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Abstract. Recently, a few CCA2-secure (IND-CCA2) variant of the
McEliece cryptosystem in the standard model were introduced. All these
schemes are based on Rosrn-Segev approach and lossy trapdoor function
and utilize k-repetition paradigm. The main drawback of these schemes is
that they are need additional encryption and have large key size compared
to the original scheme, which intricate the public-key size problem in
the code-based cryptosystem. Furthermore, full CCA2-security of these
schemes achieved by using a strongly unforgeable one-time signature
scheme, and so, the resulting scheme need separate encryption. Therefore,
the proposed schemes are not efficient.

In this manuscript, we propose a new and efficient IND-CCA2 variant of
the McEliece cryptosystem in the standard model. The main novelty is
that, unlike previous approaches, our approach is a generic transforma-
tion and can be applied to any code-based one-way cryptosystem (both
the McEliece and the Niederreiter cryptosystems). Our approach also
leads to the elimination of the encryption repetition and using strongly
unforgeable one-time signature scheme. This novel approach is more
efficient, the publick/secret keys are as in the original scheme and the
encryption/decryption complexity are comparable to the original scheme.
CCA2-security of the proposed scheme can be reduced in the standard
model to the McEliece assumptions. To the best of our knowledge, this
is the first variant of the code-based cryptosystem that is IND-CCA2 in
the standard model without using k-repetition paradigm and strongly
unforgeable one-time signature scheme.

Keywords: Post-quantum cryptography, McEliece cryptosystem, IND-CCA2,
Permutation algorithm, Standard model.

1 Introduction

Post-quantum cryptography (PQC) has obtained great attention in recent years.
Code-based cryptography hold a great promise for post-quantum cryptography,
as they enjoy very strong security proofs based on average-case hardness [21],



relatively fast and efficient encryption/decryption nature, as well as great simplic-
ity. In code-based cryptography, there are two well-known public key encryption
schemes, namely McEliece [12] and Niederreiter [14] cryptosystems. McEliece
cryptosystem was the first public key encryption scheme based on linear error-
correcting codes. It has a very fast and efficient encryption procedure, but it has
one big flaw: the size of the public-key. Recently, how to reduce the public-key
size and how to secure the parameter choice in code-based cryptography are
deeply explored [2,3,4,8,13].

The semantic security (a.k.a indistinguishability) against adaptive chosen cipher-
text attacks (IND-CCA2) is the strongest known notion of security for the public
key encryption schemes was introduced by Rackoff and Simon [19]. It is possible
to produce IND-CCA2 variants of the code-based cryptosystem in the random
oracle model [5,10,11], however, CCA2-security in the standard model has not
been widely discussed. To the best of our knowledge, only a few papers have
touched this research issue.

1.1 Related work

There are two approach for constructing code-based cryptosystems in the standard
model.

– Syndrome decoding. This construction was presented by Freeman et al. [9], and
used Rosen-Segev approach [20] to introduce a correlation-secure trapdoor
function related to the hardness of syndrome decoding. Their construction
is based on Niederreiter cryptosystem. Because McEliece cryptosystem has
some special structure, some general IND-CCA2 conversions such as Rosen-
Segev approach cannot be applied to the McEliece cryptosystem and it is
not correlation-secure. Recently, Preetha Mathew et al. [18] proposed an
efficient variant of the Niederreiter scheme based on lossy trapdoor function
[16], which avoids the k-repetition paradigm. Their idea is similar to Agrawal
et. al. [1] approach for simulation of the key-extraction phase in their proof
of CPA-security of a (H)IBE in the standard model. But the details and
computations are entirely different from [1] .

– k-repetition PKE. The first IND-CCA2 variant of the McEliece cryptosystem
was introduced by Dowsley et al. [6]. They propose a scheme that resembles
the Rosen-Segev protocol trying to apply it to the McEliece cryptosystem.
This scheme has some ambiguity. The scheme does not rely on a collection
of functions but instead defines a structure called k-repetition public-key
encryption (PKEk) scheme. This is essentially an application of k-samples of
the PKE to the same input, in which the decryption algorithm also includes a
verification step on the k outputs. The encryption step produces a signature
directly on the McEliece ciphertexts instead of introducing a random vector x
as in the original Rosen-Segev scheme; therefore an IND-CPA secure variant of
McEliece’s cryptosystem is necessary to achieve CCA2-security [17]. Recently,



inspired by the Rosen-Segev approach, Döttling et al. [7] showed that Nojima
et al. [15] randomized version of the McEliece cryptosystem is k-repetition
CPA-secure, so, it can obtain CCA2-security in the standard model by using
a strongly unforgeable one-time signature scheme.

Cryptosystems based on Rosen-Segev approach are less efficient. These schemes
for encrypt one bit message1 need to execute the original encryption algorithm
k-times in the encryption phase, and t-times (t < k) in the decryption phase.
However, the Döttling et al.’s scheme encrypts many bits as opposed to the
single-bit PKE obtained from Rosen-Segev approach. The public/secret keys are
2k-times larger than the public/secret keys of the original scheme. All the above
schemes also use generic transformation such as strongly unforgeable one-time
signature scheme to handle CCA2-security related issues. So, the proposed scheme
needs separate encryptions. On the other hand, all the concrete constructions of
lossy trapdoor and correlated inputs functions are based on decisional assumptions.
It is widely believed that computational assumptions are more standard than
their decisional versions.

1.2 Motivation

To date, the existing variants of the code-based cryptosystems (either McEliece
or Niederreiter) which are IND-CCA2 in the standard model are based on
decisional assumptions such as correlated inputs and lossy trapdoor functions,
and utilize k-repetition paradigm. In such cryptosystems, the keys are 2k-times
larger than the keys of the original scheme, which intricate the public-key size
problem, and a message must be encrypted k-times, so, these schemes lead to
extremely large key size, ciphertext size, and thus incurring a huge encrypting cost.
Although the Preetha Mathew et al. scheme [18] avoids k-repetitions, but the
encryption/decryption algorithms must be executed 2-times and the public/secret
keys are larger than the original Niederreiter scheme. In addition, it yet uses a
strongly unforgeable one-time signature scheme to achieve CCA2-security and
needs separate encryption. Therefore, how to design an efficient IND-CCA2
code-based cryptosystem in the standard model is still worth of investigation.
Less efficiency and impracticality of the proposed IND-CCA2 code-based schemes
in the standard model motivate us to investigate new approach for constructing
efficient such schemes in the standard model based on computational assumptions.

1.3 Our Contributions

To tackle the challenging issues were mentioned in the previous subsection,
we introduce a randomized variant of the McEliece cryptosystem and proof

1 As in [20] we can assume m to be a single bit message, in which case that the scheme
describe a hard-core predicate for the McEliece scheme, the protocol easily can be
extend to multiple bits plaintexts.



its security in the standard model based on the McEliece assumptions. Our
contributions in this paper are:

– Our approach is a generic pre-coding based algorithm. The main novelty
is that our approach can be applied to any cod-based trapdoor one-way
cryptosystems.

– This novel approach, for the first time, leads to the elimination of the
encryption repetition and using strongly unforgeable one-time signature
schemes in the IND-CCA2 variant of the code-based cryptosystems.

– Our proposed scheme is more efficient, the publick/secret keys are as in the
original scheme and the encryption/decryption complexity are comparable
to the original scheme.

– Our CCA2-security proof is based on the assumption that the underlying
primitive is a trapdoor one-way function. So, the scheme’s consistency check
can be directly implemented by the simulator without having access to some
external gap-oracle as in previous schemes [5,6,7,9,11,18]. Thus, our proof
technique is fundamentally different from all known approaches to obtain
CCA2-security in the code-based cryptosystems.

– Unlike previous schemes, our scheme is based on computational assumptions
(i.e. the McEliece assumptions) that is widely believed more standard than
their decisional versions.

The paper is organized as follows: in the next section, we briefly explain some
mathematical background and definitions. Then, in Section 3, we introduce our
proposed scheme. Security and performance analysis of this cryptosystem will be
discussed in Section 4. We conclude in Section 5.

2 Preliminary

2.1 Notation

We will use standard notation. If x is a string, then |x| denotes its length and

Lsba(x) means the right a bits of x. If k ∈ N then {0, 1}k denote the set of k -bit
strings, 1k denote a string of k ones and {0, 1}∗ denote the set of bit strings
of finite length. y ← x denotes the assignment to y of the value x. For a set S,
s ← S denote the assignment to s of a uniformly random element of S. For a
deterministic algorithm A, we write x ← AO(y, z) to mean that x is assigned
the output of running A on inputs y and z, with access to oracle O. If A is a
probabilistic algorithm, we may write x← AO(y, z, R) to mean the output of A
when run on inputs y and z with oracle access to O and using the random coins
R. If we do not specify R then we implicitly assume that the coins are selected
uniformly at random from {0, 1}∞. This is denoted x← AO(y, z). We denote



by Pr[E] the probability that the event E occurs. If a and b are two strings of
bits, we denote by a‖b their concatenation.

Since the proposed cryptosystem is code-based, a few notations regarding coding
theory are introduced. Let F2 be the finite field with 2 elements {0, 1}, k ∈ N
be a security parameter. A binary linear-error correcting code C of length n and
dimension k or an [n, k]-code is a k-dimensional subspace of Fn

2 . Elements of
Fn

2 are called words, and elements of C are called codewords. If the minimum
hamming distance between any two codewords is d, then the code is a [n, k, d]
code. The Hamming weight of a codeword x, wt(x), is the number of non-zero
bits in the codeword. For t ≤ bd−1

2 c, the code is said to be t-error correcting if
it detects and corrects errors of weight at most t. Hence, the code can also be
represented as a [n, k, 2t + 1] code. The generator matrix G ∈ Fk×n

2 of a [n, k]
linear code C is a matrix of rank k whose rows span the code C.

2.2 Definitions

Definition 1 (General Decoding Problem). Given a generator matrix G ∈
Fk×n

2 and a word m ∈ Fn
2 , find a codeword c ∈ Fk

2 such that e = m − cG has
Hamming weight w(e) ≤ t .
Definition 2 (General Decoding Assumption). Let C be an [n, k, d]-binary
linear code defined by a k × n generator matrix G with the minimal distance d,
and t ≤ bd−1

2 c. An adversary A that takes an input of a word m ∈ Fn
2 , returns

a codeword c ∈ Fk
2. We consider the following random experiment on GDP

problem.

Experiment ExpGDP
A

c ∈ Fk
2 ← A(G,m ∈ Fn

2 )
if x = m− cG and wt(x) ≤ t

then b← 1 else b← 0

return b.

We define the corresponding success probability of A in solving the GDP problem
via

SuccGDP
A = Pr[ExpGDP

A = 1].

Let τ ∈ N and ε ∈ [0, 1]. We call GDP to be (τ, ε)-secure if no polynomial
algorithm A running in time τ has success SuccGDP

A ≥ ε.

A public-key can be defined as follows.
Definition 3 (Public-key encryption). A public-key encryption scheme (PKE)
is a triple of probabilistic polynomial time (PPT) algorithms (Gen, Enc, Dec) such
that:

– Gen is a probabilistic polynomial time key generation algorithm which takes a
security parameter 1n as input and outputs a public key pk and a secret-key



sk. We write (pk, sk)← Gen(1n). The public key specifies the message space
M and the ciphertext space C.

– Enc is a (possibly) probabilistic polynomial time encryption algorithm which
takes as input a public key pk, a m ∈ M and random coins r, and outputs
a ciphertext C ∈ C. We write Enc(pk,m; r) to indicate explicitly that the
random coins r is used and Enc(pk,m) if fresh random coins are used.

– Dec is a deterministic polynomial time decryption algorithm which takes as
input a secret-key sk and a ciphertext C ∈ C, and outputs either a message
m ∈M or an error symbol ⊥. We write m← Dec(C, sk).

– (Completeness) For any pair of public and secret-keys generated by Gen
and any message m ∈ M it holds that Dec(sk, Enc(pk,m; r)) = m with
overwhelming probability over the randomness used by Gen and the random
coins r used by Enc.

Definition 4 (CCA2-security). A public-key encryption scheme PKE is secure
against adaptive chosen-ciphertext attacks (i.e. IND-CCA2) if the advantage of
any two-stage PPT adversary A = (A1, A2) in the following experiment is
negligible in the security parameter k:

Expcca2
PKE,A(k):

(pk, sk)← Gen(1k)

(m0,m1, state)← ADec(sk,.)
1 (pk) s.t. |m0| = |m1|

b← {0, 1}

C∗ ← Enc(pk,mb)

b′ ← ADec(sk,.)
2 (C∗, state)

if b = b
′

return 1, else return 0.

The attacker may query a decryption oracle with a ciphertext C at any point dur-
ing its execution, with the exception that A2 is not allowed to query Dec(sk, .) with

”challenge” ciphertext C∗. The decryption oracle returns b
′ ← ADec(sk, .)

2 (C∗, state).
The attacker wins the game if b = b′ and the probability of this event is defined
as Pr[Exp cca2

PKE,A (k)]. We define the advantage of A in the experiment as

AdvIND−CCA2
PKE,A (k) =

∣∣∣∣Pr[Expcca2
PKE,A (k) = 1]− 1

2

∣∣∣∣ . (1)

2.3 McEliece cryptosystem

The McEliece PKE consists of a triplet of probabilistic polynomial time algorithms
(GenMcE,EncMcE,DecMcE).

System parameters. q, n, t ∈ N, where t� n.



Key Generation. GenMcE take as input security parameter 1k and generate
the following matrices:

– A k × n generator matrix G of a code G over Fq of dimension k and
minimum distance d ≥ 2t+ 1. (A binary irreducible Goppa code in the
original proposal).

– A k × k random binary non-singular matrix S

– A n× n random permutation matrix P.

Then, Gen compute the k × n matrix Gpub = SGP and outputs a public key
pk and a secret key sk, where

pk = (Gpub, t) and pk = (S, DG ,P)

where DG is an efficient decoding algorithm for G.

Encryption. EncMcE(pk) takes plaintext m ∈ Fk
2 as input and randomly choose

a vector e ∈ Fn
2 wit Hamming weight wt(e) = t and computes the ciphertext

c as follows.
c = mGpub ⊕ e.

Decryption. To decrypt a ciphertext c, DecMcE(sk, c) first calculates

cP−1 = (mS)G⊕ eP−1

and then apply the decoding algorithm DG to it. If the decoding succeeds,
output

m = (mS)S−1.

Otherwise, output ⊥.

There are two computational assumptions underlying the security of the McEliece
scheme.
Assumption 1 (Indistinguishability). The matrix G output by Gen is com-
putationally indistinguishable from a uniformly chosen matrix of the same size.
Assumption 2 (Decoding hardness). Decoding a random linear code with
parameters n, k, w is hard.
Note that Assumption 2 is in fact equivalent to assuming the hardness of GDP.
It is immediately clear that the following corollary is true.
Corollary 1. Given that both the above assumptions hold, the McEliece cryp-
tosystem is one-way secure under passive attacks.

3 The proposed cryptosystem

In this section, we introduce our proposed encryption scheme. Our scheme is an
efficient heuristic randomized pre-coding based algorithm and can be applied to



any code-based trapdoor one-way cryptosystem such as McEliece, Niederreiter and
so on. This algorithm uses a random binary string (RBS) for encoding the message
to be sent. Encoding includes a permutation and combination on the message
bits and performs with an algorithm called permutation combination algorithm
(PCA). Here, we illustrate our approach based on the McEliece cryptosystem.

3.1 Permutation combination algorithm

Suppose we decide to encrypt message m ∈ {0, 1}n. For perform a random
encoding to the message bits, we uniformly choose a random binary vector
x = (x1, . . . , xn) with Hamming weight wt(x) = h such that n/h is an integer.
We can divide m into h blocks m = (b1‖b2‖ . . . ‖bh) with equal binary length
v = n/h. Then, we perform a random permutation on the message blocks
bi, 1 ≤ i ≤ h with the following algorithm.

Notice that for any integer s, 1 ≤ s ≤ h!− 1, s can be written as

s =

h∑
i=1

ui (h− i)! 0 ≤ ui ≤ h− 1.

The sequence {u1, . . . , uh} is called factorial carry value of s. Define original
sequence m0 as m0 = (b1, b2, . . . , bh). Recombine all the elements of the original
sequence m0 obtain h!− 1 sequences m1, . . . ,m(h!−1) , which any sequence owns
a corresponding factorial carry value. Using the factorial carry value, we can
efficiently obtain any sequence ms, 1 ≤ s ≤ h!− 1 using the following algorithm.

Algorithm 2: Permutation Combination Algorithm (PCA).
Input: Message m0 = (b1, . . . , bh) and a random integer s, 1 ≤ s ≤ h! − 1.
Output: Encoded message m′ = ms = (b

′

1, . . . , b
′

h).

1. Write s as s =
∑h

i=1 ui (h− i)! 0 ≤ ui ≤ h− 1.

2. For 1 ≤ i ≤ h

– if ui = 0,

d
′

i ← di;

– else

d
′

i ← di+ui ,

for 1 ≤ j ≤ ui,

d
′

i+j ← di;

3. Return ms = (b
′

1, . . . , b
′

h).

We remark that based on random binary string x, the number of the message
blocks and the length of them can be variable and changed by x.



We illustrate the PCA algorithm with a small example. Suppose m =
(m1, . . . ,m112) and x = (x1, . . . , x112) with wt(x) = h =

∑112
i=1 xi = 8. Since

h = 8, the algorithm divides m into 8 blocks with equal length v = n/h =
112/8 = 14. So, we have m0 = (m1, ..., m14︸ ︷︷ ︸

b1

‖m15, . . . ,m28︸ ︷︷ ︸
b2

‖... ‖m98, . . . ,m112︸ ︷︷ ︸
b8

).

We choose random integer s, 1 ≤ s ≤ 8!− 1, say s = 2000. We have

2000 = 0× 8! + 0× 7! + 2× 6! + 4× 5! + 3× 4! + 1× 3! + 1× 2! + 0× 1!

Thus, the factorial carry value of D2000 is {0, 0, 2, 4, 3, 1, 1, 0}. Compute sequence
D2000 with its factorial carry value {0, 0, 2, 4, 3, 1, 1, 0}.
0−−{b1, b2, b3, b4, b5, b6, b7, b8} → b1
0−−{b2, b3, b4, b5, b6, b7, b8} → b2
2−−{b3, b4, b5, b6, b7, b8} → b5
4−−{b3, b4, b6, b7, b8} → b8
3−−{b3, b4, b6, b7} → b7
1−−{b3, b4, b6} → b4
1−−{b3, b6} → b6
0−−{b3} → b3
The permutation of sequence D2000 is (b1‖b2‖b5‖b8‖b7‖b4‖b6‖b3).

3.2 The proposed scheme

Now, we are ready to define our proposed scheme Π = (Gen,Enc,Dec).

Key Generation. Let GenMcE be the McEliece system generator. On security
parameter 1k, the generator Gen runs GenMcE(1k) to obtain

sk = skMcE and pk = pkMcE.

Encryption. To encrypt message m ∈ {0, 1}k, Enc(pk):

– Choose uniformly random binary string x = (x1, . . . , xk) with 2 < wt(x) =
hx < (k − 2) such that v = k/hx is an integer.

– Set s = hx · bhxc!− 12 and execute PCA algorithm (3.1) for generate encoded
message m′ = ms = (b

′

1‖b
′

2‖ . . . ‖b
′

hx
) from message m.

– Set m
′′ ← Lsbdk/2e (m

′
) and compute wt(m

′′
) = hm′′ .

– Suppose x be the corresponding decimal value of x. Compute:

C1 = x · hm′′ , C2 = EncMcE(m′, pk)

Decryption. Dec for retrieve message m from C = (C1, C2), performs the
following steps:

2 For perform a complete permutation, we can choose the value of s close to the value
of hx!− 1. Here, we choose an arbitrary value of s to hx · bhxc!− 1.



– Computes encoded message m′ as m′ = DecMcE(C2, sk).

– Set m
′′ ← Lsbdk/2e (m

′
) and compute wt(m

′′
) = hm′′

– Computes x = C1/hm′′ , and reject the ciphertext if x is not an integer.
otherwise, checks whether

k
?
= blog2(x)c+ 1 (2)

holds, and rejects if not (consistency check). If (2) holds, Computes hx =
wt(x), s = hx · bhxc!− 1 and v = k/hx.

– The length of the message blocks, v, and the value of permutation factor s
are explicit, so, Dec can extract message blocks bi, 1 ≤ i ≤ hx from encoded
message m′ via a reverse permutation.

4 Security proof

In this section, we proof the CCA2-security of the proposed cryptosystem built
using a pre-coding approach with the McEliece cryptosystem.
Theorem 1. : Suppose ΠMcE = (GenMcE,EncMcE,DecMcE) be a McEliece en-
cryption scheme. Then, the proposed scheme Π = (Gen,Enc,Dec) is IND-CCA2
in the standard model based on McEliece assumption.

Proof. Suppose that C∗ = (C∗1 , C
∗
2 ) be the challenge ciphertext. Let Si be the

event that the adversary A wins in Game i. Here is the sequence of games.

Game 0. We define Game 0 which is an interactive computation between an
adversary A and a simulator. This game is usual CCA2 game used to define
CCA2-security, in which the simulator provides the adversary’s environment.
Initially, the simulator runs the key generation algorithm and gives the public-key
to the adversary. The adversary submits two messages m0,m1 with |m0| = |m1|
to the simulator. The simulator chooses b ∈ {0, 1} at random, and encrypts mb,
obtaining the challenge ciphertext C∗ = (C∗1 , C

∗
2 ). The simulator gives C∗ to the

adversary. We denote by x∗, hx∗ = wt(x∗), v∗ = k/hx∗ , s
∗ = hx∗ · bhx∗/2c!− 1,

m′∗ = ms∗ , m
′′∗ = Lsbdk/2e (m′∗) and hm′′∗ = wt(m′′∗) the corresponding inter-

mediate quantities computed by the encryption algorithm. The only restriction on
the adversary’s requests is that after it makes a challenge request, the subsequent
decryption requests must not be the same as the challenge ciphertext. At the
end of the game, the adversary A outputs b

′ ∈ {0, 1}. Let S0 be the event that
b
′

= b. Since Game 0 is identical to the CCA2 game we have that∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ = Advcca2
A,Π (k)

by definition and, our goal is to prove that this quantity is negligible.



Game 1. we define Game 1 as identical with Game 0, except that C1 = C∗1 and
hm′′ = hm′′∗ while C2 6= C∗2

3.

In this game, the adversary AG1 queries on input (C1 = C∗1 , hm′′ = hm′′∗)
while C2 6= C∗2 . In this case, the simulator computes m′ = DecMcE(C2) 6= m′∗,
x = C1/hm′′ = x∗ and v = v∗ and s = s∗. Although the blocks length v and
the permutation factor s are explicit, but since m′ 6= m′∗, thus the simulator’s
outputs is not identical to the mb. Therefore, if the McEliece cryptosystem is
secure, then the advantage of adversary AG1 in this game is negligible and we
have

|Pr[S1]− Pr[S0]| ≤ AdvMcE
AG1,Π(k) (3)

Game 2. Define Game 2 as identical with Game 1, except that hm′′ 6= hm′′∗ .

In this game, the adversary AG2 queries on input (C1 = C∗1 , C2 6= C∗2 ), hm′′ 6=
hm′′∗ . In this case, the simulator computes m′ = DecMcE(C2) 6= m′∗, x =
C1/hm′′ 6= x∗, hx 6= hx∗ , v 6= v∗ and s 6= s∗. Since m′ 6= m′∗, v 6= v∗ and s 6= s∗,
thus the simulator’s outputs is not identical to mb and so, the advantage of the
adversary AG2 in this game is negligible.

We notice that it is possible for x 6= x∗, hx = hx∗ . In this case we have v = v∗,
s = s∗ and m′ 6= m′∗. As we see in the previous game, since m′ 6= m′∗, the
simulator’s outputs is not identical to mb and so, the advantage of adversary
AG2 is negligible in this case. We have

|Pr[S2]− Pr[S1]| ≤ AdvMcE
AG2,Π(k) (4)

Game 3. Define Game 3 as identical with Game 0, except that (C2 = C∗2 ).

In this game, the adversary AG3 queries on input C = (C1 6= C∗1 , C2 = C∗2 ). The
simulator takes as input C1 6= C∗1 , C2 = C∗2 and computes m′ = DecMcE(C2) =
m′∗ and x = C1/hm′′∗ . If x is not a k-bit integer, then the simulator rejects C
in (2). Else, since C1 6= C∗1 , thus x 6= x∗ and so hx 6= hx∗ . We have v 6= v∗ and
s 6= s∗. Since the message blocks length v and the permutation factor s are not
explicit, thus the simulator’s outputs is not identical to mb and so, the advantage
of the adversary AG3 in this game is negligible. We have

|Pr[S3]− Pr[S0]| ≤ AdvAG3,Π(k) (5)

It is possible for x 6= x∗, hx = hx∗ . We discuss this special case in the following
lemma.
Lemma 1. There exists an efficient adversary AG′3 such that:

|Pr[S3]| = 1

2

3 It is possible for C2 6= C∗2 and therefore m′ 6= m′∗, m′′ and m′′∗ have the same
Hamming weight.



We can easily build an adversary AG′3 who aims to recover mb from Game 3.
In the worst-case, we can assume for x 6= x∗ we have hx = hx∗ . In this case,
the simulator runs on input C = (C1 6= C∗1 , C2 = C∗2 ), hx = hx∗ and computes
m′ = m′∗, x = C∗1/hm′′ , v = v∗ and s = s∗. If x is not a k-bit integer, then
the simulator rejects C in (2). Otherwise, the simulator return b

′
= b and the

adversary AG′3 wins the game.

There are exactly

(
k
hx∗

)
− 1 cases for x 6= x∗ such that hx = hx∗ and so for

C1 6= C∗1 . The probability of succeed AG′3 in this case is equal to

Pr[Exp
Dec(C,sk)=mb

AG′3,Π
(k) = 1] <

1(
k
hx∗

)
− 1

.

With 2 < hx < (k − 2), we have Pr[Exp
Dec(C,sk)=mb

AG′3,Π
(k) = 1] < 1/2. So, the

advantage of the adversary AG′3 is equal to 0, and we have

|Pr[S3]| = 1

2
(6)

Remark 1. From equation (1), we have

∣∣Pr[Exp cca2
A,Π (k) = 1]

∣∣ ≤ 1

2
+ AdvIND−CCA2

A,Π (k).

If the advantage of the adversaries A is equal to 0, then we have∣∣Pr[Exp cca2
A,Π (k) = 1]

∣∣ ≤ 1

2
.

Completing the Proof: We can write

| Pr[S0] |=| Pr[S0] + Pr[S0]− Pr[S0] + Pr[S1]− Pr[S1] + Pr[S2]− Pr[S2]

+ Pr[S3]− Pr[S3] |.
So we have
|Pr[S0]| ≤ |Pr[S3]|+ |Pr[S3]− Pr[S0]|+ |Pr[S2]− Pr[S0]|+ |Pr[S2]− Pr[S1]|

+ |Pr[S1]− Pr[S0]|.
We have

|Pr[S2]− Pr[S0]| ≤ |Pr[S2]− Pr[S1]|+ |Pr[S1]− Pr[S0]| . (7)

From equations (3, 4, 5, 6, 7) we have:

|Pr[S0]− 1/2| ≤ 2AdvMcE
AG1,Π(k) + 2AdvMcE

AG2,Π(k) + AdvAG3,Π(k).

By assumption, the right-hand side of the above equation is negligible, which
finishes the proof.



4.1 Performance analysis

The performance-related issues can be discussed with respect to the computa-
tional complexity of key generation, key sizes, encryption and decryption speed.
The resulting encryption scheme is very efficient. The time for computing encoded
message is negligible compared to the time for computing (EncMcE,DecMcE).
The public/secret keys are as in the original scheme, encryption roughly needs
one application of EncMcE together a multiplication, and decryption roughly
needs one application of DecMcE together a division. The comparison of the
proposed schemes with existing schemes are presented in table 2.

Table 2. Comparison with other code-based CCA-2 cryptosystems

Scheme Public-key Secret key Ciphertext Encryption Decryption
Size Complexity complexity

Dowsley 2k × pkMcE 2k × skMcE k × CiphMcE k × EncMcE+ 1VerOT −SS+
et al.[6] 1OT − SS 1× DecMcE+

t× EncMcE

Freeman 2k × pkNie 2k × skNie k × CiphNie k × EncNie+ 1VerOT −SS+
et al.[9] 1OT − SS 1× DecNie+

t× EncNie

Mathew 1 pkNie+ 2× skNie 2× CiphNie 2× EncNie+ 1VerOT −SS+
et al.[18] 1 (n× n) 1 MM+ 1× DecNie+

Matrix 1OT − SS 2× EncNie+
1 MM

Proposed 1 pkMcE 1 skMcE ≈ 1CiphMcE + k 1EncMcE+ 1DecMcE+

Scheme +blog2(hm′′)c PCA + 1P 1D + 1PCA−1

McE: McEliece cryptosystem, Nie: Niederreiter cryptosystem, Ciph: Ciphertext,
Ver: Verification, OT − SS: Strongly unforgeable one-time signature scheme, P:
Product, D: Division, MM: Matrix Multiplication, PCA: Permutation Combination
Algorithm (3.1), PCA−1: Reverse Permutation Combination Algorithm and t ≤ k.

5 Conclusion

In this manuscript, we propose a new IND-CCA2 variant of the code-based
cryptosystems in the standard model. Unlike previous approaches, our approach
is a generic transformation and can be applied to any code-based trapdoor one-way
cryptosystem such as the McEliece or the Niederreiter cryptosystems. This novel
approach leads to the elimination of k-repetition paradigm and using strongly
unforgeable one-time signature scheme. The publick/secret keys of the proposed



scheme are as in the original scheme and the encryption/decryption complexity
are comparable to the original scheme, so, compared to other approaches were
introduced today, our approach is more efficient. We showed that CCA2-security
of the proposed scheme can be reduced in the standard model to the assumption
that the underlying primitive is a trapdoor one-way function (i.e. the McEliece
assumptions), without any change in the system parameters. To the best of
our knowledge, this is the first variant of the code-based cryptosystems that
is IND-CCA2 in the standard model without using k-repetition paradigm and
strongly unforgeable one-time signature scheme.
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