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Abstract. In this paper, we consider both theoretical and practical aspects of robust NI-PE (non-
interactive polynomial evaluation with detection of cheaters). First, we give a necessary condition
of adversary structures for which perfectly robust NI-PE with small communication complexity
exists. More precisely, we show that for any positive integers n, m and d > 1, an n-player access
structure U , and an n-player adversary structure T , there exists a U-participating NI-PE scheme
for m-variate polynomials over a finite field F with T -private inputs such that

1. perfectly robust (i.e., successful cheating probability ε = 0),

2. any polynomial of degree d can be evaluated,

3. the total size of shares of the output for some participating set is o(m) × log |F|,
only if T is of type Qd+1 for U , meaning that no d + 1 sets in T cover any set in U .

Second, we give constructions of perfectly robust NI-PE schemes against threshold adversary and
general adversary, respectively. All the proposed schemes ensure perfect robustness against Qd+1

adversary, and computability of arbitrary polynomial of degree d.

Third, we show that efficient robust NI-PE schemes against general adversary can be constructed
by allowing cheaters very small chance of successful cheating. Namely, we construct two robust
NI-PE schemes with ε = 1/|F| and the total size for shares of the output is only three times larger
compared to the perfectly robust NI-PE scheme against threshold adversary.

1 Introduction

Secure multiparty computation (MPC for short) enables multiple players to cooperatively com-
pute arbitrary function without revealing its inputs. Because of its importance in cryptography,
there have been presented various type of MPCs based on various techniques so far. Among
them, the technique utilizing multiplicative property of certain secret sharing schemes is one of
the best-known paradigm to construct MPC. While MPC possesses such an attracting property
that any function can be computed with it, efficiency of the entire protocol is rather low since
it requires a large number of interactions among players to complete the protocol.

On the other hand, non-interactive polynomial evaluation (NI-PE for short) allows multi-
ple players to locally convert (i.e., without interaction) shares of the inputs of a multivariate
polynomial over a finite field F into additive shares of its output. It is shown in [1] that NI-PE
for a polynomial of degree d can be constructed from a d-multiplicative secret sharing scheme
(d-MSS for short). Here, d-MSS is a special type of secret sharing scheme which allows us to
locally convert shares of d different secrets into an additive sharing of their product. Efficiency
of NI-PE are pretty high since no interaction is required among players. The price we must
pay for such high efficiency is restriction on the class of polynomials that NI-PE can computes.
Namely, in [1], Barkol et al. clarify a necessary and sufficient condition of adversary structures
with which d-MSS can be constructed. The result shows that for any positive integers n, d, and
a n-player adversary structure T , there exists a d-MSS T -private secret sharing if and only if T
is of type Qd meaning that no d sets in T cover the entire set of players.
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In the real-world scenario with multiple users, we cannot always assume users are trusted.
To deal with untrusted users, many cryptographic primitives (such as MPC, secret sharing
scheme [3,4]) provide cheating prevention functionality. However, surprisingly, no d-MSS or NI-
PE known so far possesses functionality for cheating prevention, which motivates us to consider
cheating prevention in NI-PE.

The main contribution of the paper is the following. First, we give a necessary condition
of adversary structures for which perfectly robust NI-PE with small communication complexity
exists (Theorem 2). More precisely, we show that for any positive integers m, n, and d > 1, an n-
player access structure U , and an n-player adversary structure T , there exists a U-participating
NI-PE scheme for m-variate polynomials with T -private inputs such that

1. perfectly robust (i.e., successful cheating probability ε = 0),

2. any polynomial of degree d can be evaluated,

3. the total size of shares of the output for some participating set is o(m) × log |F| (i.e.,
minP∈U |P | × log |V| = o(m) × log |F|),

only if T is of type Qd+1 for U , meaning that any d + 1 sets in T cannot cover any set in U .

It will be of interest to compare the above result to a necessary condition of adversary
structures for non-robust NI-PE (i.e., Theorem 3). The conditions imposed in both theorems are
identical except that Theorem 2 requires perfect robustness. However, necessary conditions on
adversary structures derived from both theorems are completely different (i.e., non-robust NI-PE
requires Qd, whereas perfectly robust NI-PE requires stronger restriction Qd+1 as a necessary
condition of adversary structure).

The second contribution is to give constructions of perfectly robust NI-PE schemes against
threshold adversary and general adversary, respectively. All the proposed schemes ensure perfect
robustness against Qd+1 adversary, and computability of arbitrary polynomial of degree d. How-
ever, efficiency of the total size of shares of the output are not ideal in all schemes. In particular,
the schemes against general adversary are quite inefficient and considered to be impractical.

However, interestingly, we show that quite efficient robust NI-PE schemes against general
adversary can be constructed by allowing cheaters very small chance of successful cheating.
Namely, we construct two robust NI-PE schemes with ε = 1/|F| based on the robust secret
sharing scheme in [4]. The total size for shares of the output is only three times larger compared
to the perfectly robust NI-PE scheme against threshold adversary, which is the third contribution
of the paper.

The rest of the paper is organized as follows. In Section 2, we first recall the definition of
multiplicative secret sharing and some results presented in [1]. The definition for the robustness of
NI-PE against cheaters is also given in this section. In Section 3, we give a necessary condition
of adversary structures for which perfectly robust NI-PE schemes with small communication
complexity exist. In Section 4, we present constructions of perfectly robust NI-PE schemes
against threshold and general adversary, respectively. In Section 5, we present two efficient
constructions obtained by relaxing the robustness requirement. Concluding remarks and future
works are given in Section 6.
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2 Preliminaries

2.1 Secret Sharing

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. A secret sharing scheme involves
a dealer and n players P1, . . . , Pn, and specifies a randomized mapping from the secret s to an
n-tuple of shares (s1, . . . , sn), where the share si is given to player Pi. We assume that the secret
is taken from a finite field F. We also assume that all shares si are taken from a finite share
domain S. Let D denote a discrete probability distribution from which the dealer’s randomness
is chosen. To share a secret s ∈ F, the dealer chooses a random element r ∈ D and applies a
sharing function SHARE : F ×D → Sn to compute SHARE(s, r) = (s1, . . . , sn). For T ⊆ [n], let
SHARE(s, r)T denote the restriction of SHARE(s, r) to its T -entries.

Definition 1. (Adversary structure) An n-player adversary structure is a collection of sets
T ⊆ 2[n] that is closed under subsets: that is, if T ∈ T and T ′ ⊆ T , then T ′ ∈ T . Let T̂
be the collection of maximal sets in T .

Definition 2. (Access structure) An n-player access structure is a collection of sets U ⊆ 2[n]

that is closed under supersets (a.k.a. monotone): that is, if P ∈ U and P ′ ⊇ P , then P ′ ∈ U .
Let Û be the collection of minimal sets in U .

We extend the type-Qd property of adversary structures to a relation between adversary
structures and access structures, which is used for our characterization.

Definition 3. (Adversary structure of type Qd for access structure) Let n, d be positive integers,
T ⊆ 2[n] be an n-player adversary structure, and U ⊆ 2[n] be an n-player access structure. We
say that T is of type Qd for U if for every d sets T1, . . . , Td ∈ T and every set P ∈ U , we have
T1 ∪ · · · ∪ Td ⊂ P (that is, no d sets in T cover any set in U).

Remark: The definition of type Qd in [1] is the special case U = {[n]}.
We recall the privacy property defined in [1].

Definition 4. (T /t-private secret sharing) A secret sharing scheme is said to be T -private if
for every pair of secrets s, s′ ∈ F and every set T ∈ T , the random variables SHARE(s, r)T and
SHARE(s′, r)T induced by a random choice of r ∈ D are identically distributed. A T -private
scheme is said to be t-private if T consists of all the subsets of [n] whose cardinality is at most
t.

We extend the multiplication property in order to allow a subset of players to execute mul-
tiplication.

Definition 5. (U/u-Participating d-multiplicative secret sharing) Let n, d, u be positive inte-
gers. Let U be an n-player access structure. An n-player secret sharing scheme is said to be
U-participating d-multiplicative, (U , d)-multiplicative in short, if it satisfies the following (U , d)-
multiplication property: For s(j) ∈ F and r(j) ∈ D with 1 ≤ j ≤ d, let (s(j)

1 , . . . , s
(j)
n ) =

SHARE(s(j), r(j)). There is a function MULT : U× [n]×Sd → F such that for all possible s(j) and
r(j) as above and any P ∈ U ,

∑
i∈P MULT(P, i, s

(1)
i , . . . , s

(d)
i ) =

∏d
j=1 s(j). A (U , d)-multiplicative

scheme is said to be (u, d)-multiplicative if U consists of all the subsets of [n] whose cardinality
is at least u.
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Remark: The definition of d-multiplicative property in [1] is the special case U = {[n]}, i.e.,
u = n. The extension of d-multiplicative property is used for showing a general construction of
NI-PE schemes.

For (U , d)-multiplicative T -private secret sharing, we can rederive the corresponding theorem
and lemma of its characterization.

Theorem 1. (Theorem 4.6 in [1]) For any positive integers n, d, an n-player access structure
U , and an n-player adversary structure T , there exists a (U , d)-multiplicative T -private secret
sharing scheme if and only if T is of type Qd for U .

The proof is essentially the same as that in [1] and given in Appendix A). Note that the T -
private CNF scheme proposed by Itoh et al. in [7] is given as an example of d-multiplicative
schemes in [1], and is shown to be (U , d)-multiplicative in this paper.

Definition 6. (Definition 2.4 in [1], Evaluating a polynomial on shares) Let p ∈ F[x1, . . . xm]
be an m-variate polynomial over F that can be written as the sum of degree-d monomials of the
form α · xi1 · xi2 · · ·xid. That is,

p(x1, . . . , xm) =
∑

J=(j1,...,jd)∈[m]d

αJ

d∏
l=1

xjl
.

Let s(j) ∈ F with j ∈ [m] be secrets and s
(j)
i with i ∈ [n] be shares of s(j) for player Pi obtained

by using a (U , d)-multiplicative secret sharing scheme. Define a function pi : U × Sm → F by

pi(P, s
(1)
i , . . . , s

(m)
i ) =

∑
J=(j1,...,jd)∈[m]d

αJ · MULT(P, i, s
(j1)
i , . . . , s

(jd)
i ). (1)

For a general polynomial p′ of total degree (at most) d, let p be the polynomial such that each
monomial of degree d′ < d of p′ is converted into an equivalent monomial of degree d by padding
the monomial with d − d′ copies of a dummy variable x0, whose corresponding secret is set to 1
and the shares of this secret will always be set to SHARE(1, r0), where r0 is some fixed element
in the support of D.

From Definition 6, it straightforwardly follows that the (U , d)-multiplicative property can be
used for non-interactively evaluating multivariate d polynomials.

Lemma 1. (Lemma 2.5 in [1]) Let p ∈ F[x1, . . . xm] be an m-variate degree d polynomial
over F and U ⊆ 2[n] be an n-player access structure. Suppose that the vector of secrets s =
(s(1), . . . , s(m)) ∈ Fm was coordinate-wise secret shared using a (U , d)-multiplicative secret shar-
ing scheme, such that for every j ∈ [m], the shares corresponding to s(j) are (s(j)

1 , . . . , s
(j)
n ) ∈ Sn.

Then, it holds that for any P ∈ U ,

p(s) =
∑
i∈P

pi(P, s
(1)
i , . . . , s

(m)
i ).
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2.2 Robust Non-interactive Evaluation of Polynomials

We define an NI-PE scheme that involves a dealer and n players P1, . . . , Pn as follows: Let U
be an n-player access structure. A U-participating NI-PE scheme for an m-variate polynomial
p ∈ F[x1, . . . , xm] specifies a sharing function SHARE, n evaluating functions EVALi with i ∈ [n],
and a verification function VER.

As defined in Section 2.1, the sharing function SHARE is a random mapping from the secret
s ∈ F to an n-tuple of shares (s1, . . . , sn) ∈ Sn, where the share si is given to player Pi. Let
s = (s(1), . . . , s(m)) be the input to p and (s(j)

1 , . . . , s
(j)
n ) an n-tuple of shares of s(j) with j ∈ [m].

Each evaluating function EVALi with i ∈ [n] is a mapping from a participating set P ∈ U
with i ∈ P and m shares si = (s(1)

i , . . . , s
(m)
i ) ∈ Sm to a share of the output vi that is taken

from a finite domain V.
The verification function VER is a mapping from a participating set P ∈ U and |P | shares

{vi|i ∈ P} to the output that takes a value in F or ⊥ where ⊥ means that cheating exists.
To share the inputs, the dealer coordinate-wise shares s by using SHARE. To evaluate an

m-variate polynomial p by a subset of players P ∈ U , each player Pi with i ∈ P locally computes
vi = EVALi(P, si) and publishes it. Then, Pi locally detects cheating by computing VER(P, {vi|i ∈
P}) and obtains v = p(s) if cheating does not exist. That is, for any vector of secrets s =
(s(1), . . . , s(m)) ∈ Fm, any vector of choices r = (r(1), . . . , r(m)) ∈ Dm, and any P ∈ U ,

VER(P, {EVALi(P, si)|i ∈ P}) = p(s),

where si = (s(1)
i , . . . , s

(m)
i ) and (s(j)

1 , . . . , s
(j)
n ) = SHARE(s(j), r(j)).

We define a private property of shared inputs.

Definition 7. (T /t-Private inputs of NI-PE) Let T be an n-player adversary structure and t
a positive integer. An NI-PE scheme (SHARE, {EVALi}i∈[n], VER) is said to have T /t-private
inputs if SHARE is T /t-private.

From Theorem 1 and Lemma 1, we can easily derive a sufficient condition for a U-participating
NI-PE scheme for m-variate polynomials of degree d with T -private inputs to exist.

Corollary 1. Let d be a positive integer larger than one (i.e., d > 1). Let n,m be positive
integers. For an n-player access structure U and an n-player adversary structure T , there exists
a U-participating NI-PE scheme for m-variate polynomials with T -private inputs such that

1. any polynomial of degree d can be evaluated,
2. V = F and the total size of shares of the output for a participating set P ∈ U is |P | × log |F|,

if T is of type Qd for U .

We turn to define the unconditional robustness of a U-participating NI-PE scheme with
T -private inputs. We consider the following scenario: For P ∈ Û and T ∈ T̂ with P ∩ T 6=
∅, the players in P try to evaluate a m-variate polynomial p ∈ F[x1, . . . , xm] on inputs s =
(s(1), . . . , s(m)) while the players in T ∈ T̂ , who somehow know the value of output v = p(s)
(known as CDV model [3]/robust secret sharing [4]), forge their shares vT = {vi|i ∈ T ∩ P}
in order to deceive P \ T . That is, the players in T (cheaters) try to find a set of false shares
v∗

T = {v∗i |i ∈ T∩P} such that a false value v∗ 6= v is evaluated from the shares v∗
T ∪{vi|i ∈ P \T}.

In this case, we say that the players in P \ T are cheated by the false shares v∗
T . We measure

the unconditional robustness by the probability of cheating.
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Definition 8. (Probability of cheating) Let T be an n-player access structure and U an n-player
adversary structure. Let T ∈ T̂ and P ∈ Û with P ∩ T 6= ∅. The probability that the players in
T (cheaters) deceives the players P \ T (honest players), denoted by PC(P, T ), is defined as

EvT ,v(max
v∗

T

Pr(P \ T are cheated by v∗
T | T have vT , the output is v)).

Definition 9. (Robust non-interactive polynomial-evaluation) Let n be a positive integer, U ⊆
2[n] an n-player access structure, T ⊆ 2[n] an n-player adversary structure, and ε a positive
real number. A U-participating NI-PE scheme with T -private inputs is said to be ε-robust if
PC(P, T ) ≤ ε for any P ∈ U and any T ∈ T . An NI-PE scheme is said to be perfectly robust if
ε = 0.

3 Necessary Condition for Perfectly Robust NI-PE Schemes

We characterize perfectly robust NI-PE schemes with small communication complexity.

Theorem 2. Let d be a positive integer larger than one (i.e., d > 1). Let n,m be positive
integers. For an n-player access structure U and an n-player adversary structure T , there exists
a U-participating NI-PE scheme for m-variate polynomials with T -private inputs such that

1. perfectly robust (i.e., ε = 0),
2. any polynomial of degree d can be evaluated,
3. the total size of shares of the output for some participating set is o(m) × log |F| (i.e.,

minP∈U |P | × log |V| = o(m) × log |F|),

only if T is of type Qd+1 for U .

To make the requirement for the perfect robustness clear, we also show a characterization of an
NI-PE schemes for which the robustness is not required. From the following theorem, we can
see that the requirement for the perfect robustness is a stronger restriction on T .

Theorem 3. Let d be a positive integer larger than one (i.e., d > 1). Let n,m be positive
integers. For an n-player access structure U and an n-player adversary structure T , there exists
a U-participating NI-PE scheme for m-variate polynomials with T -private inputs such that

1. any polynomial of degree d can be evaluated,
2. the total size of shares of the output for some participating set is o(m) × log |F| (i.e.,

minP∈U |P | × log |V| = o(m) × log |F|),

only if T is of type Qd for U .

The proof is essentially the same as that for the “only-if” part of Theorem 1 and omitted in this
paper.

Our main result is the impossibility result for the simplest case, which is used for proving
Theorem 2.

Lemma 2. Let u be a positive integer larger than two (i.e., u > 2). Let m be a positive integer.
There is no u-player u-participating NI-PE scheme for m-variate polynomials with 1-private
inputs that satisfies the following three conditions:
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1. perfectly robust (i.e., ε = 0),
2. any polynomial of degree u − 1 can be evaluated,
3. the total size of shares of the output for u players is o(m) × log |F| (i.e., u × log |V| =

o(m) × log |F|).

In this case, the requirement for the perfect robustness is a smaller degree of polynomials (in [1],
the impossibility for the degree u is proved).
Proof for Lemma 2. The basic idea is almost the same as that for the impossibility result on
d-multiplicative secret sharing in [1]. The proof in [1] shows a method for u servers, holding a
vector y of N field elements, to use any NI-PE scheme for degree-d polynomials (which can be
constructed from a d-multiplicative secret sharing scheme) in order to communicate y to a client
by sending him less than N field elements altogether. In this method, N is set to mCd and y is
encoded by a degree d polynomial. Every server sends mPu−1 field elements, each of which is an
additive sharing of the outputs (i.e., V = F). Thus, the total number of field elements sent to the
client is u × mPu−1. If d = u, then the existence of an NI-PE scheme implies the contradiction
that u×O(mu−1) field elements are enough to communicate N = O(mu) field elements. However,
in the case d = u − 1, there is no contradiction. So, we need a slight modification to show the
impossibility for degree u − 1. In our modified method, one server does not need to send any
data while each of the other servers sends mPu−2 shares of the outputs. The total amount of
sent data is (u − 1) × mPu−2 × log |V| = o(mu−1) × log |F|. For every inputs to be evaluated,
one share of the output can be false. From the perfect robustness, the client can evaluate each
output and reconstruct y. Thus, even d = u − 1 yields the desired contradiction.

To make the key point of our modification clear, we present the proof for the case u = 3.
Suppose that there is a 3-player 3-participating NI-PE scheme for m-variate polynomials with
1-private inputs that satisfies the following three conditions:

1. perfectly robust, i.e., ε = 0,
2. any polynomial of degree two can be evaluated,
3. the total size of shares of the output for three players is o(m) × log |F| (i.e., 3 log |V| =

o(m) × log |F|).

Let N = mC2 = O(m2). Let I = {u1, . . . , uN} be the set of all distinct length-m vectors
over F which contain the value 1 in two positions and the value 0 elsewhere. Let h′

j and h′′
j

indicate the coordinates in which uj is equal to 1. Define an m-variate degree two polynomial
p ∈ F[x1, . . . , xm] which encodes y so that p(uj) = yj by

p(x1, . . . , xm) =
N∑

j=1

yj · xh′
j
· xh′′

j
.

From the above condition 2, the polynomial p can be evaluated on input vectors in I.
Let (s(0)

1 , s
(0)
2 , s

(0)
3 ) = SHARE(0, r) for some r ∈ D (i.e., a valid secret sharing of the secret

0). Since SHARE is 1-private, there must exist two shares s′2, s
′
3 ∈ S such that (s(0)

1 , s′2, s
′
3) =

SHARE(1, r′) for some choice r′ ∈ D (i.e., a valid secret sharing of 1). Similarly, there must exist
two shares s′′1, s

′′
3 ∈ S such that (s′′1, s

(0)
2 , s′′3) = SHARE(1, r′′) for some choice r′′ ∈ D.

Let Q1 ⊂ Sm be the set of all length-m vectors q1 that contain m− 1 entries with the value
s
(0)
1 and one entry with the value s′′1. Similarly, let Q2 ⊂ Sm be the set of all length-m vectors q2
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that contain m − 1 entries with the value s
(0)
2 and one entry with the value s′2. The cardinality

of Qi with i ∈ {1, 2} is m. In contrast, let Q3 ⊂ Sm be the set of all length-m vectors q3 that
contain m − 2 entries with the value s

(0)
3 , one entry that equals s′3, and one that equals to s′′3.

The cardinality of Q3 is m(m − 1). This difference of cardinality is the key point of our proof.

We can easily see that for any vector uj ∈ I with j ∈ [N ], there are qi,j ∈ Qi with i ∈ {1, 2, 3}
which are valid coordinate-wise sharing of uj . Let q1,j ∈ Q1 be the vector in which the h′′

j -th

entry is s′′1 (and all other entries are s
(0)
1 ). Let q2,j ∈ Q2 be the vector in which the h′

j-th entry

is s′2 (and all other entries are s
(0)
2 ). On the other hand, let q3,j ∈ Q3 be the vector in which

the h′
j-th entry is s′3 and the h′′

j -th entry is s′′3 (and all other m − 2 entries are s
(0)
3 ). Taking

the h′
j-th entry and the h′′

j -th entry of the three vectors, we get the shares (s(0)
1 , s′2, s

′
3) and

(s′′1, s
(0)
2 , s′′3), respectively, which are both valid secret sharings of 1. In the remaining entries,

on the other hand, we get shares (s(0)
1 , s

(0)
2 , s

(0)
3 ), which is a valid secret sharing of 0. Thus, the

vectors q1,j , q2,j , q3,j form share vectors of uj . Thus, letting vi,j = EVALi([3], qi,j) with i ∈ [3],
it holds that VER([3], {vi,j |i ∈ [3]}}) = p(uj).

To enable the client to reconstruct y, the servers S1 and S2 send him V1 = {EVAL1([3], q1)|q1 ∈
Q1} and V2 = {EVAL2([3], q2)|q2 ∈ Q2}, respectively. However, S3 does not send any data. From
the above condition 3, the total amount of sent data is 2m × log |V| = o(m2) × log |F|.

We show that the client can reconstruct y = (y1, . . . , yN ) from V1 and V2 as follows. For
j ∈ [N ], let v1,j = EVAL1([3], q1,j) ∈ V1 and v2,j = EVAL2([3], q2,j) ∈ V2. To obtain yj = p(uj),
for each element v∗ ∈ V, the client checks whether VER([3], {v1,j , v2,j , v

∗}) = ⊥ or not. From the
above condition 1 (the perfect robustness against one cheater), if VER([3], {v1,j , v2,j , v}) 6= ⊥,
then the value is the output of p on uj , i.e., p(uj).

We conclude that the servers can communicate any y ∈ FN to the client using shares of the
output whose total size is 2m × log |V| = o(m2) × log |F|. Since N = O(m2), this is impossible
for large m. Therefore, the initial assumption must be false.

For the case u > 3, N = mCu−1, I is the set of all distinct length-m vectors containing the
value 1 in u−1 positions and the value 0 elsewhere, and y is encoded to a polynomial p of degree
u− 1. In this case, the total size of shares of the outputs sent by the servers S1, . . . , Su−1 to the
client is mPu−2 × (u − 1) × log |V| = o(mu−1) × log |F|, and since N = O(mu−1), this yields the
contradiction. ut

We prove Theorem 2 by reduction. The reduction is essentially the same as the “only-if”
part in Theorem 1.

Proof for the “only-if” part of Theorem 2. If T is not of type Qd+1 for U , then there is a set
P ∈ U which can be partitioned into d + 1 disjoint subsets T1, . . . , Td+1 ∈ T . Let u = d + 1 > 2.
We can construct an u-player u-participating NI-PE scheme for m-variate polynomials with 1-
private inputs where each player Pi with i ∈ [u] in the new scheme gets and generates the data
of all players in Ti. This is in contradiction to Lemma 2. ut
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4 Constructions of Perfectly Robust Schemes

4.1 Construction against Threshold Adversary

We show that if we focus ourselves on threshold adversary, we can construct a very simple n-
player u-participating NI-PE scheme for any m-variate polynomial with t-private inputs which
satisfies the following properties:

1. perfectly robust (i.e., ε = 0),
2. any polynomial of degree d can be evaluated,
3. V = F and the total size of shares of the output for u players is u × log |F|,

if u > (d + 1)t (i.e., T is of type Qd+1 for U).
The complete description of the scheme is as follows. The sharing function is identical to

Shamir’s t-out-of-n threshold scheme. That is, shares (s(j)
1 , . . . , s

(j)
n ) = SHARE(s(j), (r(j)

1 , . . . , r
(j)
t ))

are computed by s
(j)
i = f (j)(i) where f (j)(x) ∈ F[x] is defined by f (j)(x) = s(j) +

∑t
`=1 r(j) · x`.

It is obvious that the scheme is t-private.
Let p ∈ F[x1, . . . , xm] be any m-variate degree d polynomial, and P ∈ U be any subset of

players satisfying |P | > (d + 1)t. Then, on input P ∈ U and si = (s(1)
i , . . . , s

(m)
i ), the evaluating

function EVALi computes vi = EVALi(P, si) = L(P, i) · p(s(1)
i , . . . , s

(m)
i ) where L(P, i) is defined

by L(p, i) =
∏

`∈P\{i}
−`
i−` . That is, V = F.

Now, we show that the scheme is u-participating for any m-variate degree d polynomial
(i.e.,

∑
i∈P EVALi(P, i) = p(s(1), . . . , s(m)) holds). Let p̂[x] be a polynomial defined by p̂(x) =

p(f (1)(x), . . . , f (m)(x)). Since deg(p) = d and deg(f (j)) ≤ t hold, the degree of p̂ satisfies
deg(p̂) ≤ d · t. Therefore, d · t+1 or more points on p̂ uniquely determine p̂ using Lagrange inter-
polation. Furthermore, we can easily check that (i, vi/L(P, i)) is a points on p̂ since vi/L(P, i) =
p(f (1)(i), . . . , f (m)(i)) = p̂(i) holds. Applying Lagrange interpolation to |P |(> d · t + 1) points
{(i, vi/L(P, i)) | i ∈ P}, we can reconstruct p̂(x) as follows:

p̂(x) =
∑
i∈P

vi

L(P, i)

∏
`∈P\{i}

x − `

i − `
. (2)

Since p̂(0) = p(f (1)(0), . . . , f (m)(0)) = p(s(1), . . . , s(m)) holds, we have the following equation:

p̂(0) =
∑
i∈P

vi

L(P, i)

∏
`∈P\{i}

0 − `

i − `
=

∑
i∈P

vi

L(P, i)
· L(P, i)

=
∑
i∈P

vi =
∑
i∈P

EVALi(P, i) = p(s(1), . . . , s(m)) .

Now, we show that the scheme is perfectly robust (i.e., ε = 0). On input P ∈ U and {vi | i ∈ P},
we define verification function VER of the proposed scheme as follows:

1. Compute p̂(x) according to eq. (2).
2. Output

∑
i∈P EVAL(P, si) if deg(p̂) ≤ d · t holds. Otherwise, output ⊥.

It is easy to see that if there is no cheater, deg(p̂) ≤ d · t holds with probability 1. Now we show
that deg(p̂) > d · t holds with probability 1 if there is a player Pi submitting forged v∗i . Without
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loss of generality, we can assume P1, . . . , Pt are cheaters who submit (possibly) forged shares
v∗i = vi + δi (where at least one δi is non-zero) and try to fool honest players Pt+1, . . . , Pu. Now
we evaluate deg(p̂′) reconstructed from (possibly) forged v∗1, . . . , v

∗
t and unforged vt+1, . . . , vu.

Here, p̂′(x) reconstructed from v∗1, . . . , v
∗
t+1 and vt+1, . . . , vu can be expressed by p̂′(x) = p̂(x) +

p̂′′(x) where p̂(x) is a polynomial of degree at most d · t reconstructed from (1, v1), . . . , (u, vu)
and p̂′′(x) is a polynomial reconstructed from (1, δ1/L(P, 1)), . . . , (t, δt/L(P, t)), (t + 1, 0), (t +
2, 0), . . . , (u, 0). Since there are at least u − t zeros in p′′(x) and p′′(x) cannot be the constant
function p′′(x) = 0, we see that deg(p′′) ≥ u− t (> (d + 1)t − t = d · t) holds with probability 1,
which shows the perfect robustness (i.e., ε = 0) of the scheme.

4.2 Construction against General Adversary

We show two constructions of a perfectly robust NI-PE schemes against general adversary with
type Qd+1 structure: one is generic and the other is based on the CNF secret sharing scheme
in [7]. In both schemes, for any set P ∈ U , the total size of shares of the output is |P |×|T̂ |×log |F|.

The generic construction is as follows. For an n-player adversary structure T which is of
type Qd+1 for U , let U ′

T = {P \ T |P ∈ U} for T ∈ T . We use U ′
T -participating NI-PE schemes

for m-variate degree d polynomials with T -private inputs. The existence of such schemes follows
from Corollary 1 because T is of type Qd for any U ′

T . The sharing function in the new scheme
is identical to that in the based scheme. When the players in a set P ∈ U evaluate an m-variate
degree d polynomial p, for each T ∈ T , the players in P \T executes the U ′

T -participating NI-PE
scheme. For some T ∈ T , the players in P ′ = P \ T are all honest and then the evaluated value
is correct. Thus, if all evaluated values are the same, each player in P outputs the evaluated
value, and otherwise outputs “⊥.”

To show the concrete construction, we recall the CNF secret sharing scheme in [7].

Definition 10. (CNF secret sharing) Let T be an n-player adversary structure. The T -private
CNF secret sharing scheme is defined by the following sharing algorithm. The dealer first addi-
tively breaks s into |T̂ | additive parts rT with T ∈ T̂ . The share of player Pi consists of all parts
rT such that i 6∈ T . That is, the parts rT are chosen randomly from F subject to the restriction∑

T∈T̂ rT = s.

The concrete construction based on the CNF scheme is essentially the same as the generic
construction. The sharing function of the proposed scheme is identical to the CNF scheme.
Writing the k-th term s(1) · · · s(d) of an m-variate degree d polynomial p as the sum of the |T̂ |d

monomials of the form r
(1)
Tk,1

· · · r(d)
Tk,d

, for any P ∈ U and any T ∈ T , the monomials can be
partitioned into |P \ T | sets XP,T,k,i with i ∈ P \ T where all monomials in XP,T,k,i are known
to Pi. This follows from the fact that every monomial as above can be assigned to a set XP,T,k,i

such that i 6∈ T ∪ Tk,1 ∪ · · · ∪ Tk,d because T is of type Qd+1 for U . Then, letting p̂P,T,i ∈ F
denote the sum of all monomials in

∪
k XP,T,k,i, the output of p is given by

∑
i∈P\T p̂P,T,i. Thus,

letting EVALi(P, ·) consist of p̂P,T,i with T ∈ T , VER(P, ·) can detect the existence of cheating
by checking the consistency of the evaluated values

∑
i∈P\T p̂P,T,i for T ∈ T . That is, the scheme

is perfectly robust (i.e., ε = 0).
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5 Generic Constructions of 1/|F|-Robust Schemes

In this section, we give two efficient constructions of robust NI-PE schemes against general
adversary with type Qd+1 structure with ε = 1/|F|. The sizes of share |V| of both schemes
are as small as three field elements and are greatly reduced compared to the perfectly robust
schemes against general adversary presented in the previous section. The proposed schemes are
constructed based on the robust secret sharing scheme by Cabello, Padró and Sáez [4].

5.1 Construction for Any Degree d Polynomials

We show that by relaxing the robustness requirement so that ε > 0 and using (U , d + 1)-
multiplicative T -private secret sharing scheme SHARE′, for any U and T , we can construct
an efficient U -participating NI-PE scheme for any m-variate polynomial with T -private inputs
which satisfies the following properties:

1. ε = 1/|F|,
2. any polynomial of degree d can be evaluated,
3. V = F3 and the total size of shares of the output for a participating set P is 3×|P |× log |F|,

if T is of type Qd+1 for U .
In the proposed scheme, one field element is additionally shared for each evaluation, indepen-

dently of sharing secrets (but for the simplicity of description, we share the additional element
when sharing a secret).

The overview of the scheme is as follows. To share a secret s(j) ∈ F, the dealer randomly
chooses r

(j)
1 , r

(j)
2 ∈ D and e(j) ∈ F, and computes SHARE′(s(j), r

(j)
1 ) = (s(j)

1 , . . . , s
(j)
n ) and

SHARE′(e(j), r
(j)
2 ) = (e(j)

1 , . . . , e
(j)
n ). The share of s(j) for each party Pi is (s(j)

i , e
(j)
i ). In the

evaluation and verification phase by P ∈ U , for any m-variate degree d polynomial p and shared
secrets s = (s(1), . . . , s(m)), they compute the values of v = p(s), ve = e(i) for some unused e(i),
and va = e(i) · p(s) by using the NI-PE scheme in Definition 6. The latter two values can be
considered as the outputs of polynomials pe = xe and pa = xe · p in F[x1, . . . , xm, xe], whose
degree are 1 and d + 1, respectively. Thus, from Lemma 1, we can see that the three values can
be evaluated from the (U , d+1)-multiplicative property. If v · ve = va, they take v as the correct
value of the output, and otherwise, they are warned about the existence of cheaters.

Formally, we define the sharing function by SHARE(s, e, r1, r2) = ((s1, e1), . . . , (sn, en)) ∈ S2n

where (s1, . . . , sn) = SHARE′(s, r1) and (e1, . . . , en) = SHARE′(e, r2). Let pi, pe,i, pa,i be the
functions defined in eq. (1) for p, pe, pa, respectively. Each evaluating function EVALi is defined
by EVALi(P, si) = (pi(P, si), pe,i(P, si), pa,i(P, si)) ∈ F3 where si = ((s(1)

i , e
(1)
i ), . . . , (s(m)

i , e
(m)
i )).

On input P and vi = EVALi(P, si) with i ∈ P , VER outputs
∑

i∈P pi(P, si) if
∑

i∈P pi(P, si) ×∑
i∈P pe,i(P, si) =

∑
i∈P pa,i(P, si) holds, and otherwise ⊥.

We remark that the (U , d+1)-multiplication property imposes no linearity requirement on the
sharing function SHARE′ itself while the resulting NI-PE scheme in Definition 6 has some type
of linearity on the output. For example, given shares of e(i), the players can compute additive
shares of e(i) by evaluating it as the output of polynomial pe = xe. Based on this linearity, we
prove 1/|F|-robustness of the proposed NI-PE scheme.

Theorem 4. Let d be a positive integer larger than one (i.e., d > 1). For any positive integers
n,m, an n-player access structure U and an n-player adversary structure T such that T is of type
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Qd+1 for U , the proposed NI-PE scheme is 1/|F|-robust for any m-variate degree d polynomial
if SHARE′ is (U , d + 1)-multiplicative (there exists MULT defined in Definition 5).

Proof. From Lemma 1, it is obvious that if v∗
T = vT , then the scheme enables the players in

P ∈ U to compute the correct value of the output. In the following, we prove that the scheme
is 1/|F|-robust, i.e., PC(P, T ) is equal to ε = 1/|F| for any P ∈ U and T ∈ T . The cheaters
in T know the value of v = p(s) but they do not know the values of e(i)(= ve) from the T -
privacy of SHARE′. For any (α1, α2, α3) ∈ F3, the cheaters in T can compute forged shares v∗

T

so that in the evaluation phase, (v∗, v∗e , v
∗
a) is computed, where v∗ = v + α1, v

∗
e = ve + α2, v

∗
a =

va + α3. They deceive the other honest players without detection if and only if α1 6= 0 and
v∗ × v∗e = v∗a, i.e., vα2 + veα1 = α3. For every choice of (α1, α2, α3) with α1 6= 0, there is unique
ve = e(i) satisfying the above equation. Thus, for any forged shares v∗

T used by the cheaters in
T , Pr(P \T is cheated by v∗

T |T have vT , the output is v) = 1/|F|. Then, PC(P, T ) = 1/|F|. ut

5.2 Construction for a Subclass of Degree d + 1 Polynomials

We also show that for any U and T , we can construct an efficient U-participating NI-PE scheme
for any m-variate polynomial with T -private inputs which satisfies the following properties:

1. ε = 1/|F|,
2. any polynomial of degree d + 1 that is represented by xi · p̂1 + p̂2 for some variable xi and

m-variate degree (at most) d polynomials can be evaluated,
3. V = F3 and the total size of shares of the output for a participating set P is 3×|P |× log |F|,

if T is of type Qd+1 for U .
The scheme uses a (U , d + 1)-multiplicative secret sharing scheme SHARE′ and shares two

additional field elements for each secret where the additional data is one-time use.
The overview of the scheme is as follows. To share a secret s(j) ∈ F, the dealer randomly

chooses r
(j)
1 , r

(j)
2 , r

(j)
3 ∈ D and e(j) ∈ F and computes SHARE′(s(j), r

(j)
1 ) = (s(j)

1 , . . . , s
(j)
n ),

SHARE′(e(j), r
(j)
2 ) = (e(j)

1 , . . . , e
(j)
n ), and SHARE′(a(j), r

(j)
3 ) = (a(j)

1 , . . . , a
(j)
n ) with a(j) = s(j) ·e(j).

The share of s(j) for each player Pi is (s(j)
i , e

(j)
i , a

(j)
i ). In the evaluation and verification phase,

for a given polynomial p represented as above and shared secrets s = (s(1), . . . , s(m)), the players
in P ∈ U compute the values of v = p(s), ve = e(i), and va = a(i) · p̂1(s) + e(i) · p̂2(s) by using
the NI-PE scheme in Definition 6. The latter two values can be considered as the outputs of
polynomials pe = xe, pa = xa · p̂1 + xe · p̂2 ∈ F[x1, . . . , xm, xe, xa], whose degree are 1 and d + 1,
respectively. Thus, from Lemma 1, we can see that the three values can be evaluated from the
(U , d + 1)-multiplicative property. If v · ve = va, they take v as the correct value of the output,
and otherwise, they are warned about the existence of cheaters.

We can define (SHARE, {EVALi}i∈[n], VER) and prove the robustness in the same way as the
construction for any degree d polynomials. Thus, the details and the proof are omitted here.

Theorem 5. Let d be a positive integer larger than one (i.e., d > 1). For any positive integers
n,m, an n-player access structure U and an n-player adversary structure T such that T is of
type Qd+1 for U , there is a 1/|F|-robust U-participating NI-PE scheme for the class of m-variate
degree d + 1 polynomials that are represented as above.
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6 Conclusion

In this paper, we have considered both theoretical and practical aspects of robust NI-PE. First,
we have given a necessary condition of adversary structures for which perfectly robust NI-PE
with small communication complexity exists. Second, we have given constructions of perfectly
robust NI-PE schemes against threshold adversary and general adversary, respectively. All the
proposed schemes ensure perfect robustness against Qd+1 adversary, and computability of arbi-
trary polynomial of degree d. We have also given two practical robust NI-PE schemes against
general adversary with ε = 1/|F|. We can confirm that these practical schemes dramatically re-
duce the communication complexity compared to that of perfectly robust NI-PE schemes against
general adversary.

To find a necessary and sufficient condition of adversary structures for perfectly robust NI-PE
scheme and efficient construction of perfectly robust NI-PE scheme against general adversary
remains open problems.
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A Characterization of (U , d)-MSS

A.1 Proof for the “Only-if” part of Theorem 1

First, we show the impossibility result for the simplest case.

Lemma 3. Let u be a positive integer larger than one (i.e., u > 1). There is no u-player u-
participating u-multiplicative secret sharing scheme that is 1-private.
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Proof for Lemma 3. Let N be a sufficiently large integer such that N = mCu for some positive
integer m. The proof shows a method for u servers, holding a vector y of N field elements, to
use any a u-participating u-multiplicative secret sharing scheme in order to communicate y to
a client by sending him less than N field elements altogether. In this method, y is encoded by
a degree u polynomial. Every server sends mPu−1 field elements, each of which is an additive
sharing of the outputs (i.e., an element of F). Thus, the total number of field elements sent to
the client is u×mPu−1. The existence of the multiplicative scheme implies the contradiction that
u × O(mu−1) field elements are enough to communicate N = O(mu) field elements, yielding a
contradiction.

To make the key point of the proof clear, we present the proof for the case u = 2. Suppose
that there is a 2-player 2-participating 2-multiplicative secret sharing scheme SHARE that is
1-private.

Let N = mC2. Let I = {u1, . . . , uN} be the set of all distinct length-m vectors over F
which contain the value 1 in two positions and the value 0 elsewhere. Let h′

j and h′′
j indicate

the coordinates in which uj is equal to 1. Define an m-variate degree two polynomial p ∈
F[x1, . . . , xm] which encodes y so that p(uj) = yj by

p(x1, . . . , xm) =
N∑

j=1

yj · xh′
j
· xh′′

j
.

From Lemma 1, the polynomial p can be evaluated on input vectors in I.
Let (s(0)

1 , s
(0)
2 ) = SHARE(0, r) for some r ∈ D (i.e., a valid secret sharing of the secret 0).

Since SHARE is 1-private, there must exist a share s′2 ∈ S such that (s(0)
1 , s′2) = SHARE(1, r′) for

some choice r′ ∈ D (i.e., a valid secret sharing of 1). Similarly, there must exist a share s′′1, s
′′
3 ∈ S

such that (s′′1, s
(0)
2 ) = SHARE(1, r′′) for some choice r′′ ∈ D.

Let Q1 ⊂ Sm be the set of all length-m vectors q1 that contain m− 1 entries with the value
s
(0)
1 and one entry with the value s′′1. Similarly, let Q2 ⊂ Sm be the set of all length-m vectors q2

that contain m − 1 entries with the value s
(0)
2 and one entry with the value s′2. The cardinality

of Qi with i ∈ {1, 2} is m.
We can easily see that for any vector uj ∈ I with j ∈ [N ], there are qi,j ∈ Qi with i ∈ {1, 2}

which are valid coordinate-wise sharing of uj . Let q1,j ∈ Q1 be the vector in which the h′′
j -th

entry is s′′1 (and all other entries are s
(0)
1 ). Let q2,j ∈ Q2 be the vector in which the h′

j-th entry is

s′2 (and all other entries are s
(0)
2 ). Taking the h′

j-th entry and the h′′
j -th entry of the three vectors,

we get the shares (s(0)
1 , s′2) and (s′′1, s

(0)
2 ), respectively, which are both valid secret sharings of

1. In the remaining entries, on the other hand, the shares are (s(0)
1 , s

(0)
2 ), that is, a valid secret

sharing of 0. Thus, the vectors q1,j , q2,j form share vectors of uj . Thus, letting vi,j = pi([2], qi,j)
with i ∈ [2], it holds that

∑
i∈[2] vi,j = p(uj).

To enable the client to reconstruct y, the servers S1 and S2 send him V1 = {p1([2], q1)|q1 ∈
Q1} and V2 = {p2([3], q2)|q2 ∈ Q2}, respectively. Since each share of the output is an element
in F, the total amount of sent data is 2m × log |F|.

As described in the above, the client can reconstruct y = (y1, . . . , yN ) from V1 and V2. Thus,
we can conclude that the servers can communicate any y ∈ FN to the client using shares of the
output whose total size is 2m × log |F|. Since N = m(m − 1)/2, this is impossible for m > 5.
Therefore, the initial assumption must be false.
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For the case u > 2, N = mCu, I is the set of all distinct length-m vectors containing the
value 1 in u positions and the value 0 elsewhere, and y is encoded to a polynomial p of degree
u. In this case, the total size of shares of the outputs sent by the servers S1, . . . , Su to the client
is mPu−1×u× log |V| = o(mu)× log |F|, and since N = O(mu), this yields the contradiction. ut

We prove the “only-if” part by reduction.
Proof for the “only-if” part of Theorem 1. If T is not of type Qd for U , then there is a set P ∈ U
which can be partitioned into d disjoint subsets T1, . . . , Td ∈ T . We can construct an d-player
d-participating d-multiplicative scheme that is 1-private where each player Pi with i ∈ [d] in the
new scheme gets the shares of all players in Ti. This is in contradiction to the above lemma. ut

A.2 Proof for the “If” part of Theorem 1

We show that for any n-player adversary structure T and access structure U such that T is of
type Qd for U , the T -private CNF scheme is (U , d)-multiplicative. For j with 1 ≤ j ≤ d, let rj

T

with T ∈ T denote the additive parts of secret s(j). Writing the product s(1) · · · s(d) as the sum
of the |T̂ |d monomials of the form r

(1)
T1

· · · r(d)
Td

, for any P ∈ U , the monomials can be partitioned
into |P | sets XP,i with i ∈ P where all monomials in XP,i are known to Pi. This follows from
the fact that every monomial as above can be assigned to a set XP,i such that i 6∈ T1 ∪ · · · ∪ Td

because T is of type Qd for U . Then, letting MULT(P, i, ·) output the sum of all monomials in
XP,i, the (U , d)-multiplicative property follows.
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