Trace Expression of *r*-th Root over Finite Field

Gook Hwa Cho, Namhun Koo, Eunhye Ha, and Soonhak Kwon

Email: achimheasal@nate.com, komaton@skku.edu, grace.eh.ha@gmail.com, shkwon@skku.edu

Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

Abstract

Efficient computation of r-th root in \mathbb{F}_q has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the Cipolla-Lehmer algorithm for general case. More precisely, for given r-th power $c \in \mathbb{F}_q$, we show that there exists $\alpha \in \mathbb{F}_{q^r}$ such that $Tr\left(\alpha^{(\sum_{i=0}^{r-1}q^i)-r}{r^2}\right)^r = c$ where $Tr(\alpha) = \alpha + \alpha^q + \alpha^{q^2} + \cdots + \alpha^{q^{r-1}}$ and α is a root of certain irreducible polynomial of degree r over \mathbb{F}_q .

 ${\bf Keywords}$: finite field, r-th root, linear recurrence relation, Tonelli-Shanks algorithm, Adleman-Manders-Miller algorithm, Cipolla-Lehmer algorithm

1 Introduction

Finding r-th root in finite field \mathbb{F}_q has many applications in computational number theory and in many other related topics. One such example is point halving on elliptic curves, where a square root computation is needed. There are two standard algorithms for r-th root computation; the Adleman-Manders-Miller [3] algorithm which is a straightforward generalization of the Tonelli-Shanks square root algorithm [1, 2] to the case of r-th roots, and the Cipolla-Lehmer [4, 5] algorithms. Due to the cumbersome extension field arithmetic needed for the Cipolla-Lehmer algorithm, one usually prefers the Tonelli-Shanks or the Adleman-Manders-Miller, and other related researches [12, 13] exist to improve the Tonelli-Shanks.

However it should be mentioned that the Adleman-Manders-Miller algorithm depends on the exponent ν of r satisfying $r^{\nu}|q-1$ and $r^{\nu+1} \not|q-1$, which makes the worst case complexity of the Adleman-Manders-Miller $O(\log r \log^4 q + r \log^3 q)$ [14] while the Cipolla-Lehmer can be executed in $O(r \log^3 q)$ [4, 5]. Even in the case of r = 2, it had been observed in [9] that, for a prime $p = 9 \times 2^{3354} + 1$, running the Tonelli-Shanks algorithm using various software such as Magma, Mathematica and Maple cost roughly 5 minutes, 45 minutes, 390 minutes, respectively while the Cipolla-Lehmer costs under 1 minute in any of the above softwares.

On the other hand, it is also true that the Tonelli-Shanks runs faster than the Cipolla-Lehmer for small exponents ν , which explains why many of the square root algorithms in mathematics software are based on the Tonelli-Shanks.

A possible speed-up of the Cipolla-Lehmer comparable to the Tonelli-Shanks for low exponent ν was first given by Müller [9], where a special type of Lucas sequence corresponding to $f(x) = x^2 - Px + 1$ was used. The constant term 1 of f(x) makes the given algorithm runs quite faster compared with the original Cipolla-Lehmer.

In this paper, for any given integer r > 1, we propose a new r-th root formula over \mathbb{F}_q with prime power $q \equiv 1 \pmod{r^2}$ by extending Müller's result [9] on the square root case.

The remaining case $q \not\equiv 1 \pmod{r^2}$ is fairly simple because we have a simple closed formula (cost of one exponentiation in \mathbb{F}_q) for r-th root in this case. For the cubic case, we already showed [16] that, for given cube $c \in \mathbb{F}_q$, we can efficiently construct an irreducible polynomial $f(x) = x^3 - ax^2 + bx - 1$ with root $\alpha \in \mathbb{F}_{q^3}$ such that $Tr(\alpha^{\frac{q^2+q-2}{9}})$ is a cube root of c, where $Tr(\beta) = Tr_{\mathbb{F}_{q^3}/\mathbb{F}_q}(\beta) = \beta + \beta^q + \beta^{q^2}$. Such element $Tr(\alpha^{\frac{q^2+q-2}{9}})$ can be computed via the recurrence relation found in [7], and can be executed quite fast compared with the original Cipolla-Lehmer.

The remainder of this paper is organized as follows: In Section 2, we introduce the root extraction algorithms in \mathbb{F}_q . In Section 3, we describe the *r*-th order linear recurrence sequences. In Section 4, we propose a new *r*-th formula which has a possible application when combined with linear recurrence relations. Finally, in Section 5, we give concluding remarks and future works.

2 Existing r-th Root Extraction Algorithms in \mathbb{F}_q

In this section, we introduce two standard algorithms for computing r-th root in finite field, that is, the Adleman-Manders-Miller [3] algorithm which is a natural extension of the Tonelli-Shanks square root algorithm [1, 2], and the Cipolla-Lehmer algorithm [4, 5].

2.1 Tonelli-Shanks and Adleman-Manders-Miller algorithm

The Adleman-Manders-Miller algorithm [3] is described in Table 1. Its complexity is given as $O(\nu_r(q-1)\log r\log^3 q + \nu_r(q-1)r\log^2 q)$, where $\nu_r(q-1)$ denotes the largest non-negative integer ν satisfying $r^{\nu}|q-1$. Assuming $r = O(\log q)$, the Adleman-Manders-Miller algorithm has the complexity $O(\log r\log^3 q)$ when $\nu_r(q-1)$ is small, while has the worst complexity $O(\log r\log^3 q)$ when $\nu_r(q-1) \approx \log_r q$.

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm [4, 5] is described in Table 2. Its complexity is $O(r \log^3 q)$, which does not depend on $\nu = \nu_r(q-1)$ unlike the case of the Adleman-Manders-Miller. However, for small $\nu = \nu_r(q-1)$, the Adleman-Manders-Miller algorithm performs better than the Cipolla-Lehmer due to the relatively large constant term in the complexity estimation of the Cipolla-Lehmer usually omitted in the notation O. Hence the refinements of the Cipolla-Lehmer is desirable.

Let $c \in \mathbb{F}_q$ be an *r*-th power in \mathbb{F}_q with $q \equiv 1 \pmod{r}$. To find an *r*-th root of *c*, the Cipolla-Lehmer algorithm needs an irreducible polynomial $f(x) = x^r - b_{r-1}x^{r-1} - b_{r-2}x^{r-2} - \cdots - b_1x + (-1)^r c$ with constant term $(-1)^r c$. Letting $\alpha \in \mathbb{F}_{q^r}$ be a root of *f*, we get $\alpha^{1+q+q^2+\cdots+q^{r-1}} = c$ so that $\alpha^{\frac{\sum_{i=0}^{r-1}q^i}{r}}$ is an *r*-th root of *c*. Irreducibility testing of *f* and the exponentiation $\alpha^{\frac{\sum_{i=0}^{r-1}q^i}{r}}$ (or computing $x^{\frac{\sum_{i=0}^{r-1}q^i}{r}} \pmod{f(x)}$) needs many multiplications in \mathbb{F}_q , and the number of such multiplications depends on the coefficients of *f*. One may choose a low hamming-weight polynomial (i.e., trinomial) to reduce the cost of computing $x^{\frac{\sum_{i=0}^{r-1}q^i}{r}} \pmod{f(x)}$.

Table 1: Adleman-Manders-Miller r-th root algorithm

Input: An <i>r</i> th power δ in \mathbb{F}_q with $r q-1$
Output: An <i>r</i> -th root of δ
Step 1:
Let $q-1 = r^s t$ with $(r, t) = 1$
Compute the least nonnegative integer u such that $t ru-1 $
Choose ρ randomly in \mathbb{F}_q
Step 2:
$a \leftarrow \rho^{r^{s-1}t}, \ c \leftarrow \rho^t$
if $a = 1$, go to Step 1
Step 3:
$b \leftarrow \delta^{ru-1}, h \leftarrow 1$
Step 4:
for $i = 1$ to $s - 1$
$d \leftarrow b^{r^{s-1-i}}$
if $d = 1$, then $j \leftarrow 0$
else then $j \leftarrow -\log_a d$ (compute the discrete logarithm)
$b \leftarrow b(c^r)^j, h \leftarrow hc^j$
$c \leftarrow c^r$
end for
Step 5:
$\mathbf{return} \delta^u \cdot h$

Table 2: Cipolla-Lehmer r-th root algorithm

Input: An <i>r</i> -th power c in \mathbb{F}_q
Output: A r -th root of c
Step 1:
Choose $b_1, b_2, \cdots, b_{r-1}$ randomly in \mathbb{F}_q
Step 2:
$f(x) \leftarrow x^{r} - b_{r-1}x^{r-1} - b_{r-2}x^{r-2} - \dots - b_{1}x + (-1)^{r}c$
if f is reducible, then go to Step 1
Step 3:
Return $x \frac{\sum_{i=0}^{r-1} q^i}{r} \pmod{f(x)}$

3 Linear Recurrence Sequences

Let $f(x) = x^r - b_{r-1}x^{r-1} - b_{r-2}x^{r-2} - \cdots - b_1x - b_0$ $(b_i \in \mathbb{F}_q)$ be irreducible over \mathbb{F}_q . An *r*-th order linear recurrence sequence s_k corresponding to f(x) is defined as

$$s_k = b_{r-1}s_{k-1} + b_{r-2}s_{k-2} + \dots + b_0s_{k-r}, \qquad k \ge r.$$

It is well-known [18] that such s_k is completely determined when f and the first r terms

 $s_0, s_1, \cdots, s_{r-1}$ are given. In fact, there is uniquely determined $\theta \in \mathbb{F}_{q^r}$ such that

$$s_k = Tr(\theta \alpha^k),\tag{1}$$

where α is a root of f(x) and the trace map $Tr : \mathbb{F}_{q^r} \to \mathbb{F}_q$ is defined as $Tr(\beta) = \beta + \beta^q + \beta^{q^2} + \cdots + \beta^{q^{r-1}}$. We say that s_k is the characteristic sequence generated by f(x) if $\theta = 1$, i.e., if s_k can be expressed as

$$s_k = Tr(\alpha^k) = \alpha^k + \alpha^{kq} + \alpha^{kq^2} + \dots + \alpha^{kq^{r-1}}.$$
(2)

When it is needed to emphasize that the characteristic sequence s_k comes from the polynomial f, we denote such s_k using various notations such as $s_k(f), s_k(b_0, \dots, b_{r-1})$, or $s_k(\alpha)$. For small values of r, the sequence s_k can be computed using "double and add" method.

Example 1:

A. When r = 2 and $f(x) = x^2 - Px + Q$, one has the following Lucas relation [9]:

$$s_{2n} = s_n^2 - 2Q^n, \qquad s_{n+m} = s_n s_m - Q^m s_{n-m}$$

The exponentiation Q^n gives extra burden to the computation s_k , and one can compute the recurrence relation more efficiently letting Q = 1.

B. When r = 3 and $f(x) = x^3 - ax^2 + bx - c$, one has the following relation which can be found, for example, in the work of Gong and Harn [7]:

$$s_{2n} = s_n^2 - 2c^n s_{-n}, \qquad s_{n+m} = s_n s_m - c^m s_{n-m} s_{-m} + c^m s_{n-2m}$$
(3)

As in the case of second order recurrence relation, letting c = 1 makes the computation of the sequence cost effective.

Note that making the constant term of f(x) to be ± 1 makes it impossible to use the Cipolla-Lehmer. For example, when r = 2, to apply the Cipolla-Lehmer for the computation of the square roots of given square $c \in \mathbb{F}_q$, one has to use the polynomial $x^2 - bx + c$ not $x^2 - bx + 1$. However, as is done by Müller [9] for the quadratic case, an wise choice of f of degree r gives a way to find the r-th root of $c \in \mathbb{F}_q$ as will be shown in the next sections.

From now on, we will consider the characteristic sequence s_k which comes from the irreducible polynomial $f(x) = x^r - b_{r-1}x^{r-1} - b_{r-2}x^{r-2} - \cdots - b_1x + (-1)^r$.

4 Our Work: New *r*-th Root Formula

Our main result is the Theorem 2, and we will discuss the necessary prerequisites first. Let r be an integer > 1 and let b be in \mathbb{F}_q with $q \equiv 1 \pmod{r}$ such that

$$f(x) = (x + (-1)^r)^r + (-1)^{r+1}(b + (-1)^r r)x$$
(4)

is irreducible over \mathbb{F}_q . Also we define a polynomial h(x) as

$$h(x) = x^{r} + (-1)^{r+1}(b + (-1)^{r}r)(x-1).$$
(5)

Then one has the following relation

$$h(1 + (-1)^r x) = (-1)^r f(x), \tag{6}$$

because

$$h(1 + (-1)^r x) = (1 + (-1)^r x)^r + (-1)^{r+1}(b + (-1)^r r)(1 + (-1)^r x - 1)$$
(7)

$$= (-1)^{r} (x + (-1)^{r})^{r} + (-1)^{r+1} (b + (-1)^{r} r) (-1)^{r} x$$
(8)

$$= (-1)^{r} \{ (x + (-1)^{r})^{r} + (-1)^{r+1} (b + (-1)^{r} r) x \} = (-1)^{r} f(x).$$
(9)

The above equations implies that one has the following when r is even,

$$f(x) = (x+1)^r - (b+r)x, \quad h(x) = x^r - (b+r)x + (b+r), \qquad h(1+x) = f(x), \tag{10}$$

and when r is odd, one has

$$f(x) = (x-1)^r + (b-r)x, \quad h(x) = x^r + (b-r)x - (b-r), \qquad h(1-x) = -f(x).$$
(11)

In particular, the irreducibility of f implies the irreducibility of h and vice versa.

Suppose that α is a root of f(x). Since $f(0) = (-1)^r$, we find that the norm of f (i.e., the product of all the conjugates of α) is

$$\alpha^{1+q+q^2+\dots+q^{r-1}} = 1. \tag{12}$$

A classical result of Hilbert Theorem 90 [17] or direct calculation over the field extension $\mathbb{F}_{q^r}/\mathbb{F}_q$ says that there exists $\beta \in \mathbb{F}_{q^r}$ such that $\beta^r = \alpha$. More precisely, using the equation (12), one can show that

$$\alpha(1 + \alpha + \alpha^{1+q} + \dots + \alpha^{1+q+\dots+q^{r-2}})^q = 1 + \alpha + \alpha^{1+q} + \dots + \alpha^{1+q+\dots+q^{r-2}}.$$
 (13)

Therefore letting $\beta = (1 + \alpha + \alpha^{1+q} + \dots + \alpha^{1+q+\dots+q^{r-2}})^{\frac{1-q}{r}}$, from the equation (13), we get

$$\beta^r = \alpha$$

Theorem 1. Assuming $f(\alpha) = 0$ and $q \equiv 1 \pmod{r}$, we have

$$\alpha^{\frac{1+q+q^2+\dots+q^{r-1}}{r}} = (b+r)^{-\frac{q-1}{2}}$$
 if *r* is even,
$$\alpha^{\frac{1+q+q^2+\dots+q^{r-1}}{r}} = 1$$
 if *r* is odd.

In particular, when r is even and b + r is a square in \mathbb{F}_q , one gets $\alpha^{\frac{1+q+q^2+\dots+q^{r-1}}{r}} = 1$. *Proof.* Since $h(1+(-1)^r\alpha) = f(\alpha) = 0$ and $h(0) = (-1)^r(b+(-1)^rr)$,

$$(1+(-1)^r\alpha)^{\sum_{i=0}^{r-1}q^i} = b+(-1)^r r.$$
(14)

On the other hand, by simplifying the equation (7), we have

$$h(1 + (-1)^r x) = (1 + (-1)^r x)^r - (b + (-1)^r r)x = (-1)^r f(x),$$
(15)

which implies

$$(1+(-1)^r \alpha)^r = (b+(-1)^r r)\alpha.$$
(16)

By taking $\frac{\sum_{i=0}^{r-1} q^i}{r}$ -th power to both sides of the above expression, one has

$$(1+(-1)^r\alpha)^{\sum_{i=0}^{r-1}q^i} = (b+(-1)^r)^{\frac{\sum_{i=0}^{r-1}q^i}{r}}\alpha^{\frac{\sum_{i=0}^{r-1}q^i}{r}}.$$
(17)

Comparing two expressions (14) and (17), we get

$$\alpha^{\frac{\sum_{i=0}^{r-1}q^i}{r}} = (b + (-1)^r r)^{-\frac{(\sum_{i=0}^{r-1}q^i)-r}{r}} = (b + (-1)^r r)^{-\frac{\sum_{i=0}^{r-1}(q^i-1)}{r}} = (b + (-1)^r r)^{-\frac{(q-1)^r}{r}}$$
(18)

Since $q \equiv 1 \pmod{r}$, we have

$$\sum_{i=0}^{r-2} \sum_{j=0}^{i} q^j \equiv \frac{r(r-1)}{2} \pmod{r},\tag{19}$$

which is $\frac{r}{2} \pmod{r}$ when r is even, and is 0 \pmod{r} when r is odd. Noticing $b + (-1)^r r \in \mathbb{F}_q$, one has the desired result.

Corollary 1. Assume $q \equiv 1 \pmod{r}$. If r is even, further assume that b + r is a square in \mathbb{F}_q . Then $s_{(\sum_{i=0}^{r-1} q^i)-r r r} (\beta)^r = s_{\sum_{i=0}^{r-2} q^i} (\beta)^r$.

Proof. Letting $\beta \frac{\sum_{i=0}^{r-1} q^i}{r} = \omega$ with $\beta^r = \alpha$ and using Theorem 1, we have $\omega^r = \beta \sum_{i=0}^{r-1} q^i = \alpha \frac{\sum_{i=0}^{r-1} q^i}{r} = 1$ and $\omega^q = \omega$. Therefore

$$s_{\underline{(\sum_{i=0}^{r-1}q^{i})-r}{r}}(\beta)^{r} = Tr(\beta^{\frac{(\sum_{i=0}^{r-1}q^{i})-r}{r}})^{r}$$

$$= (\beta^{\frac{(\sum_{i=0}^{r-1}q^{i})-r}{r}} + \beta^{q^{\frac{(\sum_{i=0}^{r-1}q^{i})-r}{r}}} + \beta^{q^{2}\frac{(\sum_{i=0}^{r-1}q^{i})-r}{r}} + \cdots + \beta^{q^{r-1}\frac{(\sum_{i=0}^{r-1}q^{i})-r}{r}})^{r}$$

$$= (\omega\beta^{-1} + \omega^{q}\beta^{-q} + \omega^{q^{2}}\beta^{-q^{2}} + \cdots + \omega^{q^{r-1}}\beta^{-q^{2}})^{r}$$

$$= (\beta^{(\sum_{i=0}^{r-1}q^{i})-1} + \beta^{(\sum_{i=0}^{r-1}q^{i})-q} + \beta^{(\sum_{i=0}^{r-1}q^{i})-q^{2}} + \cdots + \beta^{(\sum_{i=0}^{r-1}q^{i})-q^{r-1}})^{r}$$

$$= Tr(\beta^{\sum_{i=0}^{r-2}q^{i}})^{r} = s_{\sum_{i=0}^{r-2}q^{i}}(\beta)^{r}.$$

Corollary 2. Assuming the same conditions as in the Corollary 1 and also assuming $q \equiv 1 \pmod{r^2}$, one has $s_{(\sum_{i=0}^{r-1} q^i)-r \choose r^2} (\alpha)^r = s_{\sum_{i=0}^{r-2} q^i} (\beta)^r$.

Proof.

$$s_{\frac{(\sum_{i=0}^{r-1}q^i)-r}{r^2}}(\alpha)^r = Tr(\alpha^{\frac{(\sum_{i=0}^{r-1}q^i)-r}{r^2}})^r = Tr((\beta^r)^{\frac{(\sum_{i=0}^{r-1}q^i)-r}{r^2}})^r$$

$$= Tr(\beta^{\frac{(\sum_{i=0}^{r-1}q^i)-r}{r}})^r = s_{\sum_{i=0}^{r-2}q^i}(\beta)^r,$$
(21)

where the last equality comes from the Corollary 1.

If $b + (-1)^r r$ is an r-th power in \mathbb{F}_q , one can explicitly find r-th root of $b + (-1)^r r$ as follows. **Corollary 3.** Assume that $q \equiv 1 \pmod{r}$ and $b + (-1)^r r$ is an r-th power in \mathbb{F}_q , then $s_{\sum_{i=0}^{r-2} q^i}(\beta)^r = b + (-1)^r r$.

Proof. Since $\alpha = \beta^r \in \mathbb{F}_{q^r}$, we may rewrite the equation (16) as

$$(1 + (-1)^r \alpha)^r = (b + (-1)^r r)\beta^r.$$
(22)

Assume $b + (-1)^r r = u^r$ for some u in \mathbb{F}_q . Then from $(1 + (-1)^r \alpha)^r = u^r \beta^r$, we get

$$(1 + (-1)^r \alpha) = \omega_0 u\beta \tag{23}$$

for some r-th root of unity ω_0 in \mathbb{F}_q . Therefore we get

$$Tr(\beta^{\sum_{i=0}^{r-2}q^{i}}) = \frac{1}{\omega_{0}^{r-1}u^{r-1}}Tr((1+(-1)^{r}\alpha)^{\sum_{i=0}^{r-2}q^{i}})$$
$$= \frac{1}{\omega_{0}^{r-1}u^{r-1}}(b+(-1)^{r}r)$$
$$= \omega_{0}u,$$
(24)

where the first equality comes from $\omega_0 u \in \mathbb{F}_q$ and the second equality comes from the coefficient $(-1)^{r+1}(b+(-1)^r r)$ of x in $h(x) = x^r + (-1)^{r+1}(b+(-1)^r r)(x-1)$. We also have the last equality because $\omega_0^r = 1$ and $b + (-1)^r r = u^r$. Therefore we get

$$Tr(\beta^{\sum_{i=0}^{r-2}q^{i}})^{r} = (\omega_{0}u)^{r} = b + (-1)^{r}r.$$
(25)

Finally, combining the Corollaries 2 and 3, we have the following theorem.

Theorem 2. Suppose that $q \equiv 1 \pmod{r^2}$ and $f(x) = (x + (-1)^r)^r + (-1)^{r+1}(b + (-1)^r)x$ is an irreducible polynomial over \mathbb{F}_q with $f(\alpha) = 0$. Assume $b + (-1)^r r$ is an r-th power in \mathbb{F}_q . Then $s_{(\sum_{i=0}^{r-1}q^i)-r}(\alpha)^r = b + (-1)^r r$.

Now using the polynomial f(x), we can find an *r*-th root for given *r*-th power *c* in \mathbb{F}_q . For given *r*-th power $c \in \mathbb{F}_q$, define $b = c - (-1)^r r$. If f(x) with given coefficient *b* is irreducible, then $s_{\frac{\sum_{i=0}^{r-1} q^i)-r}{r^2}}(f)$ is an *r*-th root of *c*. That is,

$$s_{\frac{(\sum_{i=0}^{r-1}q^i)-r}{r^2}}(f)^r = b + (-1)^r r = c.$$

If the given f is not irreducible over \mathbb{F}_q , then we may twist c by random $t \in \mathbb{F}_q$ until we get irreducible f with $b = ct^r - (-1)^r r$. Then

$$s_{\frac{(\sum_{i=0}^{r-1}q^i)-r}{r^2}}(f)^r = b + (-1)^r r = ct^r,$$

which implies $t^{-1}s_{\underbrace{(\sum_{i=0}^{r-1}q^i)-r}{2}}(f)$ is an *r*-th root of *c* (See Table 3).

Example 2:

A. r = 2: For given square $c \in \mathbb{F}_q$, we have $f(x) = (x+1)^2 - (b+2)x = x^2 - bx + 1$ with b = c - 2. If f is irreducible over \mathbb{F}_q , one has $s_{\frac{q-1}{4}}(f)^2 = b + 2 = c$, and such $s_{\frac{q-1}{4}}$ can be computed via Lucas sequence $s_k = bs_{k-1} - s_{k-2}$ (See [9]).

Table 3: New r-th root algorithm for \mathbb{F}_q with $q \equiv 1 \pmod{r^2}$

Input: An r-th power c in \mathbb{F}_q Output: s satisfying $s^r = c$ Step 1: $t \leftarrow 1, b \leftarrow ct^r - (-1)^r r,$ $f(x) \leftarrow (x + (-1)^r)^r + (-1)^{r+1}(b + (-1)^r r)x$ Step 2: while f(x) is reducible over \mathbb{F}_q Choose random $t \in \mathbb{F}_q$ $b \leftarrow ct^r - (-1)^r r, f(x) \leftarrow (x + (-1)^r)^r + (-1)^{r+1}(b + (-1)^r r)x$ end while Step 3: $s \leftarrow s_{\frac{(\sum_{i=0}^{r-1} q^i) - r}{r^2}}(f) \cdot t^{-1}$

B. r = 3: For given cube $c \in \mathbb{F}_q$, we have $f(x) = (x-1)^3 + (b-3)x = x^3 - 3x^2 + bx - 1$ with b = c+3. If f is irreducible over \mathbb{F}_q , one has $s_{\frac{q^2+q-2}{9}}(f)^3 = b-3 = c$, and such $s_{\frac{q^2+q-2}{9}}$ can be computed via the third order linear recurrence sequence $s_k = 3s_{k-1} - bs_{k-2} + s_{k-3}$ using the relation in the equation (3) (See [16]).

Our theorem and examples were explained on the assumption of $q \equiv 1 \pmod{r^2}$. However it should be mentioned that one can find an *r*-th root of *c* when $q \not\equiv 1 \pmod{r^2}$ easily. For example, when r = 2 and $q \equiv 3 \pmod{4}$, a square root of a quadratic residue *c* is given by $c^{\frac{q+1}{4}}$. Also when r = 3 and $q \not\equiv 1 \pmod{9}$, we have the followings. When $q \equiv 2 \pmod{3}$, a cube root of *c* is given as $c^{\frac{2q-1}{3}}$. When $q \equiv 4 \pmod{9}$, a cube root of cubic residue *c* is given by $c^{\frac{2q+1}{9}}$. When $q \equiv 7 \pmod{9}$, a cube root of cubic residue *c* is given by $c^{\frac{q+2}{9}}$. Thus the computational cost of finding cube root of *c* when $q \not\equiv 1 \pmod{9}$ is just one exponentiation in \mathbb{F}_q .

These closed formulas are not obtained by ad-hoc method. In fact, we have the following simple result of r-th root when $q \not\equiv 1 \pmod{r^2}$.

Proposition 1. Let q be a prime power such that $q \equiv 1 \pmod{r}$ but $q \not\equiv 1 \pmod{r^2}$. Assume that $gcd(\frac{q-1}{r},r) = 1$. Then, for given r-th power c in \mathbb{F}_q , an r-th root of c can be computed by the cost of one exponentiation in \mathbb{F}_q . In particular, if r is a prime, then the condition $gcd(\frac{q-1}{r},r) = 1$ is automatically satisfied so that the cost of finding r-th root of c is just one exponentiation.

Proof. We claim that there is an integer θ depending only on r and q but not on c such that

(A)
$$\theta < rq$$
, (B) $r^2 | \theta$, (C) $\left(c^{\frac{\theta}{r^2}} \right)^r = c$ (26)

The condition (C) of the above equation says that $c^{\frac{\theta}{r}} = c$, i.e., $c^{\frac{\theta-r}{r}} = 1$. Since c is an r-th power in \mathbb{F}_q , this condition can be satisfied if $\theta \equiv r \pmod{(q-1)}$. Therefore writing $\theta = r + k(q-1)$, the condition (B) says that one should have $r + k(q-1) \equiv 0 \pmod{r^2}$, which

is equivalent to the following equation

$$1 + k \frac{q-1}{r} \equiv 0 \pmod{r}.$$
 (27)

Since $gcd(\frac{q-1}{r}, r) = 1$, the above equation has unique solution $k \pmod{r}$. Now the condition (C) is satisfied because $\theta = kq + r - k \leq (r-1)q + 1 < rq$. Finally, if r is a prime, then the assumption $q \not\equiv 1 \pmod{r^2}$ implies $gcd(\frac{q-1}{r}, r) = 1$.

Example 3:

A. r = 3: When r = 3, the equation (27) becomes $1 + k\frac{q-1}{3} \equiv 0 \pmod{3}$. Therefore depending on the values of $\frac{q-1}{3} \pmod{3}$, the corresponding $k \pmod{3}$ is uniquely determined and they are

$$\left(\frac{q-1}{3},k\right) = (1,2),(2,1).$$
 (28)

Since $\frac{q-1}{3} \equiv j \pmod{3}$ implies $q \equiv 3j + 1 \pmod{3^2}$, we have the following table of pairs of $q \pmod{3^2}$ and corresponding $\theta = kq + 3 - k$

$$(q \pmod{9}, \theta) = (4, 2q+1), (7, q+2).$$
 (29)

That is, when $q \equiv 4 \pmod{9}$, the a cube root of c is given as $c^{\frac{2q+1}{9}}$, and when $q \equiv 7 \pmod{9}$, the a cube root of c is given as $c^{\frac{q+2}{9}}$.

B. r = 5: When r = 5, the equation (27) becomes $1 + k\frac{q-1}{5} \equiv 0 \pmod{5}$. Therefore depending on the values of $\frac{q-1}{5} \pmod{5}$, the corresponding $k \pmod{5}$ is uniquely determined and they are

$$\left(\frac{q-1}{5},k\right) = (1,4), (2,2), (3,3), (4,1).$$
 (30)

Since $\frac{q-1}{5} \equiv j \pmod{5}$ implies $q \equiv 5j + 1 \pmod{5^2}$, we have the following table of pairs of $q \pmod{5^2}$ and corresponding $\theta = kq + 5 - k$

$$(q \pmod{25}, \theta) = (6, 4q+1), (11, 2q+3), (16, 3q+2), (21, q+4).$$
(31)

For example, when $q \equiv 6 \pmod{25}$, the an 5-th root of c is given as $c^{\frac{4q+1}{25}}$, and when $q \equiv 11 \pmod{25}$, the an 5-th root of c is given as $c^{\frac{2q+3}{25}}$, etc.

Remarks:

1. For r-th root extraction, considering the cases r = prime is enough for practical purposes. For example, to find 4-th root of $c \in \mathbb{F}_q$, we only have to use square root algorithm twice instead of using 4-th root algorithm once, and the complexity of two applications of square root algorithm is lower than that of one application of 4-th root algorithm.

2. In general, when $r = \prod_{i=1}^{n} p_i^{a_i}$, to find *r*-th root of *c*, we may use a_1 applications of p_1 -th root algorithm, a_2 applications of p_2 -th root algorithm, ..., a_n applications of p_n -th root algorithm.

5 Future Works and Conclusions

Randomly selected monic polynomial over \mathbb{F}_q of degree r with nonzero constant term is irreducible with probability $\frac{1}{r}$ (For an explanation, see [19]). Even if our choice of f is not really random, experimental evidence implies that $\frac{1}{r}$ of such f is irreducible. Therefore we expect that an irreducible f can be found after r random tries and irreducibility testings of low degree polynomials are well understood can be implemented efficiently, see [18, 19]. Therefore the algorithm in Table 3 is dominated by the complexity of step 3 which computes $s_{(\sum_{i=0}^{r-1}q^i)-r}(f)$.

For r = 2, 3, i.e., for quadratic and cubic polynomials, the well-known linear recurrence sequences give faster algorithms than previously proposed Cipolla-Lehmer type algorithms. For r > 3, there are some known recurrences, for example in [8]. However those sequences do not seem to give efficient algorithms to compute $s_m(f)$ compared with typical Cipolla-Lehmer method and further study is needed.

References

- D. Shanks, *Five number-theoretic algorithms*, Proc. 2nd Manitoba Conf. Number. Math., Manitoba, Canada, pp. 51-70, 1972
- [2] A. Tonelli, Bemerkung über die Auflösung quadratischer Congruenzen, Göttinger Nachrichten, pp. 344-346, 1891
- [3] L. Adleman, K. Manders and G. Miller, On taking roots in finite fields, Proc. 18th IEEE Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977
- [4] M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto dell'Accademia Scienze Fisiche e Matematiche, Napoli, Ser.3, Vol. IX, pp. 154-163, 1903
- [5] D.H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Englewood Cliffs, NJ: Pretice-Hall, pp. 117-151, 1969
- [6] L.E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc., Vol. 13, No. 1, pp. 1-8, 1906
- [7] G. Gong and L. Harn, Public key cryptosystems based on cubic finite field extensions, IEEE Trans. Information Theory, Vol.45, pp. 2601-2605, 1999
- [8] K. J. Giuliani and G. Gong, A New Algorithm to compute remote terms in special types of characteristic sequences, Proc. International Conference on Sequences and Their Applications (SETA), LNCS 4086, pp. 237-247, 2006
- [9] S. Müller, On the computation of square roots in finite fields, Design, Codes and Cryptography, Vol.31, pp. 301-312, 2004
- [10] N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo, A remark on the computation of cube roots in finite fields, preprint
- [11] I.B. Damgård and G.S. Frandsen, Efficient algorithm for the gcd and cubic residuosity in the ring of Eisenstein integers, J. Symbolic Computation, Vol. 39, pp. 643-652, 2005
- [12] A. O. L. Atkin, Probabilistic primality testing, summary by F. Morain, Inria Research Report 1779, pp.159-163, 1992

- [13] F. Kong, Z. Cai, J. Yu, and D. Li, Improved Generalized Atkin Algorithm for Computing Square Roots in Finite Fields, Information Processing Letters, Vol. 98, no. 1, pp. 1-5, 2006.
- [14] Z. Cao, Q. Sha, and X. Fan, Adlemen-Manders-Miller root extraction method revisited, preprint, available at http://arxiv.org/abs/1111.4877, 2011.
- [15] S. Lindhurst, An analysis of Shanks's algorithm for computing square roots in finite fields, CRM Proc. and Lecture Notes, vol. 19, pp. 231-242, 1999
- [16] G.H. Cho, N. Koo, E. Ha, and S. Kwon, New cube root algorithm based on third order linear recurrence relation in finite field, preprint, available at http://eprint.iacr. org/2013/024.pdf
- [17] S. Lang, Algebra, Springer, 2005
- [18] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1997
- [19] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, *Applications of Finite Fields*, Springer, 1992