
An Analysis of the EMV Channel Establishment Protocol

C. Brzuska1, N.P. Smart2, B. Warinschi2, and G.J. Watson2

1 School of Computer Science, School of Engineering
Tel Aviv University, Israel.
2 Dept. Computer Science,
University of Bristol, UK.

Abstract. With over 1.6 billion debit and credit cards in use worldwide, the EMV system (a.k.a. “Chip-and-PIN”) has
become one of the most important deployed cryptographic protocol suites. Recently, the EMV consortium has decided
to upgrade the existing RSA based system with a new system relying on Elliptic Curve Cryptography (ECC). One of the
central components of the new system is a protocol that enables a card to establish a secure channel with a card reader.
In this paper we provide a security analysis of the proposed protocol, we propose minor changes/clarifications to the
“Request for Comments” issued in Nov 2012, and demonstrate that the resulting protocol meets the intended security
goals.
The structure of the protocol is one commonly encountered in practice: first run a key-exchange to establish a shared
key (which performs authentication and key confirmation), only then use the channel to exchange application messages.
Although common in practice, this structure takes the protocol out of the reach of most standard security models for key-
exchange. Unfortunately, the only models that can cope with the above structure suffer from some drawbacks that make
them unsuitable for our analysis. Our second contribution is to provide new security models for channel establishment
protocols. Our models have a more inclusive syntax, are quite general, deal with a realistic notion of authentication
(one-sided authentication as required by EMV), and do not suffer from the drawbacks that we identify in prior models.

1 Introduction

The EMV chip-and-pin system is used to secure a vast number of the world’s credit card and ATM transactions
and protects electronic banking in many countries [15]. The USA is due to switch from magnetic stripe to
EMV cards from October 2015; after this time if a terminal (or ATM) does not support EMV then the merchant
(ATM owner) will be liable for any fraudulent transactions and not the card issuer. The current EMV system
uses RSA public-key cryptography, combined with DES and AES based symmetric-key cryptography. In the
system, bank or credit card customers receive a plastic card containing an embedded chip that holds several
cryptographic keys and can perform various cryptographic operations. The card is used to communicate with a
terminal (typically a point-of-sale terminal in a shop, but other terminals are possible). In addition the card can
produce cryptographically secured data which is sent to the cardholder and merchant’s banks for processing.
Nonetheless, the cryptographic functionality provided by the card in its first generation incarnation is relatively
limited.

As part of a major reworking of the system, the EMV consortium has decided to replace RSA with ECC
based systems and to let the card provide additional cryptographic functionalities. In November 2012 EMVCo
released a Request-For-Comments [16] on a draft specification for an important sub-protocol within the system;
namely a protocol that allows a card to establish a channel with a terminal. Calling the security of these protocols
“important” is a serious understatement: the total number of public keys and certificates (1.62 billion [15])
deployed in the EMV systems dwarfs the paltry 5.8 million TLS certificates found in [11].

The problem of establishing and implementing secure channels is central to practical uses of cryptography
and a superficial look at existing literature would lead one to believe that this is a solved problem. What can

This article is based on an earlier extended abstract which appeared at ACM CCS 2013. The original shorter article has DOI
http://dx.doi.org/10.1145/2508859.2516748

be simpler than first running a secure key-exchange protocol and then using the resulting keys to encrypt and
authenticate the messages to be sent?

Indeed, there is a plethora of works looking at key establishment [4, 5, 9] and a similar number of works
treating secure channels based on shared keys [1, 6, 18]. Unfortunately, traditional key agreement models such
as those following the schema set out by Bellare and Rogaway [4] have been shown to be less useful to analyze
deployed protocols. In particular, they demand for session keys to be indistinguishable from a random string.
However, whenever practical protocols implement explicit key confirmation, then key indistinguishability is
violated.

Realizing that real-world protocols, such as TLS, are therefore outside the reach of the traditional models
for key-exchange and channels, has triggered renewed interest in formal models for secure channels [17, 13, 7].
These approaches deal with what is essentially an overlap between the key-exchange part and the secure chan-
nel part of a channel-establishment protocol by either modifying the protocol, analyzing the overall protocol
monolithically, or developing methods that allow for a modular analysis despite the overlapping phases.

The structure of the EMV protocol for establishing channels follows the recipe described above: during the
key-exchange phase itself, the channel is already used before the deployed keys are accepted; and the messages
that are sent over the channel are crucial for the security of the overall protocol. Our work can therefore be
seen as a continuation of the recent thrust on research on models for channel establishment protocols. Below
we describe the state-of-the art for such models, identify some of their weaknesses, and overview our results.

EXISTING MODELS FOR SECURE CHANNEL ESTABLISHMENT. When studying the combined properties of
a key establishment and a secure channel protocol, one usually considers a security game where the execution
model and the attack interface for key exchange and secure channels are “glued” together; and the adversary
tries to break the secure channel using additional information that possibly leaked during the key-exchange
phase. In particular, such a model also allows to analyze protocols that do not clearly separate the two compo-
nents.

There are currently two approaches to prove the security in such a model. Very roughly, the first approach
is to relax the security requirement on the keys by demanding that they are sufficiently strong to be used for
the primitives that make-up the channel, and then show that the channel security relies only on these primitives.
This modular approach is explored in [7], where a game-based composition theorem shows that a key-exchange
protocol that is sufficiently strong for the primitives and a channel whose security reduces to these primitives
automatically yield a secure protocol in the composed security model. The approach is shown to work for
real-world protocols such as TLS.

In this paper, we prefer to avoid the machinery needed to work within this framework and instead concen-
trate on the approach of Jager et al. [13]. They propose to analyze channel establishment protocols, monolithi-
cally, with respect to a security model devised for this specific task. The models that they give are tailored for
TLS and are not immediately applicable for EMV. Worse, both the original version of the model [13] and a
more recent refined version [12] do not seem to appropriately capture the level of security that one would like.
In brief, the former model is too strong, to the point that it actually rules as insecure protocols like TLS and the
one that we analyze in this paper. The refined version, on the other hand seems to be too weak, as it takes away
one of the adversary’s abilities, an ability that reflects possible real-world powers.

A bit more in detail, the issue concerns the ability of an adversary to “reveal” a key, and its interaction
with how “partnering” is defined. We explain these concepts next. Traditionally, reveal queries model the un-
intended leakage of session keys from a participant to assure that keys which leak from one session should
not affect the security of other sessions. To distinguish between the same session and “other sessions”, key
exchange protocols match each session of a protocol with a single session of the intended partner via a part-
nering mechanism [3]. One of the first formulations of partnering relies on “matching” conversations [4] (the
outgoing/incoming messages of one sessions are the same as the incoming/outgoing messages of its partner).
The requirement is that if a session accepts, then it has had a matching conversation with “the right” partner.
Unfortunately, in any protocol where some messages are sent encrypted with the key that is derived, the above

2

requirement cannot hold. An attacker can proceed as follows. When an encrypted message goes on the network,
block it, reveal the key that was used for encryption and then send to the recipient a different encryption of the
same message, deploying fresh randomness. The two partners will not have a matching conversation, although
the protocol will be executed successfully. In Appendix C.2 we describe an attack against entity authentication
via matching conversations for TLS when an adversary is permitted to reveal keys as soon as they are derived.
We stress that our attack uncovers subtleties in modelling and is not an actual attack on the TLS protocol. This
attack demonstrates why neither version of ACCE is suitable for analysing these types of channel establishment
protocol. The original ACCE model is too strong (the attack rules TLS insecure) and the revised too weak (the
attack is no longer captured). Our model sits neatly in the middle, giving the adversary the capabilities of this
attack but not treating it as an attack against the security of the protocol.

One approach to circumvent this attack is to preclude the adversary from performing such a reveal. This is
the approach taken in [12] which only considers that keys can be revealed once the session in which they are
derived had accepted. We find this restriction unsatisfactory. If reveals are considered possible, then they should
be able to target a key as soon as that key has been derived. In particular, revealing a key that has just been used
to perform an encryption should be allowed. A more in-depth discussion of weaknesses present in the existent
models for channel-establishment protocols is in Appendix C.

Our Contribution

In this paper we present a new definitional framework which addresses the problems identified in previous
approaches. In particular we present a security model which is particularly tailored to the case of key-exchange
followed by the creation of a secure channel. Our new framework is conceptually simpler than previous models
and can be further extended to capture one-sided key agreement followed by composition with a secure channel.
Providing a general model rather than one tailored specifically to EMV is important. A general framework can
be used to analyse any channel establishment protocol and sets a clear goal that all such protocols should
achieve. As a result, it is not only much easier to perform future analyses of such protocols but also facilitates
comparison of different protocols which have now been proved secure with respect to the same notion of
security. Below we highlight some of our contributions and techniques.

MODELS FOR CHANNEL-ESTABLISHMENT PROTOCOLS. For entity authentication, we deal with the realistic
case of one-sided authentication. This is demanded by the protocol that we analyze: the card is authenticated,
while the terminal is not. The EMV system is designed to authenticate the card holder. Intuitively, the only
goal, a fraudulous terminal can pursue when interacting with a card, is to extract authentication data from the
card in order to impersonate it later. As impersonation attacks are taken care of by secure one-sided authen-
ticated key agreement protocols already, one-sided authentication is considered a sufficient security goal in
light of the costs that a certification structure for terminals would induce. We remark that existing models for
channel-establishment concentrate on mutual authentication, and the case of one-sided authentication had been
considered only sporadically in the key-exchange literature.

We also resolve the issue of bad interaction between partnering and reveal queries. Here, we take a different
route than [13, 12]. Instead of weakening the adversary, we relax the partnering requirement: we only demand
that partners agree on a common session identifier. This approach originates in the work of Bellare, Pointcheval,
and Rogaway [3], is standard in key-exchange literature, and reflects an intuitively appealing level of security.

Finally we model and analyze unlinkability properties of the proposed protocol from EMVCo. One of the
new design criteria of the protocol is a mild form of unlinkability; an adversary that sees a message flow between
a terminal and a card should not be able to link this card’s current transaction with a previous transaction from
the same card. The new protocol aims to ensure this by using the channel to secure all traffic coming from the
card. Thus any card identifying information (most importantly the certificate) will never be sent to the terminal
in the clear. However the proposed protocol also uses a performance optimization in that the card uses a small
ephemeral private key. We establish that using a small ephemeral key in this way should be avoided.

3

PROTOCOL ANALYSIS & EMV RECOMMENDATIONS. The EMV channel establishment protocol consists of
a key exchange phase and an application phase. The key exchange phase is an ECC-based Diffie-Hellman-
like protocol with one-sided authentication. We analyze the EMV channel establishment protocol and identify
the assumptions under which it can be proved secure with respect to the notion that we put forth. We end
this introduction by pointing out a number of recommendations related to the EMV protocol which have been
passed to the designers as a result of our analysis:

1. The resulting Diffie–Hellman key should be hashed down to obtain the used symmetric keys. The proposal
in [16] says to use a hash function or the x-coordinate of the elliptic curve point as the key derivation
function. The x-coordinate of an elliptic curve point is a high-entropy value only. That is, it is not a random
string, as required by primitives such as the ciphers that are deployed in the secure channel. We thus strongly
recommend to extract the entropy via hashing and not use the x-coordinate directly.

2. The resulting keys should be used in a uni-directional manner; thus two keys need to be obtained from the
hashing process. This avoids a large number of potential replay attacks on the application layer. If this was
not done, the application layer would need to be implemented extremely carefully to thwart these attacks.
Having two keys, one for each direction, makes the design of a secure application layer less vulnerable.

3. The card ephemeral key a should not be selected from the set {0, 1}32. We suggest that it is not restricted
in size and instead chosen at random from Fq. If the value a is selected from the set {0, 1}32, then this has
a significant effect on security. Not only does it reduce the scheme’s ability to achieve unlinkablity. But in
addition, when a is selected from a small set an adversary could establish two sessions of one card which
share the same key with a single terminal.

SCOPE The EMV standard has a huge scope, and not all of the next generation sub-protocols are currently fully
defined. The goal of this paper is to analyse the proposed key exchange protocol according to the stipulated
security goals while assuming as little as possible about the other protocols. For the secure channel, we have
implicitly assumed, as this is not stated in [16], that the resulting secure channel should be secure against
adversaries both deleting messages and playing messages out of order; since this is the usual definition of a
secure channel. We did not assume any further security guarantees of the channel or other protocols; these need
to be defined and proven separately from this paper.

2 Scheme

Our presentation follows that in [16], augmented with information obtained from public discussions with the
authors of the protocol at several meetings. The basic underlying idea of the protocol is to use a Diffie–Hellman
key exchange in which one side (the card) has a static public key. In order to achieve unlinkability the certificate
of this public key is not passed in the clear; instead, the card’s static Diffie–Hellman key share is randomized
by an additional ephemeral secret. The resulting Diffie–Hellman key is then hashed using a cryptographic hash
function; which we will model as a random oracle.

The protocol uses a Diffie–Hellman group defined over an elliptic curve G = E(Fp) having group order a
prime q and also uses a base point P ∈ G. The prime q is a function of an implicit security parameter k, but in
practice the group is fixed and so all our results are given in the concrete security setting.

After the protocol has established secret keys, it uses them in a secure channel protocol (SendCh,ReceiveCh).
On input an application message m and state ste, SendCh returns a channel message ch. On input a channel
message ch and state std, ReceiveCh returns an application messagem. The secure channel protocol is based on
a stateful authenticated-encryption (AE) scheme AE = {enc, dec}. We assume that all plaintext headers used
by the secure channel are unauthenticated, implying that no header is sent in clear as part of the AE scheme.
The states ste and std here model the fact that in practice sequence numbers are used to ensure that messages
are delivered in order, thus the operations are stateful. We assume that the underlying AE scheme satisfies the

4

properties of indistinguishability under chosen-ciphertext attack (IND-sfCCA) and integrity of plaintexts (INT-
sfPTXT) for such stateful schemes, assuming the key-agreement scheme has generated a randomly distributed
key. See Appendix A for formal definitions of these security notions.

We also assume that there is a public-key signature algorithm used to define certificates. In particular each
card C has a long term public/private key pair (QC , d), where d ∈ Fq and QC = dP ∈ G. A certificate is a
signature/message pair certC = (sigsk(QC), QC) provided by an issuing authority with a key pair (pk, sk) for
some (unspecified) public-key signature algorithm (sig, ver). All that we require of the signature algorithm is
that it be existentially unforgeable under a chosen-message attack (EUF-CMA). Again Appendix A gives the
precise security definition we will use.

We are now in a position to define the EMV key establishment and secure channel protocol in Figure 1. As
well as the components above, the protocol makes use of a hash function H that takes elements in the group G
and maps them onto a pair of keys for the AE scheme. The keys are used to secure the communication in both
directions; we propose the use of two keys so that replay attacks are prevented at the level of the protocol as
opposed to needing to be dealt with at the application layer.

Card (C) Terminal (T)

a
r← Fq

A=aQC

−−−−−−−−→
E=eP

←−−−−−−−− e
r← Fq

(κCe , κ
C
d) = H(daE) (κTd , κ

T
e) = H(eA)

(ch, stCe) = SendChκCe (certC‖a‖QC ; stCe)
ch

−−−−−−−−→ (certC‖a‖QC , stTd) = ReceiveChκT
d
(ch; stTd)

Check verpk(certC , QC)
?
= true

Check aQC
?
= A

(ch1, st
C
e) = SendChκC

e
(m1; st

C
e)

ch1
−−−−−−−−→ (m1, st

T
d) = ReceiveChκT

d
(ch1; st

T
d)

· · · · · ·

(m2, st
C
d) = ReceiveChκC

d
(ch2; st

C
d)

ch2
←−−−−−−−− (ch2, st

T
e) = SendChκT

e
(m2; st

T
e).

Fig. 1. Combined Authenticated Key Agreement Scheme and Secure Channel Protocol. Note that κCe = κTd and κCd = κTe .

As mentioned in the introduction the proposal by EMVCo [16] suggest that the ephemeral secret1 a should
be small, (less than 232). They state that this choice is “set to be fit for purpose for blinding a one-off session
key”. First note that the unlinkability property may be hard to achieve when a is small: Given two public keys
Q1 and Q2 and the first message of a session aQi, there is an obvious square-root attack which determines Qi
when a is small, i.e. an attack which runs in time roughly 216 operations.

More seriously, the security of entity authentication would also be at risk. An adversary can perform an
attack which allows two sessions of a card to share the same key with a single terminal. Consider a card with
public key Q = dP and assume that the ephemeral blinding exponents a are small. In the first session the
card chooses a1 at random and sends a1Q. The terminal will respond by choosing e at random and returning
E = eP . Their established key for this session will then be κ = a1deP . Next the card wants to establish a
second session. It chooses at random a new ephemeral blind a2 and sends a2Q. When the ephemeral blinds (a1
and a2) are small then an adversary can easily find a′ = a1/a2. The adversary can then calculate a′E and return
this to the card. This second card session now establishes the key a2d(a′E) = a2d(a1/a2)eP = a1deP = κ;

1 In the EMV draft a is denoted r.

5

the same key as the first session. As a result of this (depending on the setting) the adversary may be able to
perform a replay attack on the second card session.

There are other approaches which could prevent the latter attack (in cases where unlinkability is not an
issue) but we believe increasing the size of a to be the simplest and to offer the least chance of implementation
errors being introduced. In the rest of the paper we assume that a is chosen from Fq and therefore our security
results apply only to this case.

3 New Security Models

In this section we present our security models for the secure channel establishment and unlinkability. Most of
the section is however devoted to the more complex case of modeling secure channel establishment.

PRELIMINARIES. Before giving our new definition we present some preliminary definitions. Let I be the set
of participants. Each participant has a distinct ID i, long-term public key pki and corresponding secret key ski.
The protocol description is defined by two efficiently computable stateful (sub)-protocols P = {Π,G}. The
protocol Π defines how honest parties behave and G is a public/private key pair generation algorithm. Each
execution of this algorithm maintains the following state information:

– stk ∈ {0, 1}∗ is some state for the key exchange.
– δ ∈ {derived, accept, reject,⊥} is current state of the key exchange (initialised to ⊥).
– ρ ∈ {initiator, responder} is the role of the participant.
– sid a session identifier.
– pid a partner identifier
– κ = (κρe, κ

ρ
d) ∈ ({0, 1}∗ ∪ {⊥})2. This is the agreed pair of keys. The order of these keys depends on the

role ρ ∈ {initiator, responder} and κ = (⊥,⊥) unless δ = derived.

A CLASS OF PROTOCOLS. In this paper we are concerned with the large class of protocols obtained by com-
bining key-exchange with channel protocols, and where the two components cannot be easily disentangled.
Existing models are either too specific [13] or do not consider the case of overlap between the components [7].

The syntax that we provide for such protocols naturally implies a classification of the different types of
messages that may occur in an execution. The classification is a crucial ingredient of our security definitions.
Specifically, we identify three different execution “modes” of protocols: establishing a key, sending, respec-
tively receiving messages from the established channel. Formally, we define the honest operation of a participant
by a triple Π = (KeyExch,SendCh,ReceiveCh).

Some of the messages sent during the key-exchange may travel over the channel so, strictly speaking,
KeyExch may make use of the latter algorithms. To facilitate the description of the resulting complex interaction
we define the algorithm EstChannel which, essentially, is in charge of establishing the channel. This algorithm
may make calls to the algorithms defining Π . As an example, for EMV, one can view EstChannel as everything
above the line drawn in Figure 1, see Figure 4 in Section 4 for full details. At any point during its execution
protocol Π takes as input a message m and a message type, type ∈ {ap, ch} (indicating whether the message
was received from the user’s application or the channel, respectively), runs the appropriate algorithm, and
returns the output of that algorithm.

We now detail the execution of Π which is summarised in Figure 2. Prior to the channel being established
(i.e. prior to δ = accept) whenever the input message m has type ch then EstChannel will be called. This
algorithm will make calls to KeyExch in order to establish the keys of the secure channel. The algorithm
KeyExch takes as input a message m and a state stk, and outputs a new message m′ and updated state stk
(shared with EstChannel). The state stk is used to manage the internal state of KeyExch and will contain
the session identifier sid, partner identifier pid, the state of keys δ, the established keys κe, κd, the states of
the secure channel ste, std, and any additional information α. Before any keys have been derived (δ =⊥),
EstChannel forwards messages directly to KeyExch. Once keys have been derived (δ = derived) then we

6

enter the key confirmation stage. At this point EstChannel initialises the states ste, std of the secure channel and
makes appropriate2 calls to SendCh and ReceiveCh before and after calling KeyExch. Finally, once KeyExch
outputs δ = accept the secure channel has been successfully established.

After the channel has been established whenever the input message type is ch then ReceiveCh will be called.
This models messages that are received from the channel (for decryption). It takes as input a message m and
state std and outputs a message m′ for output to the user’s application.

When the message type is ap then SendCh will be called. This models application messages that are input
to be sent (encrypted) on the channel. It takes as input a message m and state ste and outputs a message m′ for
output to the channel. Note that if keys have not yet been established (δ 6= accept) then such a call to SendCh
will output ⊥.

Protocol Π(m, type):
if type = ch ∧ δ 6= accept then

(m′; stk)← EstChannel(m; stk)
else if type = ch then

(m′; std)← ReceiveChκd(m; std)
else (type = ap)

(m′; ste)← SendChκe(m; ste)

return m′

Fig. 2. Honest Protocol Execution

EXECUTION MODEL. We consider the standard execution model for key exchange protocols where an adver-
sary A, is assumed to control all communication between participating parties i.e. the adversary can intercept
all messages sent and inject any message that he wishes. Let Πs

i denote the oracle modelling participant i ∈ I
engaged in session s of the protocol described above. Each oracle Πs

i runs the program Π and maintains the
states of that program instance. The adversary can make the following queries:

– NewSession(i, ρ): Create a session for user i with role ρ.
– Send(Πs

i ,m, type): Sends a message m to Πs
i with type, type. As a result Πs

i will run Π on input
(m, type).

– Reveal(Πs
i): reveals the current session key κ of Πs

i .
– Corrupt(i): reveals the long-term private key of i.

PARTNERING AND FRESHNESS. In order to define security for key-exchange protocols it is necessary to define
the notion of partnering. Two participants should only establish a shared key if they have been successfully
partnered. There are many approaches to defining such a notion. We begin by discussing the concept of match-
ing conversations, introduced by Bellare and Rogaway [4] in the context of authenticated key exchange. A
participant’s conversation can be defined as a transcript of all the messages it receives and sends. As the name
suggest, matching conversations defines two participants to be partnered if their transcripts match. It is this
approach which is followed by Jager et al. [13] in their definition of ACCE. Unfortunately, when protocols use
the session key to encrypt messages as part of a key-confirmation step, attacks may be possible which violate
the requirements of matching conversations3(cf. Appendix C.2). Notice however that while such attacks violate
the matching conversation property, they should perhaps not be considered attacks. The plaintext that was sent
by one party still reached its intended recipient. We interpret this attack as a limitation of the model: it may rule
out as insecure protocols with no obvious weaknesses.

2 Such calls will be dependent on the specific protocol construction.
3 The adversary reveals the key and then uses this to re-encrypt the confirmation message with new randomness. The two transcripts

now differ for this message.

7

Our formulation is routed in the definition of partnering based on session identifiers by Bellare et al. [3].
Informally, Bellare et al. declared two oracles partnered if they have already derived keys and i) they both
share the same session identifier sid, ii) they derived the same key κ, and iii) one oracle is an initiator and
the other a responder. Moreover, to ensure each oracle accepted with only a single partner we also ask that
iv) there should exist no other oracle which has derived keys and holds the same session identifier. Bellare et
al. make a distinction between an oracle accepting and terminating. Accepting defines the event that the session
keys have been established but the key confirmation steps are still to follow. An oracle terminates after the
key confirmation steps have completed. Once keys are accepted they may be revealed but the key-exchange
protocol has yet to terminate. We argue that a key is not “accepted” until after the key confirmation step since
this step may fail. As a result, we use the terms derived and accepted, where derived corresponds to Bellare et
al.’s accepted and our accepted corresponds to their terminated.

The specific formulation we give is similar but a stronger notion than that of Rogaway and Stegers [20].
First we define a notion of partnering which informally states that two oracles which have derived keys are
partners if they share the same session identifier. The definition makes use of the following predicate on two
oracles Πs

i and Πt
j holding (κsi , sid

s
i , pid

s
i) and (κtj , sid

t
j , pid

t
j), respectively:

P(Πs
i , Π

t
j) =

{
true if sidsi = sidtj ∧ δsi , δ

t
j ∈ {derived, accept}

false otherwise.

Definition 1. (Partner) Two oracles Πs
i and Πt

j are said to be partnered if P(Πs
i , Π

t
j) = true.

We follow this with three further definitions related to partnering which will be necessary when we give
our main security definitions later. It shall be required that partnerings are valid, confirmed and unique. In short
these three requirements ensure that any oracle that accepts, has a partner and that this partner is unique. More
specifically, Valid means that partners will have corresponding partner identifiers (i.e. they both believe they are
talking with each other), have different roles and share the same key. Confirmed partners ensures that for each
oracle that accepts there exists at least one partner and for unique partners that there exists at most one.

Definition 2. (Valid Partners) A protocol P = {Π,G} ensures valid partners if the bad event notval does not
occur, where notval is defined as follows:

∃ Πs
i , Π

t
j such that(

P(Πs
i , Π

t
j) = true

)
∧
(
pidsi 6= j ∨ pidtj 6= i ∨ ρsi = ρtj ∨ κsi 6= κtj

)
.

Definition 3. (Confirmed Partners) A protocol P = {Π,G} ensures confirmed partners if the bad event
notconf does not occur, where notconf is defined as follows:

∃ Πs
i such that

δsi = accept ∧ i, pidsi not corrupt ∧
(
P(Πs

i , Π
t
j) = false : ∀Πt

j

)
.

Definition 4. (Unique Partners) A protocol P = {Π,G} ensures unique partners if the bad event notuni does
not occur, where notuni is defined as follows:

∃Πs
i , Π

t
j , Π

r
k such that

(j, t) 6= (k, r) ∧ P(Πs
i , Π

t
j) = true ∧ P(Πs

i , Π
r
k) = true.

A concept that plays a central role in defining security in two-party protocols is that of “freshness”. Intu-
itively, an oracle is fresh if it has accepted and an adversary had not “tampered” with it in any way, i.e. the
adversary has not revealed or corrupted the oracle or its partner. This can be viewed as being related to the
bad event notconf with the extra requirement that the oracle has not been revealed. A notion of freshness is
necessary when defining security since the security guarantees are only for such oracles. The next definition
formalises the concept. As with partnering we first introduced a predicate, F(Πs

i) = true, if and only if:

8

1. δsi = accept.
2. Oracle Πs

i has not been revealed and user i is not corrupted.
3. No partner oracle of Πs

i has been revealed and no parent of such a oracle has been corrupted.

Definition 5. (Fresh) An oracle Πs
i is fresh if F(Πs

i) = true.

3.1 Security Definitions: Two-Sided Authentication Setting

We formulate three levels of security: entity authentication, message authentication and message privacy. The
later definitions rely on entity authentication and we start by defining that definition.
ENTITY AUTHENTICATION. We consider that an adversary violates entity authentication if he can get a session
to accept even if there is no unique session of its intended partner that has derived the same key. More formally,
we wish to verify that none of the bad events notval, notconf, notuni occurs (cf. Definitions 2, 3, 4).

First consider the entity authentication experiment entauth that generates public/private key pairs for each
user i ∈ I (by running G) and returns the public keys to Aent. The experiment then allows the adversary Aent

to make the queries NewSession(i, ρ), Reveal(Πs
i), Corrupt(i) as well as Send(Πs

i ,m, type) with operations
type ∈ {ap, ch}. We say that an adversary violates entity authentication (and hence “wins” this experiment) if
one of the bad events (notval, notconf, notuni) occurs. The adversary’s advantage is defined to be:

Adventauth
Π (Aent) = Pr[notval ∨ notconf ∨ notuni].

Definition 6. (Entity Authentication (EA)) Protocol P = {Π,G} is a (t, εEA)-secure EA protocol if for all
adversaries Aent running in time at most t, Adventauth

Π (Aent) ≤ εEA.

To define the security experiments for message authentication and privacy we shall make use of the follow-
ing notation for lists maintained for each Πs

i as follows:

– Application messages sent Ap-Ssi , i.e. the list of all messages m input to Send(Πs
i ,m, ap).

– Channel messages sent Ch-Ssi , i.e. the list of all outputs from Send(Πs
i ,m, ap).

– Channel messages received Ch-Rsi , i.e. the list of all messages m input to Send(Πs
i ,m, ch).

– Application messages received Ap-Rsi , i.e. the list of all outputs from Send(Πs
i ,m, ch).

As described at the beginning of this section during the execution of a protocol an oracle can receive two types
of input, an application message (user input) or a channel message (received from the wire). Once a channel is
established whenever an application message is input to Send, the protocolΠ is run and a channel message will
be output and sent on the channel. Similarly whenever a channel message is input to Send, the protocol Π is
run and an application message will be output to the user. The above lists help us keep track of these messages
and facilitate checks necessary in the following security models.
MESSAGE AUTHENTICATION. We now turn our attention to message authentication. Here we wish to ensure
the integrity and authenticity of all messages sent over the channel. For any two partner oracles Πs

i and Πt
j , the

oracle Πs
i should only successfully receive messages which were output by Πt

j and vice versa. In the definition
which follows we formalise the intuition above by requiring that for any fresh oracle Πs

i with unique partner
Πt
j , the following holds Prefix(Ap-Rsi ,Ap-Stj) = true, where Prefix(X,Y) is the function which outputs true

if X is a prefix of Y (provided not empty) and false otherwise. If this does not hold then the adversary was
successfully fooled Πs

i into receiving an application message which was not output by the partnered oracle Πt
j .

Consider the authentication experiment auth that generates public/private key pairs for each user i ∈ I (by
running G) and returns the public keys to A. The adversary is permitted to make the queries NewSession(i, ρ),
Reveal(Πs

i), Corrupt(i) as well as Send(Πs
i ,m, type) with message type ∈ {ap, ch}. On query Send(Πs

i ,m, type),
the game behaves as in Figure 3(a).

For the session matching, we consider the notion of partnering as specified in Definition 1. The notion of
freshness that we use in the following definition is according to Definition 5.

We define the following game ExecauthΠ (A) between an adversary A and challenger C:

9

1. The challenger C generates public/private key pairs for each user i ∈ I (by running G) and returns the public
keys to A.4

2. A is allowed to make as many NewSession, Reveal, Corrupt, Send queries as it likes.
3. The adversary stops with no output.

We say that an adversary A wins the game if there exists Πs
i with unique partner Πt

j such that F(Πs
i) = true

and the list Ap-Rsi is not a prefix of Ap-Stj .
We define the adversary’s advantage as:

Advauth
Π (A) = Pr[∃Πs

i , Π
t
j : F(Πs

i) = true ∧ P(Πs
i , Π

t
j) = true ∧ Prefix(Ap-Rsi ,Ap-Stj) = false].

Definition 7. (Message Authentication (MA)) A protocol P = {Π,G} is a (t, εMA)-secure MA protocol if for
all adversaries Aauth running in time at most t, Advauth

Π (Aauth) ≤ εMA.

Send(Πs
i ,m, type) :

m′ ← Πs
i (m, type)

if δ = accept and type = ap then
Ap-Ssi ← Ap-Ssi‖m

else if δ = accept and type = ch then
if m′ 6= ⊥ then Ap-Rsi ← Ap-Rsi‖m′

return m′
(a) Send query for auth game.

SendLR(Πs
i ,m0,m1, type)

if δ = accept and type = ap then
m′ ← Πs

i (mbsi
, ap)

Ch-Ssi ← Ch-Ssi‖m′
else if m0 6= m1 then m′ :=⊥
else

m′ ← Πs
i (m0, type)

if δ = accept and type = ch then
if m′ 6= ⊥ and Πs

i has a partner Πt
j then

Ch-Rsi ← Ch-Rsi‖m0

if Prefix(Ch-Rsi ,Ch-Stj) = true then m′ := ∅
return m′

(b) SendLR query for priv game.

Fig. 3. The Send (resp. SendLR) query for the auth (resp. priv) games

MESSAGE PRIVACY. Next we consider the notion of message privacy. Our definition follows the standard
indistinguishability paradigm. The adversary should not be able to determine which set of message {m01,m02,
m03,} and {m11,m12,m13,} has been transmitted on the secure channel.

The message privacy experiment priv initializes the states as in the authentication experiment auth, ex-
cept that each session now also holds a random secret bit bsi . As before, the adversary can make the queries
NewSession(i, ρ), Reveal(Πs

i), Corrupt(i). In addition, we introduce a left-right version of Send(Πs
i ,m, type)

which we use to model message privacy. Specifically, the query SendLR(Πs
i ,m0,m1, type) takes as input two

messages and returns Send(Πs
i ,mbsi

, type). When type 6= ap we require that these two message are equal,

SendLR(Πs
i ,m,m, type) = Send(Πs

i ,m, type).

As before, two sessions are considered partners by Definition 1. On the SendLR(Πs
i ,m0,m1, type) query, the

game behaves as in Figure 3(b). We note that once the channel is establish, whenever SendLR(Πs
i ,m,m, ch)

is called (i.e. the input is a channel message), we allow the protocol to run as normal but check the lists CRsi
and CStj . If the message m was a channel output from Πs

i ’s partner Πt
j then SendLR will not return anything.

This allows the adversary to progress the state of an oracle but prevents them from trivially winning the game.
The formulation is closely related to IND-sfCCA which we give in Appendix refapp:defn.

We define the following game ExecprivΠ (A) between an adversary A and challenger C:

4 Note that in the scheme considered in this paper, public keys of cards are not actually made public to A but are sent in encrypted
form during the confirmation step.

10

1. The challenger C, generates public/private key pairs for each user i ∈ I (by running G) and returns the
public keys to A.5

2. A is allowed to make as many NewSession, Reveal, Corrupt, SendLR queries as it likes.
3. Finally A outputs a tuple (i, s, b′).

We say the adversary A wins if its output b′ = bsi and F(Πs
i) = true (and has a unique partner) and the output

of ExecprivΠ (A) is set to 1. Otherwise the output is 0. Formally we define the advantage of A as

Advpriv
Π (A) = |Pr[ExecprivΠ (A) = 1]− 1/2|.

Definition 8. (Message Privacy (MP)) A protocol P = {Π,G} is a (t, εMP)-secure MP protocol if for all
adversaries Apriv running in time at most t, Advpriv

Π (Apriv) ≤ εMP .

We call a channel establishment protocol secure if it satisfies all of the three notions above. We call the resulting
notion EAMAP for obvious reasons.

Definition 9. (EAMAP) Protocol P = {Π,G} is a (t, ε)-secure EAMAP protocol if it is a (t, ε)-secure EA
protocol, a (t, ε)-secure MA protocol and a (t, ε)-secure MP protocol.

Remark 1. Our definitions are with respect to the specific type of protocol construction defined in Figure 2. We
note however, that our notions can be extended to more general classes of protocols by simply placing fewer
restrictions on the Send queries.

Remark 2. Our mechanism of defining message authentication by requiring that the list of messages received
by a party is a prefix of the list of the messages sent by its partner is quite flexible. By appropriately modifying
this requirement one can also capture more relaxed notions e.g. where packet dropping or reordering is allowed.
Furthermore, we expect that with appropriate restrictions this mechanism can also be adapted to deal with frag-
mentation. This is a common feature of many secure/authenticated channels in practice and has been formally
studied by Boldyreva et al. [6], but is not relevant for EMV.

3.2 Security Definitions: One-Sided Authentication Setting

The above security definitions enforce mutual authentication, yet in many scenarios of practical concern only
one party needs to be authenticated. For example, the protocol we consider requires authentication of the credit
card but does not authenticate the communicating terminal. To model this situation we split our set of partici-
pants I in two. Let C be the set of authenticated participants (the cards) and let T by the set of unauthenticated
participants (the terminals), where unauthenticated participants do not hold a long-term private/public key pair.
This formalisation is the same as that of registered and unregistered users in [17]. We say authenticated partici-
pants are always initiators and unauthenticated are always responders. As a result of this change we must alter
our previous security definitions for entity authentication, message authentication, message privacy and their
combination (EAMAP) to consider a one-sided protocol.

ONE-SIDED ENTITY AUTHENTICATION. In the one-sided setting a terminal j ∈ T wishes to authenticate a
card i ∈ C and establish a key (additionally a secure channel) with this card. Since all j ∈ T have no long-
term secret then it would always be possible for an adversary to impersonate an unauthenticated participant and
establish a session with a real card. We need only aim to ensure that a genuine card session is authenticated to
an unauthenticated terminal.

We first describe informally the changes we must make to the original two-sided definitions. Recall the
definition of partnering (cf. Definition 1 and the associated Definitions 2, 3 and 4). We are now only concerned

5 Note that in the scheme considered in this paper, public keys of cards are not actually made public to A but are sent in encrypted
form during the confirmation step.

11

with the case where a terminal is partnered correctly, i.e. for every terminal that accepts there exists a card
session and this card session is unique. As a result this means we must give new one-sided versions of the defi-
nitions for valid partners and confirmed partners. These new definitions now specifically focus on the terminal,
ensuring that it believes it is talking to the correct card and it is a responder (in the case of valid), and its partner
is not corrupt (in the case of confirmed). Note that we do not adjust the uniqueness definition since we still wish
to ensure that both a single card session cannot be partnered with two terminal sessions and a single terminal
session cannot be partnered with two card sessions.

Definition 10. (One-Sided Valid Partners) Protocol P = {Π,G} ensures valid partners if the bad event
os-notval does not occur, where os-notval is defined as follows:

∃ Πs
i , Π

t
j such that

i ∈ T ∧ j ∈ C ∧
(
P(Πs

i , Π
t
j) = true

)
∧
(
pidsi 6= j ∨ ρsi 6= responder = ρtj ∨ κsi 6= κtj

)
.

Definition 11. (One-Sided Confirmed Partners) Protocol P = {Π,G} ensures one-sided confirmed partners if
os-notconf does not occur, where os-notconf is defined as follows:

∃ Πs
i such that

i ∈ T ∧ δsi = accept ∧ pidsi not corrupt ∧
(
P(Πs

i , Π
t
j) = false : ∀Πt

j

)
.

We consider an adversary that violates one-sided entity authentication if he can get a terminal session to
accept if there is no unique card session that has derived the same key. More formally, we define the os-entauth
experiment in a similar fashion to before but now say that an adversary violates one-sided entity authentica-
tion (and hence “wins” this experiment) if one of the bad events (os-notval, os-notconf, notuni) occurs. The
adversary’s advantage is defined to be:

Advos-entauth
Π (Aent) = Pr[os-notval ∨ os-notconf ∨ notuni].

Definition 12. (One-Sided EA (OS-EA)) A protocol P = {Π,G} is a (t, εEA)-secure OS-EA protocol if for
all adversaries Aent running in time at most t, Advos-entauth

Π (Aent) ≤ εEA.

ONE-SIDED MESSAGE AUTHENTICATION AND PRIVACY. In order to adapt the definitions of message authen-
ticity and privacy we must consider a one-sided version of freshness. The reason behind this again being that we
wish to discount the trivial attack when the adversary impersonates an unauthenticated terminal j ∈ T . A card
oracle is defined to be OS-fresh if it has accepted, has not been revealed or corrupted and it is partnered with
a genuine terminal oracle. A terminal oracle is defined to be OS-fresh if it has accepted, has not been revealed
and it is partnered with a card oracle that has not been revealed or corrupted. We formalise one-sided freshness
as follows. As before we define a predicate, OSF(Πs

i) = true, if and only if:

1. δsi = accept.
2. Oracle Πs

i has not been revealed.
3. If i ∈ C then it is uncorrupted and has a partner Πt

j , where j ∈ T .
4. If i ∈ T then Πs

i has a partner Πt
j , where j ∈ C.

5. No oracle Πt
j , such that P(Πs

i , Π
t
j) = true, has been revealed and if j ∈ C then it is uncorrupted.

Definition 13. (One-Sided Fresh) An oracle Πs
i , is OS-fresh if OSF(Πs

i) = true.

Using the above we can alter our previous experiments of auth and priv by requiring that the winning oracle
is OS-fresh. We therefore obtain one-sided versions os-auth and os-priv, respectively.

Definition 14. (OS-MA/OS-MP) A protocol P = {Π,G} is a (t, ε)-secure OS-MA protocol (or OS-MP resp.)
if for all adversaries A running in time at most t, Advos-auth

Π (A) ≤ ε (or Advos-priv
Π (A) ≤ ε resp.).

12

We call a channel establishment protocol with one-sided authentication secure if it satisfies all three of the
notions above.

Definition 15. (OS-EAMAP) A protocol P = {Π,G} is a (t, ε)-secure OS-EAMAP protocol if it is a (t, ε)-
secure OS-EA protocol, a (t, ε)-secure OS-MA protocol and a (t, ε)-secure OS-MP protocol.

3.3 Security Definitions: Unlinkability

A further property that the EMVCo protocol aims to achieve is unlinkability. This means that it should be hard
for an adversary to determine when two particular sessions involve the same card. Goldberg et al. [10] define
a related notion of anonymity and unlinkability. They aim to prove a scheme secure if an authenticated party
remains anonymous to its unauthenticated partner and hence call this internal anonymity. Here we are concerned
with eavesdroppers external to the execution and hence define a new notion for external unlinkability.

We define this security property in terms of a game between adversary A and challenger C, ExecunlinkΠ (A)
. Informally, the adversary is able to interact with the card and terminal much as in the key agreement game. At
some point the adversary halts the first part of his game, and outputs two card identities on which it wishes to be
challenged. The challenger then picks one of these two identities and passes to the adversary new oracles (i.e.
card/terminal session) with respect to the chosen identity. The adversary can then make additional queries, bar
Reveal or Corrupt queries on the two test oracles. At the end of the experiment the adversary needs to output
which identity the challenger selected. More formally the game is defined as follows:

1. The challenger C, generates public/private key pairs for each user i ∈ C (by running G) and returns the
public keys to A6.

2. A is allowed to make as many NewSession, Reveal, Corrupt, Send queries as it likes.
3. At some point A outputs two identities i0 ∈ C and i1 ∈ C.
4. The challenger then chooses a bit b r← {0, 1} and creates new oracles OC = Πs

ib
and OT = Πt

j, (for some
j ∈ T), by calling NewSession.

5. A continues making queries NewSession, Reveal, Corrupt, Send. However, A is allowed to query oracles
OC and OT only with the Send query.

6. Eventually A stops and outputs a bit b′.

We say the adversaryAwins if its output b′ = b and P(OC ,OT) = true. In this case the output of ExecunlinkΠ (A)
is set to one, otherwise the output is zero. We define the advantage of A to be

Advunlink
Π (A) = |Pr[ExecunlinkΠ (A) = 1]− 1/2|.

Definition 16. (Unlinkability) A protocol (Π,G) is (t, εunlink)-unlinkable, if for all adversaries A running in
time t, Advunlink

Π (A) ≤ εunlink.

4 Security Analysis

In this section we state our main security results, and in particular clarify the assumptions under which the
proposed EMV channel-establishment protocol is secure, namely the security of the signature scheme that is
used to produce the certificates and, the Gap-DH and CDH assumptions in the group that underlies the scheme.
We provide formal definitions of these assumptions later in this section.

Before stating our main security results we first give a formal description of the EMV protocol P = {Π,G}.
Here G is the key-generation algorithm of the underlying signature scheme. As described at the start of Sec-
tion 3, we define Π in terms of a key-exchange protocol KeyExch and two algorithms which define the

6 Note that in the scheme considered in this paper, public keys of cards are not actually made public to A but are sent in encrypted
form during the confirmation step.

13

secure channel SendCh,ReceiveCh. In order to define channel establishment we utilise an additional algo-
rithm EstChannel which makes calls to the underlying key exchange protocol KeyExch and secure chan-
nel algorithms SendCh,ReceiveCh. For simplicity we do not give a separate description of KeyExch but in-
stead define EstChannel directly. We require three further algorithms which are used during the execution,
loadkey, keyid, initial. An execution of a card oracle will involve a call to loadkey which will retrieve the public
keyQ, secret key d and certificate cert associated to an identity i. Recall thatQ = dP and cert = (sigsk(Q), Q).
An execution of a terminal oracle will involve a call to keyid which will retrieve the identity j associated to a
public key Q. The algorithm initial will initialise the states of the secure channel ste, std.

In Figure 4 we define the execution of EstChannel for a session s of a party i with state stk = (α, δ, ρ, ste,
std, κe, κd, pid, sid) where each variable is initiated as ⊥, the value α is used to store a and A for the card and
the terminal respectively.

EstChannel(i,m; stk):
case i ∈ C

(Q, d, cert)← loadkey(i)
case ρ

=⊥: (ch, stk)← HelloCard(Q, stk)
= initiator: (ch, stk)← ConfirmCard(m,Q, d, cert, stk)

case i ∈ T
case δ

=⊥: (ch, stk)← HelloTerminal(m, stk)
= derived: (ch, stk)← ConfirmTerminal(m, stk)

return (ch, stk)

HelloCard(Q, stk):
Parse stk as (⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥)
a

r← Fq; A← aQ
α := a; ρ := initiator

stk := (α,⊥, ρ,⊥,⊥,⊥,⊥,⊥)
return (A, stk)

HelloTerminal(A, stk):
Parse stk as (⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥)
ρ := responder; α := A
e
r← Fq; E ← eP

κd‖κe ← H(eA); sid := κd‖κe
δ := derived

(ste, std)← initial(stk)
stk := (α, δ, ρ, ste, std, κe, κd,⊥, sid)
return (E, stk)

ConfirmCard(E,Q, d, cert, stk):
Parse stk as (a,⊥, ρ,⊥,⊥,⊥,⊥,⊥,⊥)
δ := accept

κe‖κd ← H(daE); sid := κe‖κd
(ste, std)← initial(stk)
(ch, ste)← SendChκe(cert‖a‖Q; ste)
stk := (a, δ, ρ, ste, std, κe, κd,⊥, sid)
return (ch, stk)

ConfirmTerminal(ch, stk):
Parse stk as (A, δ, ρ, ste, std, κe, κd,⊥
, sid)
(cert‖a‖Q, std)← ReceiveChκd(ch; std)
if verpk(cert, Q) = true ∧ aQ = A then

δ := accept; pid← keyid(Q)
else δ := reject

stk := (A, δ, ρ, ste, std, κe, κd, pid, sid)
return (δ, stk)

Fig. 4. Channel Establishment Protocol EstChannel for EMV.

We now state our main security result.

Theorem 1. If the Gap-DH problem is hard, the CDH problem is hard, AE = (enc, dec) is an ind-sfcca secure
and int-sfptxt secure AE scheme, and the signature scheme (sig, ver) used to produce card certificates is EUF-
CMA, then the EMV protocol P = {Π,G} in Figures 1 and 4 is secure in the sense of OS-EAMAP. In particular
we have

14

– If there exists an adversary A running in time at most t against the entity authentication property of OS-
EAMAP security then there are adversaries B,C,D, E , such that

Advos-entauth
Π (A) ≤ Adveufcma

(sig,ver)(B) + nC · (1− 1/|h|) ·AdvGap-DH
E(Fp) (C)

+ nS · nC ·Advint-0
AE (D) + n2C ·AdvCDH

E(Fp)(E),

where B, C,D, E each run in time t+O(µ) where µ is total number of bits queried.
– If there exists an adversary A running in time at most t against the message authentication property of

OS-EAMAP security then there are adversaries B, C and D, such that

Advos-auth
Π (A) ≤ nS ·(nC+nT) ·Advintsfptxt

AE (D)+nC ·(1−1/|h|) ·AdvGap-DH
E(Fp) (C)+Advos-entauth

Π (B),

where B runs in time t and, C and D each run in time t+O(µ) where µ is total number of bits queried.
– If there exists an adversary A against the message privacy property of OS-EAMAP security then there are

adversaries B, C and D, such that

Advos-priv
Π (A) ≤ nS · (nC +nT) ·Advindsfcca

AE (D)+nC · (1−1/|h|) ·AdvGap-DH
E(Fp), (C)+Advos-entauth

Π (B),

where B runs in time t and, C and D each run in time t+O(µ) where µ is total number of bits queried.

where nC is the number of cards in the system, nT the number of terminals, nS the number of sessions and |h|
is the output size of the hash function.

Note that int-0 defines security for an adversary against intsfptxt (or intsfctxt) that is permitted no encryption
oracle queries.

We now prove each of the entity authentication, message authentication and message privacy properties in
turn.

Before proceeding with the main proof we first examine a related concept of Key Secrecy for a simpler
protocol, π, described in Figure 5. To analyse this protocol we are only interested in whether the secret key
remains secret, and so we introduce a new security game to model this fact. The security definition for Weak
Key Secrecy can in found in Appendix D.

Card (C) Terminal (T)

a
r← Fq

A=aQC

−−−−−−−−→
E=eP

←−−−−−−−− e
r← Fq

κ = H(daE) κ = H(eA)

Fig. 5. Unauthenticated Key-Agreement Scheme

Given this definition we can now analyse the protocol in Figure 5. The proof relies on the following problem
being hard.

Definition 17. (Gap Diffie–Hellman) Let ODDH be an oracle that solves the DDH problem in G, i.e. takes as
input rP, sP, tP ∈ G, and outputs one if tP = rsP and zero otherwise.
The Gap Diffie–Hellman problem then asks that given aP, bP ∈ G where a, b r← Fq, and access to ODDH,
compute abP (i.e. solve CDH). The advantage of an adversary A against the Gap Diffie–Hellman problem is
defined by

AdvGap-DH
G (A) = Pr[a, b

r← Fq : AODDH(aP, bP) = abP].

15

Lemma 1. The weak key secrecy of the reduced protocol π is reducible to the Gap Diffie–Hellman assumption,
i.e. we have for all adversaries A there exists an adversary B such that

AdvwKSec
π (A) ≤ nC · (1− 1/|h|) ·AdvGap-DH

E(Fp) (B),

where nC is the number of cards in the system and |h| is the output length of the hash function.

Proof. The proof of this lemma uses the technique first presented in [14] for analysing a hashed Diffie–Hellman
based key agreement protocol. Assume we have an adversary A against the key secrecy of π we shall use this
to construct an adversary B against Gap Diffie–Hellman, where B is given the challenge aP, bP .

The algorithm B begins by setting up nC authenticated participants by choosing a secret key di
r← Fq for

each authenticated participant i ∈ C and sets the public key Qi = diP except for one participant i∗ ∈ C where
we set the public key to aP . B also sets up nT unauthenticated participants.

Algorithm B will then use its DDH oracle ODDH to provide simulations of A’s oracles as follows:

– NewSession(i, ρ) – B starts a new session for i. All participants may have a total of ns sessions.
– Send(πsi ,m) –

• For i ∈ C (and ρ = initiator), select at random αsi
r← Fq to create message A = αsiQi.

• For i ∈ T (ρ = responder), select at random βsi
r← Fq to create message E = βsi bP .

This will result in a shared key κ = H(αsi∗β
s
i∗abP) for oracle πsi∗ with partner πtj , where j ∈ T .

– Corrupt(i, d′) –

• For i ∈ C, then return di and replace it with d′ unless i = i∗ in which case abort
• For i ∈ T , return ⊥.

– Reveal(πsi) – To answer Reveal queries, B will maintain a Guess session key list (G-List). Each element on
the G-List is a tuple of the form (τ, i, j, κR). Queries are answered as follows:

• First B checks the G-list and if there is an entry for i, j then B outputs the corresponding κR.
• If not then B checks whether the H-list (see below) contains an (M,h, sth)

with ODDH(αsiQi, βsi bP,M) = 1. If it does then B sets sth = {i, j} and adds to G-list (τ, i, j, h).
• Otherwise B returns a randomly chosen key.

– H(M) – To answer hash queries, B maintains an H-List containing tuples of the form (M,h, sth). Queries
are answered as followed:

• B first checks whether M is on the H-list. If it is, then B outputs h.
• If not then B must check whether H(M) is already an valid entry on the G-list for some pair of partici-

pants (i, j) by calling its ODDH .
• If it is a valid entry for some pair of participants (i, j) then B returns the corresponding κR from the

G-list and adds (M,κR, {i, j}) to the H-list.
• Otherwise B chooses a random hash h and adds (M,h, sth) to list.

Eventually,A will output its guess π∗ = πsi and κ∗, The probability thatA chooses i = i∗ is 1/nC Note that in
this case i∗ will not have been corrupted so the simulation has been perfect. At this point B searches the H-list
for the entry (M∗, κ∗, st∗κ) corresponding to κ∗, using ODDH to verify that the entry corresponds to i∗, j. If
this entry does not exist then A must have output a random guess for the key, in which case his probability
of success is at best 1/|h|, where |h| is the size of the output to the function H . Since we assume A to be a
winning adversary with probability (1 − 1/|h|) A queries H such that his guess is on the H-list. If it is on the
list then B calculates the solution to the gap-DH problem as (1/αsi∗β

s
i∗)M

∗. �

16

4.1 One-sided Entity Authentication

We now turn to proving the different properties in our main theorem, starting with one-sided entity authentica-
tion. We make use of the following definition.

Definition 18. (Computational Diffie–Hellman) The CDH problem then asks that given rP, sP ∈ G, where
r, s

r← Fq, compute rsP . The advantage of an adversary A against the CDH problem is defined by

AdvCDH
G (A) = Pr[r, s

r← Fq : A(rP, sP) = rsP].

Lemma 2. If the gap-DH and CDH problems are hard, AE = (enc, dec) is an int-0 secure AE scheme, and the
signature scheme (sig, ver) used to produce card certificates is EUF-CMA, then the EMV protocol P = {Π,G}
is secure in the sense of OS-EA. In particular, if there exists an adversary A against P = {Π,G} in the sense
of os-entauth then there are adversaries B, C, D and E such that

Advos-entauth
Π (A) ≤ Adveufcma

(sig,ver)(B) + nC · (1− 1/|h|) ·AdvGap-DH
E(Fp) (C)

+ nS · nC ·Advint-0
AE (D) + n2C ·AdvCDH

E(Fp)(E),

where nC is the number of cards in the system, nS the number of sessions and |h| is the output size of the hash
function.

Proof. Let A be an adversary that wins the os-entauth experiment, that is the adversary succeeds in getting
one of the bad events os-notval, os-notconf, notuni to occur. Then using the inequality Pr[A ∨ B] ≤ Pr[A] +
Pr[B|¬A], we obtain:

Advos-entauth
Π (A) = Pr[os-notval ∨ os-notconf ∨ notuni]

≤ Pr[os-notconf] + Pr[os-notval ∨ notuni|¬os-notconf]

≤ Pr[os-notconf] + Pr[notuni] + Pr[os-notval|¬os-notconf ∧ ¬notuni].

Let us analyse these terms in turn:

(i) Pr[os-notconf]:
To win in this case an adversary must successfully impersonate a valid card, i.e. there exists Πs

i∗ (i∗ ∈ T)
which accepts with pid = j∗ and session identifier sid∗, for which there exists no oracle Πt

j∗ with
pid = i∗ and session identifier sid∗. More specifically A must send a valid key confirmation message
encκ∗(certQ∗ , a

∗, Q∗; ste). Let F be event that certQ∗ is a valid certificate forgery, i.e. it was not output
by the the sig algorithm during the setup phase.

Pr[os-notconf] ≤ Pr[os-notconf ∧ F] + Pr[os-notconf ∧ ¬F]

Consider each term in turn:

Pr[os-notconf ∧ F]:
We shall use A to construct an adversary B against the EUF-CMA property of the signature scheme that
the card issuer used to sign the certificate.
Algorithm B begins by setting up nC authenticated participants by choosing secret keys di ∈ Fq and sets
the public key to be Qi = diP . Additionally B calls his sign oracle to generate the certificates for these
public keys. B also sets up nT unauthenticated participants. B models A’s NewSession,Reveal,Corrupt,
Send queries appropriately using the key material he has generated.
At some point A issues a query Send(Πt

j∗ , a
∗d∗P, type), where d∗P is a “forged” public key for some

j∗ ∈ C such that a∗ and d∗ were chosen by A. B shall responds by generating the ephemeral public
key for terminal i∗, specifically e∗P for some e∗ ∈ Fq. Now A and the simulated terminal oracle Πs

i∗

17

have derived a key κ∗ = H(a∗d∗e∗P). Next in order for A to get Πs
i∗ to accept he must responding

with encκ∗(certj∗ , a
∗, d∗P) such that certj∗ verifies correctly. Upon receipt of encκ∗(certj∗ , a

∗, d∗P), B
decrypts using κ∗ and then outputs (d∗P, certj∗) as his forgery. Therefore,

Pr[os-notconf ∧ F] ≤ Adveufcma
cert (B).

Pr[os-notconf ∧ ¬F]:
Let H be the event that A makes a hash query which reveals the session key.

Pr[os-notconf ∧ ¬F] ≤ Pr[os-notconf ∧ ¬F ∧H] + Pr[os-notconf ∧ ¬F ∧ ¬H]

First consider Pr[os-notconf ∧ ¬F ∧H].
We shall use A to construct an adversary C′ against the wKSec property of the unauthenticated key ex-
change protocol π (cf. Figure 5). Adversary C′ simulates the environment for A and begins by calling it’s
setup algorithm to initialise nC authenticated participants and nT unauthenticated participants. C′ models
A’s NewSessionA, RevealA, CorruptA, SendA queries appropriately by making the corresponding queries
to it’s own challenger, i.e. NewSessionC′ , RevealC′ , CorruptC′ , SendC′ . IfAmakes a SendA(Π

s
i ,m, type)

query where type = ap or ch then C′ will first make a RevealC′ query and then performs the necessary
encryption or decryption itself. Note that the key revealed will only be forwarded back to A if he issues
the same query to RevealA. If A makes a hash query H(m), C′ will forward this query to his hash oracle
but maintains an H-list of each message and hash, (m,h).
In order to winAmust deduce the session key it has established with Πs

i∗ prior to performing any encryp-
tion operations, i.e. before the key confirmation step. Therefore, C′ will not have issued a reveal query to
Πs
i∗ and so the key that A determines will not violate any of C′’s winning conditions. At some point A

achieves its goal and Πt
j∗ accepts. Thus,A has made a query to H which revealed the session key for Πt

j∗ .
C′ can therefore check which h on his H-list decrypts the confirmation message A sent to Πt

j∗ correctly.
C′ outputs κ∗ = h and Πt

j∗ . Therefore (by Lemma 1),

Pr[os-notconf ∧ ¬F ∧H] ≤ AdvwKSec
π (C′) ≤ nC · (1− 1/|h|) ·AdvGap-DH

E(Fp) (C).

Next consider Pr[os-notconf ∧ ¬F ∧ ¬H].
We shall use A to construct a new adversary D against the INT-0 security of AE, (where INT-0 is the
normal INT-sfPTXT game but the adversary is permitted no encryption queries).D begins by guessing for
which session s∗, card i∗ ∈ C he thinksAwill impersonate i∗ ∈ C successfully. What we effectively do is
set the output of the random oracle H for the key corresponding to Πs∗

i∗ (and its partner Πt∗
j∗ respectively)

to be the key chosen at random for the INT-0 experiment. All other keys are initialised byD appropriately.
If A makes a Send query with type = ap after δ = accept for Πs∗

i∗ then D shall abort since he is not
permitted any encryption queries (similarly it is up to A to make an appropriate ciphertext forgery for the
encrypted confirmation message). All other queries NewSession,Reveal,Corrupt and Send forΠs

i 6= Πs∗
i∗

are simulated internally by D using appropriate randomness. Since A does not make any reveal queries
or hash queries corresponding to the key of Πs∗

i∗ the simulation shall remain perfect. When A outputs a
valid key confirmation message then D has a valid ciphertext forgery.

Pr[os-notconf ∧ ¬F ∧ ¬H] ≤ nS · nC ·Advint-0
AE (D).

(ii) Pr[notuni]:
Here we must consider the case when two card sessions establish the same key with a single terminal.
Let A be an adversary against the uniqueness of sessions. We shall use A to construct a new adversary E
that solves the CDH problem given challenge rP, sP .
Algorithm E begins by setting up nC authenticated participants by choosing secret keys di ∈ Fq for each
authenticated participant and sets the public keys to beQi = diP . Except for two cards C1 and C2 chosen

18

at random (note we also consider the case that C1 = C2). First E chooses d, a1 and a2 at random from
Fq. Next E sets the public key of C1 to be Q1 = a−11 drP and (when C1 6= C2) the public key of C2 to be
Q2 = a−12 dP .
E models A’s NewSession,Reveal,Corrupt, Send queries appropriately using the key material it has gen-
erated and necessary randomness. Except for cards C1 and C2 where Send queries are modelled such
that:

– C1 first sends a1Q1 = drP to some terminal Tj .
– Tj responds with sP
– The key established between C1 and Tj is H(d(rsP)). (To model any further send queries with
type = ap or ch E , chooses this hash uniformly at random and uses this as the key to perform
the necessary encryptions and decryptions.)

– Next start a new session for C2 by sending dP . In the case of C1 6= C2 this corresponds to a2Q2 and
in the case of C1 = C2 this corresponds to a′2Q1 for some a′2

r← Fq.
Finally, adversary A must impersonate the terminal and send rsP to C2. This will ensure that C2 estab-
lishes the same session key as the previous session of C1 and Tj , (κ = H(drsP)). The adversary E then
uses A’s impersonated terminal message rsP as its CDH solution.

Pr[notuni] ≤ n2C ·AdvCDH
E(Fp)(E).

(iii) Pr[os-notval|¬os-notconf ∧ ¬notuni]: If neither of the bad events os-notconf or notuni occur then all
“completed” oracles have accepted and they have unique partners. By the construction of Π (cf. Figure 4)
this means that the key confirmation has been performed correctly and hence each oracle shares the same
key with their corresponding partner. Therefore the event os-notval will not occur.

Pr[os-notval|¬os-notconf ∧ ¬notuni] = 0.

�

4.2 One-sided Message Authentication

We now turn to the message authentication property:

Lemma 3. If the Gap-DH problem is hard in E(Fp), AE = (enc, dec) is an int-sfptxt secure AE scheme and
P = {Π,G} is secure in the sense of os-entauth, then P = {Π,G} is secure in the sense of os-auth. In
particular if there is an adversary A against the os-auth property then there are adversaries B, C and D such
that

Advos-auth
Π (A) ≤ nS · (nC + nT) ·Advintsfptxt

AE (D) + nC · (1− 1/|h|) ·AdvGap-DH
E(Fp) (C) +Advos-entauth

Π (B),

where nC is the number of cards in the system, nT the number of terminals, nS the number of sessions and |h|
is the output size of the hash function.

Proof. We shall prove this result via a sequence of games. Let A be an adversary attacking Π in the sense of
auth.
Game 0: This game is identical to Execos-authΠ (A).

Pr[Game0⇒ 1] = Advos-auth
Π (A).

Game 1: This proceeds identically to the previous game but aborts if a terminal (i ∈ T) oracle Πs
i accepts but

has no unique partner oracle which establishes the same key. It is easy to see that if this event occurs then one
of the events os-notval, os-notconf, notuni has occurred. Therefore,

Pr[Game0⇒ 1] ≤ Pr[Game1⇒ 1] +Advos-entauth
Π (B).

19

Game 2: This proceeds identically to the previous game but aborts if A makes a query to H which reveals the
key for an oracle Πs

i . Again it is easy to see that

Pr[Game1⇒ 1] ≤ Pr[Game2⇒ 1] +AdvwKSec
π (C′).

Game 3: The challenger now selects at random an oracle Πs∗
i∗ . The game aborts if Prefix(Ap-Rsi ,Ap-Stj) =

false for (i, s) 6= (i∗, s∗). Since i∗ is chosen at random from I = C ∪ T we have:

Pr[Game2⇒ 1] ≤ nS · (nC + nT) · Pr[Game3⇒ 1].

It remains to study the probability that A wins (Game3 ⇒ 1). We shall use A in Game3 to construct a new
adversary D against the INT-sfPTXT security of AE. What we effectively do is set the output of the random
oracle H for the key corresponding to Πs∗

i∗ to be the key chosen at random for the INT-sfPTXT experiment. The
adversaryD will use its enc and dec oracles to provide simulations ofA’s Send queries withΠs∗

i∗ orΠt∗
j∗ (where

P(Πs∗
i∗ , Π

t∗
j∗) = true) as the input session. All other queries NewSession,Reveal, Corrupt and all other Send

queries will be simulated internally by D. We further explain how Send queries for Πs∗
i∗ or Πt∗

j∗ are simulated.
When A makes a Send query for Πs∗

i∗ or Πt∗
j∗ before δ = derived, D performs the key exchange himself by

using appropriate randomness. Once δ = derived, D must make calls to enc and dec in order to perform the
key confirmation. Since the confirmation message received/sent by Πs∗

i∗ should be equal to that sent/received
by the partnered card/terminal session respectively, when D calls dec he will not be given the plaintext due to
restrictions on decryption queries in the INT-sfPTXT model. If this happens then he accepts the card session
and sets δ = accept, otherwise he sets δ = reject. After δ = accept whenever A makes a Send query
where type = ap or ch, D calls his enc or dec oracle, respectively. Since A does not make any reveal queries
or hash queries corresponding to the key of Πs∗

i∗ the simulation remains perfect. If A wins the auth game
then Prefix(Ap-Rs

∗
i∗ ,Ap-St

∗
j∗) = false and thus A has output a ciphertext forgery which allows D to win the

INT-sfPTXT game.
Pr[Game3⇒ 1] ≤ Advintsfptxt

AE (D).

Combining all of the above we obtain

Advos-auth
Π (A) = Pr[Game0⇒ 1]

≤ Pr[Game1⇒ 1] +Advos-entauth
Π (B)

≤ Pr[Game2⇒ 1] +AdvwKSec
π (C′) +Advos-entauth

Π (B)
≤ nS · (nC + nT) · Pr[Game3⇒ 1] +AdvwKSec

π (C′) +Advos-entauth
Π (B)

≤ nS · (nC + nT) ·Advintsfptxt
AE (D) +AdvwKSec

π (C′) +Advos-entauth
Π (B)

With the final result following from applying Lemmas 1 and 2.

4.3 One-sided Message Privacy

We now turn to the message privacy property:

Lemma 4. If the Gap-DH problem is hard in E(Fp), AE = (enc, dec) is an ind-sfcca secure AE scheme and
P = {Π,G} is secure in the sense of os-entauth. Then P = {Π,G} is secure in the sense of os-priv, i.e. any
adversary A against the os-priv property can be turned into adversaries B, C and D such that

Advos-priv
Π (A) ≤ nS · (nC + nT) ·Advindsfcca

AE (D) + nC · (1− 1/|h|) ·AdvGap-DH
E(Fp), (C) +Advos-entauth

Π (B),

20

Proof. We shall prove this result via a sequence of games. Let A be an adversary attacking Π in the sense of
priv.
Game 0: This game is identical to Execos-privΠ (A).

Pr[Game0⇒ 1]− 1

2
= Advos-priv

Π (A).

Game 1: This proceeds identically to the previous game but aborts if a terminal (i ∈ T) oracle Πs
i accepts but

has no partner oracle that establishes the same key. It is easy to see that if this event occurs then one of the bad
events os-notval, os-notconf, notuni has occurred. Therefore,

Pr[Game0⇒ 1] ≤ Pr[Game1⇒ 1] +Advos-entauth
Π (B).

Game 2: This proceeds identically to the previous game but aborts if A makes a query to H which reveals the
key for an oracle Πs

i . Again it is easy to see that

Pr[Game1⇒ 1] ≤ Pr[Game2⇒ 1] +AdvwKSec
π (C′).

Game 3: The challenger now selects at random an oracle Πs∗
i∗ . The game aborts if the attacker outputs (i, s, b′)

such that (i, s) 6= (i∗, s∗), the game will instead return a random bit. Since i∗ is chosen at random from
I = C ∪ T we have:

Pr[Game2⇒ 1]− 1

2
≤ nS · (nC + nT) ·

(
Pr[Game3⇒ 1]− 1

2

)
.

It remains to study the probability that A wins (Game3 ⇒ 1). We shall use A in Game3 to construct a new
adversary D against the IND-sfCCA security of AE. What we effectively do is set the output of the random
oracle H for the key corresponding to Πs∗

i∗ to be the key chosen at random for the IND-sfCCA experiment. The
adversaryD will use its enc and dec oracles to provide simulations ofA’s Send queries withΠs∗

i∗ orΠt∗
j∗ (where

P(Πs∗
i∗ , Π

t∗
j∗) = true) as the input session. All other queries NewSession,Reveal, Corrupt and all other Send

queries will be simulated internally by D. We further explain how Send queries for Πs∗
i∗ or Πt∗

j∗ are simulated.
When A makes a Send query for Πs∗

i∗ or Πt∗
j∗ before δ = derived, D performs the key exchange himself by

using appropriate randomness. Once δ = derived, D must make calls to enc and dec in order to perform the
key confirmation (note D will give enc the same message in both of its inputs). Since the confirmation message
received/sent by Πs∗

i∗ should be equal to that sent/received by the partnered card/terminal session respectively,
when D calls dec he will not be given the plaintext due to restrictions on decryption queries in the IND-sfCCA
model. If this happens then he accepts the card session and sets δ = accept, otherwise he sets δ = reject.
After δ = accept whenever A makes a Send query where type = ap or ch, D shall call his enc or dec
oracle, respectively. SinceA does not make any reveal queries or hash queries corresponding to the key of Πs∗

i∗

the simulation shall remain perfect. When A outputs its guess (i∗, s∗, b′), D shall forward b′ as its guess. We
therefore have,

Pr[Game3⇒ 1]− 1

2
≤ Advindsfcca

AE (D).

Combining all of the above, we yield:

Advos-priv
Π (A) = Pr[Game0⇒ 1]− 1

2

≤ Pr[Game1⇒ 1]− 1

2
+Advos-entauth

Π (B)

≤ Pr[Game2⇒ 1]− 1

2
+AdvwKSec

π (C′) +Advos-entauth
Π (B)

≤ nS · (nC + nT) ·
(
Pr[Game3⇒ 1]− 1

2

)
+AdvwKSec

π (C′) +Advos-entauth
Π (B)

≤ nS · (nC + nT) ·Advindsfcca
AE (D) +AdvwKSec

π (C′) +Advos-entauth
Π (B)

Again the final result follows from applying Lemmas 1 and 2.

21

4.4 Unlinkability

Finally, we present our theorem for unlinkability:

Theorem 2. If gap-DH is hard and AE = (enc, dec) is an ind-sfcca secure AE scheme, then P = {Π,G} is
secure in the sense of unlink; in particular we have

Advunlink
Π (A) ≤ n2C ·

(
Advindsfcca

AE (C) + nC · (1− 1/|h|) ·AdvGap-DH
E(Fp) (B)

)
where, again, nC is the number of cards in the system and |h| is the output size of the hash function.

Note that if a were instead chosen to be of size 232 (as suggested by the RFC) our security analysis would show
only 16 bits of security. We refer the reader to the proof in Appendix E for further details.

5 Acknowledgements

This work was support in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO. The second author
was also partially supported by a Royal Society Wolfson Merit Award. The first author was supported by the
Israel Science Foundation (grant 1076/11 and 1155/11), the Israel Ministry of Science and Technology (grant
3-9094), and the German-Israeli Foundation for Scientific Research and Development (grant 1152/2011).

References

1. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repairing the SSH authenticated encryption
scheme: A case study of the encode-then-encrypt-and-mac paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206–241, 2004.

2. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of the generic compo-
sition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer, 2000.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dictionary attacks. In Bart
Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages 139–155. Springer, 2000.

4. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson, editor, CRYPTO, volume
773 of Lecture Notes in Computer Science, pages 232–249. Springer, 1993.

5. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their security analysis. In Michael Darnell,
editor, IMA Int. Conf., volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer, 1997.

6. Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. Security of symmetric encryption in the
presence of ciphertext fragmentation. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture
Notes in Computer Science, pages 682–699. Springer, 2012.

7. Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams. Less is more: Relaxed yet com-
posable security notions for key exchange. IACR Cryptology ePrint Archive, 2012:242, 2012.

8. Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An analysis of the EMV channel establishment
protocol. IACR Cryptology ePrint Archive, 2013:31, 2013.

9. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. In Birgit
Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

10. Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-way authentication in key exchange protocols. Designs,
Codes and Cryptography, 2012. Online first; print version to appear.

11. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J.Alex Halderman. Mining your Ps and Qs: Detection of widespread weak
keys in network devices. In USENIX Security Symposium – 2012, pages 205–220, 2012.

12. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the standard model. IACR Cryptology
ePrint Archive, 2011:219, 2011.

13. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the standard model. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 273–293. Springer,
2012.

14. Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key agreement protocols. In Bimal K. Roy, editor, ASI-
ACRYPT, volume 3788 of Lecture Notes in Computer Science, pages 549–565. Springer, 2005.

15. EMVCo LLC. EMV deployment statistics. http://www.emvco.com/about emvco.aspx?id=202, 2012.
16. EMVCo LLC. EMV ECC key establishment protocols. http://www.emvco.com/specifications.aspx?id=243, 2012.

22

17. Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The TLS handshake protocol: A modular analysis. J. Cryptology,
23(2):187–223, 2010.

18. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter: Attacks and proofs for the tls record
protocol. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages
372–389. Springer, 2011.

19. John Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32:918–924, 1978.
20. Phillip Rogaway and Till Stegers. Authentication without elision: Partially specified protocols, associated data, and cryptographic

models described by code. In CSF, pages 26–39. IEEE Computer Society, 2009.

A Basic Security Definitions

The underlying AE scheme we assume satisfies the following two properties which are variants of the stateful
security models of Bellare et al. [1] and Paterson et al. [18].

An adversary against a stateful encryption scheme needs to be given the capability to progress the scheme’s
state without trivially winning the security experiment. It is for this reason that there is a subtle difference
between the standard notions of Indistinguishability under Chosen-Ciphertext Attack (IND-CCA) and Integrity
of Plaintexts (INT-PTXT)[2], and their stateful versions IND-sfCCA and INT-sfPTXT. An adversary against
IND-sfCCA and INT-sfPTXT security is permitted to query the decryption oracle with an output from the
encryption oracle in order to progress the state but the output of this query should not be returned to the
adversary (to avoid the trivial attack).

In order to match with our security definitions of auth and priv we alter previous IND-sfCCA of Bellare et
al. [1] and introduce a new notion for INT-sfPTXT (which is analogous to the definition of INT-sfCTXT given
by Bellare at al.) to now compare the lists M-E and C-E with M-D and C-D respectively. In the case of IND-
sfCCA, C-E is the list of all ciphertexts output by the encryption oracle and C-D is the list of all ciphertexts
successfully decrypted by the decryption oracle. For INT-sfPTXT the lists M-E,M-D correspond to plaintext
messages input to and output from the encryption and decryption oracle, respectively. In order to prevent an
adversary trivially winning he is not permitted to see the output of the decryption oracle if C-D (M-D resp.) is a
prefix of C-E (M-E resp.), i.e. if all ciphertexts (plaintexts resp.) decrypted so far were output by the encryption
oracle in the case of IND-sfCCA or if all plaintexts output so far were inputs to the encryption oracle in the
case of INT-sfPTXT.

Definition 19. (IND-sfCCA) Consider the scheme AE = {encκ, decκ}. Let A be an adversary with access to
a left-or-right encryption oracle encκ(h, LRb(m0,m1); ste) and a decryption oracle decκ(h, c; std). It is man-
dated that any two messages queried to encκ(h, LRb(m0,m1); ste) have equal length. We define an experiment
as follows:

Execindsfcca-bAE (A)
κ

r← {0, 1}k, C-E := ∅, C-D := ∅, ste := ∅ and
std := ∅
Run Aencκ,decκ

Reply to encκ(h, LRb(m0,m1); ste) as follows:
(c, ste)

r← encκ(h,mb; ste)
C-E← C-E ∪ c; A ⇐ c

Reply to decκ(h, c; std) as follows:
(m, std)

r← decκ(h, c; std)
if m 6=⊥ then

C-D← C-D ∪ c
if Prefix(C-D,C-E) = false then A ⇐

m
Until A returns a bit b′

return b′

23

The attacker wins when b′ = b, and his advantage is defined as

Advindsfcca
AE (A) = Pr[Execindsfcca-1AE (A) = 1]− Pr[Execindsfcca-0AE (A) = 1].

Definition 20. (INT-sfPXT) Consider the scheme AE = {encκ, decκ}. Let A be an adversary with oracle
access to encκ(h,m; ste) and decκ(h, c; std). We define an experiment as follows:

ExecintsfptxtAE (A)
κ

r← {0, 1}k, d := 0
M-E := ∅, M-D := ∅, ste := ∅ and std := ∅
Run Aencκ,decκ

Reply to encκ(h,m; ste) as follows:
(c, ste)

r← encκ(h,m; ste)
M-E← M-E ∪m; A ⇐ c

Reply to decκ(h, c; std) as follows:
(m, std)

r← decκ(h, c; std)
if m 6=⊥ then

M-D← M-D ∪m; A ⇐ 1
if Prefix(M-D,M-E) = false then d :=

1
else A ⇐ 0

Until A halts
return d

The advantage Advintsfptxt
AE (A) of an adversary is defined as

Advintsfptxt
AE (A) = Pr[ExecintsfptxtAE (A) = 1].

In addition we define the related notion int-0 which considers an adversary A against intsfptxt (or in fact
intsfctxt) that is permitted no encryption oracle queries.

Definition 21. (EUF-CMA) Consider the signature scheme {keysig, sig, ver}, where keysig be the key gener-
ation method for this scheme. Let A be an adversary that has access to the oracle sigsk(·). We define the
experiment as follows:

Execeufcma
(sig,ver)(A)

(pk, sk)
r← keysig

(m,σ)← Asigsk(·)

if verpk(m,σ) = 1; and m has not been queried to sigsk(·)
then return 1 else return 0

The attacker’s advantage is defined as

Adveufcma
(sig,ver)(A) = Pr[Execeufcma

(sig,ver)(A) = 1].

B Jager et al.’s Definition of ACCE

Here we present the revised ACCE definition of Jager et al. [12]. In this definition each oracle Πs
i maintains

an additional internal state variable bsi
r← {0, 1} chosen at random at the start of the game. Further to this

an oracle Πs
i maintains variables (usi , v

s
i , c

s
i , θ

s
i). The states usi and vsi are counters (initialised to (0, 0)) used

to ensure that A cannot submit a ciphertext previously output by Encrypt oracle to the Decrypt oracle. The
variable csi defines the list of ciphertext output by the encryption oracle, where csi [u] denotes the u-th entry on

24

the list. Finally, θsi stores the pair indices (j, t) necessary to define the partner Πt
j of Πs

i . The two states ste
and std are maintained by encryption and decryption operations of the stateful symmetric encryption scheme
(each oracle Πs

i shall maintain a different set of states). As before we let enc and dec be the encryption and
decryption algorithms of our symmetric encryption scheme. The adversary A will be permitted to make the
following queries:

– Sendpre(Πs
i ,m): This is identical to the Send query in the preliminaries section above, except that it replies

with ⊥ if oracle Πs
i has state δ = accept (this shall be handled by the decrypt query).

– Reveal(Πs
i) and Corrupt(i) are the standard queries for revealing a session key and corrupting a participant.

– Encrypt(Πs
i ,m0,m1, h): takes as input two equal length messages m0 and m1 and a header h. If Πs

i has
δ 6= accept then Πs

i returns ⊥. Otherwise it proceeds with encryption as in Figure 6 dependent on the
internal state bsi .

– Decrypt(Πs
i , c, h): takes as input a ciphertext c and a header h. If Πs

i has δ 6= accept then Πs
i returns ⊥.

Otherwise it proceeds with decryption as in Figure 6.

Encrypt(Πs
i ,m0,m1, h)

(c(0), st
(0)
e)← enc(kρenc, h,m0)

(c(1), st
(1)
e)← enc(kρenc, h,m1)

if c(0) =⊥ or c(1) =⊥ then return ⊥
usi := usi + 1

(csi [u
s
i], ste) := (c(b

s
i), st

(bsi)
e)

return csi [usi]

Decrypt(Πs
i , c, h)

(j, t) := θsi
vsi := vsi + 1
if bsi = 0 then return ⊥
(m, std)← dec(kρdec, h, c, std)
if vsi > utj or c 6= ctj [v

s
i], then phase := 1

if phase = 1 then return m

Fig. 6. Encrypt and Decrypt queries

We define the following game ExecACCEΠ (A) between an adversary A and challenger C:

1. The challenger C, generates public/secret key pairs for each user i ∈ I (by running G) and returns the public
keys to A.

2. Adversary A is allowed to make as many Sendpre,Reveal,Corrupt,Encrypt,Decrypt queries as it likes.
3. Finally A outputs a triple (i, s, b′).

We say the adversaryA wins if it outputs b′ = bsi . In this case the output of ExecACCEΠ (A) is set to 1. Otherwise
the experiment returns 0. Formally we define the advantage of A as

AdvACCE
Π (A) = |Pr[ExecACCEΠ (A) = 1]− 1/2| = |Pr[b′ = bsi]− 1/2|.

Definition 22 (ACCE). A protocol P = {Π,G} is a (t, ε)-secure ACCE protocol if for all adversaries A
running in time t the following conditions hold (where ε = εEA + εsAE):

1. (Entity Authentication/EA): There exists with probability at most εEA an oracle Πs
i such that:

– Πs
i accepts when A issues its τ0-th query with partner j, and

– Pj is uncorrupted with τ0 < τj (i.e. at time of accept), and
– A did not issue a Reveal-query to oracle Πt

j , such that Πt
j accepted while having a matching conver-

sation to Πs
i (if such an oracle exists).

– there is no unique oracle Πt
j such that Πs

i has a (wire) matching conversation with Πt
j .

2. (Secure Channel/sAE): When A terminates and outputs (i, s, b′) such that
– Πs

i accepts when A issues its τ0-th query with intended partner j, and
– Pj is uncorrupted with τ0 < τj (i.e. at time of accept), and
– A did not issue a Reveal-query to Πs

i nor Πt
j (such that they had a (wire) matching conversation).

the advantage is bounded by AdvACCE
Π (A) = |Pr[b′ = bsi]− 1/2| ≤ εsAE .

25

C Previous Models for Secure Channels

C.1 Canetti–Krawczyk

The first attempt to combine the notions of secure key exchange and secure channels was made by Canetti and
Krawczyk [9]. Here we shall highlight some of the similarities and differences with our new definitions.

Canetti and Krawczyk define a generic network channels protocol built upon a key exchange scheme and
two generic functions send and receive. Here send would take as input some application message and output a
message for the channel, receive would take as input a channel message and output an application message. The
functions Send and receive may only be called after the key-exchange protocol has been completed, as a result
[9] does not take into account protocols where their exists a key-confirmation step where messages are sent
over the channel using the send functions. Not only does this create problems in defining protocol execution
but it means no scheme of this type can be secure in their model. To facilitate a more modular security analysis
Canetti and Krawczyk’s approach is to first analyse the key-exchange protocol on its own using a notion for
session-key security based on that of Bellare and Rogaway [4]. As a result the model is no longer suitable
for analysing protocols with a key-confirmation step which uses the establish session key, as this would allow
an adversary to trivially break security. In our model we also define a generic channels protocol but we shall
consider protocols which have a key confirmation step utilising the session key.

To analyse the protocol as a whole, Canetti and Krawczyk split security into two parts. To be a secure
channel protocol, a protocol must be both a secure encryption protocol and a secure authentication protocol.
We will also take this approach, as it provides a more general framework. In some situations we may only
require an authenticated channel thus having a separate definition for this can prove very useful.

Finally we discuss how Canetti and Krawczyk choose to handle receive (decryption) queries within their
security models. To analyse secure encryption protocols they use an indistinguishability based notion, where
the adversary is provided access to a left-or-right ‘encryption’ oracle. As a result an adversary should not be
able to see the output of a receive call for a message for one participant which was previously output by a send
call to his partner. The model therefore restricts by stating that if a plaintext output by receive was equal to a
previous query to send, then this is not returned to the adversary. In our model we make a similar restriction but
utilise the state of the encryption and decryption schemes to compare the channel messages output at different
times during the protocol run. Canetti and Krawczyk justify their restriction by arguing that comparing the
channel messages is overly constrained. Consider the header fields of a network protocol. In particular, the
time-to-live field is decreased at ever router hop when it travels across a network. Therefore when the message
is finally delivered it differs from that originally sent, despite the underlying plaintext message remaining the
same. We state that our models can be easily extended to consider protocols with these types of header field by
considering equivalence classes of channel messages.

C.2 ACCE Definition of Jager et al.

As mentioned in the introduction Jager et al. [13] combine the notions of authenticated key exchange [4, 5] and
LHAE security [18] to give a combined notion of secure channel establishment. In this section we identify some
issues with the approach of Jager et al. [13]. Our analysis is not concerned with the length hiding properties
used by Jager et al. [13] and Paterson et al. [18] so we omit this aspect and consider only stateful authenticated
encryption (sAE).

Reveal Queries We begin with what we argue is the main problem with their definition; namely at what point a
Reveal query should be permitted. Reveal queries model unintended leakage of session keys from a participant.
Security in the presence of Reveal queries then assures that keys which leak from one session do not affect the
security of other sessions. Traditionally, Reveal queries are allowed once a participant has accepted a key. In
both the new EMV scheme that we consider (cf. Section 2) and TLS (as considered by Jager et al.), the final part

26

of the key-exchange protocol involves a key confirmation step prior to a key being accepted. Here a message
encrypted under the newly established session key is used to perform the final authentication of the sender and
confirmation of the key. But if a session key is used prior to being accepted it seems logical that a Reveal should
therefore be permitted as soon as keys are derived.

In Jager et al.’s definition they assume that “κ 6= ∅ if and only if δ = accept” while in reality TLS has used
κ prior to acceptance in order to encrypt both message m11 sent from client to server and message m13 sent
from server to client. If instead, we allow the adverasary to Reveal as soon as a key is derived then we would
be able to perform the following “attack”:

– The client outputs the encrypted message m11.
– The adversary reveals the client’s key (which is allowed, as the client has derived the key).
– The adversary decrypts m11 and then re-encrypts it with new randomness, using the revealed key.
– Finally, the adversary forwards the new ciphertext to the server.
– The server accepts since the decrypted plaintext has not changed.

As a result the client and server will no longer have had a matching conversation. This is a requirement of
the ACCE security definition and thus, TLS (and similarly EMV) cannot be proved secure with respect to this
definition.

We note that Jager et al. [13] issued a revised version of their paper [12] which alters the definition of
ACCE to prevent a similar issue with respect to the message m13. In the first part of the definition they give the
following additional restriction:

“A did not issue a Reveal-query to oracle Πt
j , such that Πt

j accepted while having a matching conver-
sation to Πs

i (if such an oracle exists).”

With this restriction (Jager et al.’s description of) TLS can now be proved secured with relation to ACCE
when reveals are only permitted once a key is accepted. But we stress that this model still fails to consider
attacks of the form which we describe above, when Reveal queries are permitted as soon as a key has been
derived. The point is that above, the client has been revealed but has yet to reach an accept state and so does not
violate the new restriction. The adversary succeeds because the server has accepted without having a matching
conversation with the client. In our new definition we shall permit reveal queries as soon as keys are derived,
thus capturing all forms of this “reveal” attack. However, this does not mean there is an attack against TLS only
that TLS has not been proved secure in this stronger security model.

Channel Messages In practice there are two types of messages sent over the wire during secure channel
establishment and use. The first type of message that may be observed will be those used to establish the key.
These are then followed by (encrypted) messages sent over the newly established secure channel. An adversary
observing such a channel will not necessarily know when messages cease to be part of the key-exchange and
become those of the secure channel. Let us consider the situation when an adversary tries to imitate a secure
channel message. If a key has yet to be accepted then this message will affect the operation of the key exchange
protocol.

The definition of Jager et al. allows the adversary to make three different types of query Sendpre, Encrypt
and Decrypt each of which deals with a different type of message. Sendpre is used only for messages sent as
part of the key-exchange. The Encrypt and Decrypt operations will always return an error unless a key has
been accepted. But in practice an adversary may not know when an oracle reaches an accept state. Consider
the situation where an adversary makes a Decrypt call prior to a key being accepted. The input to both Sendpre

and Decrypt should model messages which have been received on the channel. In Jager et al.’s model an error
would immediately be returned by the decryption oracle since no key has been accepted but in reality the
message would actually interact with the current state of the key-exchange protocol. It is therefore intuitively
more apealing to have a single Send operation which handles both the key-exchange and decryption operations
depending on the state of the participant.

27

Thus, to achieve greater generality and mirror practice more effectively we shall resort to only using a
single Send query in our model. When calling Send an adversary will specify a message m and a message type,
type. Where the message type is either an application message (ap) or a channel message (ch). Prior to the
completion of the key exchange the operation will be ignored and the message will become part of the key-
exchange execution. In addition our definition also allows the channel to have other capabilities (operations)
such as sign not previously captured by the aforementioned definition.

D Key Secrecy

We define the following game ExecKSecΠ (A) between an adversary A and challenger C:

1. The challenger C, generates public/secret key pairs for each user i ∈ I (by running G) and returns the public
keys to A.

2. Adversary A is allowed to make as many NewSession, Send, Reveal, Corrupt queries as it likes.
3. Finally A outputs a pair Π∗ and κ∗.

We say the adversary A wins if F(Π∗) = true and κ∗ is the key agreed by Π∗. In this case the output of
ExecKSecΠ (A) is set to 1. Otherwise the output is 0. We define the advantage of A to be

AdvKSec
Π (A) = |Pr[ExecKSecΠ (A) = 1]|.

Definition 23. (Key Secrecy) P = {Π,G} is a (t, εKSec)-key secret AK protocol if for all adversaries A run-
ning in time t the following holds:

1. In the presence of a benign adversary onΠs
i andΠt

j both oracles accept holding the same session identifier
sid, the same session key κ, and this key is distributed uniformly at random on {0, 1}k.

2. A’s advantage is bounded by AdvKSec
Π (A) ≤ εKSec.

We can also define a weaker version of this model for one-sided authentication by running the experiment
in the same way as before but changing the winning condition slightly. We say the adversaryA wins the wKSec
experiment if OSF(Π∗) = true and κ∗ is the key agreed by Π∗.

Definition 24. (Weak Key Secrecy) P = {Π,G} is a (t, εwKSec)-weak Key-secure AK protocol if for all adver-
saries A running in time t the following holds:

1. In the presence of a benign adversary onΠs
i andΠt

j both oracles accept holding the same session identifier
sid, the same session key κ and this key is distributed uniformly at random on {0, 1}k.

2. A’s advantage is bounded by AdvwKSec
Π (A) ≤ εwKSec.

E Proof of Theorem 2

Proof. We shall prove this result via a sequence of games. Let A be an adversary attacking Π in the sense of
unlink.
Game 0: This game is identical to ExecunlinkΠ (A).

Pr[Game0⇒ 1]− 1

2
= Advunlink

Π (A).

Game 1: The challenger now selects at random i∗0 and i∗1. The game aborts and returns random b′ if A does not
output i0 = i∗0 and i1 = i∗1. We obtain

Pr[Game0⇒ 1]− 1

2
≤ n2C ·

(
Pr[Game1⇒ 1]− 1

2

)
.

28

Game 2: This proceeds identically to the previous game but aborts if A makes a query to H which reveals the
key for the oracle O. We obtain

Pr[Game1⇒ 1] ≤ Pr[Game2⇒ 1] +AdvwKSec
π (B′).

Game 3: This proceeds identically to the previous game except that whenever Send is called with OC and
type = ap then the challenger replaces m with a random message which it then encrypts. Again it is easy to
see that we obtain

Pr[Game2⇒ 1] ≤ Pr[Game3⇒ 1] +Advindsfcca
AE (C).

It remains to study the probability thatAwins (Game2⇒ 1). Since ciphertexts are now distributed uniformly at
random the only useful information thatA can determine are the public keysQi∗0 ,Qi∗1 , and the blinded challenge
value aQi∗b . Since a is chosen at random from Fq, then the distributions (Qi∗0 , Qi∗1 , aQi∗0) and (Qi∗0 , Qi∗1 , aQi∗1)
are identical, i.e. the advantage is zero even if the adversary is computationally unbounded. We therefore have:

Pr[Game3⇒ 1]− 1

2
= 0.

Combining all of the above:

Advunlink
Π (A) = Pr[Game0⇒ 1]− 1

2

≤ n2C ·
(
Pr[Game1⇒ 1]− 1

2

)
≤ n2C ·

(
Pr[Game2⇒ 1]− 1

2
+AdvwKSec

π (B′)
)

≤ n2C ·
(
Pr[Game3⇒ 1]− 1

2
+Advindsfcca

AE (C) +AdvwKSec
π (B′)

)
≤ n2C ·

(
Advindsfcca

AE (C) +AdvwKSec
π (B′)

)
≤ n2C ·

(
Advindsfcca

AE (C) + nC · (1− 1/|h|) ·AdvGap-DH
E(Fp) (B)

)
.

�

We note that if we were permitted to have a small (as would be the case in the original EMV proposal)
distinguishing the two distributions (Qi∗0 , Qi∗1 , aQi∗0) and (Qi∗0 , Qi∗1 , aQi∗1) may no longer be hard. Let l denote
the maximum bit length of a. The real question of interest would then be how small can l be before the above
problem becomes easy for computationally bounded adversaries. It is clear that the best attack against the
problem for 2l � q will be Pollard Lambda method [19], which runs in time O(2l/2). This implies that a 32-bit
randomizer a only gives 16 bits of security and an 80-bit randomizer only gives 40 bits of security.

29

