equations, that cannot be solved algebraicaly for RSA numbers of the length of
1024 bits that are used in applications. But what happens if we know the values
of some of the variables? How much is this system simpli�ed?

The questions above are the core of this work. So, to launch the attack �rstly,
we will provide the system of equations linking the bits of the private with the
bits of the public key of RSA. Then we shall replace the parts that are known
to us and try to solve the problem. Since we are working with bits, so the values



are 0 and 1, we may formulate the problem as a satis�ability problem and use
SAT solvers to recover the bit keys.

Even though integer factorization is a subject widely studied, there are few
studies linking it with SAT solvers, the general impression is because it is tested
and has poor performance, just like Genetic Algorithms. In both cases, a brute
force approach is adopted, trying to cover the key space with �random walks�.
Therefore, they are expected to �nd solutions in around

√
n steps.

Currently, there are two implementations which convert the problem of in-
teger factorization to its SAT instance, one by Purdom and Sabry, written in
Haskel Purdom and Sabry [33] and one by Yuen and Bebel, written in Python
Yuen and Bebel [42]. For our experiments, we based our attacks on the output of
the latter. In both implementations, the approach is quite straight forward, take
two numbers, p and q in their binary representation and calculate their product
according to a multiplier, which is based on full adders and half adders. The
result is a representation of each bit of the product with binary operations, that
can be easily transformed to its respective system of CNFs.

For general integer factorization problems this approach is very correct, how-
ever, when addressing to RSA there are several facts that can simplify our system
of CNFs. In the aforementioned implementations the approach was that if n is
N bits, then p can have at most N−1 bits (n is even) and q can have dN/2e bits.
Since in the RSA case p and q are of the same length, the upper N − 1− dN/2e
bits are set to zero, decreasing signi�cantly the number of unknown variables.
Moreover, since both p and q are odd, their last bits are 1, decreasing the number
of variables by 2.

Since in most implementations of RSA, the value of e is standardized taking
the values of 3, 17 and 216 + 1, we focused on the most easy case, of e = 3.
The reason for this selection is that in this approach we can achieve further
simpli�cation. From ed ≡ 1 mod φ(n) we have that:

3d ≡ 1 mod φ(n)

3d = 1 + kφ(n)

but we have that 0 < k < e = 3. It can be easily proved that in this case k is
always equal to 2. Even if this simpli�cation seems rather restrictive, k in most
of the cases, when e is small, should be considered known, as it can be easily
found Heninger and Shacham [19]. Therefore, in our case, we have that:

3d = 1 + 2 (n− (p+ q) + 1)

Moreover, we can approximate d with d̄, where:

d̄ =

⌊
2n+ 1

3

⌋
The approximation is quite good as:

|d̄− d| ≤ kp+ q

e
≤ 2

2
√
n

3
≤ 4

3

√
n



which means that almost half of the upper bits of d are known, by calculating d̄.
Taking into consideration the above, we take the equation:

3d = 2n− 2(p+ q) + 3

convert it to the respective system of CNFs and replace the values of the upper
half bit of d with the correct ones. This means that we add N equations on
the system, no new variables as d solely depends on p and q, and some extra
information from the approximation of d̄. Therefore, the resulting system after
these additions is much easier to be solved by a common SAT solver, compared
to the original one, as it is more aware of the algebraic structure and of the
constraints that exist.

The selection of e to be equal to 3, might seem rather restrictive and beyond
current standards, nevertheless, there are public keys still in use that contain
it Lenstra et al. [23]. Moreover, we have to note that even if in the decryption
we need only d, going according to PKCS #1, using p and q, we signi�cantly
improve the speed of the decryption process. Thus, in implementations, p and
q are stored and used, so the assumption that the attacker may have access to
part of them is valid.

4 Experimental results

4.1 Setting up the environment

The implementation is based on ToughSAT code Yuen and Bebel [42] to make
the �rst equations and then with the proper Python script added the proposed
CNFs. This script is freely available in Patsakis [32]. For solving the SAT prob-

lem, the miniSAT solver was used on a machine with Intel R© Core
TM

i7-2600
CPU at 3.40GHz processor with 16GB of RAM, running on 64 bit Ubuntu
GNU/Linux kernel 3.2.0-29. Several prior experiments showed that miniSAT
was more e�cient in solving this problem, compared to other solvers, like clasp
and CryptoMiniSAT. The parameters that were used for miniSAT were �asymm�
and �rnd-init� to enable asymmetric branching, for shrinking clauses and ran-
domize the initial activity value respectively.

In each experiment, a key of the appropriate size is created using the Python's
default random library. The generated RSA modulo number is then parsed to
TaughSAT to generate the appropriate CNFs and output the relative DIMACS
�le. In this �le we append the aforementioned equations for the upper and lower
bits, as well as the estimation of the MSB half of d. The generated key is then
censored, exposing exactly the requested fraction of the bits of the private key
components (p, q) or (p, q, d), creating the appropriate CNFs to be appended to
the DIMACS �le.

4.2 The results

Table 1 summarizes the space and time requirements for generating the systems
of CNFs. As it is illustrated there, generating the systems of CNFs, was quite



time consuming, most of the times, it takes longer than to solve the actual
problem. Therefore, in order to reduce the time needed for the tests, we reused
keys with di�erent known bits each time. Hence, for each bit size we created
100 keys and for each key we repeated the same experiment 10 times, selecting
a random set of bits known each time for the components and for each of the
percentages of known bits. In order to stop possible bottlenecks, we created a
panic limit of 500 secs, so that if the SAT solver takes more time to solve the
system, then the process gets killed. Totally, 10*100*8*6=48,000 tests were made
for the measurements of this work.

The experiments were made for key sizes from 128 bits up to 1024 bits. 1536
bit keys could be generated, however, the system of CNFs is so big (1.5 GB) that
couldn't be solved by miniSAT. For the case of 2048 bits, the system of CNFs
could not be created by the PC.

In Heninger and Shacham [19] the percentages of random known bits for
the case of primes is 57%, and if we add d in the game, the percentage is 42.
Therefore, our experiments were targeted in same region and below. So for the
case of primes we started from 59% and reached 53%. For the case of the triplet
p, q and d the experiments involve percentages from 44% down to 38%. Further
decrease in the amount of known bits, in most of the tests that were made,
resulted to raising the panic alert too many times, hence these results are not
included in the illustrated results.

RSA key size Space needed Time to create

128 bits 8.5 MB 1.3 secs

256 bits 36 MB 5.5 secs

384 bits 84 MB 13.9 secs

512 bits 150 MB 23.5 secs

768 bits 355 MB 80 secs

1024 bits 650 MB 2 mins 52 secs

1536 bits 1.5 GB 10 mins 14 secs

Table 1: Time and space requirements for creating systems of CNFs.

The results of these tests are illustrated in �gures 1 and 2 and tables 2 and 3.
The times that are shown refer only to the time it takes the SAT solver to solve
the problem. The TaughSAT implementation, as mentioned above, is made in
Python, which in terms of performance, as any other scripting language is not
very e�cient. Moreover, the continuous recursive calls of several functions stall
the process of creating the system of CNFs. Nevertheless, it provides a nice, clean
and easy to use modeling of the factorization problem to be wrapped by other
scripts. Since this implementation cannot be cached to save processing time, the
time for creating the system of CNFs is not considered in the experiments.

The numeric results of these experiments clearly show that SAT solvers can
provide the necessary framework for partial key exposure attacks on RSA. For



% known Average Max Min StDev Panic limit Upper Outliers≈ New average

128

53 0.24 0.32 0.21 0.02 0% 0% 0.24
55 0.24 0.37 0.20 0.03 0% 0% 0.24
57 0.24 0.36 0.19 0.02 0% 0% 0.24
59 0.24 0.40 0.20 0.03 0% 0% 0.24

256

53 1.33 4.49 0.94 0.48 0% 1% 1.29
55 1.32 3.90 0.93 0.55 0% 0% 1.32
57 1.27 5.45 0.94 0.52 0% 1% 1.22
59 1.23 4.36 0.96 0.38 0% 1% 1.20

384

53 8.38 65.69 2.55 17.78 0% 1% 3.18
55 4.55 13.31 2.28 3.7 0% 0% 4.55
57 2.78 4.35 2.24 0.65 0% 0% 2.78
59 2.53 2.96 2.26 0.22 0% 0% 2.53

512

53 8.68 180.97 4.42 17.79 0% 2% 6.68
55 6.16 13.14 4.37 1.76 0% 0% 6.16
57 6.87 38.94 4.31 4.64 0% 2% 6.87
59 8.72 214.98 4.34 20.96 0% 1% 6.64

768

53 29.21 450.81 11.58 57.55 1% 6% 17.12
55 29.16 490.42 10.97 59.56 1% 5% 18.35
57 18.10 53.84 11.17 7.71 1% 0% 18.10
59 22.99 257.36 11.05 30.66 1% 5% 17.08

1024

53 43.38 267.21 20.96 36.91 3% 2% 38.75
55 50.72 379.28 21.28 59.05 5% 4% 39.85
57 41.35 362.92 19.51 39.01 0% 2% 36.26
59 46.42 463.72 22.61 54.81 5% 3% 38.19

Table 2: Partial information for p and q.

Upper outliers are the values above 3 times the average value. Panic limit is set to
500 secs.



% known Average Max Min StDev Panic limit Upper Outliers New average

128

38 0.25 0.50 0.21 0.04 0% 0% 0.25
40 0.24 0.42 0.20 0.03 0% 0% 0.24
42 0.25 0.95 0.20 0.07 0% 1% 0.24
44 0.24 0.54 0.20 0.04 0% 0% 0.24

256

38 1.42 12.55 0.95 1.22 0% 2% 1.28
40 1.29 3.76 0.93 0.41 0% 0% 1.29
42 1.40 19.72 0.97 1.86 0% 1% 1.22
44 1.27 3.31 0.95 0.38 0% 0% 1.27

384

38 4.67 12.38 2.75 2.64 0% 1% 4.12
40 3.79 5.49 2.7 0.9 0% 0% 3.79
42 2.81 3.59 2.31 0.39 0% 0% 2.81
44 2.74 3.7 2.41 0.39 0% 0% 2.74

512

38 6.88 29.28 4.37 3.79 0% 2% 6.49
40 8.68 99.30 4.32 10.93 0% 4% 6.89
42 6.51 33.28 4.18 4.06 0% 2% 5.97
44 7.84 138.24 4.34 13.68 0% 3% 6.10

768

38 26.71 432.53 11.62 48.46 5% 3% 19.34
40 24.54 298.20 10.96 36.30 0% 4% 18.48
42 24.13 376.65 10.94 42.87 2% 3% 17.62
44 21.56 145.45 11.14 20.09 1% 5% 17.51

1024

38 60.41 370.17 19.93 70.22 2% 9% 40.37
40 57.91 442.33 20.48 79.77 2% 7% 37.51
42 46.52 318.06 21.44 47.97 0% 6% 35.46
44 42.60 432.64 21.05 44.84 1% 3% 36.20

Table 3: Partial information for p, q and d.

Upper outliers are the values above 3 times the average value. Panic limit is set to
500 secs.



0 0.1 0.2 0.3

dpq-38

dpq-40

dpq-42

dpq-44

pq-53

pq-55

pq-57

pq-59

0.25

0.24

0.24

0.24

0.24

0.24

0.24

0.24

Time to solve (in secs)

P
er
ce
n
t
o
f
k
n
ow

n
b
it
s

(a) RSA key size 128 bits
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(c) RSA key size 384 bits
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(d) RSA key size 512 bits
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(e) RSA key size 768 bits
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(f) RSA key size 1024 bits

Fig. 1: Recovering private key of RSA having partial information about the pri-
vate key.
The illustrated time, is the average time without the outliers and the experiments

that reached the panic limit.
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Fig. 2: Summary of the results for all bit sizes.
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the case of 1024 bits, with only 38% of the bits of p, q and d known, 40secs to
�nd the key is a very good timing for practical applications. As expected, for
RSA keys of 1024 bits, we meet the most measurements which either reach the
panic limit, or belong to the upper outliers.

4.3 Discussion

Surprisingly, after discarding the outliers, most of the means values are very
close independently of the key size, showing in one sense that these problems
are moreover of the same di�culty. As expected, in most cases, the more the
information is disclosed, the less time is needed to �nd the key. However, the
di�erence is not so big in many cases.

From Figure 2, it is quite clear that 50% percent increase in the size of the
integers to be factored, results to doubling the expected time. Therefore, we
can infer that the attack behaves exponentially to the key length, however, for
key-sizes up to 1024 bits, the average elapsed time is acceptable for practical
attacks.

The time needed to generate the systems of equations as well as the space
needed to store them, is multiplied by a factor round 3 and 4 with every 50%
increase of the key size, showing again an exponential nature.

It is worth to note here, that for several cases of the experiments which
reached the panic limit, we stored the DIMACS �le to process it later without
the time limit. Many of these systems were solved in less than 30mins, while
there where others, needing more than 1 hour to be solved. This fact shows that
even if the problem is very demanding in many cases it can be solved.

5 Conclusions

The main aim of this research was to show that SAT solvers can be a useful tool in
cryptanalyst's arsenal for the case of RSA, by providing a set of proof of concept
attacks, therefore, the implementations were not fully optimized. Nonetheless,
the experimental results not only show that such attacks are possible, something
that wasn't studied so far, but they are very powerful as well.

5.1 Limitations

Even if the proposed model, provides real-world attacks within reasonable time
frame, there are three main drawbacks, which mainly stem from the implemen-
tation of the attack and not from its nature:

Time: In the attack, each time we have to construct the CNFs from the begging
and then parse them to the SAT solver. For normal keys, eg 1024 bits, this cat
take some minutes. However, this part could be cached, and the appropriate
values would be changed on each use.



Space: The proposal is quite �greedy� in terms of space, as the CNFs that are
produced for the equations are very lengthy. For example for the case of 1024
bit keys to a system of equations around 700MB.

Memory: In order to create the CNFs for 1024 bit keys, 4GB of RAM are not
enough.

Obviously, the attack can be extended for other e as well, since as discussed
before, the value of k can be considered most of the times as known, or to be
selected from a small set, as in most practical applications the public exponent
is very low. The latter could result to an unsatis�able problem if the value of k
correctly selected, however, this has not yet been tested.

Comparing the time to the results of Heninger and Shacham [19], the pro-
posed reconstruction is not so e�cient. Nevertheless, this is the �rst such ap-
proach for SAT solvers in this �eld and the time is at least within the reasonable
bounds of several seconds. As previously discussed, the main delay is not the ac-
tual attack, but the conversion of the problem to its SAT instance. The current
implementation does not support caching. This means that every time that we
want to launch the attack, we have to generate the problem from scratch and
not change the values in speci�c positions, drastically increasing the performance
of the procedure. Moreover, the creation of the DIMACS �le was made using
Python, which is a scripting language, hence, the use of C or another language
could further speedup the process and decrease the memory needs enabling us
to test longer keys.

Finally, we have to notice that due to the nature of SAT solvers, they cannot
stop when for example they have successfully recovered a part of the LSBs or
MSBs of the key in order to use Coppersmith's theorem and recover the whole
key, something that will of course boost their e�ciency, but they have to �nd
the values of all the rest variables. On this light, their timings are rather fast
and show that further improvements can be achieved.

5.2 Future work

Based on this work, the main things that have to be studied in the future are
the following:

� Extend the results for other public exponents e.
� Improve the current code for
• faster generation of the systems of equations,
• better CNF conversion, so that the systems are smaller.

� Try to decrease even more the number of the random known bits.
� SAT solvers
• Probably �ne tuning the parameters of miniSAT could result to faster
attacks.

• Test other SAT solvers. Even though other SAT solvers, which generally
outperform miniSAT were tested, miniSAT proved to be faster. However
testing with other solvers and parameters could signi�cantly improve the
performance of the illustrated attacks.
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