
EMV Key Agreement

C. Brzuska1, N.P. Smart2, B. Warinschi2, and G.J. Watson2

1 School of Computer Science, School of Engineering
Tel Aviv University, Israel.
2 Dept. Computer Science,
University of Bristol, UK.

1 Introduction

The EMV chip-and-pin system is used to secure the majority of the world’s credit card and ATM trans-
actions; as well as securing electronic banking in many countries. The current system is based on RSA
public-key cryptography, combined with DES based symmetric-key cryptography. In the EMV system bank
or credit card customers are issued with a plastic card containing an embedded chip holding various crypto-
graphic keys and which can perform various cryptographic operations. The card is used to communicate with
a terminal (typically a point-of-sale terminal in a shop, but other terminals are possible). In addition the card
can produce cryptograms for sending on to the banking system for processing. However, the cryptographic
functionality provided by the card in its first generation incarnation is relatively limited.

As part of a major reworking of the chip-and-pin system the EMV consortium has decided to replace
RSA with ECC based systems; and to also enable the card to provide a number of additional cryptographic
functionalities. One of these functionalities is the ability to create a secure channel between the card and the
terminal. The draft specification for the establishment of the secure channel was published in Nov 2012 [11]
as a request for comments. It is to analyse this proposal that the current paper is focused. Since the current
EMV system is so widespread (with between one billion and two billion EMV enabled cards in circulation),
and protects a significant proportion of consumer banking transactions it is clearly important that any new
protocol is given a thorough cryptographic analysis.

The problem of establishing and implementing secure channels is central to practical uses of cryptogra-
phy and a superficial look at existing literature would let one believe that this is indeed a solved problem.
What can be simpler than first running a secure key-exchange protocol and then use the resulting keys to
somehow encrypt and authenticate the messages to be sent? Indeed, there are a plethora of works looking at
key establishment [2, 3, 6] and a similar number of works looking at how to build secure channels on top of
shared keys [1, 4, 13]. However, the traditional key agreement models such as those following the schema
set out by Bellare and Rogaway [2] have been shown to be not so usefully applicable to deployed protocols.
In particular the indistinguishability of keys notion introduced by Bellare and Rogaway is often broken by
the usage of the agreed key to establish the channel or provide key confirmation in practice. Thus recent
focus has shifted to analysing real world protocols, such as TLS, and building models which capture the
combined property of key establishment and secure channel as a combined primitive, see [12, 8, 5].

The proposed EMV key establishment protocol also cannot be analysed using traditional techniques,
and in addition the entire protocol is inherently one-sided in that only the card is authenticated, the terminal
is never authenticated. Whilst such one-sided authentication is also inherent in most applications of TLS,
only recently has there been a proper treatment of one-sided key establishment in the literature which is
described in full detail [7]. The one-sided authentication case is often tagged onto a discussion of the two
sided case, and not fully developed. Thus in this paper we also present a fully described model for one-sided
authentication.

There are currently two approaches to studying the combined properties of a key establishment and se-
cure channel protocol. The first approach is to prove security of the secure channel protocol assuming agreed
keys, and then to prove that the key establishment protocol provides the correct properties one requires for
the keys to be used in the secure channel protocol. This modular approach is explored in full in [5], where a
game-based composition theorem is provided for combining key agreement protocols with other protocols
using the previously agreed keys. The approach is shown to work for real world protocols such as TLS.
We do not however follow the approach in [5] since it requires an explicit construction of a secure channel
protocol; whereas the specification in [11] assumes the secure channel is given and is thus a “black box”.
The second approach is to treat the combined key establishment and secure channel protocol as a monolithic
whole. This approach is typified by the work in Jager et al. [8] on the TLS protocol. We however note some
problems with the model of Jager et al. (we ignore the concern on length hiding properties in the work of [8]
as they are not relevant to our application); the most important of these issues is that the model allows the
creation of paired partners which do not have matching conversations. In this paper we adopt the approach
of [8], but we modify their model so as to rectify the problems which we identify.

In particular the main modification we make is to the definition of matching conversation. In the tra-
ditional definition of matching conversations, originally presented in [2], two parties are said to have had
a matching conversation if their transcripts of exchanged messages (which could be ciphertexts) are in
agreement. We relax this definition and insist that the conversations match on the messages received and
transmitted before (or after) any encryption/decryption operation. Thus matching conversations is defined
on the underlying plaintexts. In the case where no encryption occurs in a message flow, the two definitions
coincide.

We present a new definitional framework to capture one-sided key agreement followed by composition
with a secure channel. Our new framework is conceptually simpler than previous models. We then use this
framework to that the key agreement and secure channel protocol proposed for EMV meets the desired
security mode

In the Appendix we present a modification of the Jager et al. definition to deal with the issues we raise,
and we show that our conceptually simpler framework is equivalent to the modified Jager et al definition.

The final contribution we make is to analyse the unlinkability properties of the proposed protocol from
EMV. One of the design criteria of the protocol is a mild form of unlinkability; in particular an adversary on
seeing a message flow between a terminal and a card should not be able to link this cards current transaction
with a previous transaction from the same card. The protocol aims to ensure this by not transmitting the
certificate in the clear, however the protocol also uses a performance optimization in that the card uses a
small emphemeral private key. We quantify exactly what security one obtains in terms of unlinkability given
the range from which the emphemeral public key is selected.

The rest of the paper is organized as follows: In Section 2 we present the proposed EMV key exchange
protocol, and the necessary underlying hard problems and primitives on which security will be based. Then
in Section 3 we discuss various different security models for key exchange followed by usage of the ex-
changed keys in establishing a secure channel. This is followed in Section 4 by a proof that the proposed
EMV key agreement protocol satisfies our security definition. In Section 5 we turn to the unlinkability re-
quirement of the EMV designers; here, we show that the amount of unlinkability is related to the size of the
randomness used in masking the public key in the first message flow.

We end this introduction by pointing out a number of recommendations related to the EMV protocol
which have been passed to the designers as a result of our analysis:

1. The resulting Diffie–Hellman key should be hashed down to obtain the used symmetric keys. The pro-
posal in [11] says to use a hash function or the x-coordinate of the elliptic curve point as the key deriva-

2

tion function. We do not consider a choice not using a hash function to be secure; indeed our security
analysis crucially relies on the hash being taken.

2. The resulting keys should be used in a uni-directional manner; thus two keys need to be obtained from
the hashing process. This avoids a large number of potential replay attacks on the application layer. Else,
the application layer would need to be implemented extremely carefully to thwart these attacks. Having
two keys, one for each direction, makes the design of a secure application layer less vulnerable. We have
implicitly assumed, as this is not stated in [11], that the resulting secure channel should be secure against
adversaries both deleting messages and playing messages out of order; since this is the usual definition
of a secure channel.

3. The amount of unlinkability is controlled by the size of the blinding factor applied to the first message
flow. In the document [11] this value a is selected from the set {0, 1}32, for which an adversary can
break the unlinkability with effort of roughly 216 group operations. This range therefore does not provide
sufficient protection where unlinkability is a concern.

2 Scheme

Our presentation follows that in [11], augmented with information obtained from public discussions with
the authors of the protocol at various meetings. The basic underlying idea of the protocol is to use a Diffie–
Hellman key exchange in which one side (the card) has a static public key, however to achieve unlinkability
the certificate of this public key is not passed in the clear, and in addition the resulting Diffie–Hellman
key is additionally randomized by a small emphemeral secret. This randomization by a small ephemeral
secret is reminiscent to the use of small exponents in the MQV key agreement protocol [10]. The resulting
Diffie–Hellman key is then hashed using a cryptographic hash function; which we will model as a random
oracle.

The Diffie–Hellman group used by the protocol is defined over an elliptic curve G = E(Fp) having
group order a prime q. The prime q is a function of an implicit security parameter k, but in practice the
group is fixed and so all our results are given in the concrete security setting. Along with the group G a base
point P ∈ G is given. It is assumed that the following Gap Diffie–Hellman problem is hard to solve for the
choice of group G:

Definition 1 (Gap Diffie–Hellman). Let ODDH be an oracle that solves the DDH problem in G, i.e. the
oracle takes as input rP, sP, tP ∈ G, and outputs one if tP = rsP and zero otherwise.
The Gap Diffie–Hellman problem then asks that given aP, bP ∈ G where a, b r← Fq, and access to ODDH,
compute abP (i.e. solve CDH). The advantage of an adversary A against the Gap Diffie–Hellman problem
is defined by

AdvGap−DH
G (A) = Pr[a, b r← Fq : AODDH(aP, bP) = abP].

To prove our unlinkability property we will also require that the following problem (parametrized by an
integer l) be hard:

Definition 2 (Small Decisional Discrete Log (SDDL)). Given P,X0, X1, rXi ∈ G, where 0 ≤ r ≤ 2l < q
determine i. We define the associated advantage of an adversary A by the following statement

AdvSDDL
G,A (k) = Pr[i r← {0, 1}, r r← {0, 1}l, X0, X1

r← G : A(X0, X1, rXi) = i]− 1
2

3

We pause to discuss the hardness of this problem. If 2l ≈ q, then the distributions (X0, X1, , rX0) and
(X0, X1, rX1) are statistically close, i.e., the advantage is essentially zero even if the adversary is com-
putationally unbounded. So the real question of interest is how small can l be before the above problem
becomes easy for computationally bounded adversaries. It is also clear that the best attack against the prob-
lem for 2l � q will be Pollard Lambda method [14], which runs in time O(2l/2). This implies that a 32-bit
randomizer r only gives 16-bits of security and an 80-bit randomizer only gives 40 bits of security.

In the following protocol we will see that one can trade efficiency against the difficulty of the SDDL
problem. Thus if unlinkability is not a concern one can select a small l and if unlinkability is a concern one
can select a larger l. In particular if one required the unlinkability to hold for an adversary willing to devote
O(2b) effort then one should select l = 2 · b. If however unlinkability is not a concern then one can select
l = 0 and r = 1.

After the protocol determines secret keys these are then used in a stateful authenticated-encryption
scheme AE = {encκ(), decκ()}. The key-agreement scheme should generate a randomly distributed key
in order to satisfy the following definitions. Here encκ() takes as input a message m, a header h, some state
information ste and returns a ciphertext c and updated state ste. The decryption algorithm takes as input a
ciphertext c, a header h, some state information std and returns a plaintext m and updated state std. The
states ste and std here model the fact that in practice sequence numbers are used to ensure that messages are
delivered in order, thus the operations encrypt and decrypt become stateful. This authenticated encryption
scheme we assume satisfies the standard properties of indistinguishability under chosen message attack and
integrity of ciphertexts for such stateful schemes. See Appendix A for precise definitions of these security
notions.

We also assume that there is a public key signature algorithm used to define certificates. In particular
each card C has a long term public/private key pair (QC , d), where d ∈ Fq andQC = dP ∈ G. A certificate
is a signature/message pair certC = (sigsk(QC), QC) provided by an issuing authority with a public/private
key pair (pk, sk) for some (unspecified) public key signature algorithm (sig, ver). All that we require of the
signature algorithm is that it be existentially unforgeable under a chosen message attack. Again Appendix
A gives the precise security definition we will use.

We are now in a position to define the EMV key establishment and secure channel protocol in Figure
1. As well as the components above the protocol makes use of a hash function H which takes elements in
the group G and maps them onto a pair of keys for the authenticated encryption scheme. The keys are used
to secure the communication in both directions; we propose the use of two keys so that replay attacks are
prevented at the level of the protocol as opposed to needing to be dealt with at the application layer.

3 Security Models

As mentioned in the introduction Jager et al. [8] combine the notions of authenticated key exchange [2, 3]
and LHAE security [13] to give a combined notion of secure channel establishment. In Appendix B we first
present their definition in detail, in this section we identify some definitional issues their approach and give
our new definition. In Appendix C we present a minor modification of Jager et al’s definition which we
prove is equivalent to our new notion. We feel our new notion is conceptually simpler both to understand
and to use.

Our analyis is not concerned with the length hiding properties used by Jager et al. [8] and Paterson et
al. [13] so we omit this aspect and consider only stateful authenticated encryption (sAE).

4

Card (C) Terminal (T)

a
r← {0, 1}l

A=aQC

−−−−−−−−→
E=eP

←−−−−−−−− e
r← Fq

(κ1, κ2) = H(daE) (κ1, κ2) = H(eA)

ct, stCe = encκ1(h, certC‖QC‖a; stCe)
h,ct

−−−−−−−−→ certC‖QC‖a, stTd = decκ1(h, ct; st
T
d)

Check verpk(certC , QC)
?
= true

Check aQC
?
= A

h1,m1

ct1, st
C
e = encκ1(h1,m1; st

C
e)

ct1
−−−−−−−−→ m1, st

T
d = decκ1(h1, ct1; st

T
d)

· · · · · ·
h2,m2

m2, st
C
d = decκ2(h2, ct2; st

C
d)

ct2
←−−−−−−−− ct2, st

T
e = encκ2(h2,m2; st

T
e).

Fig. 1. Combined Authenticed Key Agreement Scheme and Secure Channel Protocol

3.1 Problems with the ACCE Definition

Our first issue with the model in [8] comes from the definition of the states used in the Encrypt and Decrypt
queries. The decryption query requires a check whether the ciphertext was previously output by the en-
cryption oracle but these states have not been defined correctly for multiple parties. Consider the query
Decrypt(Πs

i,j , c, h). To complete a decryption the definition checks whether v > u or c 6= cv. If either is
true then the decrypted message will be returned, otherwise nothing is returned (this originally comes from
stateful decryption model of Bellare et al. [1]). Here u and v were both defined with relation toΠs

i,j but what
we actually need to compare is the u of Πt

j,i and the v of Πs
i,j . Plainly, we need to check that the ciphertext

c that i decrypts was not output by an encryption performed by j. In such a case the adversary should not be
allowed to see the decryption otherwise he can trivially win.

More issues with these checks may occur if we were to consider the case where the same key is used in
both directions of the channel. We would therefore need to check that a ciphertext had not been previously
output by both Πs

i,j and Πt
j,i. Such a problem should be avoided by appropriate checks on send/receiver ids

and the states of the messages.
Perhaps the most notable issue is the following: In both, the new EMV scheme that we consider and TLS

as considered by Jager et al., the final step involves sending an encrypted message which is used to perform
the final authentication of the sender. In [8] this corresponds to the message m13. Immediately after sending
this message the server will be in an accepted state. We are then permitted to issue a reveal query for the
key of the server. Now the adversary may decrypt m13 and re-encrypt it using the revealed key but with new
randomness. By then sending this new ciphertext instead of the original m13 the client will still accept but
will no longer have had a matching conversation with the server (despite the plaintext conversation being
the same). This therefore invalidates the security requirements of their model.

3.2 Preliminaries

Before presenting our new definition we present some prelininary definitions. Let I be the set of participants.
Each participant has a distinct ID i, long-term public key pki and corresponding secret key ski. The protocol

5

description is defined by two efficiently computable functions P = {Π,G}. The function Π defines how
honest parties behave and G is a public/private key pair generation algorithm. We let Πs

i,j denote the oracle
modelling participant i ∈ I engaged in a protocol with participant j ∈ I in session s. Each Πs

i,j maintains
the following state information:

– st ∈ {0, 1}∗ is some state information including the conversation so far in both plaintext form and the
form it was sent on the channel,

– δ ∈ {accept, reject,⊥} is the decision (initialised to ⊥).
– ρ ∈ {initiator, responder} is the role of the participant.
– κ = (kρenc, k

ρ
dec) ∈ ({0, 1}∗ ∪ {⊥})2. This is the agreed pair of keys. The order of these keys depends

on the role ρ = {initiator, responder} and κ = (⊥,⊥) unless δ = accept.

An adversary A, which is assumed to control all communication between participating parties, A can make
the following queries:

– NewSession(i, ρ): Create a new session for user i with role ρ either initiator (card) or responder (termi-
nal).

– Send(Πs
i,j ,m): Sends message m from user i to j in session s.

– Reveal(Πs
i,j): reveals the current session key κ.

– Corrupt(i): reveals the long-term private key of i and replaces it with K.

Our security model makes crucial use of a variant of the standard notion of matching conversation.
In the standard definition a conversation is said to match if the messages sent “on the wire” match; we
call this a wire-matching-conversation to avoid confusion with our new notion which we call plaintext-
matching conversation. The basic idea is that two conversations match in their plaintexts if they match on
the underlying messages; i.e. after any layers of encryption have been stripped off by the parties.

Definition 3 (Plaintext Conversation). For an adversary A and oracle Πs
i,j it’s plaintext conversation is

defined to be the sequence of tuples

(τ1, α1, β1), (τ2, α2, β2), ..., (τm, αm, βm)

where τm > τm−1 > ... > τ1 are times and for time τt the oracle Πs
i,j received αt after decryption (if any)

and responds with βt prior to any encryption operation.

Definition 4 (Plaintext Matching Conversations). Let Π be an R move protocol with R = 2ρ − 1. Let
Πs
i,j and Πt

j,i be two oracles with plaintext conversations C and C ′ obtained after running the protocol in
the presence of A.

1. We say that C ′ is a plaintext matching conversation to C if there exist τ0 < τ1 < ... < τR and
α1, β1, ..., αρ, βρ such that C is prefixed by

(τ0, λ, α1), (τ2, β1, α2), ..., (τ2ρ−4, βρ−2, αρ−1), (τ2ρ−2, βρ−1, αρ)

and C ′ is prefixed by
(τ1, α1, β1), (τ3, α2, β2), ..., (τ2ρ−3, αρ−1, βρ−1)

2. We say that C is a plaintext matching conversation to C ′ if there exists τ0 < τ1 < ... < τR and
α1, β1, ..., αρ, βρ such that C ′ is prefixed by

(τ1, α1, β1), (τ3, α2, β2), ..., (τ2ρ−3, αρ−1, βρ−1), (τ2ρ− 1, αρ, ∗)

6

and C is prefixed by

(τ0, λ, α1), (τ2, β1, α2), ..., (τ2ρ−4, βρ−2, αρ−1), (τ2ρ−2, βρ−1, αρ)

We then say that Πt
j,i has a plaintext matching conversation with Πs

i,j if the first has plaintext conversa-
tion C ′, the second has plaintext conversation C, and C ′ matches C.

We also define the probability Pr[NoMatchPlntxt(A)] that an adversary A can cause the event where at
least one oracle Πs

i,j has no plaintext matching conversation.
As is usual in security of key establishment protocols the security definitions are based on the notion of

a fresh oracle; although usually this is given in the context of what we called wire matching conversations:

Definition 5 (Fresh). An oracle Πs
i,j is fresh if the following three conditions hold:

1. Πs
i,j has accepted.

2. Oracle Πs
i,j has not been revealed and user i is not corrupted.

3. No oracle that has had a plaintext matching conversation with Πs
i,j has been revealed and no parent of

such a oracle has been corrupted.

3.3 Our New (Three-Part) Definition

In the definition of Jager et al. (see Appendix B) the adversary is permitted to make three different types of
query Sendpre, Encrypt and Decrypt associated to each oracle Πs

i,j . The Encrypt and Decrypt operations
are defined separately from Sendpre with the proviso that once the oracle has accepted decryption queries
are handled by Decrypt rather than Sendpre. In practice a secure channel would not have such a distinction
in the calls that can be made, since an adversary may not know when an oracle reaches an accept state. It
makes more sense then that we have a single Send operation which handles all operations depending on the
state of the input oracle Πs

i,j .
Thus to achieve greater generality and mirror practice more effectively we resort to only using Send

queries. When calling Send an adversary will specify a message m and an operation op. Basic operations
may include encrypt and decrypt, thus incorporating the queries of previous definitions. But it may also
include other capabilities such as sign not previously captured by the previous definition. This allows an
adversary to specify whether he is sending a message on the channel (ciphertext) or inputing an application
message (plaintext). Furthermore, our new style of definition allows us to define the program that we shall
consider as the correct operation of an honest oracle Πs

i,j . In our analysis we shall consider a simple com-
position which consists of an initial key-exchange phase keyexch that enables the establishment of a secure
channel based on a stateful authenticated encryption scheme AE = (enc, dec). We implicitly assume that
the implied state of the encryption and decryption functions, which we denote by ste and std, is initially set
to a default value on their first use.

The algorithms keyexch, enc and dec shall each maintain states stk, ste, std, respectively (we allow
keyexch to run enc and hence update its state). Once keyexch has been run a number of times a party will
accept the key exchange and establish two keys κ1 for outgoing message and κ2 for incoming messages.
With each message m sent on the channel there exists a corresponding header field h with any associated
data. We define our particular program for the honest operation of a participant as in Figure 2.

Next we give our security definition. This definition is split into three parts: entity authentication, mes-
sage authentication and message privacy. Note that our definition is given with set of send operations
op ∈ {encrypt, decrypt}. This is easily extended to considering further types of operations by including
further restrictions on the Send queries.

7

Π(m, op):

– if δ 6= accept then
• (m′, stk)← keyexch(h,m, stk).
• return m′. //m′ may be the empty string

– else
• if op = encrypt then
∗ (m′, ste)← encκ1(h,m, ste),
∗ return m′.

• elseif op = decrypt

∗ (m′, std)← decκ2(h,m, std).
∗ return m′

• else return ⊥

Fig. 2.

We shall first define the two separate security experiments for message authentication and privacy. In
these experiments we maintain lists for each Πs

i,j as follows:

– Application messages sent (encryption performed before sending) Lapp|seni,j,s .

– Application messages received (after decryption) Lapp|reci,j,s .

– Channel messages sent Lch|seni,j,s .

– Channel messages received Lch|reci,j,s .

By maintaining lists in this fashion instead of using states (for example u and v in the ACCE definition) our
definition can be easily adapted to consider the case of fragmentation. This is a common feature of many
secure/authenticated channels in practice and has been formally studied by Boldyreva et al. [4].

Message Authentication First consider the authentication experiment auth that initializes the encryption
and decryption states to their default values, and then allows the adversary to make the queries NewSession(i, ρ),
Reveal(Πs

i,j), Corrupt(i) as well as Send(Πs
i,j ,m, op) with operations op ∈ {encrypt, decrypt}. Note

that as specified in Figure 2, a session ignores op, unless it is in an accept state. On the Send(Πs
i,j ,m, op)

query, the game behaves as follows:

– if δ 6= accept then
• Run m′ ← Πs

i,j(m, op).
• return m′.

– elseif op = encrypt, then
• Run m′ ← Πs

i,j(m, encrypt).

• Set Lapp|seni,j,s ← L
app|sen
i,j,s ‖m.

• Set Lch|seni,j,s ← L
ch|sen
i,j,s ‖m′ and return m′.

– elseif op = decrypt, then
• Run m′ ← Πs

i,j(m, decrypt).

• if m′ 6= ⊥, then Lapp|reci,j,s ← L
app|rec
i,j,s ‖m′.

• return m′.

8

For the session matching, we consider plaintext session matching as specified in Definition 4. However, we
only consider the messages sent and received in a session while δ 6= accept. The notion of freshness that
we use in the following definition is according to Definition 5.

We define the following game Execauth
Π (A) between an adversary A and challenger C:

1. The challenger C generates public/private key pairs for each user i ∈ I (by running G) and returns the
public keys to A.3

2. Adversary A is allowed to make as many NewSession,Reveal,Corrupt, Send queries as it likes.
3. The adversary stops with no output.

We say that an adversary A wins the game if there exists a fresh oracle Πs
i,j with partner Πt

j,i such that the

list Lapp|reci,j,s is not a prefix of Lapp|senj,i,t . Let Prefix(X,Y) be the function which outputs 1 if Lapp|reci,j,s is a

prefix of Lapp|senj,i,t (provided not empty) and 0 otherwise.
We define the adversary’s advantage as:

Advauth
Π (A) = Pr[Prefix(Lapp|reci,j,s , L

app|sen
j,i,t) = 0 : for some fresh Πs

i,j].

Message Privacy The message privacy experiment initializes the states as the authentication experiment
auth, except that each session now also holds a random secret bit bsi,j . As before, the adversary can make
the queries NewSession(i, ρ), Reveal(Πs

i,j), Corrupt(i) as well as Send(Πs
i,j ,m, op) with operation op =

decrypt as well as an augmented Send query SendLR(Πs
i,j ,m0,m1, op) that takes as input two messages

(m0,m1) and op = encrypt to model message indistinguishability. Note that as specified in Figure 2, a
session ignores op, unless it is in an accept state. As before, two sessions are considered partners, if they
have matching plaintext conversations on the messages sent and received while both sessions were not in
accept state yet. On the SendLR(Πs

i,j ,m0,m1, op) query, the game behaves as follows:

– if δ 6= accept, then
• Run m′ ← Πs

i,j(m, op).
• return m′.

– elseif op = encrypt, then
• Run m′ ← Πs

i,j(mbsi,j
, encrypt).

• Set Lapp|seni,j,s ← L
app|sen
i,j,s ‖mbsi,j

.

• Set Lch|seni,j,s ← L
ch|sen
i,j,s ‖m′.

• return m′.

On the Send(Πs
i,j ,m, op) query, the game behaves as follows:

– if δ 6= accept then
• Run m′ ← Πs

i,j(m, op).
• return m′.

– elseif op = decrypt then (where Πt
j,i is communicating partner of Πs

i,j)

• if m′ 6= ⊥, then Lapp|reci,j,s ← L
app|rec
i,j,s ‖m′ and

∗ if m /∈ Lch|senj,i,t , return m′.

3 Note that in the scheme considered in this paper, public keys of cards are not actually made public toA but are sent in encrypted
form during the confirmation step.

9

∗ if m /∈ Lch|senj,i,t , return ⊥.
• if m′ = ⊥, then return ⊥.

To consider privacy we give an extended definition for Send, namely SendLR. Here the input consists
of two messages for the encryption operation and the output would be the encryption of the message mbsi,j

,
where bsi,j is the random bit of Πs

i,j . Now we describe the privacy experiment priv.

We define the following game Execpriv
Π (A) between an adversary A and challenger C:

1. The challenger C, generates public/private key pairs for each user i ∈ I (by running G) and returns the
public keys to A.4

2. Adversary A is allowed to make as many NewSession,Reveal,Corrupt, SendLR queries as it likes.
3. Finally A outputs a tuple (i, j, s, b′).

We say the adversary A wins if its output b′ = bsi,j and Πs
i,j is fresh. In this case the output of Execpriv

Π (A)
is set to 1. Otherwise the output is 0. Formally we define the advantage of A as

Advpriv
Π (A) = |Pr[Execpriv

Π (A) = 1]− 1/2| = |Pr[b′ = bsi,j]− 1/2|.

We can now present our three part security definition for a combined key establishment and authenticated
channel protocol:

Definition 6 (EAMAP). A protocol P = {Π,G} is a (t, ε)-secure EAMAP protocol if for all adversaries
Aauth andApriv running each in time at most t the following conditions hold (where ε = εEA+εMA+εMP):

1. (Entity Authentication (EA)): In each of the experiments Execauth
Π (Aauth) and Execpriv

Π (Apriv), there
exists with probability at most εEA an oracle Πs

i,j such that:
– Πs

i,j accepts at time τ and j is uncorrupted prior to this time, and
– there is no unique oracle Πt

j,i such that Πs
i,j has a plaintext matching conversation with Πt

j,i.
2. (Message Authentication (MA)): In the experiment Execauth

Π (Aauth), the advantage ofAauth is bounded
by Advauth

Π (Aauth) ≤ εMA.
3. (Message Privacy (P)): In the experiment Execpriv

Π (Apriv), the advantage ofApriv is bounded by Advpriv
Π (Apriv) ≤

εMP .

3.4 One-Sided Authentication

The above security definitions enforce mutual authentication, yet in many scenarios of practical concern
only one party needs to be authenticated. For example, the protocol we consider requires authentication
of the credit card but does not authenticate the communicating terminal. To model this situation we split
our set of participants I in two. Let C be the set of registered participants (the cards) and let T by the
set of unauthenticated participants (the terminals). Unauthenticated participants do not hold a long-term
private/public key pair. The total set of all participants is therefore I = C ∪ T . This is defined in the same
way as registered and unregistered users in [12]. In our scenario i ∈ C shall model a card and j ∈ T a
terminal. A terminal j ∈ T wishes to authenticate a card i ∈ C and establish a key (additionally a secure
channel) with this card. Since all j ∈ T have no long-term secret then the Corrupt query does not make

4 Note that in the scheme considered in this paper, public keys of cards are not actually made public toA but are sent in encrypted
form during the confirmation step.

10

sense for any such j ∈ T . Similarly since the adversary does not need to query the oracle to find the output
for user j ∈ T then he may always be able to compute the session key for Πs

i,j without using a Reveal
query. We wish to guarantee that an adversary cannot determine the session key or authenticate itself as
a participant i ∈ C. An adversary impersonating some unauthenticated participant j ∈ T would always
succeed in establishing a malicious session (key) with i ∈ C

First let us define a one-sided version of fresh.

Definition 7 (One-Sided Fresh). An oracle Πs
i,j where i ∈ I = C ∪ T and j ∈ I = C ∪ T , is OS-fresh if

the following six conditions hold:

1. Both i and j 6∈ T , i.e. at least one is a registered participant.
2. Πs

i,j has accepted.
3. Oracle Πs

i,j has not been revealed.
4. If i ∈ C then it is uncorrupted.
5. If i ∈ T then Πs

i,j has had a plaintext matching conversation with an oracle Πt
j,i. (This is to ensure that

the adversary is not impersonating an unregistered user j).
6. No oracle that has had a plaintext matching conversation with Πs

i,j has been revealed and no parent of
such a oracle has been corrupted if then are a registered participant.

We can therefore alter our definitions of auth and priv whether the winning conditions now require the oracle
to be OS-fresh. We denote our new definitions OS-auth and OS-priv respectively.

Definition 8 (OS-EAMAP). A protocol P = {Π,G} is a (t, ε)-secure OS-EAMAP protocol if for all
adversaries A running in time t the following conditions hold (where ε = εEA + εMA + εMP):

1. (One-Sided Entity Authentication): There exists with probability at most εEA an oracle Πs
i,j where

i ∈ I = C ∪ T and j ∈ C such that:
– Πs

i,j accepts at time τ and j is uncorrupted prior to this time, and
– there is no unique oracle Πt

j,i such that Πs
i,j has a plaintext matching conversation with Πt

j,i.

2. (One-Sided Message Authentication): When A terminates the advantage AdvOS-auth
Π (A) ≤ εMA.

3. (One-Sided Message Privacy): WhenA terminates and outputs (i, j, s, b′) the advantage AdvOS-priv
Π (A) ≤

εMP .

Matching Conversations We must also define the notion of a one-sided plaintext matching conversation
by extending the original definition in a similar fashion. Here we basically wish to establish that a card
cannot establish a malicious session with a trusted terminal, i.e. an unauthenticated participant should
never get to an accept state without having a matching conversation with a registered participant. The
definition of a plaintext matching conversation shall remain the same but we must define the probability
Pr[OS-NoMatchPlntxt(A)] that an adversary A can cause the event where at least one terminal oracle
Πs
i,j (for an unauthenticated participant i ∈ T and registered participant j ∈ C) has no plaintext matching

conversation.

4 Proof of Security

Theorem 1. The EMV protocol Π in Figure 1 is an (t, ε)-OS-EAMAP secure protocol. In particular

11

– If there is an adversary A running in time at most t against the no plaintext matching property of the
protocol then there is an adversary B such that

Pr[OS-NoMatchPlntxt(A)] ≤ Adveufcma
cert (B) = εEA.

– If there is an adversary A running in time at most t against the message authentication property of
OS-EAMAP security then there are adversaries B, C and D such that

AdvOS-auth
Π (A) ≤ nS ·(nC+nT)·Advintsfctxt

AE (D)+nC ·(1−1/H)·AdvGap−DH
E(Fp) (C)+Adveufcma

cert (B) = εMA.

where nC is the number of cards in the system, nT the number of terminals and nS the number of
sessions.

– If there is an adversaryA running in time at most t against the message privacy property of OS-EAMAP
security then there are adversaries B, C and D such that

AdvOS-priv
Π (A) ≤ nS ·(nC+nT)·Advindsfcca

AE (D)+nC ·(1−1/H)·AdvGap−DH
E(Fp), (C)+Adveufcma

cert (B) = εMP .

The proof of this theorem is given in Appendix D.

5 Unlinkability

A further property that this protocol aims to achieve is unlinkability. This means that it should be hard for an
adversary to determine when two particular sessions involve the same card. We define this security property
in terms of the game Execunlink

Π (A) between adversary A and challenger C, which is defined as follows:

1. The challenger C, generates public/private key pairs for each user i ∈ C (by running G) and returns the
public keys to A.5

2. Adversary A is allowed to make as many NewSession,Reveal,Corrupt, Send queries as it likes.
3. At some point A outputs two identities i0 ∈ C and i1 ∈ C.
4. The challenger then chooses a bit b r← {0, 1} and create a new oracle O = Πs

ib,j
for some fresh j ∈ T ,

by calling NewSession(ib).
5. AdversaryA then continues making queries NewSession,Reveal,Corrupt,Send; in these queries he can

now use O.
6. Eventually A stops and outputs a bit b′.

We say the adversary A wins if its output b′ = b. In this case the output of Execunlink
Π (A) is set to one,

otherwise the output is zero. Formally we define the advantage of A as

Advunlink
Π (A) = |Pr[Execunlink

Π (A) = 1]− 1/2| = |Pr[b′ = b]− 1/2|.

Definition 9. Unlinkability A protocol (Π,Game) ⇒ 1 is (t, εunlink)-unlinkable, if for all adversaries A
running in time t, Advunlink

Π (A) ≤ εunlink.

Theorem 2. If π is a key-secure key-agreement protocol, AE = (enc, dec) is an ind-cca secure authenticated-
encryption scheme and the SDDL problem is hard, then Π is secure in the sense of unlink.

Advunlink
Π (A) ≤ n2

C ·
(
AdvSDDL

E(Fp)(D) + Advindsfcca
AE (C) + AdvwKSec

π (B)
)

The proof of this theorem is given in Appendix E.
5 Note that in the scheme considered in this paper, public keys of cards are not actually made public toA but are sent in encrypted

form during the confirmation step.

12

6 Acknowledgements

This work was support in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO. The second
author was also partially supported by a Royal Society Wolfson Merit Award. Research supported in part by
the Israel Ministry of Science and Technology (grant 3-9094) and by the Israel Science Foundation (grant
1155/11 and grant 1076/11).

References

1. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repairing the ssh authenticated en-
cryption scheme: A case study of the encode-then-encrypt-and-mac paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206–241,
2004.

2. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson, editor, CRYPTO, volume
773 of Lecture Notes in Computer Science, pages 232–249. Springer, 1993.

3. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their security analysis. In Michael
Darnell, editor, IMA Int. Conf., volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer, 1997.

4. Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. Security of symmetric encryption in the
presence of ciphertext fragmentation. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of
Lecture Notes in Computer Science, pages 682–699. Springer, 2012.

5. Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams. Less is more: Relaxed yet
composable security notions for key exchange. IACR Cryptology ePrint Archive, 2012:242, 2012.

6. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. In Birgit
Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

7. Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-way authentication in key exchange protocols.
Designs, Codes and Cryptography, 2012. Online first; print version to appear.

8. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of tls-dhe in the standard model. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 273–293. Springer,
2012.

9. Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key agreement protocols. In Bimal K. Roy, editor,
ASIACRYPT, volume 3788 of Lecture Notes in Computer Science, pages 549–565. Springer, 2005.

10. Laurie Law, Alfred Menezes, Minghua Qu, Jerome A. Solinas, and Scott A. Vanstone. An efficient protocol for authenticated
key agreement. Des. Codes Cryptography, 28(2):119–134, 2003.

11. EMVCo LLC. EMV ECC key establishment protocols. http://www.emvco.com/specifications.aspx?id=243, 2012.
12. Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The tls handshake protocol: A modular analysis. J. Cryptology,

23(2):187–223, 2010.
13. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter: Attacks and proofs for the tls record

protocol. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science,
pages 372–389. Springer, 2011.

14. John Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32:918–924, 1978.

A Basic Security Definitions

The authenticated encryption scheme we assume satisfies the following two properties which are variants of
the stateful security models of Bellare et al. [1] and Paterson et al. [13]:

Definition 10 (IND-sfCCA). Consider the authenticated-encryption scheme AE = {encκ(), decκ()}. LetA
be an adversary with access to a left-or-right encryption oracle encκ(h, LRb(m0,m1); ste) and a decryption
oracle decκ(h, c; std). It is mandated that any two messages queried to encκ(h, LRb(m0,m1); ste) have
equal length. We define an experiment as follows:

13

Execindsfcca−b
AE (A)

κ
r← {0, 1}k, ste ← ∅ and std ← ∅

u← 0; v ← 0; phase← 0
Run Aencκ,decκ

Reply to encκ(h, LRb(m0,m1); ste) as follows:
u← u+ 1; (cu, ste)

r← encκ(h,mb; ste)
A ⇐ cu

Reply to decκ(h, c; std) as follows:
v ← v + 1; (m, std)

r← decκ(h, c; std)
if v > u or c 6= cv then phase← 1
if phase = 1 then A ⇐ m

Until A returns a bit b′

return b′
The attacker wins when b′ = b, and his advantage is defined as

Advindsfcca
AE (A) = Pr[Execindsfcca−1

AE (A) = 1]− Pr[Execindsfcca−0
AE (A) = 1].

Definition 11 (INT-sfCTXT). Consider the authenticated-encryption scheme AE = {encκ(), decκ()}. Let
A be an adversary that has access to the oracles encκ(h,m; ste) and decκ(h, c; std). We define an experi-
ment as follows:

Execintsfctxt
AE (A)

κ
r← {0, 1}k, ste ← ∅ and std ← ∅

u← 0; v ← 0; phase← 0
Run Aencκ,decκ

Reply to encκ(h,m; ste) as follows:
u← u+ 1; (cu, ste)

r← encκ(h,m; ste)
A ⇐ cu

Reply to decκ(h, c; std) as follows:
v ← v + 1; (m, std)

r← decκ(h, c; std)
if v > u or c 6= cv then phase← 1
if m 6=⊥ and phase = 1 then return 1
if m 6=⊥ then A ⇐ 1 else A ⇐ 0

Until A halts
return 0

The advantage Advintsfctxt
AE (A) of an adversary is defined as the probability of A winning the above game.

Definition 12 (EUF-CMA). Consider the signature scheme {keysig, sig, ver}, where keysig be the key gen-
eration method for this scheme. Let A be an adversary that has access to the oracle sigsk(·). We define the
experiment as follows:

Execeufcma
(sig,ver)(A)

(pk, sk) r← keysig
(m,σ)← Asigsk(·)

if verpk(m,σ) = 1; and m has not been queried to sigsk(·)
then return 1 else return 0

The attacker’s advantage is defined as

Adveufcma
(sig,ver)(A) = Pr[Execeufcma

(sig,ver)(A) = 1].

14

B Jager et al’s Definition of ACCE

We now present the ACCE definition of Jager et al. [8]. In this definition each oracle Πs
i,j maintains an

additional state variable bsi,j
r← {0, 1} chosen at random at the start of the game, two states u and v used

to ensure A cannot submit a ciphertext previously output by the oracle queries Encrypt to Decrypt defined
below, and two states ste and std for the encryption and decryption operations of the stateful symmetric
encryption scheme (each oracle Πs

i,j shall maintain a different set of states). As before we let enc and dec
be the encryption and decryption algorithms of our symmetric encryption scheme. The adversary A will be
permitted to make the following queries:

– Sendpre(Πs
i,j ,m): This is identical to the Send query in the preliminaries section above, except that it

replies with ⊥ if oracle Πs
i,j has state δ = accept (this shall be handled by the decrypt query).

– Reveal(Πs
i,j) and Corrupt(i,K) are identical to those in the section above.

– Encrypt(Πs
i,j ,m0,m1, h): takes as input two equal length messages m0 and m1 and a header h. If Πs

i,j

has δ 6= accept then Πs
i,j returns⊥. Otherwise it proceeds with encryption as in Figure 3 dependent on

the internal state bsi,j .
– Decrypt(Πs

i,j , c, h): takes as input a ciphertext c and a header h. If Πs
i,j has δ 6= accept then Πs

i,j

returns ⊥. Otherwise it proceeds with decryption as in Figure 3.

Encrypt(Πs
i,j ,m0,m1, h)

u := u+ 1
(c(0), st

(0)
e)← enc(kρenc, h,m0)

(c(1), st
(1)
e)← enc(kρenc, h,m1)

(cu, ste) := (c(b), st
(b)
e)

return cu

Decrypt(Πs
i,j , c, h)

v := v + 1
if bsi,j = 0 then return ⊥
(m, std)← dec(kρdec, h, c, std)
if v > u or c 6= cv , then phase := 1
if phase = 1 then return m
else return ⊥

Fig. 3.

We define the following game ExecACCE
Π (A) between an adversary A and challenger C:

1. The challenger C, generates public/secret key pairs for each user i ∈ I (by running G) and returns the
public keys to A.

2. AdversaryA is allowed to make as many Sendpre,Reveal,Corrupt,Encrypt,Decrypt queries as it likes.
3. Finally A outputs a triple (i, j, s, b′).

We say the adversary A wins if it outputs b′ = bsi,j . In this case the output of ExecACCE
Π (A) is set to 1.

Otherwise the experiment returns 0. Formally we define the advantage of A as

AdvACCE
Π (A) = |Pr[ExecACCE

Π (A) = 1]− 1/2| = |Pr[b′ = bsi,j]− 1/2|.

Definition 13 (ACCE). A protocol P = {Π,G} is a (t, ε)-secure ACCE protocol if for all adversaries A
running in time t the following conditions hold (where ε = εEA + εsAE):

1. (Entity Authentication/EA): There exists with probability at most εEA an oracle Πs
i,j such that:

– Πs
i,j accepts when A issues its τ0-th query with partner j, and

– Pj is uncorrupted with τ0 < τj (i.e. at time of accept), and

15

– there is no unique oracle Πt
j,i such that Πs

i,j has a (wire) matching conversation with Πt
j,i.

2. (Secure Channel/sAE): When A terminates and outputs (i, j, s, b′) such that
– Πs

i,j accepts when A issues its τ0-th query with intended partner j, and
– Pj is uncorrupted with τ0 < τj (i.e. at time of accept), and
– A did not issue a Reveal-query to Πs

i,j nor Πt
j,i (such that they had a wire matching conversation).

the advantage is bounded by AdvACCE
Π (A) = |Pr[b′ = bsi,j]− 1/2| ≤ εsAE .

B.1 Note on unique conversations:

We point out that in the above definition of entity authentication requires that there exists a unique oracle
Πt
j,i such that Πs

i,j has a wire matching conversation with Πt
j,i. That is, there exists one and only one such

oracle. Bellare and Rogaway prove [2, Appendix C] that if the probability of no wire matching conversations
is “small” then the probability of Πs

i,j having a wire matching conversation with two different oracles Πt
j,i

and Πt′
j′,i is also “small”. (The proof exploits one of the “multi-matching” oracles becoming out-of-sync but

then still accepting.)

C Alternate ACCE

To fix the two problems with ACCE we could make the following changes to the original definition. First
consider the two states u and v previously used during the Encrypt and Decrypt queries. We instead will
define the two states usi,j and vsi,j which are then used to ensure thatA cannot submit a ciphertext previously
output by Encrypt to Decrypt. Once an oracle is in an accept state then Encrypt and Decrypt shall now
proceed as defined in Figure 4.

Encrypt(Πs
i,j ,m0,m1, h)

usi,j := usi,j + 1

(c(0), st
(0)
e)← enc(kρenc, h,m0)

(c(1), st
(1)
e)← enc(kρenc, h,m1)

(cu, ste) := (c(b), st
(b)
e)

return cu

Decrypt(Πt
j,i, {c, h})

vtj,i := vtj,i + 1
if btj,i = 0 then return ⊥
(m, std)← dec(kρdec, h, c, std)
if vtj,i > usi,j or c 6= cv , then phasetj,i := 1
if phasetj,i = 1 then return m
else return ⊥

Fig. 4.

The rest of the security experiment remains the same and we denote this new experiment by ExecaltACCE
Π (A),

where the advantage of A is again defined as:

AdvaltACCE
Π (A) = |Pr[ExecaltACCE

Π (A) = 1]− 1/2| = |Pr[b′ = bsi,j]− 1/2|.

The second change is then to fix the issue with the reveal query this occurs in the first part of the
following altered definition.

Definition 14 (alternate-ACCE).
A protocol P = {Π,G} is a (t, ε)-secure ACCE protocol if for all adversaries A running in time t the

following conditions hold (where ε = εEA + εsAE):

16

1. (Entity Authentication/EA): There exists with probability at most εEA an oracle Πs
i,j such that:

– Πs
i,j accepts when A issues its τ0-th query with partner j, and

– Pj is uncorrupted with τ0 < τj (i.e. at time of accept), and
– there is no unique oracle Πt

j,i such that Πs
i,j has a plaintext matching conversation with Πt

j,i.
2. (Secure Channel/sAE): When A terminates and outputs (i, j, s, b′) such that

– Πs
i,j accepts when A issues its τ0-th query with intended partner j, and

– Pj is uncorrupted with τ0 < τj (i.e. at time of accept), and
– A did not issue a Reveal-query to Πs

i,j nor Πt
j,i (such that they had a wire matching conversation).

the advantage is bounded by AdvaltACCE
Π (A) = |Pr[b′ = bsi,j]− 1/2| ≤ εsAE .

Please note that the authentication requirement uses the notion of plaintext matching conversations, while
the secure channel definition makes use of the standard definition of (wire) matching conversations.

C.1 Relations between notions

By defining our new notion in three parts we create a notion with greater flexibility allowing it to be used
in a “mix-and-match” style. In some situations it may be necessary to (along with entity authentication)
ensure only one of message privacy or authenticity, where as in other situations both may be required. In
the original ACCE paper by Jager et al. [8] it is necessary to achieve both message authenticity and privacy,
namely sLHAE security. In the situation where we require all three conditions from a scheme (built as a key
exchange followed by an authenticated encryption scheme) it is easy to prove that our notion of EAMAP
and that of alternate-ACCE are equivalent. The analysis is similar to that when we compare AE security
with IND-CCA security. A scheme which is AE secure is also IND-CCA secure but a scheme which is IND-
CCA secure is not necessarily AE secure. Given that a scheme is both INT-CTXT and IND-CPA (or even
IND-CCA security as in our case) secure it will achieve AE security. It may seem strange that our notion’s
constituent parts are INT-CTXT and IND-CCA rather than INT-CTXT and IND-CPA but this is due to our
mix-and-match philosophy where we may only require the established channel to be solely IND-CCA secure
rather than AE secure.

Theorem 3. Consider an adversary A against (G, Π) where Π follows the construction from earlier with
op = Encrypt or Decrypt, i.e. key exchange followed by secure channel, then the security of alternate-ACCE
and EAMAP are equivalent.

The proof is similar to proving that a scheme which is AE secure is both IND-CCA secure and INT-CTXT
secure, and a scheme which is both IND-CPA and INT-CTXT secure is also AE secure. The ACCE paper
uses the results from [13] proving the sLHAE security of the MEE construction used in TLS. Since we have
omitted the details for length-hiding from our notions we omit these from the proof also but is extension to
the length-hiding setting is straight-forward.

Proof. (sketch) First let us prove that a scheme which is alternate-ACCE secure is also EAMAP secure.
Since the requirements for entity authentication are the same it is trivial to show that one implies the other.
Assume we have an adversary A which breaks the alternate-ACCE security. We shall use this adversary to
construct two new adversaries Bpriv and Bauth against EAMAP message privacy and authenticity. Bpriv and
Bauth will use their own oracles to provide simulations of A’s oracles. The Corrupt and Reveal queries are
straightforward and consists of simply forwarding messages to the corresponding oracle. When A makes
a Sendpre query then this is forwarded to the Send oracle with op = ∅. When A makes a Encrypt query

17

then this is forwarded to the Send oracle with op = encrypt. When A makes a Decrypt query then this is
forwarded to the Send oracle with op = decrypt.

Let E be the event that A creates a ciphertext forgery which by the end of the experiment has not been
output by the encryption oracle. It is easy to verify that we then have:

Pr[A “wins”] = Pr[A “wins” ∧ E] + Pr[A “wins” ∧ ¬E]
≤ Pr[Bauth “wins”] + Pr[Bpriv “wins”]

The result then follows.

To prove that a scheme which is EAMAP secure is also alternate-ACCE secure Again, since the requirements
for entity authentication are the same it is trivial to show that one implies the other. The rest follows from the
proof in [13]. (Given a scheme which is INT-CTXT and IND-CPA secure we obtain an AE secure scheme.)

D Proof of Theorem 1

The proof of this theorem will be accomplished in the following subsections. Before proceeding with the
main proof we first examine a related concept of Key Secrecy for a simpler protocol.

D.1 Key Secrecy

Card (C) Terminal (T)

a
r← {0, 1}l

A=aQC

−−−−−−−−→
E=eP

←−−−−−−−− e
r← Fq

κ = H(daE) κ = H(eA)

Fig. 5. Unauthenticated Key-Agreement Scheme

We begin our analysis by studying the simpler protocol, π, described in Figure 5. To analyse this protocol
we are only interested in whether the secret key remains secret, and so we introduce a new security game to
model this fact. Define the following game ExecKSec

Π (A) between an adversary A and challenger C:

1. The challenger C, generates public/secret key pairs for each user i ∈ I (by running G) and returns the
public keys to A.

2. Adversary A is allowed to make as many NewSession,Send,Reveal,Corrupt queries as it likes.
3. Finally A outputs a pair Π∗ and κ∗.

We say the adversary A wins if Π∗ is fresh and κ∗ is the key agreed by κ∗. In this case the output of
ExecTest

Π (A) is set to 1. Otherwise the output is 0. Formally we define the advantage of A as

AdvKSec
Π (A) = |Pr[ExecKSec

Π (A) = 1]|.

Definition 15 (Key Secrecy). A protocol P = {Π,G} is a (t, εKSec)-key secret AK protocol if for all
adversaries A running in time t the following holds:

18

1. In the presence of a benign adversary on Πs
i,j and Πt

j,i both oracles accept holding the same session key
κ, and this key is distributed uniformly at random on {0, 1}k.

2. If uncorrupted oracles Πs
i,j and Πt

j,i have had a plaintext matching conversation then both accept and
hold the same session key κ.

3. A’s advantage is bounded by AdvKSec
Π (A) ≤ εKSec.

We can also define a weaker version of this model for one-sided authentication by running the experi-
ment in the same way as before but changing the winning condition slightly. We say the adversary A wins
if Π∗ is OS-fresh and κ∗ is the key agreed by κ∗.

Definition 16 (Weak Key Secrecy). A protocol P = {Π,G} is a (t, εwKSec)-weak Key-secure AK protocol
if for all adversaries A running in time t the following holds:

1. In the presence of a benign adversary on Πs
i,j and Πt

j,i both oracles accept holding the same session key
κ, and this key is distributed uniformly at random on {0, 1}k.

2. If uncorrupted oracles Πs
i,j and Πt

j,i have had a plaintext matching conversation then both accept and
hold the same session key κ.

3. A’s advantage is bounded by AdvwKSec
Π (A) ≤ εwKSec.

Given this definition we can now analyse the protocol in Figure 5.

Lemma 1. The key secrecy of the reduced protocol π is reducible to the Gap Diffie–Hellman assumption,
i.e. we have for all adversaries A there exists an adversary B such that

AdvwKSec
π (A) ≤ nC · (1− 1/H) ·AdvGap−DH

E(Fp) (B),

where nC is the number of cards in the system.

Proof. The proof of this lemma uses the technique first presented in [9] for analysing a hashed Diffie–
Helman based key agreement protocol. Assume we have an adversary A against the key secrecy of π we
shall use this to construct an adversary B against Gap Diffie–Hellman, where B is given the challenge
aP, bP .

The algorithm B begins by setting up nC registered participants by choosing a secret key di
r← Fq for

each registered participant i ∈ C and sets the public key Qi = diP except for one participant i∗ ∈ I where
we set the public key to aP . B also sets up nT unregistered participants.

Algorithm B will then use its DDH oracle ODDH to provide simulations of A’s oracles as follows:

– NewSession(i, ρ) – B starts a new session for i. All participants may have a total of ns sessions.
– Send(πsi,j ,m) –
• For i ∈ C (and ρ = initiator), select at random αsi,j

r← Fq to create message A = αsi,jQi.
• For i ∈ T (or i ∈ I and ρ = responder), select at random βsi,j

r← Fq to create messageE = βsi,jbP .
This will result in a shared key κ = H(αsi∗,jβ

s
i∗,jabP) for participant i∗ in some session s with partner

j ∈ I ∪ T .
– Corrupt(i, d′) –
• For i ∈ C, then return di and replace it with d′ unless i = i∗ in which case abort
• For i ∈ T , return ⊥.

– Reveal(πsi,j) – To answer Reveal queries, B will maintain a Guess session key list (G-List). Each element
on the G-List is a tuple of the form (τ, i, j, κR). Queries are answered as follows:

19

• First B checks the G-list and if there is an entry for i, j then B outputs the corresponding κR.
• If not then B checks whether the H-list (see below) contains an (M,h, sth)

withODDH(αsi,jQi, β
s
i,jbP,M) = 1. If it does then B sets sth = {i, j} and adds to G-list (τ, i, j, h).

• Otherwise B returns a randomly chosen key.
– hash(M) – To answer hash queries, B maintains an H-List containing tuples of the form (M,h, sth).

Queries are answered as followed:
• B first checks whether M is on the H-list. If it is, then B outputs h.
• If not then B must check whether hash(M) is already an valid entry on the G-list for some pair of

participants (i, j) by calling its ODDH .
• If it is a valid entry for some pair of participants (i, j) then B returns the corresponding κR from the

G-list and adds (M,κR, {i, j}) to the H-list.
• Otherwise B chooses a random hash h and adds (M,h, sth) to list.

Eventually, A will output its guess π∗ = πsi,j and κ∗, The probability that A chooses i = i∗ is 1/nC Note
that in this case i∗ will not have been corrupted so the simulation has been perfect. At this point B searches
the H-list for the entry (M∗, κ∗, st∗κ) corresponding to κ∗, using ODDH to verify that the entry corresponds
to i∗, j. If this entry does not exist then A must have output a random guess for the key, in which case
his probability of success is at best 1/H , where H is the size of the output to the function hash. Since we
assume A to be a winning adversary with probability (1 − 1/H) A queries hash such that his guess is on
the H-list. If it is on the list then B calculates the solution to the gap-DH problem as (1/αsi∗,jβ

s
i∗,j)M

∗.

D.2 One-sided Entity Authentication

We now turn to proving the various properties in our main theorem. We start with one-sided entity authenti-
cation:

Lemma 2. If there is an adversary A against the no plaintext matching property of the protocol then there
is an adversary B such that

Pr[OS-NoMatchPlntxt(A)] ≤ Adveufcma
cert (B).

Proof. Assume we have an adversary A against the OS-NoMatchPlntxt of Π we shall use this to construct
an adversary B against the EUF-CMA property of the signature scheme that the card issuer used to sign the
certificate.

Algorithm B begins by setting up nC registered participants and nT unregistered participants by calling
its sign oracle to generate the certificates for the registered participants. All other keys necessary B shall
generate itself and model A’s queries appropriately.

For B to win there must exist one oracle Πs
i,j that accepts but has had no plaintext matching application

conversation with Πt
j,i. For Πs

i,j to accept the final confirmation message received after decryption, namely
(a′, Q′, cert′) must verify correctly, (i.e. A = a′Q′ and the signature on cert′ verifies correctly) and must
not have been output by Πt

j,i.
If A succeeds in getting Πs

i,j to accept without a plaintext matching conversation then either:

– He must have forged a new cert for a pair (a,Q) output by Πt
j,i.

– Or forged cert on a completely new Q.

In either case B simply forwards the forged cert to his verify oracle and wins the EUF-CMA game.

20

D.3 Message Authentication

We now turn to the message authentication property:

Lemma 3. If π is a key-secure key-agreement protocol, AE = (enc, dec) is an int-ctxt secure authenticated
encryption scheme and plaintext matching conversations holds, then Π is secure in the sense of OS-auth. In
particular if there is an adversary A against the OS-auth property then there are adversaries B, C and D
such that

AdvOS-auth
Π (A) ≤ nS · (nC +nT) ·Advintsfctxt

AE (D) +nC · (1− 1/H) ·AdvGap−DH
E(Fp) (C) +Adveufcma

cert (B).

where nC is the number of cards in the system, nT the number of terminals and nS the number of sessions.

Proof. We shall prove this result via a sequence of games. Let A be adversary attacking Π in the sense of
auth.
Game 0: This game is identical to ExecOS-auth

Π (A).

Pr[Game0⇒ 1] = AdvOS-auth
Π (A)

Game 1: This proceeds identically to the previous game but aborts if no plaintext matching occurs for some
terminal oracle Πs

i,j . It is easy to see that

Pr[Game0⇒ 1] ≤ Pr[Game1⇒ 1] + Pr[OS-NoMatchPlntxt(B′)]

Game 2: This proceeds identically to the previous game but aborts if A makes a query to H which reveals
the key for an oracle Πs

i,j . Again it is easy to see that

Pr[Game1⇒ 1] ≤ Pr[Game2⇒ 1] + AdvwKSec
π (C′)

Game 3: The challenger now selects at random an oracle Πs∗
i∗,j∗ . The game aborts and returns random b′ if

Prefix(Lapp|reci,j,s , L
app|sen
j,i,t) = 0 for (i, j, s) 6= (i∗, j∗, s∗).

Pr[Game2⇒ 1] ≤ nS · (nC + nT) · Pr[Game3⇒ 1]

It remains to study the probability that A wins (Game3 ⇒ 1). We shall use A in Game3 ⇒ 1 to construct
a new adversary D against the INT-CTXT security of AE. What we effectively do is set the output of the
random oracle H for the key corresponding to Πs∗

i∗,j∗ to be the key chosen at random for the INT-CTXT
experiment. When A makes a Send query with op = Encrypt or Decrypt these are forward to D’s enc
and dec oracles respectively. All other queries NewSession,Reveal,Corrupt and Send when op = ∅ are
simulated internally by D selecting appropriate randomness. Since A does not make any reveal queries or
hash queries corresponding to the key ofΠs∗

i∗,j∗ the simulation shall remain perfect. IfA wins the auth game

then Prefix(Lapp|reci∗,j∗,s∗ , L
app|sen
j∗,i∗,t∗) = 0 and therefore A has output a ciphertext forgery which allows D to win

the INT-CTXT game. We therefore have,

Pr[Game3⇒ 1] ≤ Advintsfctxt
AE (D)

21

Combining all of the above we obtain

AdvOS-priv
Π (A) = Pr[Game0⇒ 1]

≤ Pr[Game1⇒ 1] + Pr[OS-NoMatchPlntxt(B′)]
≤ Pr[Game2⇒ 1] + AdvwKSec

π (C′) + Pr[OS-NoMatchPlntxt(B′)]
≤ nS · (nC + nT) · Pr[Game3⇒ 1] + AdvwKSec

π (C′)
+ Pr[OS-NoMatchPlntxt(B′)]

≤ nS · (nC + nT) ·Advintsfctxt
AE (D) + AdvwKSec

π (C′) + Pr[OS-NoMatchPlntxt(B′)]

With the final result following from applying Lemmas 1 and 2.

D.4 Message Privacy

We now turn to the message privacy property:

Lemma 4. If π is a key-secure key-agreement protocol, AE = (enc, dec) is an ind-cca secure authenticated-
encryption scheme and plaintext matching conversations holds. Then Π is secure in the sense of OS-priv,
i.e. any adversary A against the OS-priv property can be turned into adversaries B, C and D such that

AdvOS-priv
Π (A) ≤ nS · (nC + nT) ·Advindsfcca

AE (D) + nC · (1− 1/H) ·AdvGap−DH
E(Fp) (C) + Adveufcma

cert (B).

Proof. We shall prove this result via a sequence of games. Let A be adversary attacking Π in the sense of
priv.
Game 0: This game is identical to ExecOS-priv

Π (A).

Pr[Game0⇒ 1]− 1
2

= AdvOS-priv
Π (A)

Game 1: This proceeds identically to the previous game but aborts if no plaintext matching occurs for some
terminal oracle Πs

i,j . It is easy to see that we can define an algorithm B′ such that

Pr[Game0⇒ 1] ≤ Pr[Game1⇒ 1] + Pr[OS-NoMatchPlntxt(B′)]

Game 2: This proceeds identically to the previous game but aborts if A makes a query to H which reveals
the key for an oracle Πs

i,j . Again it is easy to see that

Pr[Game1⇒ 1] ≤ Pr[Game2⇒ 1] + AdvwKSec
π (C′)

Game 3: The challenger now selects at random an oracle Πs∗
i∗,j∗ . The game aborts if the attacker outputs

(i, j, s, b′) such that (i, j, s) 6= (i∗, j∗, s∗), the game will instead return a random bit.

Pr[Game2⇒ 1]− 1
2
≤ nS · (nC + nT) ·

(
Pr[Game3⇒ 1]− 1

2

)
It remains to study the probability that A wins (Game3 ⇒ 1). We shall use A in Game3 ⇒ 1 to construct
a new adversary D against the IND-CCA security of AE. What we effectively do is set the output of the
random oracle H for the key corresponding to Πs∗

i∗,j∗ to be the key chosen at random for the IND-CCA
experiment. When A makes a Send query with op = Encrypt or Decrypt these are forward to D’s enc

22

and dec oracles respectively. All other queries NewSession,Reveal,Corrupt and Send when op = ∅ are
simulated internally by D selecting appropriate randomness. Since A does not make any reveal queries or
hash queries corresponding to the key of Πs∗

i∗,j∗ the simulation shall remain perfect. When A outputs its
guess (i∗, j∗, s∗, b′), D shall forward b′ as its guess. We therefore have,

Pr[Game3⇒ 1]− 1
2
≤ Advindsfcca

AE (D)

Combining all of the above, we yield:

AdvOS-priv
Π (A) = Pr[Game0⇒ 1]− 1

2

≤ Pr[Game1⇒ 1]− 1
2

+ Pr[OS-NoMatchPlntxt(B′)]

≤ Pr[Game2⇒ 1]− 1
2

+ AdvwKSec
π (C′) + Pr[OS-NoMatchPlntxt(B′)]

≤ nS(nC + nT)
(

Pr[Game3⇒ 1]− 1
2

)
+ AdvwKSec

π (C′)

+ Pr[OS-NoMatchPlntxt(B′)]
≤ nS(nC + nT)Advindsfcca

AE (D) + AdvwKSec
π (C′) + Pr[OS-NoMatchPlntxt(B′)]

Again the final result follows from applying Lemmas 1 and 2.

E Proof of Theorem 2

Proof. We shall prove this result via a sequence of games. Let A be adversary attacking Π in the sense of
unlink.
Game 0: This game is identical to Execunlink

Π (A).

Pr[Game0⇒ 1]− 1
2

= Advunlink
Π (A)

Game 1: The challenger now selects at random i∗0 and i∗1. The game aborts and returns random b′ if A does
not output i0 = i∗0 and i1 = i∗1. We obtain

Pr[Game0⇒ 1]− 1
2
≤ n2

C ·
(

Pr[Game1⇒ 1]− 1
2

)
Game 2: This proceeds identically to the previous game but aborts if A makes a query to H which reveals
the key for the oracle O. We obtain

Pr[Game1⇒ 1] ≤ Pr[Game2⇒ 1] + AdvwKSec
π (B)

Game 3: This proceeds identically to the previous game except that whenever Send is called with O and
op = encrypt then the challenger replaces m with a random message which it then encrypts. Again it is
easy to see that we obtain

Pr[Game2⇒ 1] ≤ Pr[Game3⇒ 1] + Advindsfcca
AE (C)

23

It remains to study the probability that A wins (Game3 ⇒ 1). We shall use A to construct a new adver-
sary D against the SDDL problem. The algorithm D shall simulate the queries for A using its challenge
P,X0, X1, rXi∗ , where i∗ = 0 or 1. Upon starting, D initialises nC cards by choosing secret keys di at
random and calculating the public keys Qi = diP ; except for cards with indexes i∗0 and i∗1, where it sets
the public keys to Qi∗0 = X0 and Qi∗1 = X1 respectively. When A makes Send queries these are modelled
appropriately by D:

– When op = ∅ then D chooses a or e at random and returns aQi or eP as appropriate. If the card has
already received eP then D returns the encκ(certi, a,Qi) where κ = H(adieP).

– When op = encrypt or decrypt then D performs the necessary encryption or decryption using the
appropriate key (κ = H(adieP)).

When A performs a Send query with input oracle O then the first key exchange message sent shall be the
challenge message, i.e. A = rXi∗ . Following this D will calculate all other responses appropriately. The
key established by O shall be H(erXi∗), for some randomly chosen e.

If A makes a Reveal or Corrupt then D returns the appropriate key material to A (A is not permitted to
make such queries for O).

Eventually A outputs its guess b′. If A wins then he has successfully determined that O is associated to
i∗b′ . Since the encryption encκ(certi, a,Qi) was replaced by a random ciphertext in Game 3 this means that
A must have determined b′ from the first key exchange message of O, A = rQi∗

b′
= rXb′ . A has therefore

solved D’s challenge and D can output b′ as his (winning) guess. We therefore have:

Pr[Game3⇒ 1]− 1
2
≤ AdvSDDL

E(Fp)(D)

Combining all of the above:

Advunlink
Π (A) = Pr[Game0⇒ 1]− 1

2

≤ n2
C ·

(
Pr[Game1⇒ 1]− 1

2

)
≤ n2

C ·
(

Pr[Game2⇒ 1]− 1
2

+ AdvwKSec
π (B)

)
≤ n2

C ·
(

Pr[Game3⇒ 1]− 1
2

+ Advindsfcca
AE (C) + AdvwKSec

π (B)
)

≤ n2
C ·

(
AdvSDDL

E(Fp)(D) + Advindsfcca
AE (C) + AdvwKSec

π (B)
)

24

