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Abstract. In this paper we present a differential fault attack on the stream cipher MICKEY 2.0 which
is in eStream’s hardware portfolio. While fault attacks have already been reported against the other two
eStream hardware candidates Trivium and Grain, no such analysis is known for MICKEY. Using the
standard assumptions for fault attacks, we show that by injecting around 216.7 faults and performing 232.5

computations on an average, it is possible to recover the entire internal state of MICKEY at the beginning
of the key-stream generation phase.
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1 Introduction

The stream cipher MICKEY 2.0 [4] was designed by Steve Babbage and Matthew Dodd as
a submission to the eStream project. The cipher has been selected as a part of eStream’s
final hardware portfolio. MICKEY is a synchronous, bit-oriented stream cipher designed for
low hardware complexity and high speed. After a TMD tradeoff attack [15] against the initial
version of MICKEY (version 1), the designers responded by tweaking the design by increasing
the state size from 160 to 200 bits and altering the values of some control bit tap locations.
These changes were incorporated in MICKEY 2.0 and these are the only differences between
MICKEY version 1 and MICKEY 2.0. While MICKEY 2.0 uses an 80-bit key and a variable
length IV, a modified version of the cipher, MICKEY-128 2.0 that uses a 128-bit key [5] was
also proposed by the designers.

The name MICKEY is derived from “Mutual Irregular Clocking Key-stream generator”
which describes the behavior of the cipher. The state consists of two 100-bit shift registers
named R and S, each of which is irregularly clocked and controlled by the other. The cipher
specification underlines that each key can be used with up to 240 different IVs of the same length,
and that 240 key-stream bits can be generated from each key-IV pair. Very little cryptanalysis
of MICKEY 2.0 is available in literature. In fact it has been noted in [3, Section 3.2] that
other than the observation related to time or power analysis attacks [11] on straightforward
implementations of the MICKEY family, there have been no known cryptanalytic advances on
these ciphers. To the best our knowledge, the work in this paper presents the first cryptanalytic
result of MICKEY 2.0 in terms of differential fault attack.

Since the work of [6, 7], fault attacks have been employed to test the strengths/weaknesses
of cryptographic primitives. Such attacks on stream ciphers was first described by Hoch and
Shamir [12]. A typical fault attack [12] involves the random injection of faults (using laser
shots/clock glitches [17,18]) in a device (typically initialized by a secret key) which changes one
or more bits of its internal state. The adversary then attempts to deduce information about the
internal state/secret key using the output stream from this faulty device. In order to perform
the attack, certain privileges are required like the ability to re-key the device, control the timing



of the fault etc. The attack becomes impractical and unrealistic if the adversary is granted too
many privileges. In this work we assume the following privileges of the adversary which are
generally acceptable in cryptanalytic literature:

1. She can re-key the cipher with the original key-IV and restart cipher operations multiple
times.

2. She has full control over the timing of fault injection.
3. She can inject a fault that alters the bit value of one randomly chosen register location in

either the R or the S register.
4. She is however unable to fix the exact location of the R or S register where she wants to

inject the fault. Obtaining the fault location by comparison of the fault-free and the faulty
key-streams is one of the challenges while mounting the fault attack.

As has been previously mentioned, these assumptions do not ask for more privileges than
the existing works [9,13]. In fact, there are some published works where the assumptions made
are quite strong, e.g., the works [8, 10, 16] considers that the attacker can reproduce multiple
faults in the same (but unknown) locations, that we do not need to assume.

Differential fault attack is a special class of fault attack in which the attacker uses the dif-
ference between fault-free and faultless key-streams to deduce the internal state or the secret
key of the cipher. In case of MICKEY 2.0, the differential attack is possible due to the rather
simplistic nature of the output function (r0 +s0) used to produce key-stream bits. Additionally,
there are some interesting properties of the state update function in MICKEY that help facili-
tate the attack that we shall describe. The organization of the paper is as follows. In Section 2,
we present a description of the cipher which is suitable for our analysis, where we also present
some notations that will be henceforth used in the paper. The complete attack is described in
Section 3. Section 4 concludes the paper.

2 An alternate description of the MICKEY 2.0 PRGA and some
notations

A detailed description of MICKEY 2.0 is available in [4]. For convenience of the reader we also
describe it in Appendix A. MICKEY 2.0 uses an 80-bit key and a variable length IV, the length
of which may be between 0 and 80 bits. The physical structure of the cipher consists of two
100 bit registers R and S. Both registers are initially initialized to the all-zero state, and the
three stages of register update 1. IV loading, 2. Key Loading, and 3. Pre Clock are executed
sequentially before the production of the first key-stream bit. Thereafter in the PRGA (Pseudo
Random bitstream Generation Algorithm) key-stream bits are produced. We will try to give
an alternate description of this stage of operation of MICKEY 2.0. Consider a0, a1, a2, a3 to be
variables over GF(2). Let a0 be defined as follows

a0 =

{
a2, if a1 = 0
a3, if a1 = 1.

Then it is straightforward to see that a0 can be expressed as a multivariate polynomial over
GF(2), i.e., a0 = (1+a1) ·a2+a1 ·a3. The state registers R and S, during the PRGA are updated
by a call to the CLOCK KG routine, which in turn calls the CLOCK R and the CLOCK S
routine. In both these routines state update is done via a number of If-Else constructs. As
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a result of this the state update may be equivalently expressed as a series of multi-variate
polynomials over GF(2). Let r0, r1, . . . , r99, s0, s1, . . . , s99 denote the internal state at a certain
round during the MICKEY PRGA and let r′0, r

′
1, . . . , r

′
99, s

′
0, s
′
1, . . . , s

′
99 denote the internal state

at the next round. Then it is possible to write

r′i = ρi(r0, r1, . . . , r99, s0, s1, . . . , s99), s
′
i = βi(r0, r1, . . . , r99, s0, s1, . . . , s99), ∀i ∈ [0, 99]

where ρi, βi are polynomial functions over GF(2). The exact forms of ρi, βi are described in
Appendix B. Before describing the attack we will describe certain notations that will be used
henceforth.

1. Rt = [rt0, r
t
1, . . . , r

t
99], St = [st0, s

t
1, . . . , s

t
99] is used to denote the internal states of the R, S

registers at the beginning of the round t of the PRGA. That is, rti , s
t
i respectively denotes

the ith bit of the registers R, S at the beginning of round t of the PRGA. Note that
rt+1
i = ρi(Rt, St) and st+1

i = βi(Rt, St).
2. The value of the variables CONTROL BIT R, CONTROL BIT S at PRGA round t are

denoted by the variables CRt, CSt respectively. These bits are used by the R, S registers to
exercise mutual self control over each other. Note that CRt = rt67 + st34 and CSt = rt33 + st67.

3. Rt,∆rφ(t0), St,∆rφ(t0) (resp. Rt,∆sφ(t0), St,∆sφ(t0)) are used to denote the internal states of the
cipher at the beginning of round t of the PRGA, when a fault has been injected in location
φ of R (resp. S) at the beginning of round t0 of the PRGA.

4. zi,∆rφ(t0) or zi,∆sφ(t0) denotes the key-stream bit produced in the ith PRGA round, after a
fault has been injected in location φ of R or S at the beginning of round t0 of the PRGA.
By zi, we refer to the fault-free key-stream bit produced in the ith PRGA round.

3 Complete description of the Attack

We will start with a few algorithmic tools that will be used later to mount the attack.

Lemma 1. Consider the first 100 states of the MICKEY 2.0 PRGA. If rt99 and CRt are known
∀t ∈ [0, 99], then the initial state R0 of the register R can be determined efficiently.

Proof. Let the values of rt99 and CRt be known ∀t ∈ [0, 99]. We will begin by noticing that the
functions ρi for all values of i ∈ [1, 99] are of the form

ρi(·) = ri−1 + (s34 + r67) · ρ̂i(ri, ri+1, . . . , r99),

where s34 + r67 is the value of CONTROL BIT R and ρ̂i is a function that depends on
ri, ri+1, . . . , r99 but not any of r0, r1, . . . , ri−1. Now consider the following equation governing
r9999 :

r9999 = ρ99(R98, S98) = r9898 + CR98 · ρ̂99(r9899).
In the above equation, r9898 is the only unknown and it appears as a linear term, and so its value
can be calculated immediately. We therefore know the values of 2 state bits of R98: r

98
99, r

98
98.

Similarly look at the equations governing r9899, r
98
98.

r9899 = r9798 + CR97 · ρ̂99(r9799),

r9898 = r9797 + CR97 · ρ̂98(r9798, r9799).
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As before, r9798 is the lone unknown term in the first equation whose value is determined imme-
diately. After this r9797 becomes the only unknown linear term in the next equation whose value
too is determined easily. Thus we know 3 bits of R97: r

97
97+i, i = 0, 1, 2. Continuing in such a

bottom up manner we can successively determine 4 bits of R96, 5 bits of R95 and eventually all
the 100 bits of R0. The process is explained pictorially in Figure 1. ut

R0 r0 r1 · · · · · · r97 r98 r99 CR0

R1 r0 r1 · · · · · · r97 r98 r99 CR1

...

R97 r0 r1 · · · · · · r97 r98 r99 CR97

R98 r0 r1 · · · · · · r97 r98 r99 CR98

R99 r0 r1 · · · · · · r97 r98 r99 CR98

Known initially Calculated

Fig. 1: Constructing the state R0. Starting from PRGA round 99, any bit calculated at PRGA round i is used to determine
state bits of round i− 1.

Lemma 2. Consider the first 100 states of the MICKEY 2.0 PRGA. If R0 is known and
st99, CSt, CRt are known ∀t ∈ [0, 99], then the initial state S0 of the register S can be determined
efficiently.

Proof. Since R0 is known and so is CRt for each t ∈ [0, 99] we can construct all the bits of R1

by calculating

r1i = r0i−1 + CR0 · ρ̂i(r0i , . . . , r099), ∀i ∈ [0, 99].

Once all the bits of R1 are known, all the bits of R2 may be determined by calculating

r2i = r1i−1 + CR1 · ρ̂i(r1i , . . . , r199), ∀i ∈ [0, 99].

Similarly all the bits of R3, R4, . . . , R99 can be calculated successively. As before, we begin by
observing that the functions βi for all values of i ∈ [1, 99] are of the form

βi(·) = si−1 + (s67 + r33) · β̂i(r0, r1, . . . , r99, si, si+1, . . . , s99),

where s67 + r33 is the value of CONTROL BIT S and β̂i is a function that depends on
r0, r1, . . . , r99, si, si+1, . . . , s99 but not any of s0, s1, . . . , si−1. Now consider the following equation
governing s9999:

s9999 = β99(R98, S98) = s9898 + CS98 · β̂99(R98, s
98
99).
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In the above equation s9898 is the only unknown and it appears as a linear term, and so its value
can be calculated immediately. We therefore know the values of the 2 state bits of S98: s

98
99, s

98
98.

Similarly look at the equations governing s9899, s
98
98 :

s9899 = s9798 + CS97 · β̂99(R97, s
97
99),

s9898 = s9797 + CS97 · β̂98(R97, s
97
98, s

97
99).

As before, s9798 is the lone unknown term in the first equation whose value is determined imme-
diately. After this s9797 becomes the only unknown linear term in the next equation whose value
too is determined easily. Thus we know 3 bits of S97: s

97
97+i, i = 0, 1, 2. Continuing in such a

bottom up manner we can successively determine 4 bits of S96, 5 bits of S95 and eventually all
the 100 bits of S0. The process is explained pictorially in Figure 2. ut

R0 r0 r1 · · · · · · r97 r98 r99 CR0 S0 s0 s1 · · · · · · s97 s98 s99 CS0

R1 r0 r1 · · · · · · r97 r98 r99 CR1 S1 s0 s1 · · · · · · s97 s98 s99 CS1

...
...

R97 r0 r1 · · · · · · r97 r98 r99 CR97 S97 s0 s1 · · · · · · s97 s98 s99 CS97

R98 r0 r1 · · · · · · r97 r98 r99 CR98 S98 s0 s1 · · · · · · s97 s98 s99 CS98

R99 r0 r1 · · · · · · r97 r98 r99 CR98 S99 s0 s1 · · · · · · s97 s98 s99 CS99

Known initially Calculated

Fig. 2: Constructing the state S0. Starting from PRGA round 99, any bit calculated at PRGA round i is used to determine
state bits of round i− 1.

3.1 Faulting specific bits of R,S

Before getting into the details of the attack, we further note that the output key-stream bits
zt, zt+1, . . . can also be expressed as polynomial functions over Rt, St. We have

zt = rt0 + st0 = θ0(Rt, St),

zt+1 = rt+1
0 + st+1

0 = ρ0(Rt, St) + β0(Rt, St) = θ1(Rt, St),

zt+2 = rt+2
0 + st+2

0 = ρ0(Rt+1, St+1) + β0(Rt+1, St+1) = θ2(Rt, St)

The exact forms of θ0, θ1, θ2 are given in Table 1.
In the rest of this section we will assume that the adversary is able to (a) re-key the device

containing the cipher with the original key-IV, (b) apply faults to specific bit locations in the
R, S registers and (c) exercise control over the timing of fault injection. Note that (b) is a
stronger assumption, but we do not need it in our attack. We are using this assumption here to
build a sub-routine. In the next subsection we shall demonstrate how the adversary can partially
identify the location of any fault injected at a random position by comparing the faulty and
fault-free key-streams.

We begin by observing the following differential properties of the functions θ0, θ1, θ2.
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Table 1: The functions θi

i θi(·)
0 r0 + s0
1 r0 · r67 + r0 · s34 + r99 + s99
2 r0 · r66 · r67 + r0 · r66 · s34 + r0 · r67 · r99 + r0 · r67 · s33 + r0 · r67 · s34 · s35+

r0 · r67 · s34 + r0 · r67 + r0 · r99 · s34 + r0 · s33 · s34 + r0 · s34 · s35 + r33 · s99+
r66 · r99 + r67 · r99 · s34 + r98 + r99 · s33 + r99 · s34 · s35 + r99 · s34 + r99+
s67 · s99 + s98

(1) θ1(. . . , r67, . . .) + θ1(. . . , 1 + r67, . . .) = r0
(2) θ1(r0, . . .) + θ1(1 + r0, . . .) = s34 + r67
(3) θ2(. . . , s99) + θ2(. . . , 1 + s99) = s67 + r33

These differential properties have the following immediate implications.

zt+1 + zt+1,∆r67(t) = θ1(Rt, St) + θ1(Rt,∆r67(t), St,∆r67(t)) = rt0 . . . (1)

zt+1 + zt+1,∆r0(t) = θ1(Rt, St) + θ1(Rt,∆r0(t), St,∆r0(t))

= st34 + rt67 = CRt . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

zt+2 + zt+2,∆s99(t) = θ2(Rt, St) + θ2(Rt,∆s99(t), St,∆s99(t))

= st67 + rt33 = CSt . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

The above equations hold for all the values of t = 0, 1, 2, . . .. This implies that if the adversary
is able to re-key the device with the original key-IV pair multiple times and apply faults at
PRGA rounds t = 0, 1, 2, 3, . . . , 100 at precisely1 the R register locations 0, 67 and the S register
location 99, then by observing the difference between the fault-less and faulty key-stream bits,
she would be able to recover the values of rt0, CRt, CSt for all values of t = 0, 1, 2, . . . , 100. The
fault at each register location must be preceded by re-keying.

Determining the other bits Hereafter, the values st0 for all t = 0, 1, 2, 3, 4, . . . , 100 may be
found by solving: st0 = zt + rt0. Since β0(·) = s99, this implies that st+1

0 = st99, ∀t = 0, 1, 2, . . .
Therefore calculating the values of st0, ∀t ∈ [1, 100] is the same as calculating st99, ∀t ∈ [0, 99].
The values of rt99, ∀t ∈ [0, 99] may be obtained as follows. Consider the equation for zt+1:

zt+1 = θ1(Rt, St) = rt0 · rt67 + rt0 · st34 + rt99 + st99
= CRt · rt0 + rt99 + st99, ∀t ∈ [0, 99].

Note that rt99 is the only unknown linear term in these equations and hence its value too can
be determined immediately. At this point, we have the following state bits with us:

[rt0, r
t
99, CRt, s

t
0, s

t
99, CSt], ∀t ∈ [0, 99].

Now by using the techniques outlined in Lemma 1 we can determine all the bits of the state
R0. Thereafter using Lemma 2, one can determine all the bits of S0. Thus we have recovered
the entire internal state at the beginning of the PRGA.

1 We would like to point out that our actual attack does not need precise fault injection at all locations of R, S. This
will be explained in the next sub-section.
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3.2 How to identify the random locations where faults are injected

In this subsection we will show how the adversary can identify the locations of randomly applied
faults to the registers R and S. Although it will not be possible to conclusively determine the
location of faults applied to each and every location of R and the S registers, we will show that
the adversary can, with some probability, identify faulty streams corresponding to locations
0, 67 of R and 99 of S. The adversary will then use the techniques described in Subsection 3.1
to complete the attack.

To help with the process of fault location identification, we define the first and second
Signature vectors for the location φ of R as

Ψ 1
rφ

[i] =

{
1, if zt+i = zt+i,∆rφ(t) for all choices of Rt, St,
0, otherwise.

Ψ 2
rφ

[i] =

{
1, if zt+i 6= zt+i,∆rφ(t) for all choices of Rt, St,
0, otherwise.

for i = 0, 1, 2, . . . , l − 1. Here l ≈ 40 is a suitably chosen constant.

Remark 1. The value of l should be large enough so that one can differentiate 100 randomly
generated bit sequences over GF(2) by comparing the first l bits of each sequence. By Birthday
paradox, this requires the value of l to be atleast 2 · log2 100 ≈ 14. We take l = 40 as computer
simulations show that this value of l is sufficient to make a successful distinction with high
probability.

Similarly one can define Signature vectors for any location φ the register S.

Ψ 1
sφ

[i] =

{
1, if zt+i = zt+i,∆sφ(t) for all choices of Rt, St,
0, otherwise.

Ψ 2
sφ

[i] =

{
1, if zt+i 6= zt+i,∆sφ(t) for all choices of Rt, St,
0, otherwise.

The task for the fault location identification routine is to determine the fault location φ
of R (or S) by analyzing the difference between zt, zt+1, . . . and zt,∆rφ(t), zt+1,∆rφ(t), . . . (or
zt,∆sφ(t), zt+1,∆sφ(t), . . .) by using the Signature vectors Ψ 1

rφ
, Ψ 2

rφ
(or Ψ 1

sφ
, Ψ 2

sφ
).

Note that the ith bit of Ψ 1
rφ

is 1 if and only if the (t+ i)th key-stream bits produced by Rt, St
and Rt,∆rφ(t), St,∆rφ(t) are the same for all choices of the internal state Rt, St and that ith bit
of Ψ 2

rφ
is 1 if the above key-stream bits are different for all choices of the internal state. Using

this fact, one can devise the heuristic given in Algorithm 1 for the calculation of the Signature
vectors.

Remark 2. Note that the value of N used in this algorithm should be large enough so that if the
(t+i)th bits (0 ≤ i ≤ 100) generated by two randomly chosen states Rt, St and Rt,∆rφ(t), St,∆rφ(t)
are not equal for all Rt, St then for at least 1 of N randomly chosen Rt, St the (t+i)th keystream
bits generated by them should be actually unequal. By computer simulations N = 220 has been
found to be sufficient for this purpose.

One can compute the Signature vectors for all the fault locations in S in a similar manner.
The complete list of Signature vectors for all the bit locations in R, S can be found in Appendix
C. The concept of Signature vectors to deduce the location of a randomly applied fault was
introduced in [8]. However the analysis of [8] can not be reproduced for MICKEY 2.0, since a
lot of different register locations have the same Signature vector. However one can observe the
following which are important to mount the attack.
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Input: N : Any large integer ≈ 220, l: A suitable vector length ≈ 40;
Output: The Signature vectors Ψ1

rφ
, Ψ2
rφ
∀φ ∈ [0, 99];

φ← 0;
while φ < 100 do

t← 0;
Count[i]← 0, ∀i ∈ [0, l − 1];
while t < N do

Choose R ∈R {0, 1}100, S ∈R {0, 1}100 ;
Set R′ ← R, S′ ← S ;
Set R′(φ) = 1 +R(φ) /* Flip the φth bit of R */;
Set [z0, z1, . . . , zl−1] =MICKEY (R,S);
/* The first l keystream bits generated by the state R,S */

Set [ẑ0, ẑ1, . . . , ẑl−1] =MICKEY (R′, S′);
/* The first l keystream bits generated by the state R′, S′ */
for i = 0 to l − 1 do

if zi = ẑi then
Count[i]← Count[i] + 1;

end

end
t← t+ 1;

end
for i = 0 to l − 1 do

if Count[i] = N then
Ψ1
rφ

[i] = 1 Ψ2
rφ

[i] = 0;

end
else if Count[i] = 0 then

Ψ1
rφ

[i] = 0 Ψ2
rφ

[i] = 1;

end
else

Ψ1
rφ

[i] = 0, Ψ2
rφ

[i] = 0;

end

end
φ← φ+ 1;

end

Return Ψ1
rφ
, Ψ2
rφ
∀φ ∈ [0, 99];

Algorithm 1: Algorithm to calculate Signature vectors in MICKEY

Theorem 1. The following statements hold for the Signature vectors

Ψ 1
rφ
, Ψ 2

rφ
, Ψ 1

sφ
, Ψ 2

sφ

of MICKEY 2.0.

A. Ψ 1
rφ

[0] = 1,∀φ ∈ [1, 99] but Ψ 2
r0

[0] = 1.

B. Ψ 1
rφ

[0] = Ψ 1
rφ

[1] = 1,∀φ ∈ [1, 99] \ {67, 99}.
C. Ψ 2

r99
[1] = 1, and Ψ 2

r67
[1] = 0.

D. Ψ 1
sφ

[0] = 1,∀φ ∈ [1, 99] but Ψ 2
s0

[0] = 1.

E. Ψ 1
sφ

[0] = Ψ 1
sφ

[1] = 1,∀φ ∈ [1, 99] \ {34, 99}.
F. Ψ 2

s99
[1] = 1, and Ψ 2

s34
[1] = 0.

Proof. Though some of the cases are similar, we present each of the cases for clarity. Proofs for
the cases A to F are described separately below.

A. We have

zt + zt,∆r0(t) = θ0(Rt, St) + θ0(Rt,∆r0(t), St,∆r0(t))

= (rt0 + st0) + (1 + rt0 + st0) = 1, ∀Rt, St ∈ {0, 1}100.
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So, Ψ 2
r0

[0] = 1. Also θ0 is not a function of any ri, si for i ∈ [1, 99] and so

θ0(Rt,∆rφ(t), St,∆rφ(t)) = θ0(Rt, St)

for all φ ∈ [1, 99] and so we have

zt + zt,∆rφ(t) = θ0(Rt, St) + θ0(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.

So, Ψ 1
rφ

[0] = 1 for all φ ∈ [1, 99].

B. Since θ1 is a function of r0, r67, s34, r99, s99 only, for any φ ∈ [1, 99] \ {67, 99} we have

θ1(Rt,∆rφ(t), St,∆rφ(t)) = θ1(Rt, St).

Therefore

zt+1 + zt+1,∆rφ(t) = θ1(Rt, St) + θ1(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99] \ {67, 99}, ∀Rt, St ∈ {0, 1}100.

So, Ψ 1
rφ

[1] = 1 for all φ ∈ [1, 99] \ {67, 99}.
C. We have

zt+1 + zt+1,∆r99(t) = θ1(Rt, St) + θ1(Rt,∆r99(t), St,∆r99(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99) + (rt0 · rt67 + rt0 · st34 + 1 + rt99 + st99)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ 2
r99

[1] = 1. Also

zt+1 + zt+1,∆r67(t) = θ1(Rt, St) + θ1(Rt,∆r67(t), St,∆r67(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99) + (rt0 · (1 + rt67) + rt0 · st34 + rt99 + st99)

= rt0 6= 0 or 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ 2
r67

[1] = 0.
D. We have

zt + zt,∆s0(t) = θ0(Rt, St) + θ0(Rt,∆s0(t), St,∆s0(t))

= (rt0 + st0) + (rt0 + 1 + st0) = 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ 2
s0

[0] = 1. Also θ0 is not a function of any ri, si for i ∈ [1, 99] and so

θ0(Rt,∆sφ(t), St,∆sφ(t)) = θ0(Rt, St)

for all φ ∈ [1, 99] and so we have

zt + zt,∆sφ(t) = θ0(Rt, St) + θ0(Rt,∆sφ(t), St,∆sφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.

So, Ψ 1
sφ

[0] = 1 for all φ ∈ [1, 99].

9



E. Since θ1 is a function of r0, r67, s34, r99, s99 only, for any φ ∈ [1, 99] \ {34, 99} we have

θ1(Rt,∆sφ(t), St,∆sφ(t)) = θ1(Rt, St).

Therefore

zt+1 + zt+1,∆sφ(t) = θ1(Rt, St) + θ1(Rt,∆sφ(t), St,∆sφ(t))

= 0, ∀φ ∈ [1, 99] \ {34, 99}, ∀Rt, St ∈ {0, 1}100.

So, Ψ 1
sφ

[1] = 1 for all φ ∈ [1, 99] \ {34, 99}.
F. We have

zt+1 + zt+1,∆s99(t) = θ1(Rt, St) + θ1(Rt,∆s99(t), St,∆s99(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99) + (rt0 · rt67 + rt0 · st34 + rt99 + 1 + st99)

= 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ 2
s99

[1] = 1. Also

zt+1 + zt+1,∆s34(t) = θ1(Rt, St) + θ1(Rt,∆s34(t), St,∆s34(t))

= (rt0 · rt67 + rt0 · st34 + rt99 + st99) + (rt0 · rt67 + rt0 · (1 + st34) + rt99 + st99)

= rt0 6= 0 or 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ 2
s34

[1] = 0.

Thus the proof. ut

Now, consider the attack scenario in which the adversary is able to re-key the device with the
same key-IV multiple number of times and inject a single fault at a random location of register
R at the beginning of any particular PRGA round t ∈ [0, 100] and obtain faulty key-streams.
She continues the process until she obtains 100 different faulty key-streams corresponding to
100 different fault locations in R and for each t ∈ [0, 100] (as mentioned earlier this is done by
comparing the first l bits of each faulty key-stream sequence). Assuming that every location
has equal probability of getting injected by fault, the above process on an average takes around
100 ·∑100

i=1
1
i
≈ 29.02 faults [2] and hence re-keyings for each value of t ∈ [0, 100] and hence a

total of 101 · 29.02 ≈ 215.68 faults. The process has to be repeated for the S register, and so the
expected number of faults is 2 · 215.68 = 216.68.

Mathematically speaking, if we define

Zt = [zt, zt+1, . . . , zt+l−1], and ∆rφZt = [zt,∆rφ(t), zt+1,∆rφ(t), . . . , zt+l−1,∆rφ(t)],

then the adversary at this point has knowledge of the 100 differential key-streams ηt,rφ =
Zt +∆rφZt for each value of t ∈ [0, 100]. The adversary however does not know the exact fault
location corresponding to any differential stream i.e. she has been unable to assign fault loca-
tion labels to any of the differential streams. With this information in hand we shall study the
implications of the observations A to F.

Implication of A: For any t ∈ [0, 100], Ψ 2
r0

[0] = 1 guarantees that there is at least one
differential stream with ηt,rφ [0] = 1 whereas Ψ 1

rφ
[0] = 1,∀φ ∈ [1, 99] guarantees that that there

is exactly one differential stream with this property. This implies that out of the 100 differential
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streams for any PRGA round t the one and only differential stream with this property must
have been produced due to a fault on the 0th location in R. Note that labelling of this stream
helps us determine the values of CRt for all t ∈ [0, 100] from Eqn. (2).

Implication of B, C: Once the differential stream corresponding to the 0th location has
been labelled we now turn our attention to the remaining 99 streams. Statement B guarantees
that of the remaining 99 streams at least 97 have the property

(P1) ηt,rφ [0] = ηt,rφ [1] = 0.

Statement C guarantees that the number of streams with the property

(P2) ηt,rφ [0] = 0, ηt,rφ [1] = 1.

is at most 2 and at least 1. If the number of streams that satisfy (P1) is 98 then the lone stream
satisfying (P2) must have been produced due to fault on location 99 of R. This immediately
implies that ηt,r67 [1] = 0 which by Eqn. (1) in turn implies that rt0 = 0. Else if the number of
streams satisfying (P2) is 2 then it implies that these streams were produced due to faults in
location 67, 99 of R. This implies ηt,r67 [1] = rt0 = 1.

Repeating the entire process on Register S one can similarly obtain the vectors ∆sφZt and
the differential streams ηt,sφ = Zt + ∆sφZt for all values of t ∈ [0, 100]. As before the streams
ηt,sφ are unlabeled. Let us now study the implications of D, E, F.

Implication of D: For any t ∈ [0, 100], Ψ 2
s0

[0] = 1 guarantees that there is at least one
differential stream with ηt,sφ [0] = 1 whereas Ψ 1

sφ
[0] = 1,∀φ ∈ [1, 99] guarantees that that there

is exactly one differential stream with this property. This implies that out of the 100 differential
streams for any PRGA round t the one and only differential stream with this property must
have been produced due to a fault on the 0th location in S.

Implication of E, F: Once the differential stream corresponding to the 0th location has been
labelled we now turn our attention to the remaining 99 streams. The statement E guarantees
that of the remaining 99 streams at least 97 have the property

(P3) ηt,sφ [0] = ηt,sφ [1] = 0.

Statement F guarantees that the number of streams with the property

(P4) ηt,sφ [0] = 0, ηt,sφ [1] = 1,

is at most 2 and at least 1.

Case 1 If the number of streams that satisfy (P3) is 98 then the lone stream satisfying (P4)
must have been produced due to fault on location 99 of S. Once the stream corresponding
to location 99 of S has been labelled, we can use Eqn (3) to determine CSt = ηt,s99 [2].

Case 2 If the number of streams satisfying (P4) is 2 then it implies that these streams were
produced due to faults in location 34, 99 of S.
(i) Now if the bit indexed 2 of both these vectors are equal then we can safely assume

CSt = ηt,s99 [2] = ηt,s34 [2].
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(ii) A confusion occurs when ηt,s99 [2] 6= ηt,s34 [2]. In such a situation we would be unable to
conclusively able to determine the value of CSt.

Assuming independence, we assume that Cases 1, 2 have equal probability of occurring.
Given the occurrence of Case 2, we can also assume that 2(i), 2(ii) occurs with equal probabil-
ity. Therefore the probability of confusion, i.e., the probability that we are unable to determine
the value of CSt for any t is approximately equal to 1

2
· 1
2

= 1
4
. Let γ denote the number of

t ∈ [0, 100] such that CSt can not be conclusively determined then γ is distributed according
to γ ∼ Binomial(101, 1

4
). Therefore the expected value of γ is E(γ) = 101 · 1

4
= 25.25. Also the

probability that

P (γ > 35) =
101∑
k=36

(
101

k

)(
1

4

)k (
3

4

)101−k

≈ 0.01.

In such a situation the adversary must guess the γ values of CSt to perform the attack, which
implies that the adversary must perform the calculations in Section 3.1 and Lemma 1, Lemma 2
a total of 2γ times to complete the attack. For the correct value of the guesses, the calculated
state R0, S0 will produce the given fault-free key-stream sequence.

We present a complete description of the attack in Algorithm 2.

Generate and record the fault-free keystream z0, z1, z2, . . . for some key-IV K, IV
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆rφZt have not been obtained do
Re-key the cipher with key-IV K, IV ;
Inject a fault at a random unknown location φ ∈ [0, 99] in R at PRGA round t;
Record the faulty key-stream sequence ∆rφZt;

end
t← t+ 1;

end
Calculate rt0, CRt, ∀t ∈ [0, 100] using A, B, C;
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆sφZt have not been obtained do
Re-key the cipher with key-IV K, IV ;
Inject a fault at a random unknown location φ ∈ [0, 99] in S at PRGA round t;
Record the faulty key-stream sequence ∆sφZt;

end
t← t+ 1;

end
Using D, E, F calculate CSt, for all such t ∈ [0, 100] for which there is no confusion;
Let the number of undecided bits CSt = γ;
for Each of the 2γ guesses of the undecided CSt’s do

Use techniques of Subsection 3.1 compute rt0, r
t
99, CRt, s

t
0, s

t
99, CSt, ∀t ∈ [0, 99];

Use Lemma 1, Lemma 2 try to compute R0, S0. ;
if R0, S0 produce the sequence z0, z1, z2, . . . then

Output the required state R0, S0;
end

end

Algorithm 2: Fault Attack against MICKEY 2.0

3.3 Issues related to the length of the IV

It is known that MICKEY 2.0 employs a variable length IV of length at most 80. So if v is
the length of the IV then the cipher will run for v + 80 (Key loading) + 100 (Preclock) clock
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intervals before entering the PRGA phase. Our attack requires that the first faults are to be
injected at the beginning of the PRGA. In order to do that the adversary must know the
value of v. This not a strong assumption as IVs are assumed to be known. However even if the
adversary does not know the IV or its length the attack can be performed. Since 0 ≤ v ≤ 80
must be satisfied, the strategy of the adversary who does not know the value of v will be as
follows. She will inject the first set of faults at clock round 260 which corresponds to the PRGA
round p = 260 − 180 − v = 80 − v. After performing the attack, the adversary will end up
constructing the internal state Rp, Sp instead of R0, S0. Finding the value of p by looking at the
faultless key-stream sequence is straightforward.

3.4 Complexity of the Attack

As mentioned in Section 3.2, the attack requires the adversary to obtain 100 different faulty
key-streams corresponding to all fault locations in R for PRGA rounds t ∈ [0, 100]. This requires
101·100·∑100

i=1
1
k
≈ 215.68 faults on an average. The same process must be repeated for the register

S and hence the expected number of total faults is 216.68. The computational overload comes
from guessing the γ values of CSt which can not be found out by observing the differential
key-streams. This requires a computational effort proportional to 2γ. Since γ is distributed
according to Binomial(101, 1

4
), the expected value of γ is 25.25. The expected value of the

computation complexity is therefore given by E(2γ) =
∑101

k=0

(
101
k

) (
1
4

)k (3
4

)101−k
2k ≈ 232.5.

4 Conclusion

A differential fault attack against the stream cipher MICKEY 2.0 is presented. The work is one
of the first cryptanalytic attempts against this cipher and requires reasonable computational
effort. The attack is somewhat made possible due to the simplicity of the output function and
certain register update operations of MICKEY 2.0 and would have been thwarted had these
been of a more complex nature. It would be interesting to study efficient counter-measures with
minimum tweak in the design.

Given our work in this paper, differential fault attacks are now known against all of the
three ciphers in the hardware portfolio of eStream. The attacks on all the 3 ciphers use exactly
the same fault model that is similar to what described in this paper. Table 2 summarizes the
fault requirements.

Table 2: Summary of fault attacks against eStream’s hardware candidates

Cipher State size Average # of Faults

Trivium [14] 288 3.2

Grain v1 [9] 160 ≈ 28.5

MICKEY 2.0 200 ≈ 216.7

To the best of our knowledge, there was no published fault attack on MICKEY 2.0. prior to
our work. We believe that one of the reasons this remained open for such a long time could be
that the cipher uses irregular clocking to update its state registers. Hence it becomes difficult
to determine the location of a randomly applied fault injected in either the R or S register by
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simply comparing the faulty and fault-free key-streams. The idea explained in Theorem 1 and
its implications are instrumental in mounting the attack. The total number of faults is indeed
much higher when we compare it with the other two eStream hardware candidates. However,
this seems natural as MICKEY 2.0 has more complex structure than Trivium or Grain v1.
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Appendix A: Brief Description of MICKEY 2.0

MICKEY 2.0 uses an 80-bit key and a variable length IV, the length of which may be between
0 and 80 bits. The physical structure of the cipher consists of two 100 bit registers R and S that
exercise mutual control over each other’s evolution. Let r0, r1, r2, . . . , r99 denote the contents of
the register R and s0, s1, s2, . . . , s99 denote the contents of the register S. In order to describe
the structure of the cipher and its working let us first define the following routines. Note that
the description given here is based on [4].

Clocking register R Let r0, r1, . . . , r99 be the state of the register R before clocking, and let
r′0, r

′
1, . . . , r

′
99 be the state of the register R after clocking. Define the integer array RTAPS as
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Fig. 3: The variable clocking architecture of MICKEY

follows

RTAPS = { 0, 1, 3, 4, 5, 6, 9, 12, 13, 16, 19, 20, 21, 22, 25, 28, 37, 38, 41, 42,

45, 46, 50, 52, 54, 56, 58, 60, 61, 63, 64, 65, 66, 67, 71, 72, 79, 80,

81, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97}

Now define an operation

CLOCK R(R, INPUT BIT R,CONTROL BIT R)

1. Define FEEDBACK BIT = r99 + INPUT BIT R
2. For 1 ≤ i ≤ 99 : r′i = ri−1. r

′
0 = 0.

3. For 0 ≤ i ≤ 99 : if i ∈ RTAPS, r′i = r′i + FEEDBACK BIT .
4. If CONTROL BIT R = 1:

For 0 ≤ i ≤ 99 : r′i = r′i + ri

Clocking register S Let s0, s1, . . . , s99 be the state of the register S before clocking, and let
s′0, s

′
1, . . . , s

′
99 be the state of the register S after clocking. Let ŝ0, ŝ1, . . . , ŝ99 be intermediate

variables. Define the four sequences COMP0i, 1 ≤ i ≤ 98; COMP1i, 1 ≤ i ≤ 98; FB0i, 0 ≤
i ≤ 99 and FB1i, 0 ≤ i ≤ 99 over GF(2) as in Table 3: Now define an operation

CLOCK S(S, INPUT BIT S,CONTROL BIT S)

1. Define FEEDBACK BIT = s99 + INPUT BIT S
2. For 1 ≤ i ≤ 98 : ŝi = si−1 +

(
(si + COMP0i) · (si+1 + COMP1i)

)
. ŝ0 = 0, ŝ99 = s98.

3. If CONTROL BIT S = 0:
For 0 ≤ i ≤ 99: s′i = ŝi + (FB0i · FEEDBACK BIT )

Else If CONTROL BIT S = 1:
For 0 ≤ i ≤ 99: s′i = ŝi + (FB1i · FEEDBACK BIT )

The CLOCK KG routine We define another operation

CLOCK KG(R, S,MIXING, INPUT BIT )
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Table 3: The sequences COMP0, COMP1, FB0, FB1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

COMP0i 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0
COMP1i 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1
FB0i 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1
FB1i 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0

i 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

COMP0i 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1
COMP1i 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1
FB0i 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1
FB1i 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0

i 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

COMP0i 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1
COMP1i 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1
FB0i 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
FB1i 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1

i 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

COMP0i 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1
COMP1i 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0
FB0i 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0
FB1i 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

1. CONTROL BIT R = s34 + r67, CONTROL BIT S = s67 + r33
2. If MIXING = 1 :

INPUT BIT R = INPUT BIT + s50
Else If MIXING = 0 :
INPUT BIT R = INPUT BIT

3. INPUT BIT S = INPUT BIT
4. CLOCK R(R, INPUT BIT R,CONTROL BIT R)
5. CLOCK S(S, INPUT BIT S,CONTROL BIT S)

Working of the Cipher We will now describe the algorithm governing the functioning of the
cipher. Let K = k0, k1, . . . , k79 be the 80 bit key used by the cipher. Let IV = iv0, iv1, . . . , ivv−1
be the v-bit IV (0 ≤ v ≤ 80). Then the cipher operates in the 4 stages as described below.

STAGE 1. IV loading
Initialize both R and S to the all-zero state.
For 0 ≤ i ≤ v − 1 : CLOCK KG(R, S, 1, ivi)

STAGE 2. Key loading
For 0 ≤ i ≤ 79 : CLOCK KG(R, S, 1, ki)

STAGE 3. Preclock Stage
For 0 ≤ i ≤ 99 : CLOCK KG(R, S, 1, 0)

STAGE 4. PRGA(Pseudo-Random stream generation algorithm)
i← 0
While key-stream is required

zi = r0 + s0
CLOCK KG(R, S, 0, 0)
i← i+ 1
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Appendix B: The functions ρi, βi ∀i ∈ [0, 99]

i ρi βi

0 r0 · r67 + r0 · s34 + r99 s99
1 r0 + r1 · r67 + r1 · s34 + r99 s0 + s1 · s2 + s1 + s99
2 r1 + r2 · r67 + r2 · s34 s1 + s2 · s3 + s99
3 r2 + r3 · r67 + r3 · s34 + r99 r33 · s99 + s2 + s3 · s4 + s3 + s67 · s99 + s99
4 r3 + r4 · r67 + r4 · s34 + r99 r33 · s99 + s3 + s4 · s5 + s4 + s5 + s67 · s99 + 1

5 r4 + r5 · r67 + r5 · s34 + r99 s4 + s5 · s6 + s6 + s99
6 r5 + r6 · r67 + r6 · s34 + r99 r33 · s99 + s5 + s6 · s7 + s67 · s99
7 r6 + r7 · r67 + r7 · s34 r33 · s99 + s6 + s7 · s8 + s7 + s67 · s99 + s99
8 r7 + r8 · r67 + r8 · s34 r33 · s99 + s7 + s8 · s9 + s67 · s99 + s99
9 r8 + r9 · r67 + r9 · s34 + r99 r33 · s99 + s8 + s9 · s10 + s9 + s10 + s67 · s99 + s99 + 1

10 r9 + r10 · r67 + r10 · s34 r33 · s99 + s9 + s10 · s11 + s10 + s67 · s99 + s99
11 r10 + r11 · r67 + r11 · s34 s10 + s11 · s12 + s11 + s12 + s99 + 1

12 r11 + r12 · r67 + r12 · s34 + r99 s11 + s12 · s13 + s12 + s13 + s99 + 1

13 r12 + r13 · r67 + r13 · s34 + r99 s12 + s13 · s14 + s14 + s99
14 r13 + r14 · r67 + r14 · s34 r33 · s99 + s13 + s14 · s15 + s15 + s67 · s99 + s99
15 r14 + r15 · r67 + r15 · s34 r33 · s99 + s14 + s15 · s16 + s15 + s67 · s99
16 r15 + r16 · r67 + r16 · s34 + r99 s15 + s16 · s17 + s17
17 r16 + r17 · r67 + r17 · s34 r33 · s99 + s16 + s17 · s18 + s17 + s67 · s99 + s99
18 r17 + r18 · r67 + r18 · s34 r33 · s99 + s17 + s18 · s19 + s67 · s99
19 r18 + r19 · r67 + r19 · s34 + r99 s18 + s19 · s20 + s20 + s99
20 r19 + r20 · r67 + r20 · s34 + r99 r33 · s99 + s19 + s20 · s21 + s67 · s99 + s99
21 r20 + r21 · r67 + r21 · s34 + r99 r33 · s99 + s20 + s21 · s22 + s21 + s22 + s67 · s99 + s99 + 1

22 r21 + r22 · r67 + r22 · s34 + r99 r33 · s99 + s21 + s22 · s23 + s22 + s67 · s99 + s99
23 r22 + r23 · r67 + r23 · s34 s22 + s23 · s24 + s24 + s99
24 r23 + r24 · r67 + r24 · s34 r33 · s99 + s23 + s24 · s25 + s24 + s67 · s99 + s99
25 r24 + r25 · r67 + r25 · s34 + r99 r33 · s99 + s24 + s25 · s26 + s26 + s67 · s99 + s99
26 r25 + r26 · r67 + r26 · s34 s25 + s26 · s27 + s26 + s99
27 r26 + r27 · r67 + r27 · s34 s26 + s27 · s28 + s27 + s28 + s99 + 1

28 r27 + r28 · r67 + r28 · s34 + r99 r33 · s99 + s27 + s28 · s29 + s28 + s67 · s99 + s99
29 r28 + r29 · r67 + r29 · s34 s28 + s29 · s30 + s30
30 r29 + r30 · r67 + r30 · s34 r33 · s99 + s29 + s30 · s31 + s30 + s31 + s67 · s99 + 1

31 r30 + r31 · r67 + r31 · s34 r33 · s99 + s30 + s31 · s32 + s31 + s67 · s99 + s99
32 r31 + r32 · r67 + r32 · s34 s31 + s32 · s33 + s32 + s33 + s99 + 1

33 r32 + r33 · r67 + r33 · s34 r33 · s99 + s32 + s33 · s34 + s33 + s67 · s99
34 r33 + r34 · r67 + r34 · s34 s33 + s34 · s35
35 r34 + r35 · r67 + r35 · s34 s34 + s35 · s36 + s36
36 r35 + r36 · r67 + r36 · s34 s35 + s36 · s37
37 r36 + r37 · r67 + r37 · s34 + r99 r33 · s99 + s36 + s37 · s38 + s37 + s67 · s99
38 r37 + r38 · r67 + r38 · s34 + r99 r33 · s99 + s37 + s38 · s39 + s38 + s67 · s99
39 r38 + r39 · r67 + r39 · s34 r33 · s99 + s38 + s39 · s40 + s67 · s99 + s99
40 r39 + r40 · r67 + r40 · s34 r33 · s99 + s39 + s40 · s41 + s40 + s67 · s99 + s99
41 r40 + r41 · r67 + r41 · s34 + r99 r33 · s99 + s40 + s41 · s42 + s67 · s99 + s99
42 r41 + r42 · r67 + r42 · s34 + r99 s41 + s42 · s43 + s42
43 r42 + r43 · r67 + r43 · s34 s42 + s43 · s44 + s43 + s44 + 1

44 r43 + r44 · r67 + r44 · s34 s43 + s44 · s45 + s44 + s99
45 r44 + r45 · r67 + r45 · s34 + r99 r33 · s99 + s44 + s45 · s46 + s46 + s67 · s99
46 r45 + r46 · r67 + r46 · s34 + r99 s45 + s46 · s47
47 r46 + r47 · r67 + r47 · s34 s46 + s47 · s48 + s48 + s99
48 r47 + r48 · r67 + r48 · s34 r33 · s99 + s47 + s48 · s49 + s67 · s99
49 r48 + r49 · r67 + r49 · s34 r33 · s99 + s48 + s49 · s50 + s49 + s50 + s67 · s99 + s99 + 1
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i ρi βi

50 r49 + r50 · r67 + r50 · s34 + r99 s49 + s50 · s51
51 r50 + r51 · r67 + r51 · s34 r33 · s99 + s50 + s51 · s52 + s67 · s99 + s99
52 r51 + r52 · r67 + r52 · s34 + r99 r33 · s99 + s51 + s52 · s53 + s67 · s99
53 r52 + r53 · r67 + r53 · s34 s52 + s53 · s54 + s53
54 r53 + r54 · r67 + r54 · s34 + r99 r33 · s99 + s53 + s54 · s55 + s55 + s67 · s99 + s99
55 r54 + r55 · r67 + r55 · s34 s54 + s55 · s56 + s55
56 r55 + r56 · r67 + r56 · s34 + r99 s55 + s56 · s57 + s56 + s57 + s99 + 1

57 r56 + r57 · r67 + r57 · s34 r33 · s99 + s56 + s57 · s58 + s57 + s67 · s99 + s99
58 r57 + r58 · r67 + r58 · s34 + r99 r33 · s99 + s57 + s58 · s59 + s67 · s99 + s99
59 r58 + r59 · r67 + r59 · s34 s58 + s59 · s60 + s60 + s99
60 r59 + r60 · r67 + r60 · s34 + r99 s59 + s60 · s61 + s61
61 r60 + r61 · r67 + r61 · s34 + r99 r33 · s99 + s60 + s61 · s62 + s61 + s62 + s67 · s99 + s99 + 1

62 r61 + r62 · r67 + r62 · s34 r33 · s99 + s61 + s62 · s63 + s62 + s63 + s67 · s99 + 1

63 r62 + r63 · r67 + r63 · s34 + r99 r33 · s99 + s62 + s63 · s64 + s63 + s67 · s99 + s99
64 r63 + r64 · r67 + r64 · s34 + r99 r33 · s99 + s63 + s64 · s65 + s64 + s67 · s99
65 r64 + r65 · r67 + r65 · s34 + r99 s64 + s65 · s66 + s65 + s66 + s99 + 1

66 r65 + r66 · r67 + r66 · s34 + r99 s65 + s66 · s67 + s66
67 r66 + r67 · s34 + r67 + r99 r33 · s99 + s66 + s67 · s68 + s67 · s99 + s68
68 r67 · r68 + r67 + r68 · s34 s67 + s68 · s69 + s68
69 r67 · r69 + r68 + r69 · s34 r33 · s99 + s67 · s99 + s68 + s69 · s70 + s70
70 r67 · r70 + r69 + r70 · s34 s69 + s70 · s71 + s70 + s71 + 1

71 r67 · r71 + r70 + r71 · s34 + r99 s70 + s71 · s72 + s71 + s72 + 1

72 r67 · r72 + r71 + r72 · s34 + r99 r33 · s99 + s67 · s99 + s71 + s72 · s73 + s72 + s73 + 1

73 r67 · r73 + r72 + r73 · s34 s72 + s73 · s74 + s74
74 r67 · r74 + r73 + r74 · s34 r33 · s99 + s67 · s99 + s73 + s74 · s75 + s74 + s75 + 1

75 r67 · r75 + r74 + r75 · s34 r33 · s99 + s67 · s99 + s74 + s75 · s76 + s75 + s76 + s99 + 1

76 r67 · r76 + r75 + r76 · s34 r33 · s99 + s67 · s99 + s75 + s76 · s77 + s76 + s77 + s99 + 1

77 r67 · r77 + r76 + r77 · s34 s76 + s77 · s78 + s77 + s78 + 1

78 r67 · r78 + r77 + r78 · s34 s77 + s78 · s79 + s99
79 r67 · r79 + r78 + r79 · s34 + r99 r33 · s99 + s67 · s99 + s78 + s79 · s80 + s80
80 r67 · r80 + r79 + r80 · s34 + r99 r33 · s99 + s67 · s99 + s79 + s80 · s81
81 r67 · r81 + r80 + r81 · s34 + r99 r33 · s99 + s67 · s99 + s80 + s81 · s82 + s81 + s82 + 1

82 r67 · r82 + r81 + r82 · s34 + r99 r33 · s99 + s67 · s99 + s81 + s82 · s83 + s83 + s99
83 r67 · r83 + r82 + r83 · s34 s82 + s83 · s84 + s84 + s99
84 r67 · r84 + r83 + r84 · s34 r33 · s99 + s67 · s99 + s83 + s84 · s85 + s85
85 r67 · r85 + r84 + r85 · s34 s84 + s85 · s86 + s86 + s99
86 r67 · r86 + r85 + r86 · s34 s85 + s86 · s87 + s86 + s87 + s99 + 1

87 r67 · r87 + r86 + r87 · s34 + r99 s86 + s87 · s88 + s87 + s99
88 r67 · r88 + r87 + r88 · s34 + r99 s87 + s88 · s89 + s88 + s89 + 1

89 r67 · r89 + r88 + r89 · s34 + r99 s88 + s89 · s90
90 r67 · r90 + r89 + r90 · s34 + r99 r33 · s99 + s67 · s99 + s89 + s90 · s91 + s91 + s99
91 r67 · r91 + r90 + r91 · s34 + r99 r33 · s99 + s67 · s99 + s90 + s91 · s92 + s99
92 r67 · r92 + r91 + r92 · s34 + r99 r33 · s99 + s67 · s99 + s91 + s92 · s93 + s92 + s99
93 r67 · r93 + r92 + r93 · s34 s92 + s93 · s94
94 r67 · r94 + r93 + r94 · s34 + r99 r33 · s99 + s67 · s99 + s93 + s94 · s95
95 r67 · r95 + r94 + r95 · s34 + r99 r33 · s99 + s67 · s99 + s94 + s95 · s96 + s95 + s99
96 r67 · r96 + r95 + r96 · s34 + r99 r33 · s99 + s67 · s99 + s95 + s96 · s97 + s96 + s99
97 r67 · r97 + r96 + r97 · s34 + r99 s96 + s97 · s98 + s98
98 r67 · r98 + r97 + r98 · s34 s97 + s98 · s99 + s99
99 r67 · r99 + r98 + r99 · s34 r33 · s99 + s67 · s99 + s98
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Appendix C: Fault Location Signatures (In Hexadecimal)

I. Signatures for fault locations in R

In the following table we list the vectors Ψ 1
rφ

as hexadecimal constants.

φ Ψ1
rφ

φ Ψ1
rφ

φ Ψ1
rφ

φ Ψ1
rφ

φ Ψ1
rφ

0 000FFFFFE0 20 FFFE000000 40 FFFFFFF000 60 FF00000000 80 FFFFF00000

1 FFFFFFFFC0 21 FFFC000000 41 FFFFFFE000 61 FE00000000 81 FFFFE00000

2 FFFFFFFF80 22 FFF8000000 42 FFFFFFC000 62 FC00000000 82 FFFFC00000

3 FFFFFFFF00 23 FFF0000000 43 FFFFFF8000 63 F800000000 83 FFFF800000

4 FFFFFFFE00 24 FFE0000000 44 FFFFFF0000 64 F000000000 84 FFFF000000

5 FFFFFFFC00 25 FFC0000000 45 FFFFFE0000 65 E000000000 85 FFFE000000

6 FFFFFFF800 26 FF80000000 46 FFFFFC0000 66 C000000000 86 FFFC000000

7 FFFFFFF000 27 FF00000000 47 FFFFF80000 67 8000000000 87 FFF8000000

8 FFFFFFE000 28 FE00000000 48 FFFFF00000 68 FFFFFFFF00 88 FFF0000000

9 FFFFFFC000 29 FC00000000 49 FFFFE00000 69 FFFFFFFE00 89 FFE0000000

10 FFFFFF8000 30 F800000000 50 FFFFC00000 70 FFFFFFFC00 90 FFC0000000

11 FFFFFF0000 31 F000000000 51 FFFF800000 71 FFFFFFF800 91 FF80000000

12 FFFFFE0000 32 E000000000 52 FFFF000000 72 FFFFFFF000 92 FF00000000

13 FFFFFC0000 33 C000000000 53 FFFE000000 73 FFFFFFE000 93 FE00000000

14 FFFFF80000 34 FFFFFFFFC0 54 FFFC000000 74 FFFFFFC000 94 FC00000000

15 FFFFF00000 35 FFFFFFFF80 55 FFF8000000 75 FFFFFF8000 95 F800000000

16 FFFFE00000 36 FFFFFFFF00 56 FFF0000000 76 FFFFFF0000 96 F000000000

17 FFFFC00000 37 FFFFFFFE00 57 FFE0000000 77 FFFFFE0000 97 E000000000

18 FFFF800000 38 FFFFFFFC00 58 FFC0000000 78 FFFFFC0000 98 C000000000

19 FFFF000000 39 FFFFFFF800 59 FF80000000 79 FFFFF80000 99 8000000000

We now list the vectors Ψ 2
rφ

. Note that Ψ 2
r0

= 8000000000, Ψ 2
rφ

= 0000000000 ∀φ ∈ [1, 67].

φ Ψ2
rφ

φ Ψ2
rφ

φ Ψ2
rφ

φ Ψ2
rφ

68 0000000080 76 0000008000 84 0000800000 92 0080000000

69 0000000100 77 0000010000 85 0001000000 93 0100000000

70 0000000200 78 0000020000 86 0002000000 94 0200000000

71 0000000400 79 0000040000 87 0004000000 95 0400000000

72 0000000800 80 0000080000 88 0008000000 96 0800000000

73 0000001000 81 0000100000 89 0010000000 97 1000000000

74 0000002000 82 0000200000 90 0020000000 98 2000000000

75 0000004000 83 0000400000 91 0040000000 99 4000000000

II. Signatures for fault locations in S

Now we list the vectors Ψ 1
sφ

as hexadecimal constants.

φ Ψ1
sφ

φ Ψ1
sφ

φ Ψ1
sφ

φ Ψ1
sφ

φ Ψ1
sφ

0 7FFFFFFFE0 20 FFFE000000 40 FE00000000 60 FF80000000 80 FFFFC00000

1 FFFFFFFFC0 21 FFFC000000 41 FF00000000 61 FF00000000 81 FFFFE00000

2 FFFFFFFF80 22 FFF8000000 42 FF80000000 62 FE00000000 82 FFFFC00000

3 FFFFFFFF00 23 FFF0000000 43 FFE0000000 63 FC00000000 83 FFFF800000

4 FFFFFFFE00 24 FFE0000000 44 FFF0000000 64 F800000000 84 FFFF000000

5 FFFFFFFC00 25 FFC0000000 45 FFFC000000 65 F000000000 85 FFFE000000

6 FFFFFFF800 26 FF80000000 46 FFFF800000 66 E000000000 86 FFFC000000

7 FFFFFFF000 27 FF00000000 47 FFFF800000 67 C000000000 87 FFF8000000

8 FFFFFFE000 28 FE00000000 48 FFFFF80000 68 E000000000 88 FFF0000000

9 FFFFFFC000 29 FC00000000 49 FFFFF00000 69 F000000000 89 FFE0000000

10 FFFFFF8000 30 F800000000 50 FFFFE00000 70 F800000000 90 FFC0000000

11 FFFFFF0000 31 F000000000 51 FFFFC00000 71 FC00000000 91 FF80000000

12 FFFFFE0000 32 E000000000 52 FFFF800000 72 FE00000000 92 FF00000000

13 FFFFFC0000 33 C000000000 53 FFFF000000 73 FF00000000 93 FE00000000

14 FFFFF80000 34 8000000000 54 FFFE000000 74 FF80000000 94 FC00000000

15 FFFFF00000 35 C000000000 55 FFFC000000 75 FFC0000000 95 F800000000

16 FFFFE00000 36 E000000000 56 FFF8000000 76 FFE0000000 96 F000000000

17 FFFFC00000 37 F000000000 57 FFF0000000 77 FFF8000000 97 E000000000

18 FFFF800000 38 F800000000 58 FFE0000000 78 FFF8000000 98 C000000000

19 FFFF000000 39 FC00000000 59 FFC0000000 79 FFFD000000 99 8000000000
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We now list the vectors Ψ 2
sφ

. Note that Ψ 2
s0

= 8000000000, Ψ 2
sφ

= 0000000000 ∀φ ∈ [1, 81].

φ Ψ2
sφ

φ Ψ2
sφ

φ Ψ2
sφ

φ Ψ2
sφ

φ Ψ2
sφ

82 0000200000 86 0002000000 90 0020000000 94 0200000000 98 2000000000

83 0000400000 87 0004000000 91 0040000000 95 0400000000 99 4000000000

84 0000800000 88 0008000000 92 0080000000 96 0800000000

85 0001000000 89 0010000000 93 0100000000 97 1000000000
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