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Abstract. Password-Authenticated Key Exchange (PAKE) has received deep attention in the last few years, with a recent strong
improvement by Katz-Vaikuntanathan, and their one-round protocol: the two players just have to send simultaneous flows to
each other, that depend on their own passwords only, to agree on a shared high entropy secret key. We follow their work with a
further study of their new Smooth-Projective Hash Function framework, and namely we introduce new efficient instantiations on
IND-CCA ciphertexts. It allows us to design the most efficient PAKE known so far: a one-round PAKE with two simultaneous
flows consisting of 6 group elements each only, in any DDH-group. Our scheme resists off-line dictionary attacks in the Bellare-
Pointcheval-Rogaway model, under the DDH assumption with a CRS.
We thereafter show how our new instantiations can prove more complex equations. We then apply them to propose quite efficient
instantiations in the standard model of the more general family of protocols, termed Langage-Authenticated Key Exchange
(LAKE) by Blazy-Chevalier-Pointcheval-Vergnaud. They include quite concrete key exchange protocols, such as PAKE, Verifier-
based PAKE and Secret Handshakes. In Verifier-based PAKE, the server knows a transformation of the password only, which
limits impact of the corruption of the server, since exhaustive search would still have to be performed to recover the actual
passwords. In Secret Handshakes, two members of the same group want to identify each other secretly, in the sense that each
party reveals his affiliation to the other only if they are members of the same group. Outsiders do not learn anything about the
outcome of the protocol.
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1 Introduction

Authenticated Key Exchange protocols are quite important primitives in practice, since they enable two parties to
generate a shared high entropy secret key, to be later used with symmetric primitives to protect communications, while
interacting over an insecure network, under the control of the adversary.

Various means have been proposed to allow the two parties to authenticate to each other, and the most practical one
is definitely a shared low entropy secret, or a so-called password they can agree on over the phone. The most famous
instantiation has been proposed by Bellovin and Merritt [BM92], EKE for Encrypted Key Exchange, which simply
consists in a Diffie-Hellman key exchange [DH76], where the flows are symmetrically encrypted under the shared
password. After the proposal of a formal security model (BPR) [BPR00], several proofs and variants of EKE have
been proposed in the ideal-cipher model or the random-oracle model. Katz, Ostrovsky and Yung [KOY01] proposed
the first practical scheme (KOY), provably secure in the standard model. It has been generalized by Gennaro and
Lindell [GL03], making use of smooth projective hash functions.

Smooth Projective Hash Functions (SPHF) have been introduced by Cramer and Shoup [CS02] in order to build
IND-CCA encryption schemes [CS98]. They can be seen as a kind of designated-verifier proofs of membership. The
notion of SPHF has thereafter been extended to a more general context, by Gennaro and Lindell [GL03], in order
to build Password-Authenticated Key Exchange (PAKE) protocols, secure against dictionary attacks, in the same vein
as the KOY protocol [KOY01], in the CRS framework. This approach has thereafter been applied to the Universal
Composability (UC) framework by Canetti, Halevi, Katz, Lindell and MacKenzie [CHK+05], and improved by Ab-
dalla, Chevalier and Pointcheval [ACP09] to resist adaptive corruptions. SPHF have thus been shown to have quite rich
applications, and namely to conditioned or authenticated actions [BPV12, BCPV12].
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More recently, the ultimate step for PAKE has been achieved by Katz-Vaikuntanathan [KV11], who propose a
practical one-round PAKE, where the two players just have to send simultaneous flows to each other, that depend on
their own password only. Because of the simultaneous flows, one flow cannot depend on the other one, which makes
impossible the use of standard SPHF. This led Katz-Vaikuntanathan to provide a new definition for SPHF, where the
projection key depends on the hashing key only, and the smoothness holds even if the word is chosen after having seen
the projection key (more details follow). The construction in the BPR model is quite efficient, since it just consists
in sending an IND-CCA ciphertext of the password and a SPHF projection key, for the correctness of the partner’s
ciphertext, in each direction. The shared secret key is eventually the product of the two hash values. The instantiation
proven under the DLin assumption uses a ciphertext consisting of 66 group elements and a projection key consisting
of 4 group elements. As a consequence, after having sent 70 group elements each, the two players agree on a shared
high-entropy secret. In [LY12], Libert and Yung proposed a new technique for threshold encryption scheme that can
be applied to have a more efficient simulation-sound proof of plaintext equality in the Naor-Yung-type cryptosystem
in [KV11]: the proof can be reduced from 60 to 22 group elements and the communication complexity of the resulting
PAKE is decreased to 32 group elements per users. Jutla-Roy [JR12] proposed a new publicly-verifiable IND-CCA
encryption to achieve a better efficiency in their protocol.

1.1 Our Results

We revisit the different definitions for SPHF proposed in [CS02, GL03, KV11], denoted respectively CS−SPHF,
GL−SPHF and KV−SPHF. We propose several new instantiations, which are significatively more efficient. Our first
instantiation on a Cramer-Shoup ciphertext leads to the most efficient PAKE in the BPR security model, based on the
sole DDH assumption: it relies on the above Katz-Vaikuntanathan [KV11] framework, but without any simulation-
sound NIZK to build an IND-CCA ciphertext, since we can directly use the Cramer-Shoup encryption scheme [CS98]
and not the Naor-Yung paradigm [NY90]. Our scheme just consists of 6 group elements in each direction under the
DDH assumption (4 elements for the Cramer-Shoup ciphertext, and 2 for the projection key). A DLin variant also
exists and consists of 9 group elements in each direction (5 elements for the Linear Cramer-Shoup ciphertext, and 4
for the projection key) also without any pairing requirement, to be compared with the 70 group elements for Katz-
Vaikuntanathan [KV11] and the 20 group elements for Jutla-Roy’s improvement [JR12] which both need pairings.

We extend this technique to handle Multi-Exponentiations Equations with variables in G without any pairing re-
quirements to be at least as general as the Groth-Sahai methodology [GS08]. We thereafter show (in the Appendix) how
SPHF can be used to handle more general pairing product equations than those from Groth-Sahai. We can then apply
them to the Language-Authenticated Key-Exchange (LAKE) protocols introduced in [BCPV12], which are extensions
of Credential-Authenticated Key-Exchange (CAKE) [CCGS10].

1.2 Our Techniques

Our methodology uses SPHF, as initially proposed by Cramer-Shoup (CS−SPHF) [CS02], thereafter extended by
Gennaro-Lindell (GL−SPHF) [GL03] and more recently by Katz-Vaikuntanathan (KV−SPHF) [KV11]. Basically,
SPHF are families of pairs of functions (Hash,ProjHash) defined on a language L. These functions are indexed by a
pair of associated keys (hk, hp), where hk, the hashing key, can be seen as a private key and hp, the projection key, as
the public key. On a word W ∈ L, both functions should lead to the same result: Hash(hk, L,W ) with the hashing key
and ProjHash(hp, L,W,w) with the projection key only but also a witness w that W ∈ L. Of course, if W 6∈ L, this
witness does not exist, and the smoothness property states that Hash(hk, L,W ) is independent of hp, and thus even
knowing hp, one cannot guess Hash(hk, L,W ). Variations between CS−SPHF, GL−SPHF and KV−SPHF rely in
the way one computes hp from hk and possibly W , but also on the smoothness property, according to the freedom the
adversary has to choose W (before or after having seen hp).

The strongest definition is the recent KV−SPHF [KV11], where hp depends on hk only, and the smoothness should
hold even if the adversary can choose W after having seen hp. Thereafter, Katz-Vaikuntanathan [KV11] wanted to
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build such KV−SPHF on the language of the valid ciphertexts of a given message m, under an IND-CCA encryption
scheme. Previous SPHF known for Cramer-Shoup ciphertexts were GL−SPHF only, because the projection key hp
had to be computed for a specific word W only, and thus depended on both hk and W . Katz-Vaikuntanathan thus
had to use another IND-CCA encryption scheme. For this reason, they applied the Naor-Yung methodology [NY90]
on the ElGamal [ElG85] or the Linear encryption [BBS04], with a simulation-sound non-interactive zero-knowledge
proof [GS08].

In this paper, we show how to build KV−SPHF on Cramer-Shoup [CS98] and Linear Cramer-Shoup [Sha07]
ciphertexts, which lead to much more efficient schemes.

1.3 Language Definition

We then consider more complex languages than simple ciphertexts of a known message: we extend our SPHF to
ciphertexts of messages that satisfy a specific relation. We use the more general formalism defined in [BCPV12]: for
any efficiently computable binary relation R : {0, 1}∗ × P × S → {0, 1}, where the parameters pub ∈ {0, 1}∗ and
priv ∈ P define the language L(pub, priv) ⊆ S of the words W such thatR((pub, priv),W ) = 1, and thus, which can
be efficiently checked. More precisely, pub are public parameters, priv are private parameters everybody has in mind,
and W is a word in the language. The values pub and priv can be seen as auxiliaries inputs: aux = (pub, priv). We will
then use the notation Laux for the language of the words W that satisfy a fixed (well-defined) relation with parameters
aux. In the following, the above wordW will be committed to, but never revealed, so we can define companion relation
and language: CR(aux, C, w), where aux contains the auxiliary (public and private) parameters,C is a commitment of a
wordW under the random coins r and w = (r,W ), such that CR(aux, C, w) = 1⇐⇒ R(aux,W ) = 1; and LOFCaux,
the language of the ciphertexts C of plaintextW under random coins r that satisfy CR(aux, C, (r,W )) = 1. The words
in the new language LOFCaux are actually ciphertexts, and the random coins and the plaintext are the witnesses. Our
formalism covers languages on ciphertexts of messages that satisfy P languages only, but it is enough for our purpose.

In [BCPV12], the authors defined the LAKE primitive, specific to two relations. It allows two users, Alice and
Bob, each owning a word in a specific language, to agree on a shared high entropy secret if the other actually knows a
word in the language that one thinks about: they first both agree on the public parameter pub, but Bob will think about
priva for his expected Alice’s value of priva, Alice will do the same with priv b for privb; eventually, if priva = priva
and priv b = privb, and if they both know words in the languages, then the key agreement will succeed. In case of
failure, no information should leak about the reason of failure, except the inputs did not satisfy the relations, or the
languages were not consistent. Thanks to our new KV−SPHF on ciphertexts, we will build efficient LAKE protocols
with provable security in the standard model.

1.4 Outline of the Paper

In Section 2, we give an informal definition of SPHF, with several instantiations on Cramer-Shoup ciphertexts. We then
show our main application: a highly-efficient one-round PAKE. In Section 3, we state more formal definitions of SPHF,
and constructions for more general languages are provided in Section 4. We then apply that to Language-Authenticated
Key Exchange in the standard model, in Section 5. More details can also be found in the Appendix.

2 A new SPHF on Cramer-Shoup Ciphertexts and its Application

In this section, after recalling the Cramer-Shoup commitment scheme, we introduce a new SPHF for Cramer-Shoup
ciphertexts/commitments. We then show one of its applications: a very efficient instantiation of the one-round PAKE
of Katz-Vaikuntanathan [KV11].
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2.1 Cramer-Shoup Commitment Scheme

Commitment Scheme. Commitments allow a user to commit to a value, without revealing it, but without the possibil-
ity to later change his mind. It is composed of three algorithms, defined as follows for the labeled-version: Setup(1K)
generates the system parameters, according to a security parameter K; Commit(`,m; r) produces a commitment c
and the opening information d on the input message m ∈ M using the random coins r, under the label `; while
Decommit(`, c,m, d) checks whether c is a valid commitment of m according to opening information d.

Such a commitment scheme should be both hiding, which says that the commit phase does not leak any information
about m, and binding, which says that the decommit phase should not be able to open to two different messages.
Additional features will be required in the sequel, such as non-malleability and extractability. We also included a label
`, which can be empty or an additional public information that has to be the same in both the commit and the decommit
phases. A labeled commitment that is both non-malleable and extractable can be instantiated by an IND-CCA labeled
encryption scheme [GL03].

Cramer-Shoup Commitment Scheme (CSCom). The CS encryption scheme is recalled in the Appendix A.4. We
thus briefly review the commitment version. The parameters, in the CRS, are a group G of prime order p, with two
independent generators (g1, g2)

$← G2, a hash function HK
$← H from a collision-resistant hash function family onto

Z∗p, and a reversible mapping G from {0, 1}n to G. From 5 scalars (x1, x2, y1, y2, z)
$← Zp5, one also sets c = gx11 g

x2
2 ,

d = gy11 g
y2
2 , and h = gz1 . The public parameters consist of the encryption key ek = (G, g1, g2, c, d, h,HK), while the

trapdoor for extraction is dk = (x1, x2, y1, y2, z). One can define the commitment process on the messagem ∈ {0, 1}n
as the Cramer-Shoup encryption, where M = G(m) ∈ G and ξ = HK(`,u, e) ∈ Z∗p:

C def= CS(`, ek,M ; r) def= (`,u = (gr1, g
r
2), e =M · hr, v = (cdξ)r).

In case one wants to encrypt a vector of messages, encoded as group elements (M1, . . . ,Mn), all at once in a non-
malleable way, one computes, with a common ξ = HK(`,u1, . . . ,un, e1, . . . , en),

C def= CS(`, ek,M1, . . . ,Mn; r)
def= (`, {ui = (gri1 , g

ri
2 ), ei =Mi · hri , vi = (cdξ)ri}i=1,...,n).

This can be seen as the vector of the individual message ciphertexts, with the same label ` and the same ξ value. Hence,
everything done on tuples of ciphertexts will work on ciphertexts of vectors.

2.2 Informal Definitions of SPHF

Let us consider a family of language Laux indexed by aux, as described in Section 1.3. In the main part of this ar-
ticle, elements Laux are always tuples of group elements. We are interested in languages of tuples of ciphertexts
C = (C1, . . . , Cn) whose corresponding plaintexts W = X = (X1, . . . , Xn) are in Laux. More formally, let us
consider the following language family, where `1, . . . , `n are some public labels:

LOFCaux =


∃r1, . . . , rn, X1, . . . , Xn,

C = (C1, . . . , Cn) C1 = Commit(`1, X1; r1), . . . , Cn = Commit(`n, Xn; rn)
and (X1, . . . , Xn) ∈ Laux

 .

A smooth projective hash function (SPHF) system for the language LOFCaux, whatever the exact model, is defined
with five algorithms:

– Setup(1K) generates the system parameters, according to a security parameter K;
– HashKG(aux) generates a hashing key hk for the language LOFCaux;
– ProjKG(hk, aux, C) derives the projection key hp, possibly depending on the word C;
– Hash(hk, aux, C) outputs the hash value from the hashing key;
– ProjHash(hp, aux, C, w) outputs the hash value from the projection key hp, and the witness w, which consists of

the random coins and the plaintexts: w = (r1, . . . , rn, X1, . . . , Xn), that C ∈ LOFCaux.
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The correctness of SPHF assures that if C is in LOFCaux with w a witness of this membership, and thus the plaintext
X = (X1, . . . , Xn) is in the companion language Laux, then the two ways to compute the hash values give the same
result: Hash(hk, aux, C) = ProjHash(hp, aux, C, w). In our setting, these hash values will belong to a group G, denoted
multiplicatively. Informally, the security is defined through the smoothness, which guarantees that if C 6∈ LOFCaux,
the hash value is statistically indistinguishable from a random element, even knowing hp.

In this section, we are interested in the very strong notion of SPHF, defined by Katz-Vaikuntanathan in [KV11]:
while the GL−SPHF definition allowed the projection key hp to depend on the word C, the KV−SPHF definition
limits, as in the original CS−SPHF definition, the projection key hp not to depend on C, and requires, in addition, the
smoothness to hold even if C is chosen as an arbitrary function of hp. This models the fact the adversary can see hp
before deciding which word C he is interested in.

We now exhibit our new SPHF and show its application to the one-round PAKE.

2.3 The GL−SPHF for CSCom

Gennaro-Lindell [GL03] proposed an SPHF on a labeled Cramer-Shoup ciphertext: the hashing key just consists of
a random tuple hk = (η1, η2, λ, µ)

$← Z4
p. The associated projection key, on a ciphertext C = (`,u = (gr1, g

r
2), e =

M · hr, v = (cdξ)r), is hp = gη11 g
η2
2 h

λ(cdξ)µ ∈ G. Then, one can compute the hash value in two different ways, for
the language LOFCm of the valid ciphertexts of m, with M = G(m):

H def= Hash(hk,m,C) def= uη11 u
η2
2 (e/M)λvµ = hpr def= ProjHash(hp,m,C, r) def= H ′.

Since the projection key depends on C, or at least on ξ which can be computed when C is known only, Katz-
Vaikuntanathan [KV11] had to use another IND-CCA encryption scheme to have a KV−SPHF for their PAKE ap-
plication.

2.4 A KV−SPHF for CSCom

Here is the description of our new KV−SPHF for labeled Cramer-Shoup ciphertexts: the hashing key just consists of
a random tuple hk = (η1, η2, θ, λ, µ)

$← Z5
p. The associated projection key is

hp = (hp1 = gη11 g
θ
2h

λcµ, hp2 = gη21 d
µ) ∈ G2.

Then one can compute the hash value in two different ways, for the language LOFCm of the valid ciphertexts of m,
with M = G(m):

H def= Hash(hk,m,C) def= u
(η1+ξη2)
1 uθ2(e/M)λvµ = (hp1hp

ξ
2)
r def= ProjHash(hp,m,C, r) def= H ′.

Let us claim and prove the security properties (formal definitions are given in the next section):

Theorem 1. The above SPHF is a 0-smooth (or perfectly smooth) KV−SPHF.

Proof. Let us suppose C is not a correct encryption of m. Since ξ ∈ Z∗p, there exists (s, t) ∈ Z2
p and M ′ ∈ G such that:

C = (`,u = (gr1, g
s
2), e = hr ·M ′, v = crdξt)

with either M 6= M ′, s 6= r or t 6= r. We want to prove that, in this case, hp gives no information on the value of H .
Let us write g2 = gβ1 , c = gγ1 , d = gδ1 and ∆ = logg1(M

′/M). We have β 6= 0, γ 6= 0 and δ 6= 0. We can remark that:logg1 hp1
logg1 hp2
logg1 H

 =

1 0 β z γ
0 1 0 0 δ
r ξr sβ rz +∆ rγ + ξtδ

 · (η1 η2 θ λ µ
)T

and that H is completely unpredictable given hp (i.e., its distribution is perfectly uniform given hp), if the last line L3

of the matrix is linearly independent from the two first ones L1 and L2. Therefore, because of the two first columns, H
is unpredictable unless the line vector L3 − rL1 − rξL2 = (0, 0, (s − r)β,∆, ξ(t − r)δ) is zero. As a consequence,
unless s = r, ∆ = 0 and t = r, (i.e., C is a valid ciphertext of m), H is unpredictable. ut
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CRS: ek = (G, g1, g2, c, d, h,HK)
Common password: pw

User U User U ′

hk = (η1, η2, θ, λ, µ)
$← Z5

p. hk′ = (η′1, η
′
2, θ
′, λ′, µ′)

$← Z5
p

hp = (hp1 = gη11 gθ2h
λcµ, hp2 = gη21 dµ) hp′ = (hp′1 = g

η′1
1 gθ

′
2 h

λ′
cµ

′
, hp′2 = g

η′2
1 dµ

′
)

` = (U,U ′, hp) `′ = (U ′, U, hp′)

C = (`,u = (gr1 , g
r
2), e = G(pw) · hr, v = (cdξ)r) C′ = (`′,u′ = (gr

′
1 , g

r′
2 ), e′ = G(pw) · hr

′
, v′ = (cdξ

′
)r

′
)

where ξ = HK(`,u, e) where ξ′ = HK(`′,u′, e′)

hp′ ∈ G2, C′ ∈ G4

←−−−−−−−−−−→
hp ∈ G2, C ∈ G4

`′ = (U ′, U, hp′) ξ′ = HK(`′,u′, e′) ` = (U,U ′, hp) ξ = HK(`,u, e)

skU = u′1
(η1+ξ

′η2)u′2
θ
(e′/G(pw))λv′µ × (hp′1hp

′
2
ξ
)r skU′ = u

(η′1+ξη
′
2)

1 uθ
′

2 (e/G(pw))λ
′
vµ

′
× (hp1hp2

ξ′)r
′

Fig. 1. One-Round PAKE based on DDH

2.5 Application: Efficient One-Round PAKE

We can thus use a Cramer-Shoup commitment and our new KV−SPHF to instantiate the framework for one-round
PAKE of Katz-Vaikuntanathan [KV11], instead of a double ElGamal or Linear encryption plus a simulation-sound
non-interactive zero-knowledge proof.

This yields a very efficient one-round PAKE: in our DDH instantiation, each user only sends 6 elements of G (see
Figure 1), instead of 70 elements of G for their DLin instantiation, which they claim to be the most efficient thanks
to a specific simulation-sound non-interactive zero-knowledge proof, using the Groth-Sahai [GS08] methodology. Us-
ing a relatively-sound non-interactive zero-knowledge proof, Jutla-Roy [JR12] proposed a new encryption scheme to
instantiate the framework and reduced the communication complexity to 20 group elements for each user.

We can also easily adapt our construction to be secure under the DLin assumption. In this case, each user sends 9
elements of G (the ciphertext C is composed of 5 elements and hp is composed of 4 elements), to be compared against
their instantiation that requires 70 group elements in each direction. Details can be found in the Appendix B.1. We insist
that – contrary to [KV11, JR12] – in both DDH and DLin versions no pairing computations are required. Any group
where the DDH or the DLin problems are hard can be used without the need of any pairing-friendly environments.

For the sake of completeness, we also present a DLin version in the Appendix B.1 of this one-round PAKE in a
pairing environment allowing to reduce the number of group element to 7 for each users. We also propose a fairly
efficient instantiation of the UC version of this PAKE in Appendix D, following the Katz-Vaikuntanathan [KV11]
framework, but using our above improvement to the non-UC scheme, and a new efficient Simulation-Sound Extractable
Non-Interactive Zero-Knowledge proof. The resulting scheme is significantly more efficient than the previous propos-
als [KV11, JR12].

3 Formal Definitions

In this section, we propose two new orthogonal classifications for SPHF. First, we present our classification of SPHF
based on the dependence between words and keys. According to this classification, there are three types of SPHF:
Gennaro-Lindell [GL03] type (GL−SPHF), Cramer-Shoup [CS02] type (CS−SPHF), and Katz-Vaikuntanathan [KV11]
type (KV−SPHF). We then present our second classification of SPHF based on the dependence between languages
(auxiliary inputs) and keys.

We use the classical notions of statistical and computational distances recalled in the Appendix A.3 and we say that
two distributions are ε-close if their statistical distance is at most ε. In the following, we will focus on languages of
ciphertexts, where the witnesses are the random coins used for encryption. Hence, we will use the notation of LOFCaux

for the languages and the words will be denoted C. We assume that these languages LOFCaux are included in a set Set
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and we denote LOFCaux = Set \ LOFCaux. Finally, we denote by Π the set of hash values (in most of the concrete
instantiations, this will be a multiplicative group).

3.1 Smoothness Adaptivity and Key Word-Dependence

KV−SPHF. A KV−SPHF is the strongest SPHF: the projection key hp does not depend on the word C (word-
independent key) and the smoothness holds even ifC depends on hp (adaptive smoothness). More formally, a KV−SPHF
is ε-smooth, if HashKG does not use its input C and if, for any aux and for any function f onto LOFCaux, the two fol-
lowing distributions are ε-close:

{(hp, H) | hk $← HashKG(aux); hp← ProjKG(hk, aux,⊥); C ← f(hp); H ← Hash(hk, aux, C)}

{(hp, H) | hk $← HashKG(aux); hp← ProjKG(hk, aux,⊥); C ← f(hp); H
$← Π}.

CS−SPHF. A CS−SPHF is weaker than a KV−SPHF: the projection key hp still does not depend on the word C
(word-independent key), but it is no more required for the smoothness to hold even if C depends on hp (non-adaptive
smoothness). More formally, a CS−SPHF is ε-smooth, if for any aux and for any C ∈ LOFCaux, the two following
distributions are ε-close:

{(hp, H) | hk $← HashKG(aux); hp← ProjKG(hk, aux,⊥); H ← Hash(hk, aux, C)}

{(hp, H) | hk $← HashKG(aux); hp← ProjKG(hk, aux,⊥); H $← Π}.

It is clear to see that a perfectly smooth (i.e., 0-smooth) CS−SPHF is also a perfectly smooth KV−SPHF, since each
value H has exactly the same probability to appear, and so choosing C adaptively does not increase the distance.
However, as soon as a weak word C can bias the distribution, f can exploit it, and, as will be shown in Section 4.3,
there exist CS−SPHF which are not KV−SPHF.

GL−SPHF. A GL−SPHF is the weakest SPHF: the projection key hp depends on the word C (word-dependent key).
More formally, a GL−SPHF is ε-smooth, if for any aux and for any C ∈ LOFCaux, the two following distributions are
ε-close:

{(hp, H) | hk $← HashKG(aux); hp← ProjKG(hk, aux, C); H ← Hash(hk, aux, C)}

{(hp, H) | hk $← HashKG(aux); hp← ProjKG(hk, aux, C); H
$← Π}.

3.2 Key Language-Dependence

In this section, we additionally classify SPHF based on the dependence between aux and keys hk and hp. There are
three types: type I, type II, type III.

Type I (Language-Dependent Key). A type I SPHF is the weakest type of SPHF. It just corresponds to the original
definition of Section 2.2, without any extra property, where the keys are computed from aux.

Type III (Language-Independent Key). A type III SPHF is the strongest type of SPHF in this classification: al-
gorithms HashKG and ProjKG do not use their input aux. This means, in particular, that a projection key hp can be
computed before knowing aux, which can be very useful for LAKE constructions, with precomputations (see Section 5).
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Type II (Language-Indistinguishable Key). A type II SPHF is slightly weaker than a type III SPHF: algorithms
HashKG and ProjKG may use their input aux but hp looks independent from aux. More formally, an SPHF is of type
II if, for any aux1, aux2, and any word C, the two following distributions are computationally/statistically/perfectly
indistinguishable:

{hp | hk $← HashKG(aux1); hp← ProjKG(hk, aux1, C)}

{hp | hk $← HashKG(aux2); hp← ProjKG(hk, aux2, C)}.

4 Constructions

In this section, after a brief introduction and after recalling previous constructions of GL−SPHF, we first present
various novel constructions of SPHF, for languages defined by ciphertexts (of CS encryption scheme) which plain-
text satisfy a system of multi-exponentiation equations: a KV−SPHF, which is an extension of the construction of
Section 2, a very efficient CS−SPHF, using only 3 group elements and one number roughly of size K (the security
parameter) and an even more efficient GL−SPHF, using only 2 group elements and one K-bit long integer. Then, we
show how reusing randomness in CSCom commitments can reduce the total amount of group elements. Eventually, we
briefly show that these results also apply to ElGamal, Linear, and Linear Cramer-Shoup commitments, and we present
a summary of our various SPHF. Due to space limitation, all proofs can be found in the Appendix B.2.

In the Appendix B.3, we also show how to use these SPHF for languages defined by ciphertexts which plaintext
satisfy a system of quadratic pairing product equations. To this aim, we will need additional ciphertexts, and we will
thus modify a little bit the languages.

4.1 Introduction

System of Multi-Exponentiation Equations over CSCom. In all the Section 4, our constructions are in a cyclic
group G of prime order p. Constructions in pairing-friendly environments will be considered in the Appendix B.3
only. All our constructions enable us to deal with any system of multi-exponentiation equations over committed values
using a CSCom. Formally, let C1, . . . , Cn be commitments of values X1, . . . , Xn in G, with label `1, . . . , `n. They
can be written as Ci = (`i,ui = (gri1 , g

ri
2 ), ei = Xi · hri , vi = (cdξi)ri), with ξi = HK(`i,ui, ei). A system of

multi-exponentiation equations is a system of t equations of the form:∏
i∈I1

X
a1,i
i = A1 (1.1)

. . . ∏
i∈It

X
at,i
i = At (1.t)

with Ik ⊆ {1, . . . , n}, ak,i ∈ Zp and Ai ∈ G. We suppose that ak,i = 0 for i /∈ Ik, and ak,i 6= 0 for i ∈ Ik. We can
suppose that the CSCom parameters, as well as t and n are fixed, but aux = (ak,i)k∈{1,...,t},i∈{1,...,n}∪(Ak)k∈{1,...,t} will
fully define the language LOFCaux. Our three first SPHF constructions enable to prove that commitments C1, . . . , Cn
are valid commitments (i.e., are not rejected by the CS decryption algorithm) and that X1, . . . , Xn verify equations
(1.1), . . . , (1.t). Recall that if one wants global non-malleability, one can use a global ξ value, and even a unique label,
as explained in Section 2.1.

Previous Constructions. Constructions of SPHF for linear pairing equations can be found in [BCPV12]. However
these constructions are only (type III) GL−SPHF constructions and are much less efficient than our new GL−SPHF
constructions.

4.2 KV−SPHF Constructions

We first propose a type III scheme, and then a much more efficient type II scheme.
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Type III Scheme. The hashing key hk is a list of n scalar 4-tuples hk1,i = (η1,i, η2,i, θi, µi), for i ∈ {1, . . . , n}, and
of t scalar couples hk3,k = (κk, λk), for k ∈ {1, . . . , t}. The projection key hp is composed of 2n projection sub-keys
hp1,i, hp2,i, and t projection sub-keys hp3,k with:

hp1,i = g
η1,i
1 gθi2 c

µi hp2,i = g
η2,i
1 dµi hp3,k = gκk1 hλk .

The hk1,i, hp1,i and hp2,i parts are used to ensure commitments are valid and the hk3,k and hp3,k parts are used to
ensure equations are verified. The hash value is:

H def=
n∏
i=1

(
u
η1,i+ξiη2,i
1,i uθi2,iv

µi
i

)
×

t∏
k=1

∏
i∈Ik

(
u
ak,iκk
1,i eak,iλk

)
A−λkk

 =
n∏
i=1

(
hp1,ihp

ξi
2,i

)ri
×

t∏
k=1

∏
i∈Ik

hp
ak,iri
3,k

def= H ′.

Theorem 2. The above SPHF is a type III 0-smooth (or perfectly smooth) KV−SPHF.

Type II Scheme. In a type II scheme, hp can depend on ak,i’s, which makes hp specific to the system of multi-
exponentiation equations but still independent of the commitments. This relaxation enables us to reduce the size of
hp and hk, by mixing all the hp3,k with the hp1,i: hk3,k are all reduced to (λk) (κk are removed), for k ∈ {1, . . . , t}.
The projection key hp does not contain hp3,k any more and hp1,i is changed to hp1,i = g

η1,i
1 gθi2 h

∑t
k=1 ak,iλkcµi , for

i ∈ {1, . . . , n}. The hash value is:

H def=
n∏
i=1

(
u
η1,i+ξiη2,i
1,i uθi2,iv

µi
i

)
×

t∏
k=1

∏
i∈Ik

e
ak,iλk
i A−λkk

 =
n∏
i=1

(
hp1,ihp

ξi
2,i

)ri def= H ′.

Theorem 3. The above SPHF is a type II 0-smooth (or perfectly smooth) KV−SPHF.

4.3 CS−SPHF Construction

The hashing key hk is a random tuple (η1, η2, θ, µ, κ, λ, α)
$← Z6

p×{0, . . . , 2L−1}, where L is a parameter (smoothness
depends on L). We suppose 2L < p. The projection key is hp = (hp1, hp2, hp3, α) with:

hp1 = gη11 g
θ
2c
µ hp2 = gη21 d

µ hp3 = gκ1h
λ.

The hash value is:

H def=

n∏
i=1

(
uη1+ξiη21,i uθ2,iv

µ
i

)αi−1 t∏
k=1

∏
i∈Ik

(
u
ak,iκ
1,i eak,iλ

)
A−λk

αk−1

=

n∏
i=1

(
hpri1 hp

ξiri
2

)αi−1 t∏
k=1

∏
i∈Ik

hp
ak,iriα

k−1

3
def= H ′.

Theorem 4. The above SPHF is a type III m/2L−1-smooth CS−SPHF, with m = max(t, n)− 1.

In the Appendix B.2, we show that this SPHF is not at all1 a KV−SPHF.

4.4 GL−SPHF Construction

For this construction, we only consider a ciphertext of vector with a unique label `, i.e., all ξi are equal to ξ =
HK(`,u1, . . . ,un, e1, . . . , en). Intuitively, this construction consists in grouping hp1 and hp2 in the previous con-
struction. This is possible because the ξi and so cdξi are the same for all commitments. Formally, the hashing key hk is
a random tuple (η, θ, µ, κ, λ, α)

$← Z5
p × {0, . . . , 2L − 1}. The projection key is hp = (hp1, hp3,L) with:

hp1 = gη1g
θ
2(cd

ξ)µ hp3 = gκ1h
λ.

1 We mean that, for any ε < 1, it is not an ε-smooth KV−SPHF.
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The hash value is:

H def=
n∏
i=1

(
uη1,iu

θ
2,iv

µ
i

)αi−1

×
t∏

k=1

∏
i∈Ik

(
u
ak,iκ
1,i eak,iλ

)
A−λk

αi−1

=
n∏
i=1

hpriα
i−1

1 ×
t∏

k=1

∏
i∈Ik

hp
ak,iriα

k−1

3,i
def= H ′.

Theorem 5. The above SPHF is a type III m/2L−1-smooth GL−SPHF, with m = max(t, n)− 1.

4.5 Construction with Reuse of Randomness

In this section, we are interested in reusing commitment randomness to reduce the total size of both the commitments
the projection keys. This will have a huge impact on LAKE with complex languages.

Commitment with Reuse of Randomness. We consider the following commitment scheme for vectors (X1, . . . , Xn)
of n elements in G, which can be proven IND-CCA secure exactly as for the original Cramer-Shoup scheme [CS98]:
from 4+n scalars (x1, x2, y1, y2, z1, . . . , zn)

$← Zp4+n, one sets c = gx11 g
x2
2 , d = gy11 g

y2
2 , and h1 = gz11 , . . . , hn = gzn1 .

The public parameters consist of ek = (G, g1, g2, c, d, h1, . . . , hn,HK), while the trapdoor for extraction is dk =
(x1, x2, y1, y2, z1, . . . , zn). One can define the encryption process, with ξ = HK(`,u, e):

C def= CS(`, ek, (X1, . . . , Xn); r)
def= (u = (gr1, g

r
2), e = (X1 · hr1, . . . , Xn · hrn), v = (cdξ)r).

KV−SPHF Construction. As for KV−SPHF for classical commitments, we propose two constructions: one of type
III and one of type II, which are much more efficient.

Type III Scheme. The hashing key hk is a list of a scalar 4-tuple hk1 = (η1, η2, θ, µ) and t scalar (n + 1)-tuples
hk3,k = (κk,1, . . . , κk,n, λk), for k ∈ {1, . . . , t}. The projection key hp is composed of 2 projection sub-keys hp1, hp2
and tn projection sub-keys hp3,k,i with:

hp1 = gη11 g
θ
2c
µ hp2 = gη21 d

µ hp3,k,i = g
κk,i
1 hλki

The hash value is:

H def= uη1+ξη21 uθ2v
µ ×

t∏
k=1

∏
i∈Ik

(
u
ak,iκk,i
1 e

ak,iλk
i

)
A−λkk

 =

hp1hp
ξ
2 ×

t∏
k=1

∏
i∈Ik

hp
ak,i
3,k,i

r

def= H ′.

Theorem 6. The above SPHF is a type III 0-smooth (or perfectly smooth) KV−SPHF.

Type II Scheme. The hashing key hk is a list of a scalar 4-tuple hk1 = (η1, η2, θ, µ) and t scalars hk3,k = λk, for
k ∈ {1, . . . , t}. The projection key hp is composed of 2 projections sub-keys hp1 and hp2 with:

hp1 = gη11 g
θ
2

(
n∏
i=1

h
∑t
k=1 ak,iλk

i

)
cµ hp2 = gη21 d

µ

The hash value is:

H def=

n∏
i=1

(
uη1+ξη21 uθ2v

µ
)
×

t∏
k=1

∏
i∈Ik

e
ak,i
i /Ak

λk

= (hp1hp
ξ
2)
r def= H ′.

Theorem 7. The above SPHF is a type II 0-smooth (or perfectly smooth) KV−SPHF.
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EG CS Linear Linear CS

hk hp hk hp hk hp hk hp

KV III 2t× Zp t×G (4n+ 2t)× Zp (2n+ t)×G 3t× Zp 2t×G (6n+ 3t)× Zp (4n+ 2t)×G
KV II (n+ t)× Zp n×G (4n+ t)× Zp 2n×G 2(n+ t)× Zp 2n×G (6n+ 2t)× Zp 4n×G
CS III 2× Zp + α 1×G+ α 6× Zp + α 3×G+ α 3× Zp + α 2×G+ α 8× Zp + α 6×G+ α
GL III n/a n/a 5× Zp + α 2×G+ α n/a n/a 6× Zp + α 4×G+ α

Table 1. Summary of our Constructions Without Reuse of Randomness (α corresponds to a number of size L)

EG CS Linear Linear CS

C hp C hp C hp C hp

KV III 2n×G t×G 4n×G (2n+ t)×G 3n×G 2t×G 5n×G (4n+ 2t)×G
KV III rr (n+ 1)×G tn×G (n+ 3)×G (tn+ 2)×G (n+ 2)×G 2tn×G (n+ 4)×G (2tn+ 4)×G
KV II 2n×G n×G 4n×G 2n×G 3n×G 2n×G 5n×G 4n×G
KV II rr (n+ 1)×G 1×G (n+ 3)×G 2×G (n+ 2)×G 2×G (n+ 4)×G 4×G
CS III 2n×G 1×G+ α 4n×G 3×G+ α 3n×G 2×G+ α 5n×G 6×G+ α
GL III n/a n/a 4n×G 2×G+ α n/a n/a 5n×G 4×G+ α
GL II rr n/a n/a (n+ 3)×G 1×G n/a n/a (n+ 4)×G 2×G

Table 2. Summary of our Constructions (constructions with reuse of randomness are suffixed by “rr” and α corresponds to a number of size L)

GL−SPHF Construction. This construction consists in mixing hp1 and hp2 from the above KV−SPHF construc-
tion. The hashing key hk is a list of a scalar triple hk1 = (η, θ, µ) and t scalar n-tuples hk3,k = (λk,1, . . . , λk,n), for
k ∈ {1, . . . , t}. The projection key hp and the hash values are:

hp = gη1g
θ
2

(
n∏
i=1

h
∑t
k=1 ak,iλk

i

)(
cdξ
)µ

H def=

n∏
i=1

(
uη1u

θ
2v
µ
)
×

t∏
k=1

∏
i∈Ik

e
ak,i
i /Ak

λk

= hpr1
def= H ′.

Theorem 8. The above SPHF is a type II 0-smooth (or perfectly smooth) GL−SPHF.

4.6 Extensions and Summary

It is possible to use the same ideas as in the Appendix B.1, to extend all the previous constructions to ElGamal (EG),
Linear and Linear CS commitment schemes. The costs of all the constructions can be found in Tables 1 and 2.

5 Applications to LAKE

In this section, we show how our new KV−SPHF enable us to design efficient Language-Authenticated Key Exchange
(LAKE), in the standard model. We insist we do not try to make them in the UC-framework as [BCPV12], but efficiency
is our priority: we achieve that in one-round only.

LAKE is a general framework proposed by the authors of [BCPV12]: It generalizes several AKE primitives such
as PAKE, Verifier-based PAKE or secret handshakes. In such a scheme, each player U owns a word W in a certain
language L and expect the other player to own a word W ′ in another language L′. If everything is compatible (ie the
languages are the expected languages and the words are indeed in the appropriate languages), the players compute a
common high entropy secret key, otherwise they learn nothing about the values sent by the other player. In any case,
external eavesdroppers do not learn anything, even not the outcome of the protocol: did it succeed or not.

More precisely, we assume the two players have initially agreed on a common public part pub for the languages,
but then they each commit on the private part priv for the language L they want to use, the private part priv for the
language L′ they assume the other player will use, and the word W they own in their language L.
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5.1 Security Model

For the security model, we use the Bellare-Rogaway [BR94] model, with some additions from the Bellare-Pointcheval-
Rogaway [BPR00] model for PAKE, between n players in the presence of an adversary. The adversary A plays a
find-then-guess game against n players (Pi)i=1,...,n. It has access to several instances Πs

U for each player U ∈ {Pi}
and can activate them (in order to model concurrent executions) via several queries, described below:

– Execute(U, s, U ′, t): one outputs the transcript of an execution of the protocol between the instance Πs
U of U and

the instance Πt
U ′ of U ′. It models passive eavesdropping attacks;

– Send(U, s, U ′, t,m): one sends the message m to the instance Πt
U ′ of U ′ in the name of the instance Πs

U of U . It
models active attacks;

– Reveal(U, s): if the instance Πs
U of U has “accepted”, one outputs the session key, otherwise one outputs ⊥. It

models a possible bad later use of the session key;
– Test(U, s): one first flips a coin b $← {0, 1}, if b = 1 one outputs Reveal(U, s), otherwise one outputs a truly

random key. It models the secrecy of the session key.

We say that Πs
U and Πt

U ′ have matching conversations if inputs-outputs of the former correspond to the outputs-inputs
of the latter and vice-versa. They are then called partners. We say that an instance is fresh if the key exists and is not
trivially known by the adversary: more precisely, Πs

U is fresh if

– Πs
U has accepted the session, which is required to compute a session key;

– Πs
U has not been asked a Reveal-query;

– no Πt
U ′ with matching conversations with Πs

U has been asked a Reveal-query.

A key exchange protocol is then said secure if keys are indistinguishable from random keys for adversaries. Formally,
the adversary is allowed to ask as many Execute, Send and Reveal-queries as it likes, and then only one Test-query to
a fresh instance Πs

U of a player. The adversary wins if it has guessed correctly the bit b in this query.
The quality of an adversary is measured by its ability to distinguish the answer of the Test-query on a fresh instance.

Its advantage should be negligible, or negligibly close to qs/N when the authentication means can be guessed with
probability 1/N , where qs is the number of Send-queries which model active attacks. The latter case covers on-line
dictionary attacks. More details can be found in [BR94, BPR00].

5.2 Instantiation

Using the same approach as our previous PAKE scheme, one can design the scheme proposed on Figure 2, in which
both users U and U ′ have agreed on the public part pub, while U owns a word W for a private part priv, and thinks to a
private part priv ′ for U ′, and while U ′ owns a word W ′ for a private part priv′, and thinks to a private part priv for U .

U will thus define aux = (pub, priv, priv ′) and aux = (pub, priv ′, priv) and will commit (priv, priv ′,W ) into C
with random coins r. The ciphertext C of the triple (a, b, c) will be in LOFCaux if a = priv, b = priv ′, and c ∈ Laux

(where priv ′ can be ignored). U ′ will do the same, defining aux′ = (pub, priv′, priv) and aux ′ = (pub, priv , priv′), and
committing (priv′, priv ,W ′) into C ′ with random coins r′. The ciphertext C ′ of the triple (a, b, c) will be in LOFCaux′

if a = priv′, b = priv , and c ∈ Laux′ . Using a similar proof as the one in [KV11], one can state (more details can be
found in the Appendix C):

Theorem 9. If the encryption scheme is IND− CCA, and LOFCaux languages admit type II KV−SPHF, then our
LAKE protocol is secure: the advantage of any adversary is bounded by qs × 2−m × SuccL(t) + negl(), where qs is
the number of Send-queries, and m is the minimal min-entropy of the pairs (priv, priv′) for any two users U , U ′, and
SuccL(t) is the best success an adversary can get in finding a word in a language Laux of any player, within time t.
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CRS: ek Common public part: pub
User U with (priv, priv ′,W ) User U ′ with (priv′, priv ,W ′)

aux = (pub, priv, priv ′), aux = (pub, priv ′, priv),W ∈ Laux aux′ = (pub, priv′, priv), aux ′ = (pub, priv , priv′),W ′ ∈ Laux′

hk = HashKG(aux), hp = ProjKG(hk, aux ,⊥) hk′ = HashKG(aux ′), hp′ = ProjKG(hk′, aux ′,⊥)
` = (U,U ′, hp), C = Encrypt(`, ek, (aux,W ); r) `′ = (U ′, U, hp′), C′ = Encrypt(`′, ek, (aux′,W ′); r′)

sk = Hash(hk, aux , C′)× ProjHash(hp′, aux, C, r)
hp′, C′←−−−−−−−−−→
hp, C

sk′ = Hash(hk′, aux ′, C)× ProjHash(hp, aux′, C′, r′)

Fig. 2. One-Round LAKE

One can see that this result is optimal in the sense that if we consider the PAKE or Verifier-based PAKE, m is the
min-entropy of the dictionary, and once the password is found, L is a trivial language: 2−m = 1/N and SuccL(t) = 1,
hence the bound is qs/N , where N is the size of the dictionary, if one assumes passwords are uniformly chosen.

If we consider secret handshakes, the values priv specify the verification keys corresponding to the private keys
under which messages are signed. The entropy of the verification keys is small, since the number of possible authorities
is low, but in this case, SuccL(t) is the success probability to forge a signature, which is negligible.

With type III languages, one could precompute the hashing and projection keys before the execution of the protocol.
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A Preliminaries

A.1 Formal Definitions of the Basic Primitives

We first recall the definitions of some of the basic tools, with the corresponding security notions and their respective
success/advantage.

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ to a fixed-length output,
either {0, 1}k or Zp. Such a family is said collision-resistant if for any adversary A on a random function HK

$← H, it
is hard to find a collision. More precisely, we denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)], SucccollH (t) = max

A≤t
{SucccollH (A)}.

Labeled encryption scheme. A labeled public-key encryption scheme E is defined by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) generates a pair of keys, the encryption key ek and the decryption key dk;
– Encrypt(`, ek,m; r) produces a ciphertext c on the input message m ∈M under the label ` and encryption key ek,

using the random coins r;
– Decrypt(`, dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (ek, dk), any label `, all random coins r and all messages m,

Decrypt(`, dk,Encrypt(`, ek,m; r)) = m.

– Indistinguishability under chosen-ciphertext attacks: this
security notion can be formalized by the following secu-
rity game, where the adversary A keeps some internal state
between the various calls FIND and GUESS, and makes use
of the oracle ODecrypt:

• ODecrypt(`, c): This oracle outputs the decryption of c
under the label ` and the challenge decryption key dk.
The input queries (`, c) are added to the list CT .

Expind−cca−bE,A (k)

1.param← Setup(1K)
2.(ek, dk)← KeyGen(param)
3.(`∗,m0,m1)← A(FIND : ek,ODecrypt(·, ·))
4.c∗ ← Encrypt(`∗, ek,mb)
5.b′ ← A(GUESS : c∗,ODecrypt(·, ·))
6.IF (`∗, c∗) ∈ CT RETURN 0
7.ELSE RETURN b′
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The advantages are

Advind−ccaE (A) = Pr[Expind−cca−1E,A (k) = 1]− Pr[Expind−cca−0E,A (k) = 1] Advind−ccaE (t) = max
A≤t
{Advind−ccaE (A)}.

Labeled commitment scheme. A labeled commitment scheme is defined by three algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– Commit(`,m; r) produces a commitment c and the opening information d on the input message m ∈M under the

label `, using the random coins r;
– Decommit(`, c,m, d) checks the validity of the opening information d on the commitment c for the message m

under the label `. It answers 1 for true, and 0 for false.

A commitment scheme C should satisfy the following properties

– Correctness: for any label `, and all messages m, if (c, d)← Commit(`,m; r), then Decommit(`, c,m, d) = 1.
– Hiding: this security notion is similar to the indistinguishability under chosen-plaintext attacks for encryption,

which means that c does not help to distinguish between to candidates m0 and m1 as committed values.
– Binding: this security notion is more an unforgeability notion, which means that for any commitment c, it should

be hard to open it in two different ways, which means to exhibit (m0, d0) and (m1, d1), such that m0 6= m1 and
Decommit(`, c,m0, d0) = Decommit(`, c,m1, d1) = 1.

The commitment algorithm can be interactive between the sender and the received, but the hiding and the binding
properties should still hold. Several additional properties are sometimes required:

– Extractability: an indistinguishable Setup procedure also outputs a trapdoor that allows a extractor to get the com-
mitted value m from any commitment c. More precisely, if c can be open in a valid way, the extractor can get this
value from the commitment.

– Equivocability: an indistinguishable Setup procedure also outputs a trapdoor that allows a simulator to generate
commitments that can thereafter be open in any way.

– Non-Malleability: it should be hard, from a commitment c to generate a new commitment c′ 6= c whose committed
values are in relation.

A.2 Computational Assumptions

The two classical decisional assumptions we use along this paper are: the decisional Diffie-Hellman (DDH) and the
decisional Linear (DLin) assumptions. Our constructions essentially rely on the DDH assumption, that implies the DLin
assumption.

Definition 10 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assumption says that, in a group
(p,G, g), when we are given (ga, gb, gc) for unknown random a, b

$← Zp, it is hard to decide whether c = ab mod p

(a DH tuple) or c $← Zp (a random tuple). We define by Advddhp,G,g(t) the best advantage an adversary can have in
distinguishing a DH tuple from a random tuple within time t.

Definition 11 (Decisional Linear Problem (DLin)). The Decisional Linear Problem [BBS04] says that, in a group
(p,G, g), when we are given (gx, gy, gxa, gyb, gc) for unknown random x, y, a, b

$← Zp, it is hard to decide whether
c = a+b mod p (a linear tuple) or c $← Zp (a random tuple). We define by Advdlinp,G,g(t) the best advantage an adversary
can have in distinguishing a linear tuple from a random tuple within time t.

A.3 Statistical and Computational Distances

Let D1 and D2 be two probability distributions over a finite set S and let X and Y be two random variables with these
two respective distributions.
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Statistical Distance. The statistical distance between D1 and D2 is also the statistical distance between X and Y :

Dist(D1,D2) = Dist(X,Y ) =
∑
x∈S
|Pr [X = x ]− Pr [Y = x ]| .

If the statistical distance between D1 and D2 is less than or equal to ε, we say that D1 and D2 are ε-close or are
ε-statistically indistinguishable. If the D1 and D2 are 0-close, we say that D1 and D2 are perfectly indistinguishable.

Computational Distance. We say thatD1 andD2 are (t, ε)-computationally indistinguishable, if, for every probabilistic
algorithm A running in time at most t:

|Pr [A(X) = 1 ]− Pr [A(Y ) = 1 ]| ≤ ε.

We can note that for any t and ε, D1 and D2 are (t, ε)-computationally indistinguishable, if they are ε-close.

A.4 Some Encryption Schemes

Cramer-Shoup (CS) Encryption Scheme.
The Cramer-Shoup encryption scheme [CS98] can be tuned into a labeled public-key encryption scheme:

– Setup(1K) generates a group G of order p, with a generator g
– KeyGen(param) generates (g1, g2)

$← G2, dk = (x1, x2, y1, y2, z)
$← Z5

p, and sets, c = gx11 g
x2
2 , d = gy11 g

y2
2 , and

h = gz1 . It also chooses a collision-resistant hash function HK in a hash familyH (or simply a Universal One-Way
Hash Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(`, ek,M ; r), for a messageM ∈ G and a random scalar r ∈ Zp, the ciphertext isC = (`,u = (gr1, g
r
2), e =

M · hr, v = (cdξ)r), where v is computed afterwards with ξ = HK(`,u, e).
– Decrypt(`, dk, C): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 · ux2+ξy22

?= v. If the equality
holds, one computes M = e/uz1 and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DDH assumption and if one uses a
collision-resistant hash functionH.

Linear Cramer-Shoup (LCS) Encryption Scheme.
The Linear Cramer-Shoup encryption scheme [CKP07,Sha07] can be tuned to a labeled public-key encryption scheme:

– Setup(1K) generates a group G of order p, with three independent generators (g1, g2, g3)
$← G3;

– KeyGen(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and sets, for i ∈ {1, 2}, ci = gxii g
x3
3 ,

di = gyii g
y3
3 , and hi = gzii g

z3
3 . It also chooses a hash function HK in a collision-resistant hash family H (or simply

a Universal One-Way Hash Function). The encryption key is ek = (c1, c2, d1, d2, h1, h2,HK).
– Encrypt(`, ek,M ; r, s), for a message M ∈ G and two random scalars r, s $← Zp, the ciphertext is C = (`,u =

(gr1, g
s
2, g

r+s
3 ), e =M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s), where v is computed afterwards with ξ = HK(`,u, e).

– Decrypt(`, dk, C = (u, e, v)): one first computes ξ = HK(`,u, e) and checks whether ux1+ξy11 ·ux2+ξy22 ·ux3+ξy33
?=

v. If the equality holds, one computes M = e/(uz11 u
z2
2 u

z3
3 ) and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DLin assumption and if one uses a
collision-resistant hash functionH.

B Smooth Projective Hash Functions

In this appendix, we first present variants of the KV−SPHF described in Section 2.4, for other commitment schemes,
such as ElGamal and DLin-based commitments scheme. We then prove all the theorems of Section 4, concerning
SPHF for more complex equations. Finally, we show how to deal with systems of linear and quadratic pairing product
equations.
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B.1 KV−SPHF for Constant Committed Value or Valid Commitments

All constructions of this section are very similar to the construction of Section 2.4. Therefore, we do not provide any
proof.

DDH-Based Constructions

SPHF on ElGamal Ciphertexts. The ElGamal encryption scheme [ElG85] is defined on a group G of order p, with a
generator g. The decryption key dk is a scalar x ∈ Zp, and the encryption key is ek = h = gx:

C = Encrypt(ek,M ; r) = (c1 = gr, c2 =M · hr) Decrypt(dk, C) = c2/c
x
1 .

For the SPHF on encryptions ofM , one generates hk = (η, λ)
$← Z2

p, and derives the projection key hp = gηhλ. Then,
one can compute the hash value:

H = Hash(hk,M,C) def= cη1(c2/M)λ = hpr def= ProjHash(hp,M,C; r) = H ′.

SPHF on Cramer-Shoup Ciphertexts. The labeled Cramer-Shoup encryption scheme [CS98] is defined on a group G
of prime order p, with two generators (g1, g2)

$← G2. The decryption key is dk = (x1, x2, y1, y2, z)
$← Z5

p, and the
encryption key is ek = (g1, g2, c, d, h,HK), where c = gx11 g

x2
2 , d = gy11 g

y2
2 , h = gz1 , and HK

$← H (in a collision-
resistant hash family).

C = Encrypt(`, ek,M ; r) = (`,u = (gr1, g
r
2), e =M · hr, v = (cdξ)r) where ξ = HK(`,u, e)

Decrypt(`, dk, C) = e/uz1 if ux1+ξy11 · ux2+ξy22 = v;⊥ otherwise.

For the SPHF on encryptions of M , one generates hk = (η1, η2, θ, λ, µ)
$← Z5

p, and derives the projection key hp =

(hp1 = gη11 g
θ
2h

λcµ, hp2 = gη21 d
µ). Then one can compute the hash value:

H def= Hash(hk,M,C) def= u
(η1+ξη2)
1 uθ2(e/M)λvµ = (hp1hp

ξ
2)
r def= ProjHash(hp,M,C, r) def= H ′.

For the SPHF on valid Cramer-Shoup Ciphertexts, one generates hk = (η1, η2, θ, µ)
$← Z4

p, and derives the projection
key hp = (hp1 = gη11 g

θ
2c
µ, hp2 = gη21 d

µ). Then one can compute the hash value:

H def= Hash(hk, C) def= u
(η1+ξη2)
1 uθ2v

µ = (hp1hp
ξ
2)
r def= ProjHash(hp, C, r) def= H ′.

DLin-Based Constructions

SPHF on Linear Ciphertexts The Linear encryption scheme [BBS04] is defined on a group G of prime order p, with a
generator h $← G. The decryption key is dk = (z1, z2)

$← Z2
p, and the encryption key is ek = (g1 = hz1 , g2 = hz2 , h):

C = Encrypt(ek,M ; r, s) = (c1 = gr1, c2 = gs2, c3 =M · hr+s) Decrypt(dk, C) = c3/(c
1/z1
1 c

1/z2
2 ).

For the SPHF on encryptions of M , one generates hk = (η, θ, λ)
$← Z3

p, and derives the projection key hp = (hp1 =

gη1h
λ, hp2 = gθ2h

λ). Then, one can compute the hash value:

H = Hash(hk,M,C) def= cη1c
θ
2(c3/M)λ = hpr1hp

s
2

def= ProjHash(hp,M,C, (r, s)) = H ′.
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SPHF on Linear Cramer-Shoup Ciphertexts. The Linear Cramer-Shoup encryption scheme [CKP07,Sha07] is defined
on a group G of prime order p, with three independent generators (g1, g2, g3)

$← G3. The decryption key is dk =

(x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, and the encryption key is ek = (c1, c2, d1, d2, h1, h2,HK), where, for i ∈
{1, 2}, ci = gxii g

x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 , and HK

$← H (in a collision-resistant hash family).

C = Encrypt(`, ek,M ; r, s) = (`,u = (gr1, g
s
2, g

r+s
3 ), e =M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s), where ξ = HK(`,u, e)

Decrypt(`, dk, C) = e/(uz11 u
z2
2 u

z3
3 ) if ux1+ξy11 · ux2+ξy22 · ux3+ξy33 = v;⊥ otherwise.

For the SPHF on encryptions of M , one generates hk = (η1, η2, θ1, θ2, κ, λ, µ)
$← Z7

p, and derives the projection key

hp = (hp1 = gη11 g
κ
3h

λ
1c
µ
1 , hp2 = gη21 d

µ
1 , hp3 = gθ12 g

κ
3h

λ
2c
µ
2 , hp4 = gθ22 d

µ
2 ).

Then, one can compute the hash value (when ξ 6= 0):

H = Hash(hk,M,C) def= uη1+ξη21 uθ1+ξθ22 uκ3(e/M)λvµ = (hp1hp
ξ
2)
r(hp3hp

ξ
4)
s def= ProjHash(hp,M,C, (r, s)) = H ′.

For the SPHF on valid Linear Cramer-Shoup Ciphertexts, one generates hk = (η1, η2, θ1, θ2, κ, µ)
$← Z6

p, and derives
the projection key

hp = (hp1 = gη11 g
κ
3 c
µ
1 , hp2 = gη21 d

µ
1 , hp3 = gθ12 g

κ
3 c
µ
2 , hp4 = gθ22 d

µ
2 ).

Then, one can compute the hash value (when ξ 6= 0):

H = Hash(hk, C) def= uη1+ξη21 uθ1+ξθ22 uκ3v
µ = (hp1hp

ξ
2)
r(hp3hp

ξ
4)
s def= ProjHash(hp, C, (r, s)) = H ′.

DLin-Based Constructions with Pairings. In a pairing-friendly environment one can see that a Linear encryption in
a group G induces an ElGamal encryption in the target group GT . In other word testing the Linear-validity of a tuple
(gr1, g

s
2, h

r+s) is equivalent to the DH-validity of the pair (e(gr1, g2)·e(g1, gs2), e(hr+s, g2)) = (e(g1, g2)
r+s, e(h, g2)

r+s)
in basis (e(g1, g2), e(h, g2)). Following this idea, one can simplify the previous projection keys by only building them
for the witness r, or alternatively t = r + s, and if the witness is correct then a certain pairing equation should hold.

SPHF on Linear Ciphertexts. For the revised SPHF on encryptions of M , one generates hk = (η, λ)
$← Z2

p, and
derives the projection key hp = gη1h

λ. Then, one can compute the hash value:

H = Hash(hk,M,C) def= (e(c1, g2) · e(c2, g1))η · e(c3/M, g2)
λ = e(hpt, g2)

def= ProjHash(hp,M,C, t) = H ′.

SPHF on Linear Cramer-Shoup Ciphertexts. For the revised SPHF on encryptions ofM , one generates hk = (η1, η2, κ, λ, µ)
$←

Z5
p, and derives the projection key

hp = (hp1 = gη11 g
κ
3h

λ
1c
µ
1 , hp2 = gη21 d

µ
1 ).

Then, one can compute the hash value (when ξ 6= 0):

H = Hash(hk,M,C) def= e(u1, g2)
η1+ξη2 · (e(u3, g2)/e(u2, g3))κ · (e(e/M, g2)/e(h2, u2))

λ ·
(
e(v, g2)/e(c2d

ξ
2, u3)

)µ
= e((hp1hp

ξ
2)
r, g2)

def= ProjHash(hp,M,C, r) = H ′.

For the SPHF on valid Linear Cramer-Shoup Ciphertexts, one generates hk = (η, η′, κ, µ)
$← Z4

p, and derives the
projection key

hp = (hp1 = gη11 g
κ
3 c
µ
1 , hp2 = gη21 d

µ
1 ).

Then, one can compute the hash value (when ξ 6= 0):

H = Hash(hk, C) def= e(u1, g2)
η1+ξη2 · (e(u3, g2)/e(u2, g3))κ ·

(
e(v, g2)/e(c2d

ξ
2, u3)

)µ
= e((hp1hp

ξ
2)
r, g2)

def= ProjHash(hp, C, r) = H ′.
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B.2 Proofs of Theorems of Section 4

KV−SPHF Construction (Type III)

Proof (of Theorem 2). Let us write Ci as:

Ci = (`i,ui = (gri1 , g
si
2 ), ei = Xi · hri , vi = cridξiti),

with Xi ∈ G and ri, si, ti ∈ Zp. We want to prove that, when one commitment Ci is invalid (si 6= ri or ti 6= ri),
or when one of the equations (1.1), . . . , (1.t) is not satisfied, hp gives no information on the value of H . Let us write
g2 = gβ1 , c = gγ1 , and d = gδ1. We suppose β 6= 0, γ 6= 0, δ 6= 0 and ξi 6= 0, for all i = 1, . . . , n. As in the proof
of Theorem 1, H is unpredictable given hp, if and only if the last line of one of the following matrices is linearly
independent from the other lines of this matrix:1 0 β γ

0 1 0 δ
ri ξiri siβ riγ + ξitiδ

 for i ∈ {1, . . . , n}— columns: η1,i, η2,i, θi, µi

(
1 z∑

i∈Ik ak,iri
∑

i∈Ik ak,iriz +∆k

)
for k ∈ {1, . . . , t}— columns: κk, λk

with ∆k = logg1

(
(
∏
i∈Ik X

ak,i
i )/Ak

)
, for k ∈ {1, . . . , t}. This is the case if and only if si = ti = ri, for i ∈

{1, . . . , n}, and ∆k = 0, for k ∈ {1, . . . , t}, i.e., if all commitments are valid and all equations are verified. ut

KV−SPHF Construction (Type II)

Proof (of Theorem 3). The proof for the smoothness is almost the same as the proof of Theorem 2, except the second
series of matrices:(

1 z∑
i∈Ik ak,iri

∑
i∈Ik ak,iriz +∆k

)
for k ∈ {1, . . . , t}— columns: κk, λk

is replaced by
1 0 0 ak,1z

0
. . . 0

...
0 0 1 ak,tz
r1 . . . rn

∑
i∈Ik ak,iriz +∆k

 for k ∈ {1, . . . , t}— columns: η1,1, . . . , η1,n, λk.

Finally, the scheme is (perfectly or 0-indistinguishable) type II, because it is clear that given hp, all ak,i’s are completely
unpredictable. ut

CS−SPHF Construction

Proof (of Theorem 4). We use the same notations as in the proof of Theorem 2. H is unpredictable given hp, if and
only if the last line of one of the following matrices is linearly independent from the other lines of this matrix: 1 0 β γ

0 1 0 δ∑n
i=1 riα

i−1 ∑n
i=1 ξiriα

i−1 ∑n
i=1 siβα

i−1 ∑n
i=1(riγ + ξitiδ)α

i−1

 columns: η1, η2, θ, µ

(
1 z∑t

k=1

(∑
i∈Ik ak,iri

)
αk−1

∑t
k=1

(∑
i∈Ik ak,iriz +∆k

)
αk−1

)
columns: κ, λ
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with ∆k = logg1

(∏
i∈Ik X

ak,i
i /Ak

)
, for k ∈ {1, . . . , t}. This is the case if and only if

∑n
i=1(si − ri)α

i−1 = 0,∑n
i=1(ti − ri)αi−1 = 0 and

∑t
k=1∆kα

k−1 = 0. These are three polynomials of unknown α in Zp and of degree at
most m = max(t, n) − 1. Therefore, if one the coefficients of one polynomial is not null, there are at most m values
of α such that the evaluation of this polynomial in α is 0. Furthermore, all commitments are valid and all equations
are satisfied if and only if all coefficients of all polynomials are null. Since there are 2L possible values of α, if any
commitment is invalid or any equation is not verified, with probability at least 1 − m/2L, H will be unpredictable.
Therefore, the above SPHF is ε-smooth with:

ε ≤
m−1∑
α=0

1

2L
+

2L−1∑
α=m

(
1

2L −m
− 1

2L

)
=
m

2L
+

2L −m
2L −m

− 2L −m
2L

= 2× m

2L

(supposing, wlog., that the bad values for α are 0, . . . ,m− 1). ut

Proof (of the fact that this CS−SPHF is not a KV−SPHF). In the smoothness definition for a KV−SPHF, the adver-
sary can choose Ci after having seen hp, and in particular, after knowing α. Therefore, since it is unbounded, it can cre-
ate invalidCi = (`i,ui = (gri1 , g

si
2 ), e = hri ·Xi, v = cridξiti) for i ∈ {1, . . . , n} still verifying

∑n
i=1(si−ri)αi−1 = 0,∑n

i=1(ti − ri)αi−1 = 0 and
∑t

k=1∆kα
k−1 = 0 with ∆k = logg1

(∏
i∈Ik Xk/Ak

)
. ut

GL−SPHF Construction

Proof (of Theorem 5). Let us write Ci as:

Ci = (`i,ui = (gri1 , g
si
2 ), ei = Xi · hri , vi = cridξti),

with Xi ∈ G and ri, si, ti ∈ Zp and ξ = HK(`1, . . . , `n,u1, . . . ,un, e1, . . . , en).
The proof is nearly the same as the proof of Theorem 4. The only difference is that the matrix: 1 0 β γ

0 1 0 δ∑n
i=1 riα

i−1 ∑n
i=1 ξiriα

i−1 ∑n
i=1 siβα

i−1 ∑n
i=1(riγ + ξitiδ)α

i−1

 columns: η1, η2, θ, µ

is replaced by the matrix:(
1 β γ + ξδ∑n

i=1 riα
i−1 ∑n

i=1 siβα
i−1 ∑n

i=1(riγ + ξtiδ)α
i−1

)
columns: η, θ, µ.

ut

Reuse of Randomness

KV−SPHF Construction (Type III)

Proof (of Theorem 6). We use the same notations as in the proof of Theorem 2. H is unpredictable given hp, if and
only if the last line of one of the following matrices is linearly independent from the other lines of this matrix:1 0 β γ

0 1 0 δ
r ξr s rγ + ξtδ

 columns: η1, η2, θ, µ


1 0 0 z1

0
. . . 0

...
0 0 1 zn

ak,1r . . . ak,nr
∑

i∈Ik ak,irzi +∆k

 for k ∈ {1, . . . , t}— columns: κk,1, . . . , κk,n, λk.
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with ∆k = logg1

(∏
i∈Ik X

ak,i
i /Ak

)
, for k ∈ {1, . . . , t}. This is the case if and only if s = t = r and ∆k = 0, for

k ∈ {1, . . . , t}. Therefore, the SPHF is perfectly smooth. ut

KV−SPHF Construction (Type II)

Proof (of Theorem 7). We use the same notations as in the proof of Theorem 2. H is unpredictable given hp, if and
only if the last line of one of the following matrices is linearly independent from the other lines of this matrix:1 0 β

∑
i∈Ik ak,izi γ

0 1 0 0 δ
r ξr s

∑
i∈Ik ak,irzi +∆k rγ + ξtδ

 for k ∈ {1, . . . , t}— columns: η1, η2, θ, λk, µ.

with ∆k = logg1

(∏
i∈Ik X

ak,i
i /Ak

)
, for k ∈ {1, . . . , t}. This is the case if and only if s = t = r and ∆k = 0, for

k ∈ {1, . . . , t}. Therefore, the SPHF is perfectly smooth. ut

GL−SPHF Construction

Proof (of Theorem 8). The proof is nearly the same as the proof of Theorem 6. The only difference is that the matrices:1 0 β
∑

i∈Ik ak,izi γ

0 1 0 0 δ
r ξr s

∑
i∈Ik ak,irzi +∆k rγ + ξtδ

 for k ∈ {1, . . . , t}— columns: η1,1, η2,i, θ, λk, µ

are replaced by the matrices:(
1 β

∑
i∈Ik ak,izi γ + ξδ

r s
∑

i∈Ik ak,irzi +∆k rγ + ξtδ

)
for k ∈ {1, . . . , t}— columns: η1, θ, λk, µ.

ut

B.3 Extension to Systems of Quadratic Pairing Product Equations

In this section, we first show how to use our constructions of SPHF to deal with system of linear pairing product
equations in a bilinear group (p,G1,G2,GT ). Then we slightly change the language of the SPHF to be able to deal
with a quadratic pairing product equations.

Lifting to GT and system of linear pairing equations. The main idea for system of linear pairing product equations
consists in “lifting” all commitments to GT : roughly, we transform any commitment of a value X in G1 or G2 into a
commitment of e(X,A) or e(A,X), with A a constant in G2 or G1. Then a linear pairing product equation becomes a
simple multi-exponentiation equation in GT .

Notations. Let Cω,1, . . . , Cω,nω , for ω ∈ {1, 2}, be commitments of values Yω,1, . . . , Yω,nω in Gω, with public key
ekω = (Gω, gω,1, gω,2, cω, dω, hω). Let CT,1, . . . , CT,nT be commitments of values Z1, . . . ,ZnT in GT , with public
key ekT = (GT , gT,1, gT,2, cT , dT , hT ). We are interested in system of linear pairing product equations which are sys-
tems of the form: 

∏
i∈I1,1

e(Y1,i, A2,1,i)×
∏
i∈I2,1

e(A1,1,i, Y2,i)×
∏
i∈IT,i

Zb1,ii = B1

...∏
i∈I1,t

e(Y1,i, A2,t,i) ×
∏
i∈I2,t

e(A1,t,i, Y2,i) ×
∏
i∈IT,i

Zbt,ii = Bt

(2.1)

(2.t)

with Iω,i ⊆ {1, . . . , nω} (for ω ∈ {1, 2, T}), A1,k,i ∈ G1, A2,k,i ∈ G2, bk,i ∈ Zp and Bk ∈ GT . We suppose that
Aω,k,i = 1 for i ∈ Iω,i (for ω ∈ {1, 2}) and bk,i = 0 for i ∈ IT,k, and Aω,k,i 6= 1, bk,i 6= 0 otherwise.
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Naive lifting. The basic idea is to lift the linear pairing product equations to multi-exponentiation equations in GT .
Let us write Cω,i = (uω,i = (g

rω,i
ω,1 , g

rω,i
ω,2 ), eω,i = Yω,i · h

rω,i
ω , vω,i = (cωd

ξω,i
ω )rω,i), with ξω,i = HK(`ω,i,uω,i, eω,i),

for ω ∈ {1, 2}. We can lift these commitments to commitments C ′1,k,i and C ′2,k,i of Y ′1,k,i = e(Y1,i, A2,k,i) and of
Y ′2,k,i = e(A1,1,i, Y2,i):

C ′1,k,i = (u′1,k,i = (e(u1,i,1, A2,k,i), e(u1,i,2, A2,k,i)), e
′
1,k,i = e(e1,i, A2,k,i), v

′
1,k,i = e(v1,i, A2,k,i))

= (u′1,k,i = (g′
r1,i
1,k,i,2, g

′r2,i
1,k,i,1), e

′
1,k,i = Y ′1,k,i · h′

r1,i
1,k,i, v

′
1,k,i = (c′1,k,id

′ξ1,i
1,k,i)

r1,i)

C ′2,k,i = (u′2,k,i = (e(A1,k,i, u2,i,1), e(A1,k,i, u2,i,2)), e
′
2,k,i = e(A1,k,i, e2,i), v

′
2,k,i = e(A2,k,i, v2,i))

= (u′2,k,i = (g′
r1,i
2,k,i,2, g

′r2,i
2,k,i,1), e

′
2,k,i = Y ′2,k,i · h′

r2,i
2,k,i, v

′
2,k,i = (c′2,k,id

′ξ2,i
2,k,i)

r2,i)

with public keys

ek′1,k,i =(G1, g
′
1,k,i,1 = e(g1,1, A2,k,i), g

′
1,k,i,2 = e(g1,2, A2,k,i),

c′1,k,i = e(c1, A2,k,i), d
′
1,k,i = e(d1, A2,k,i), h

′
1,k,i = e(h1, A2,k,i))

ek′2,k,i =(G2, g
′
2,k,i,1 = e(A1,k,i, g2,1), g

′
2,k,i,2 = e(A1,k,i, g2,2),

c′2,k,i = e(A1,k,i, c2)1, d
′
2,k,i = e(A1,k,i, d2), h

′
2,k,i = e(A1,k,i, h2)).

It is easy to see that the original commitments C1,i, C2,i, CT,i are valid and satisfy the original system of equations
(2.1), . . . , (2.t) if and only if the new commitments C ′1,k,i, C

′
2,k,i, CT,i are valid and satisfy the following system:

∏
i∈I1,1

Y ′1,1,i ×
∏
i∈I2,1

Y ′2,1,i ×
∏
i∈IT,i

Zb1,ii = B1

...∏
i∈I1,t

Y ′1,t,i ×
∏
i∈I2,t

Y ′2,t,i ×
∏
i∈IT,i

Zbt,ii = Bt.

(3.1)

(3.t)

Optimizations. The previous approach may be optimized in different ways: operations in GT are a lot more costly
than operations in G1, so one should postpone the pairing computations as much as possible to do exponentiations
in G1. It also verifies the validity of all C ′ω,k,i, whereas it is sufficient to verify only C ′ω,k,i for one k for each ω, i,
or simply to verify the validity of the original commitments. If one wants to reduce the communication cost one can
straightforwardly adapt the previous techniques on multi-exponentiations where we reuse randomness.

Extension to quadratic equations. We would like to be able to do SPHF for system of quadratic pairing product
equations of this form:

∏
i∈I1,1

e(Y1,i, A2,1,i)×
∏
i∈I2,1

e(A1,1,i, Y2,i)×
∏
i∈I3,1

∏
j∈I4,1

e(Y1,i, Y2,j)
a1,i ×

∏
i∈IT,i

Zb1,ii = B1

...∏
i∈I1,t

e(Y1,i, A2,t,i) ×
∏
i∈I2,t

e(A1,t,i, Y2,i) ×
∏
i∈I3,t

∏
j∈I4,t

e(Y1,i, Y2,j)
at,i ×

∏
i∈IT,i

Zbt,ii = Bt

(4.1)

(4.t)

which is a slight generalization of Groth-Sahai pairing product equations where elements of GT can also be unknown.
Unfortunately, we have not found a way to do directly such an SPHF. However, if we accept to slightly change the

languages, we can do quadratic equations. The idea is the following: a word in the language is no more just the list of
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commitments (Cω,i) but it is this list together with commitments C ′′i,j of Y ′′i,j = Y
r1,i
2,j . And we can linearize the system

of equations to:

e(u1,i, Y2,j) = e(g1,1, Y
′′
2,j) (6)

for any i, j and

∏
i∈I1,1

e(Y1,i, A2,1,i)×
∏
i∈I2,1

e(A1,1,i, Y2,i)×
∏
i∈I3,1

∏
j∈I4,1

(
e(e1,i, Y2,j)

a1,ie(h1, Y
′′
i,j)
−a1,i

)
×
∏
i∈IT,i

Zb1,ii = B1

...∏
i∈I1,t

e(Y1,i, A2,t,i) ×
∏
i∈I2,t

e(A1,t,i, Y2,i) ×
∏
i∈I3,t

∏
j∈I4,t

(
e(e1,i, Y2,j)

at,ie(h1, Y
′′
i,j)
−at,i

)
×
∏
i∈IT,i

Zbt,ii = Bt

(6.1)

(6.t)

The first equations (6) are used to ensure Y ′′i,j = Y
r1,i
2,j . And, when Equations (6.1), . . . , (6.t) are verified, then Equations

(4.1), . . . , (4.t) are verified because:

e(e1,i, Y2,j)
ak,ie(h1, Y

′′
i,j)
−ak,i = e(Y1,i · hr1,i , Y2,j)ak,ie(h1, Y

r1,i
2,j )−ak,i

= e(Y1,i, Y2,j)
a1,ie(h, Y2,j)

r1,iak,ie(h, Y2,j)
−r1,iak,i = e(Y1,i, Y2,j).

C Proof of Theorem 9

This proof follows the one from [KV11]. It starts from the real attack game, in a Game 0: Adv0(A) = ε. We incremen-
tally modify the simulation to make possible the trivial attacks only. In the first games, all the honest players have their
own values, and the simulator knows and can use them. Following [KV11], we can assume that there are two kinds
of Send-queries: Send0(U, s, U ′)-queries where the adversary asks the instance Πs

U to initiate an execution with an
instance of U ′. It is answered by the flow U ′ should send to communicate with U ; Send1(U, s,m)-queries where the
adversary sends the message m to the instance Πs

U . It gives no answer back, but defines the session key, for possible
later Reveal or Test-queries.

C.1 Game 1

We first modify the way Execute-queries are answered: we replace C and C ′ by encryptions of a fixed message M0 =
(aux,W ) such that W is not in the induced language. Since the hashing keys are known, the common session key is
computed as

sk = Hash(hk, aux , C ′)× Hash(hk′, aux ′, C).

Since we could have first modified the way to compute sk, that has no impact at all from the soundness of the SPHF, the
unique difference comes from the different ciphertexts. This is anyway indistinguishable under the IND− CPA property
of the encryption scheme, for each Execute-query. Using a classical hybrid technique, one thus gets |Adv1(A) −
Adv0(A)| ≤ negl().

C.2 Game 2

We modify again the way Execute-queries are answered: we replace the common session key by a truly random value.
Since the languages are not satisfied, the smoothness guarantees indistinguishability: |Adv2(A)− Adv1(A)| ≤ negl().
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C.3 Game 3

We now modify the way one answers the Send1-queries, by using a decryption oracle, or alternatively knowing the
decryption key. More precisely, when a message (hp, C) is sent, three cases can appear:

– it has been generated (altered) by the adversary, then one first decrypts the ciphertext to get aux = (priv, priv ′) and
W used by the adversary. Then
• if they are consistent with the receiver’s values —event Ev— one declares that A succeeds (saying that b′ = b)

and terminates the game;
• if they are not consistent with the receiver’s values, one chooses sk at random.

– it is a replay of a previous flow sent by the simulator, then, in particular, one knows the hashing keys, and one can
compute the session keys using all the hashing keys.

The first case can only increase the advantage of the adversary in case Ev happens (which probability is computed in
Game 5). The second change is indistinguishable under the adaptive-smoothness and thus only increases the advan-
tage of the adversary by a negligible term. The third change does not affect the way the key is computed, so finally:
Adv2(A) ≤ Adv3(A) + negl().

C.4 Game 4

We modify again the way one answers the Send1-queries. More precisely, when a message (hp, C) is sent, two cases
can appear:

– if there is an instance Πt
U ′ partnered with Πs

U that receives this flow, then set the key identical to the key for Πt
U ′ ;

– otherwise, one chooses sk at random.

The former case remains identical since the message is a replay of a previous flow, and the latter is indistinguishable, as
in [KV11], thanks to the adaptive smoothness and their technical lemma that proves that all the hash values are random
looking even when hashing keys and ciphertexts are re-used: |Adv4(A)− Adv3(A)| ≤ negl().

C.5 Game 5

We now modify the way one answers the Send0-queries: instead of committing the correct values, one does as in Game
1 for Execute-queries, and commits M0. Since for simulating the Send1-queries decryptions are required, indistin-
guishability relies on the IND− CCA security of the encryption scheme: |Adv5(A)− Adv4(A)| ≤ negl().

C.6 Game 6

For all the hashing and projection keys, we now use the dummy private inputs. Since we consider we have a type
II KV−SPHF, the distributions of these keys are (at least computationally) independent of the auxiliary inputs:
|Adv6(A)− Adv5(A)| ≤ negl().

If one combines all the relations, one gets Adv6(A) ≥ Adv0(A)− negl() = ε− negl().
One can note that in this final game, the values of the honest players are not used anymore during the simulation,

but just for declaring whether the adversary has won or not (event Ev). Otherwise, non-partnered players have random
and independent keys, and thus unless the simulator stops the simulation, the advantage in the last game is exactly 0:
Adv6(A) = Pr[Ev]. And thus, we have ε ≤ Pr[Ev] + negl().

Let us recall that Ev means that the adversary has committed aux = (pub, priv, priv ′) and W that are consistent
with the receiver’s values. Since the values for the honest players are never used during the simulation, we can assume
we choose them at the very end only to check whether event Ev happened:

Pr[Ev] = Pr[∃k : aux(k) = auxik = (pub, privik , priv
′
ik
),W (k) ∈ Lauxik

]
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where k lists all the Send1-queries with adversary-generated messages and ik is the index of the recipient of k-th
Send1-query: it has first to guess the private values, and then once it has guessed them it has to find a word in the
language:

Pr[Ev] ≤ qs
2m
× SuccL(t),

where m is the minimal min-entropy on the joint distributions of the (priv, priv ′) for any two players U,U ′ who want
to communicate, and SuccL(t) is the best success an adversary can get in finding a word in a language Laux. Then, by
combining all the inequalities, one gets

ε ≤ qs
2m
× SuccL(t) + negl().

D Efficient Instantiation of the One-Round UC PAKE of Katz-Vaikuntanathan

In this section, we show a fairly efficient instantiation of the one-round UC PAKE proposed by Katz-Vaikuntanathan
in [KV11] (denoted KV-UC-PAKE in the sequel). This instantiation is several hundreds times more efficient than a
naive instantiation of their scheme. Since this is not the main purpose of our article, we do not recall precisely the UC
model nor the definitions of the primitives we use, and we report the reader to [KV11].

D.1 Recall of the Scheme

The KV-UC-PAKE is an extension of the one-round PAKE described in Section 2.5. In addition the projection key
hp and the commitment C, each user also sends a simulation-sound extractable non-interactive zero-knowledge proof
(SSENIZK) that he knows the secret key hk. Actually, in [KV11], Katz-Vaikuntanathan commit the hashing key hk
and do a simulation-sound non-interactive zero-knowledge proof (SSNIZK) that they really have committed a valid
hashing key hk corresponding to hp.But, since the SSNIZK they use (and we use) are also extractable, the commitment
of hk is actually useless.

As in [KV11], we suppose we have a commitment scheme (Setup,Commit,Decommit) and an associated type III
KV-SPHF for the language:

Lpw = {(`, C) | ∃r, C = Commit(`, pw; r)}

Let us consider a SSENIZK for the following NP language:

L∗ = {hp | ∃hk, hp = ProjKG(hk,⊥,W )}.

Let σ be a common reference string for this SSENIZK, and Prove, Ver and Ext be three polynomial algorithms such
that: Prove(σ, hp, hk) returns a proof π that hp is in L, Ver(σ, hp, π) returns 1 if and only if the proof π is correct and
Ext(σ, τ, hp, π) extracts a hashing key hk corresponding to hp from the proof π using a trapdoor τ (in σ).

D.2 Naive Instantiation

In [KV11], Katz-Vaikuntanathan suggest to use a double ElGamal encryption plus an SSNIZK for the commitment
scheme and to use Groth-Sahai methodology [GS08] to construct an SSENIZK for L∗. We can obviously improve this
instantiation by using the commitment scheme and its associated SPHF we proposed in Section 2.5. But in both cases,
the SSENIZK need to be done by considering hk as a bit-string and committing each bit of hk separately, because hk
is a tuple of scalars and not a tuple of group elements.

Therefore, if hk contains k scalars (k = 4 with commitments and SPHF of Katz-Vaikuntanathan and k = 6 with
our commitments and SPHF), with Groth-Sahai methodology, we need at least k × 512-group elements just for the
commitments of the bits of hk (with 128-bit security and so 256-bit scalars) !
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CRS: σ = (p,G1,G2,GT , e, g1, g2, c, d, h, g′,HK)
Common password: pw

User U User U ′

hk = (η1, η2, θ, λ, µ)
$← Z5

p. hk′ = (η′1, η
′
2, θ
′, λ′, µ′)

$← Z5
p

hp = (hp1 = gη11 gθ2h
λcµ, hp2 = gη21 dµ) hp′ = (hp′1 = g

η′1
1 gθ

′
2 h

λ′
cµ

′
, hp′2 = g

η′2
1 dµ

′
)

π = Prove(σ, hp, (g′
η1 , g′

η2 , g′
θ
, g′

λ
, g′

µ
)) π′ = Prove(σ, hp, (g′

η′1 , g′
η′2 , g′

θ′
, g′

λ′
, g′

µ′
))

` = (U,U ′, hp, π) `′ = (U ′, U, hp′, π′)

C = (`,u = (gr1 , g
r
2), e = G(pw) · hr, v = (cdξ)r) C′ = (`′,u′ = (gr

′
1 , g

r′
2 ), e′ = G(pw) · hr

′
, v′ = (cdξ

′
)r

′
)

where ξ = HK(`,u, e) where ξ′ = HK(`′,u′, e′)

hp′ ∈ G2
1, C

′ ∈ G4
1, π
′

←−−−−−−−−−−→
hp ∈ G2

1, C ∈ G4
1, π

`′ = (U ′, U, hp′, π′) ξ′ = HK(`′,u′, e′) ` = (U,U ′, hp, π) ξ = HK(`,u, e)
IF Ver(σ, hp′, π′) = 0 ABORT IF Ver(σ, hp, π) = 0 ABORT

skU = u′1
(η1+ξ

′η2)u′2
θ
(e′/G(pw))λv′µ × (hp′1hp

′
2
ξ
)r skU′ = u

(η′1+ξη
′
2)

1 uθ
′

2 (e/G(pw))λ
′
vµ

′
× (hp1hp2

ξ′)r
′

Fig. 3. KV-UC-PAKE based on SXDH with efficient SSENIZK

D.3 Efficient Instantiation

In this section, we show that, if we slightly tweak the SPHF, we can do a SSENIZK on group elements, which signifi-
cantly reduces its cost.

Let us consider a bilinear group (p,G1,G2,GT ). We do all commitments in G1, using a CS commitment as before.
But we use the following SPHF: the hashing key still consists of a random tuple hk = (η1, η2, θ, λ, µ)

$← Z5
p and the

associated projection key is the same as before: hp = (hp1 = gη11 g
θ
2h

λcµ, hp2 = gη21 d
µ) ∈ Gp

1. But the hash value is
now:

H def= Hash(hk, Lm, C)
def= e

(
u
(η1+ξη2)
1 uθ2(e/M)λvµ, g2

)
= e

(
(hp1hp

ξ
2)
r, g2

)
def= ProjHash(hp, Lm, C, r)

def= H ′,

with g′ a generator of G2. It is clear that this new SPHF is also a perfectly smooth type III KV−SPHF.
The idea is that we can compute H in a third way:

H = e(u1, H1) e(u1, H2)
ξ e(u2, Θ) e(e/M,Λ) e(v, Γ )

withH1 = g′η1 ,H2 = g′η2 ,Θ = g′θ,Λ = g′λ, Γ = g′µ. Contrary to the formula using hp (corresponding to ProjHash),
we can compute H for any C (even if C is invalid or corresponds to a commitment of a value different from M );
and contrary to the formula using hk (corresponding Hash), we need to know five group elements (H1, H2, Θ, Λ, Γ )
instead of five scalars. Therefore, using this trick, we can use a SSENIZK for the language L∗ defined as the set of
hp = (hp1, hp2) such that:

∃(H1, H2, Θ, Λ, Γ ) ∈ G5
2, e(hp1, g

′) = e(g1, H1) e(g2, Θ) e(h,Λ) e(c, Γ ) and e(hp2, g
′) = e(g1, H2) e(d, Γ ).

It is easy to see that if (H1, H2, Θ, Λ, Γ ) is a valid witness, there exists hk = (η1, η2, θ, λ, µ) ∈ Z5 such thatH1 = g′η1 ,
H2 = g′η2 , Θ = g′θ, Λ = g′λ, Γ = g′µ. Since witnesses is a tuple of 5 elements, the associated SSENIZK is a lot more
efficient, and the whole construction would require 8 group elements in G1, 14 in G2 and 4 in Zp. A similar instantiation
in a symmetric group would require around 39 group elements to be compared with the 60 required by [JR12]. In both
cases we are roughly 33% more efficient than the best current instantiation. The protocol is depicted in Figure 3.
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Smooth Projective Hash Cheat Sheet

Simplistic Vision of SPHF

Given a word W ∈ X a projection key hp generated honestly from hk, one should have:

If one possesses a witness w that W ∈ L ⊂ X , ProjHash(hp,W ;w) = Hash(hk,W ),
If L is a hard-subset from X , then without w, H is computationally-indistinguishable from a random value,
If W 6∈ L, H is indistinguishable from a random value.

Different kinds of SPHF

hp sent before W hp depends on W

KV−SPHF X ⊥
CS−SPHF ⊥ ⊥
GL−SPHF ⊥ X

There is a trade-off between when hp has to be
generated and its size.
A KV-SPHF is a CS-SPHF, and a CS-SPHF is a
GL-SPHF.

Fig. 4. The three historic kinds of SPHF

Projection Key

Type I Language-Dependent
Type II Language-Indistinguishable
Type III Language-Independent

One can expect smaller type to allow more effi-
cient instantiation.
Of course a Type III SPHF is also Type II, and a
type II is also Type I.

Fig. 5. A different classification based on the link between the Projection Key and the Language

Manageable Languages

One can always proceed to conjunctions of languages. Disjunctions can also be done but they may require some extra
work especially in the KV/CS setting.

Without Pairings:
– El-Gamal / Linear Encryption
– (Linear) Cramer-Shoup
– Linear Multi-Exponentiation equation (where the variables are the group elements)

With Pairings:
– Linear Pairing Equation (possibly with variables in GT )
– Quadratic Pairing Equation (possibly with variables in GT )

Interactive Protocols
– PAKE: pub = ∅, priv = priv =W =W ′,
– Secret Handshake: pub = (id, id′), priv = priv = vk,
– Anonymous Secret Handshake: priv = (vk, id), priv = (vk, id′),
– LAKE: pub, priv, priv .

27


