Trace Expression of r-th Root over Finite Field

Gook Hwa Cho, Namhun Koo, Eunhye Ha, and Soonhak Kwon
Email: achimheasal@nate.com, komaton@skku.edu, grace.eh.ha@gmail.com, shkwon@skku.edu Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

Abstract

Efficient computation of r-th root in \mathbb{F}_{q} has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the CipollaLehmer algorithm for general case. More precisely, for given r-th power $c \in \mathbb{F}_{q}$, we show that there exists $\alpha \in \mathbb{F}_{q^{r}}$ such that $\operatorname{Tr}\left(\alpha^{\frac{\left(\mathcal{L}_{i=0}^{r i 1} q^{i} q^{i}\right)-r}{r^{2}}}\right)^{r}=c$ where $\operatorname{Tr}(\alpha)=\alpha+\alpha^{q}+\alpha^{q^{2}}+$ $\cdots+\alpha^{q^{r-1}}$ and α is a root of certain irreducible polynomial of degree r over \mathbb{F}_{q}.

Keywords : finite field, r-th root, linear recurrence relation, Tonelli-Shanks algorithm, Adleman-Manders-Miller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Finding r-th root in finite field \mathbb{F}_{q} has many applications in computational number theory and in many other related topics. One such example is point halving on elliptic curves, where a square root computation is needed. There are two standard algorithms for r-th root computation; the Adleman-Manders-Miller [3] algorithm which is a straightforward generalization of the Tonelli-Shanks square root algorithm [1,2] to the case of r-th roots, and the Cipolla-Lehmer $[4,5]$ algorithms. Due to the cumbersome extension field arithmetic needed for the CipollaLehmer algorithm, one usually prefers the Tonelli-Shanks or the Adleman-Manders-Miller, and other related researches $[12,13]$ exist to improve the Tonelli-Shanks.

However it should be mentioned that the Adleman-Manders-Miller algorithm depends on the exponent ν of r satisfying $r^{\nu} \mid q-1$ and $r^{\nu+1} \not\langle q-1$, which makes the worst case complexity of the Adleman-Manders-Miller $O\left(\log r \log ^{4} q+r \log ^{3} q\right)$ [14] while the Cipolla-Lehmer can be executed in $O\left(r \log ^{3} q\right)[4,5]$. Even in the case of $r=2$, it had been observed in [9] that, for a prime $p=9 \times 2^{3354}+1$, running the Tonelli-Shanks algorithm using various software such as Magma, Mathematica and Maple cost roughly 5 minutes, 45 minutes, 390 minutes, respectively while the Cipolla-Lehmer costs under 1 minute in any of the above softwares.

On the other hand, it is also true that the Tonelli-Shanks runs faster than the CipollaLehmer for small exponents ν, which explains why many of the square root algorithms in mathematics software are based on the Tonelli-Shanks.

A possible speed-up of the Cipolla-Lehmer comparable to the Tonelli-Shanks for low exponent ν was first given by Müller [9], where a special type of Lucas sequence corresponding to $f(x)=x^{2}-P x+1$ was used. The constant term 1 of $f(x)$ makes the given algorithm runs quite faster compared with the original Cipolla-Lehmer.

In this paper, for any given integer $r>1$, we propose a new r-th root formula over \mathbb{F}_{q} with prime power $q \equiv 1\left(\bmod r^{2}\right)$ by extending Müller's result [9] on the square root case.

The remaining case $q \not \equiv 1\left(\bmod r^{2}\right)$ is fairly simple because we have a simple closed formula (cost of one exponentiation in \mathbb{F}_{q}) for r-th root in this case. For the cubic case, we already showed [16] that, for given cube $c \in \mathbb{F}_{q}$, we can efficiently construct an irreducible polynomial $f(x)=x^{3}-a x^{2}+b x-1$ with root $\alpha \in \mathbb{F}_{q^{3}}$ such that $\operatorname{Tr}\left(\alpha^{\frac{q^{2}+q-2}{9}}\right)$ is a cube root of c, where $\operatorname{Tr}(\beta)=\operatorname{Tr}_{\mathbb{F}_{q^{3}} / \mathbb{F}_{q}}(\beta)=\beta+\beta^{q}+\beta^{q^{2}}$. Such element $\operatorname{Tr}\left(\alpha^{\frac{q^{2}+q-2}{9}}\right)$ can be computed via the recurrence relation found in [7], and can be executed quite fast compared with the original Cipolla-Lehmer.

The remainder of this paper is organized as follows: In Section 2, we introduce the root extraction algorithms in \mathbb{F}_{q}. In Section 3, we describe the r-th order linear recurrence sequences. In Section 4, we propose a new r-th formula which has a possible application when combined with linear recurrence relations. Finally, in Section 5, we give concluding remarks and future works.

2 Existing r-th Root Extraction Algorithms in \mathbb{F}_{q}

In this section, we introduce two standard algorithms for computing r-th root in finite field, that is, the Adleman-Manders-Miller [3] algorithm which is a natural extension of the TonelliShanks square root algorithm [1, 2], and the Cipolla-Lehmer algorithm [4, 5].

2.1 Tonelli-Shanks and Adleman-Manders-Miller algorithm

The Adleman-Manders-Miller algorithm [3] is described in Table 1. Its complexity is given as $O\left(\nu_{r}(q-1) \log r \log ^{3} q+\nu_{r}(q-1) r \log ^{2} q\right)$, where $\nu_{r}(q-1)$ denotes the largest non-negative integer ν satisfying $r^{\nu} \mid q-1$. Assuming $r=O(\log q)$, the Adleman-Manders-Miller algorithm has the complexity $O\left(\log r \log ^{3} q\right)$ when $\nu_{r}(q-1)$ is small, while has the worst complexity $O\left(\log r \log ^{4} q\right)$ when $\nu_{r}(q-1) \approx \log _{r} q$.

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm [4, 5] is described in Table 2. Its complexity is $O\left(r \log ^{3} q\right)$, which does not depend on $\nu=\nu_{r}(q-1)$ unlike the case of the Adleman-Manders-Miller. However, for small $\nu=\nu_{r}(q-1)$, the Adleman-Manders-Miller algorithm performs better than the Cipolla-Lehmer due to the relatively large constant term in the complexity estimation of the Cipolla-Lehmer usually omitted in the notation O. Hence the refinements of the CipollaLehmer is desirable.

Let $c \in \mathbb{F}_{q}$ be an r-th power in \mathbb{F}_{q} with $q \equiv 1(\bmod r)$. To find an r-th root of c, the CipollaLehmer algorithm needs an irreducible polynomial $f(x)=x^{r}-b_{r-1} x^{r-1}-b_{r-2} x^{r-2}-\cdots-b_{1} x+$ $(-1)^{r} c$ with constant term $(-1)^{r} c$. Letting $\alpha \in \mathbb{F}_{q^{r}}$ be a root of f, we get $\alpha^{1+q+q^{2}+\cdots+q^{r-1}}=c$ so that $\alpha^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}$ is an r-th root of c. Irreducibility testing of f and the exponentiation $\alpha^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}$ (or computing $x^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}(\bmod f(x))$) needs many multiplications in \mathbb{F}_{q}, and the number of such multiplications depends on the coefficients of f. One may choose a low hamming-weight polynomial (i.e., trinomial) to reduce the cost of computing $x^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}(\bmod f(x))$.

Table 1: Adleman-Manders-Miller r-th root algorithm

Input: An r th power δ in \mathbb{F}_{q} with $r \mid q-1$
Output: An r-th root of δ
Step $1:$
Let $q-1=r^{s} t$ with $(r, t)=1$
Compute the least nonnegative integer u such that $t \mid r u-1$
Choose ρ randomly in \mathbb{F}_{q}
Step 2:
$a \leftarrow \rho^{r-1} t, c \leftarrow \rho^{t}$
if $a=1$, go to Step 1
Step 3:
$b \leftarrow \delta^{r u-1}, h \leftarrow 1$
Step 4:
for $i=1$ to $s-1$
$\quad d \leftarrow b^{r-1-i}$
if $d=1$, then $j \leftarrow 0$
else then $j \leftarrow-\log _{a} d$ (compute the discrete logarithm)
$\quad b \leftarrow b\left(c^{r}\right)^{j}, h \leftarrow h c^{j}$
$c \leftarrow c^{r}$
end for
Step $5:$
return $\delta^{u} \cdot h$

Table 2: Cipolla-Lehmer r-th root algorithm

Input: An r-th power c in \mathbb{F}_{q}
Output: A r-th root of c
Step 1:
Choose $b_{1}, b_{2}, \cdots, b_{r-1}$ randomly in \mathbb{F}_{q}
Step 2:
$f(x) \leftarrow x^{r}-b_{r-1} x^{r-1}-b_{r-2} x^{r-2}-\cdots-b_{1} x+(-1)^{r} c$
if f is reducible, then go to Step 1
Step 3:
Return $x^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}(\bmod f(x))$

3 Linear Recurrence Sequences

Let $f(x)=x^{r}-b_{r-1} x^{r-1}-b_{r-2} x^{r-2}-\cdots-b_{1} x-b_{0}\left(b_{i} \in \mathbb{F}_{q}\right)$ be irreducible over \mathbb{F}_{q}. An r-th order linear recurrence sequence s_{k} corresponding to $f(x)$ is defined as

$$
s_{k}=b_{r-1} s_{k-1}+b_{r-2} s_{k-2}+\cdots+b_{0} s_{k-r}, \quad k \geq r .
$$

It is well-known [18] that such s_{k} is completely determined when f and the first r terms
$s_{0}, s_{1}, \cdots, s_{r-1}$ are given. In fact, there is uniquely determined $\theta \in \mathbb{F}_{q^{r}}$ such that

$$
\begin{equation*}
s_{k}=\operatorname{Tr}\left(\theta \alpha^{k}\right) \tag{1}
\end{equation*}
$$

where α is a root of $f(x)$ and the trace map $\operatorname{Tr}: \mathbb{F}_{q^{r}} \rightarrow \mathbb{F}_{q}$ is defined as $\operatorname{Tr}(\beta)=\beta+\beta^{q}+$ $\beta^{q^{2}}+\cdots+\beta^{q^{r-1}}$. We say that s_{k} is the characteristic sequence generated by $f(x)$ if $\theta=1$, i.e., if s_{k} can be expressed as

$$
\begin{equation*}
s_{k}=\operatorname{Tr}\left(\alpha^{k}\right)=\alpha^{k}+\alpha^{k q}+\alpha^{k q^{2}}+\cdots+\alpha^{k q^{r-1}} \tag{2}
\end{equation*}
$$

When it is needed to emphasize that the characteristic sequence s_{k} comes from the polynomial f, we denote such s_{k} using various notations such as $s_{k}(f), s_{k}\left(b_{0}, \cdots, b_{r-1}\right)$, or $s_{k}(\alpha)$. For small values of r, the sequence s_{k} can be computed using "double and add" method.

Example 1:

A. When $r=2$ and $f(x)=x^{2}-P x+Q$, one has the following Lucas relation [9] :

$$
s_{2 n}=s_{n}^{2}-2 Q^{n}, \quad s_{n+m}=s_{n} s_{m}-Q^{m} s_{n-m}
$$

The exponentiation Q^{n} gives extra burden to the computation s_{k}, and one can compute the recurrence relation more efficiently letting $Q=1$.
B. When $r=3$ and $f(x)=x^{3}-a x^{2}+b x-c$, one has the following relation which can be found, for example, in the work of Gong and Harn [7] :

$$
\begin{equation*}
s_{2 n}=s_{n}^{2}-2 c^{n} s_{-n}, \quad s_{n+m}=s_{n} s_{m}-c^{m} s_{n-m} s_{-m}+c^{m} s_{n-2 m} \tag{3}
\end{equation*}
$$

As in the case of second order recurrence relation, letting $c=1$ makes the computation of the sequence cost effective.

Note that making the constant term of $f(x)$ to be ± 1 makes it impossible to use the Cipolla-Lehmer. For example, when $r=2$, to apply the Cipolla-Lehmer for the computation of the square roots of given square $c \in \mathbb{F}_{q}$, one has to use the polynomial $x^{2}-b x+c$ not $x^{2}-b x+1$. However, as is done by Müller [9] for the quadratic case, an wise choice of f of degree r gives a way to find the r-th root of $c \in \mathbb{F}_{q}$ as will be shown in the next sections.

From now on, we will consider the characteristic sequence s_{k} which comes from the irreducible polynomial $f(x)=x^{r}-b_{r-1} x^{r-1}-b_{r-2} x^{r-2}-\cdots-b_{1} x+(-1)^{r}$.

4 Our Work: New r-th Root Formula

Our main result is the Theorem 2, and we will discuss the necessary prerequisites first. Let r be an integer >1 and let b be in \mathbb{F}_{q} with $q \equiv 1(\bmod r)$ such that

$$
\begin{equation*}
f(x)=\left(x+(-1)^{r}\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right) x \tag{4}
\end{equation*}
$$

is irreducible over \mathbb{F}_{q}. Also we define a polynomial $h(x)$ as

$$
\begin{equation*}
h(x)=x^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right)(x-1) . \tag{5}
\end{equation*}
$$

Then one has the following relation

$$
\begin{equation*}
h\left(1+(-1)^{r} x\right)=(-1)^{r} f(x) \tag{6}
\end{equation*}
$$

because

$$
\begin{align*}
h\left(1+(-1)^{r} x\right) & =\left(1+(-1)^{r} x\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right)\left(1+(-1)^{r} x-1\right) \tag{7}\\
& =(-1)^{r}\left(x+(-1)^{r}\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right)(-1)^{r} x \tag{8}\\
& =(-1)^{r}\left\{\left(x+(-1)^{r}\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right) x\right\}=(-1)^{r} f(x) . \tag{9}
\end{align*}
$$

The above equations implies that one has the following when r is even,

$$
\begin{equation*}
f(x)=(x+1)^{r}-(b+r) x, \quad h(x)=x^{r}-(b+r) x+(b+r), \quad h(1+x)=f(x), \tag{10}
\end{equation*}
$$

and when r is odd, one has

$$
f(x)=(x-1)^{r}+(b-r) x, \quad h(x)=x^{r}+(b-r) x-(b-r), \quad h(1-x)=-f(x) .
$$

In particular, the irreducibility of f implies the irreducibility of h and vice versa.
Suppose that α is a root of $f(x)$. Since $f(0)=(-1)^{r}$, we find that the norm of f (i.e., the product of all the conjugates of α) is

$$
\begin{equation*}
\alpha^{1+q+q^{2}+\cdots+q^{r-1}}=1 . \tag{12}
\end{equation*}
$$

A classical result of Hilbert Theorem $90[17]$ or direct calculation over the field extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$ says that there exists $\beta \in \mathbb{F}_{q^{r}}$ such that $\beta^{r}=\alpha$. More precisely, using the equation (12), one can show that

$$
\begin{equation*}
\alpha\left(1+\alpha+\alpha^{1+q}+\cdots+\alpha^{1+q+\cdots+q^{r-2}}\right)^{q}=1+\alpha+\alpha^{1+q}+\cdots+\alpha^{1+q+\cdots+q^{r-2}} . \tag{13}
\end{equation*}
$$

Therefore letting $\beta=\left(1+\alpha+\alpha^{1+q}+\cdots+\alpha^{1+q+\cdots+q^{r-2}}\right)^{\frac{1-q}{r}}$, from the equation (13), we get

$$
\beta^{r}=\alpha .
$$

Theorem 1. Assuming $f(\alpha)=0$ and $q \equiv 1(\bmod r)$, we have

$$
\begin{array}{lr}
\alpha^{\frac{1+q+q^{2}+\cdots+q^{r-1}}{r}}=(b+r)^{-\frac{q-1}{2}} & \text { if } r \text { is even, } \\
\alpha^{\frac{1+q+q^{2}+\cdots+q^{r-1}}{r}}=1 & \text { if } r \text { is odd. }
\end{array}
$$

In particular, when r is even and $b+r$ is a square in \mathbb{F}_{q}, one gets $\alpha^{\frac{1+q+q^{2}+\cdots+q^{r-1}}{r}}=1$.
Proof. Since $h\left(1+(-1)^{r} \alpha\right)=f(\alpha)=0$ and $h(0)=(-1)^{r}\left(b+(-1)^{r} r\right)$,

$$
\begin{equation*}
\left(1+(-1)^{r} \alpha\right)^{\sum_{i=0}^{r-1} q^{i}}=b+(-1)^{r} r . \tag{14}
\end{equation*}
$$

On the other hand, by simplifying the equation (7), we have

$$
\begin{equation*}
h\left(1+(-1)^{r} x\right)=\left(1+(-1)^{r} x\right)^{r}-\left(b+(-1)^{r} r\right) x=(-1)^{r} f(x), \tag{15}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(1+(-1)^{r} \alpha\right)^{r}=\left(b+(-1)^{r} r\right) \alpha . \tag{16}
\end{equation*}
$$

By taking $\frac{\sum_{i=0}^{r-1} q^{i}}{r}$-th power to both sides of the above expression, one has

$$
\begin{equation*}
\left(1+(-1)^{r} \alpha\right)^{\sum_{i=0}^{r-1} q^{i}}=\left(b+(-1)^{r} r\right)^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}} \alpha^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}} . \tag{17}
\end{equation*}
$$

Comparing two expressions (14) and (17), we get

$$
\begin{align*}
\alpha^{\frac{\sum_{i=0}^{r r} q^{i}}{r}} & =\left(b+(-1)^{r} r\right)^{-\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r}}=\left(b+(-1)^{r} r\right)^{-\frac{\sum_{i=0}^{r-1}\left(q^{i}-1\right)}{r}} \\
& =\left(b+(-1)^{r} r\right)^{-(q-1) \frac{\sum_{i=0}^{r-2} \sum_{j=0}^{i} q^{j}}{r}} . \tag{18}
\end{align*}
$$

Since $q \equiv 1(\bmod r)$, we have

$$
\begin{equation*}
\sum_{i=0}^{r-2} \sum_{j=0}^{i} q^{j} \equiv \frac{r(r-1)}{2} \quad(\bmod r), \tag{19}
\end{equation*}
$$

which is $\frac{r}{2}(\bmod r)$ when r is even, and is $0(\bmod r)$ when r is odd. Noticing $b+(-1)^{r} r \in \mathbb{F}_{q}$, one has the desired result.

Corollary 1. Assume $q \equiv 1(\bmod r)$. If r is even, further assume that $b+r$ is a square in \mathbb{F}_{q}. Then $s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r}}(\beta)^{r}=s_{\sum_{i=0}^{r-2} q^{i}}(\beta)^{r}$.

Proof. Letting $\beta^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}=\omega$ with $\beta^{r}=\alpha$ and using Theorem 1, we have $\omega^{r}=\beta^{\sum_{i=0}^{r-1} q^{i}}=$ $\alpha^{\frac{\sum_{i=0}^{r-1} q^{i}}{r}}=1$ and $\omega^{q}=\omega$. Therefore

$$
\begin{align*}
s_{\frac{\left(\sum_{i=0}^{r=1} q^{i}\right)-r}{r}}(\beta)^{r} & =\operatorname{Tr}\left(\beta^{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r}}\right)^{r} \\
& =\left(\beta^{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r}}+\beta^{q} \frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r}\right. \\
& =\left(\omega \beta^{-1}+\beta^{q^{2}} \frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r} \beta^{-q}+\omega^{q^{2}} \beta^{-q^{2}}+\cdots+\omega^{q^{r-1}} \beta^{-q^{2}}\right)^{r} \tag{20}\\
& =\left(\beta^{q^{r-1}\left(\sum_{i=0}^{r-1} q^{r} q^{r}\right)-1}+\beta^{\left(\sum_{i=0}^{r-1} q^{i}\right)-q}+\beta^{\left(\sum_{i=0}^{r-1} q^{i}\right)-q^{2}}+\cdots+\beta^{\left(\sum_{i=0}^{r-1} q^{i}\right)-q^{r-1}}\right)^{r} \\
& =\operatorname{Tr}\left(\beta^{\sum_{i=0}^{r-2} q^{i}}\right)^{r}=s_{\sum_{i=0}^{r-2} q^{i}}^{r-1}(\beta)^{r} .
\end{align*}
$$

Corollary 2. Assuming the same conditions as in the Corollary 1 and also assuming $q \equiv 1$ $\left(\bmod r^{2}\right)$, one has $s_{\frac{\left.\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(\alpha)^{r}=s_{i=0}^{r-2} q^{i}(\beta)^{r}$.
Proof.

$$
\begin{align*}
s_{\frac{\left(\sum_{i=0}^{r=1} q^{i}\right)-r}{r^{2}}}(\alpha)^{r} & =\operatorname{Tr}\left(\alpha^{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}\right)^{r}=\operatorname{Tr}\left(\left(\beta^{r}\right)^{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}\right)^{r} \tag{21}\\
& =\operatorname{Tr}\left(\beta^{\frac{\left(\sum_{i=0}^{r=1} q^{i}\right)-r}{r}}\right)^{r}=s_{\sum_{i=0}^{r-2} q^{i}}(\beta)^{r},
\end{align*}
$$

where the last equality comes from the Corollary 1.
If $b+(-1)^{r} r$ is an r-th power in \mathbb{F}_{q}, one can explicitly find r-th root of $b+(-1)^{r} r$ as follows.
Corollary 3. Assume that $q \equiv 1(\bmod r)$ and $b+(-1)^{r} r$ is an r-th power in \mathbb{F}_{q}, then $s_{\sum_{i=0}^{r-2} q^{i}}(\beta)^{r}=b+(-1)^{r} r$.

Proof. Since $\alpha=\beta^{r} \in \mathbb{F}_{q^{r}}$, we may rewrite the equation (16) as

$$
\begin{equation*}
\left(1+(-1)^{r} \alpha\right)^{r}=\left(b+(-1)^{r} r\right) \beta^{r} \tag{22}
\end{equation*}
$$

Assume $b+(-1)^{r} r=u^{r}$ for some u in \mathbb{F}_{q}. Then from $\left(1+(-1)^{r} \alpha\right)^{r}=u^{r} \beta^{r}$, we get

$$
\begin{equation*}
\left(1+(-1)^{r} \alpha\right)=\omega_{0} u \beta \tag{23}
\end{equation*}
$$

for some r-th root of unity ω_{0} in \mathbb{F}_{q}. Therefore we get

$$
\begin{align*}
\operatorname{Tr}\left(\beta^{\sum_{i=0}^{r-2} q^{i}}\right) & =\frac{1}{\omega_{0}^{r-1} u^{r-1}} \operatorname{Tr}\left(\left(1+(-1)^{r} \alpha\right)^{\sum_{i=0}^{r-2} q^{i}}\right) \\
& =\frac{1}{\omega_{0}^{r-1} u^{r-1}}\left(b+(-1)^{r} r\right) \tag{24}\\
& =\omega_{0} u
\end{align*}
$$

where the first equality comes from $\omega_{0} u \in \mathbb{F}_{q}$ and the second equality comes from the coefficient $(-1)^{r+1}\left(b+(-1)^{r} r\right)$ of x in $h(x)=x^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right)(x-1)$. We also have the last equality because $\omega_{0}^{r}=1$ and $b+(-1)^{r} r=u^{r}$. Therefore we get

$$
\begin{equation*}
\operatorname{Tr}\left(\beta^{\sum_{i=0}^{r-2} q^{i}}\right)^{r}=\left(\omega_{0} u\right)^{r}=b+(-1)^{r} r \tag{25}
\end{equation*}
$$

Finally, combining the Corollaries 2 and 3, we have the following theorem.
Theorem 2. Suppose that $q \equiv 1\left(\bmod r^{2}\right)$ and $f(x)=\left(x+(-1)^{r}\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right) x$ is an irreducible polynomial over \mathbb{F}_{q} with $f(\alpha)=0$. Assume $b+(-1)^{r} r$ is an r-th power in \mathbb{F}_{q}. Then $s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(\alpha)^{r}=b+(-1)^{r} r$.

Now using the polynomial $f(x)$, we can find an r-th root for given r-th power c in \mathbb{F}_{q}. For given r-th power $c \in \mathbb{F}_{q}$, define $b=c-(-1)^{r} r$. If $f(x)$ with given coefficient b is irreducible, then $s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(f)$ is an r-th root of c. That is,

$$
s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(f)^{r}=b+(-1)^{r} r=c
$$

If the given f is not irreducible over \mathbb{F}_{q}, then we may twist c by random $t \in \mathbb{F}_{q}$ until we get irreducible f with $b=c t^{r}-(-1)^{r} r$. Then

$$
s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(f)^{r}=b+(-1)^{r} r=c t^{r},
$$

which implies $t^{-1} s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(f)$ is an r-th root of c (See Table 3).

Example 2:

A. $r=2$: For given square $c \in \mathbb{F}_{q}$, we have $f(x)=(x+1)^{2}-(b+2) x=x^{2}-b x+1$ with $b=c-2$. If f is irreducible over \mathbb{F}_{q}, one has $s_{\frac{q-1}{4}}(f)^{2}=b+2=c$, and such $s_{\frac{q-1}{4}}$ can be computed via Lucas sequence $s_{k}=b s_{k-1}-s_{k-2}$ (See [9]).

Table 3: New r-th root algorithm for \mathbb{F}_{q} with $q \equiv 1\left(\bmod r^{2}\right)$

$\left.$| Input: An r-th power c in \mathbb{F}_{q} |
| :--- |
| Output: s satisfying $s^{r}=c$ |\quad| Step 1: |
| :--- |
| $\quad t \leftarrow 1, b \leftarrow c t^{r}-(-1)^{r} r$, |
| $\quad f(x) \leftarrow\left(x+(-1)^{r}\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right) x$ |
| Step 2: |
| \quad while $f(x)$ is reducible over \mathbb{F}_{q} |
| \quad Choose random $t \in \mathbb{F}_{q}$ |
| $\quad b \leftarrow c t^{r}-(-1)^{r} r, f(x) \leftarrow\left(x+(-1)^{r}\right)^{r}+(-1)^{r+1}\left(b+(-1)^{r} r\right) x$ |
| \quad end while | \right\rvert\, | Step 3: |
| :--- |
| $s \leftarrow s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(f) \cdot t^{-1}$ |

B. $r=3$: For given cube $c \in \mathbb{F}_{q}$, we have $f(x)=(x-1)^{3}+(b-3) x=x^{3}-3 x^{2}+b x-1$ with $b=c+3$. If f is irreducible over \mathbb{F}_{q}, one has $s_{\frac{q^{2}+q-2}{9}}(f)^{3}=b-3=c$, and such $s_{\frac{q^{2}+q-2}{}}$ can be computed via the third order linear recurrence sequence $s_{k}=3 s_{k-1}-b s_{k-2}+s_{k-3}$ using the relation in the equation (3) (See [16]).

Our theorem and examples were explained on the assumption of $q \equiv 1\left(\bmod r^{2}\right)$. However it should be mentioned that one can find an r-th root of c when $q \not \equiv 1\left(\bmod r^{2}\right)$ easily. For example, when $r=2$ and $q \equiv 3(\bmod 4)$, a square root of a quadratic residue c is given by $c^{\frac{q+1}{4}}$. Also when $r=3$ and $q \not \equiv 1(\bmod 9)$, we have the followings. When $q \equiv 2(\bmod 3)$, a cube root of c is given as $c^{\frac{2 q-1}{3}}$. When $q \equiv 4(\bmod 9)$, a cube root of cubic residue c is given by $c^{\frac{2 q+1}{9}}$. When $q \equiv 7(\bmod 9)$, a cube root of cubic residue c is given by $c^{\frac{q+2}{9}}$. Thus the computational cost of finding cube root of c when $q \not \equiv 1(\bmod 9)$ is just one exponentiation in \mathbb{F}_{q}.

These closed formulas are not obtained by ad-hoc method. In fact, we have the following simple result of r-th root when $q \not \equiv 1\left(\bmod r^{2}\right)$.

Proposition 1. Let q be a prime power such that $q \equiv 1(\bmod r)$ but $q \not \equiv 1\left(\bmod r^{2}\right)$. Assume that $\operatorname{gcd}\left(\frac{q-1}{r}, r\right)=1$. Then, for given r-th power c in \mathbb{F}_{q}, an r-th root of c can be computed by the cost of one exponentiation in \mathbb{F}_{q}. In particular, if r is a prime, then the condition $\operatorname{gcd}\left(\frac{q-1}{r}, r\right)=1$ is automatically satisfied so that the cost of finding r-th root of c is just one exponentiation.

Proof. We claim that there is an integer θ depending only on r and q but not on c such that

$$
\begin{equation*}
(A) \theta<r q, \quad \text { (B) } r^{2} \mid \theta, \quad(C)\left(c^{\frac{\theta}{r^{2}}}\right)^{r}=c \tag{26}
\end{equation*}
$$

The condition (C) of the above equation says that $c^{\frac{\theta}{r}}=c$, i.e., $c^{\frac{\theta-r}{r}}=1$. Since c is an r-th power in \mathbb{F}_{q}, this condition can be satisfied if $\theta \equiv r(\bmod (q-1))$. Therefore writing $\theta=r+k(q-1)$, the condition (B) says that one should have $r+k(q-1) \equiv 0\left(\bmod r^{2}\right)$, which
is equivalent to the following equation

$$
\begin{equation*}
1+k \frac{q-1}{r} \equiv 0 \quad(\bmod r) \tag{27}
\end{equation*}
$$

Since $\operatorname{gcd}\left(\frac{q-1}{r}, r\right)=1$, the above equation has unique solution $k(\bmod r)$. Now the condition (C) is satisfied because $\theta=k q+r-k \leq(r-1) q+1<r q$. Finally, if r is a prime, then the assumption $q \not \equiv 1\left(\bmod r^{2}\right)$ implies $\operatorname{gcd}\left(\frac{q-1}{r}, r\right)=1$.

Example 3:

A. $r=3$: When $r=3$, the equation (27) becomes $1+k \frac{q-1}{3} \equiv 0(\bmod 3)$. Therefore depending on the values of $\frac{q-1}{3}(\bmod 3)$, the corresponding $k(\bmod 3)$ is uniquely determined and they are

$$
\begin{equation*}
\left(\frac{q-1}{3}, k\right)=(1,2),(2,1) \tag{28}
\end{equation*}
$$

Since $\frac{q-1}{3} \equiv j(\bmod 3)$ implies $q \equiv 3 j+1\left(\bmod 3^{2}\right)$, we have the following table of pairs of $q\left(\bmod 3^{2}\right)$ and corresponding $\theta=k q+3-k$

$$
\begin{equation*}
(q(\bmod 9), \theta)=(4,2 q+1),(7, q+2) \tag{29}
\end{equation*}
$$

That is, when $q \equiv 4(\bmod 9)$, the a cube root of c is given as $c^{\frac{2 q+1}{9}}$, and when $q \equiv 7(\bmod 9)$, the a cube root of c is given as $c^{\frac{q+2}{9}}$.
B. $r=5$: When $r=5$, the equation (27) becomes $1+k \frac{q-1}{5} \equiv 0(\bmod 5)$. Therefore depending on the values of $\frac{q-1}{5}(\bmod 5)$, the corresponding $k(\bmod 5)$ is uniquely determined and they are

$$
\begin{equation*}
\left(\frac{q-1}{5}, k\right)=(1,4),(2,2),(3,3),(4,1) . \tag{30}
\end{equation*}
$$

Since $\frac{q-1}{5} \equiv j(\bmod 5)$ implies $q \equiv 5 j+1\left(\bmod 5^{2}\right)$, we have the following table of pairs of $q\left(\bmod 5^{2}\right)$ and corresponding $\theta=k q+5-k$

$$
\begin{equation*}
(q(\bmod 25), \theta)=(6,4 q+1),(11,2 q+3),(16,3 q+2),(21, q+4) \tag{31}
\end{equation*}
$$

For example, when $q \equiv 6(\bmod 25)$, the an 5 -th root of c is given as $c^{\frac{4 q+1}{25}}$, and when $q \equiv 11$ $(\bmod 25)$, the an 5 -th root of c is given as $c^{\frac{2 q+3}{25}}$, etc.

Remarks:

1. For r-th root extraction, considering the cases $r=$ prime is enough for practical purposes. For example, to find 4 -th root of $c \in \mathbb{F}_{q}$, we only have to use square root algorithm twice instead of using 4 -th root algorithm once, and the complexity of two applications of square root algorithm is lower than that of one application of 4 -th root algorithm.
2. In general, when $r=\prod_{i=1}^{n} p_{i}^{a_{i}}$, to find r-th root of c, we may use a_{1} applications of p_{1-} th root algorithm, a_{2} applications of p_{2}-th root algorithm, \ldots, a_{n} applications of p_{n}-th root algorithm.

5 Future Works and Conclusions

Randomly selected monic polynomial over \mathbb{F}_{q} of degree r with nonzero constant term is irreducible with probability $\frac{1}{r}$ (For an explanation, see [19]). Even if our choice of f is not really random, experimental evidence implies that $\frac{1}{r}$ of such f is irreducible. Therefore we expect that an irreducible f can be found after r random tries and irreducibility testings of low degree polynomials are well understood can be implemented efficiently, see $[18,19]$. Therefore the algorithm in Table 3 is dominated by the complexity of step 3 which computes $s_{\frac{\left(\sum_{i=0}^{r-1} q^{i}\right)-r}{r^{2}}}(f)$. For $r=2,3$, i.e., for quadratic and cubic polynomials, the well-known linear recurrence sequences give faster algorithms than previously proposed Cipolla-Lehmer type algorithms. For $r>3$, there are some known recurrences, for example in [8]. However those sequences do not seem to give efficient algorithms to compute $s_{m}(f)$ compared with typical Cipolla-Lehmer method and further study is needed.

References

[1] D. Shanks, Five number-theoretic algorithms, Proc. 2nd Manitoba Conf. Number. Math., Manitoba, Canada, pp. 51-70, 1972
[2] A. Tonelli, Bemerkung über die Auflösung quadratischer Congruenzen, Göttinger Nachrichten, pp. 344-346, 1891
[3] L. Adleman, K. Manders and G. Miller, On taking roots in finite fields, Proc. 18th IEEE Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977
[4] M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto dell'Accademia Scienze Fisiche e Matematiche, Napoli, Ser.3,Vol. IX, pp. 154-163, 1903
[5] D.H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Englewood Cliffs, NJ: Pretice-Hall, pp. 117-151, 1969
[6] L.E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc., Vol. 13, No. 1, pp. 1-8, 1906
[7] G. Gong and L. Harn, Public key cryptosystems based on cubic finite field extensions, IEEE Trans. Information Theory, Vol.45, pp. 2601-2605, 1999
[8] K. J. Giuliani and G. Gong, A New Algorithm to compute remote terms in special types of characteristic sequences, Proc. International Conference on Sequences and Their Applications (SETA), LNCS 4086, pp. 237-247, 2006
[9] S. Müller, On the computation of square roots in finite fields, Design, Codes and Cryptography, Vol.31, pp. 301-312, 2004
[10] N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo, A remark on the computation of cube roots in finite fields, preprint
[11] I.B. Damgård and G.S. Frandsen, Efficient algorithm for the gcd and cubic residuosity in the ring of Eisenstein integers, J. Symbolic Computation, Vol. 39, pp. 643-652, 2005
[12] A. O. L. Atkin, Probabilistic primality testing, summary by F. Morain, Inria Research Report 1779, pp.159-163, 1992
[13] F. Kong, Z. Cai, J. Yu, and D. Li, Improved Generalized Atkin Algorithm for Computing Square Roots in Finite Fields, Information Processing Letters, Vol. 98, no. 1, pp. 1-5, 2006.
[14] Z. Cao, Q. Sha, and X. Fan, Adlemen-Manders-Miller root extraction method revisited, preprint, available at http://arxiv.org/abs/1111.4877, 2011.
[15] S. Lindhurst, An analysis of Shanks's algorithm for computing square roots in finite fields, CRM Proc. and Lecture Notes, vol. 19, pp. 231-242, 1999
[16] G.H. Cho, N. Koo, E. Ha, and S. Kwon, New cube root algorithm based on third order linear recurrence relation in finite field, preprint, available at http://eprint.iacr. org/2013/024.pdf
[17] S. Lang, Algebra, Springer, 2005
[18] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press,1997
[19] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of Finite Fields, Springer, 1992

