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Abstract. With the raising trend of outsourcing databases to the cloud
server, it is important to efficiently and securely assure that the clients’
queries on the databases are executed correctly. To address this issue,
server schemes have been proposed based on various cryptographic tools.
However, these existing schemes have limitations in either communica-
tion cost or computational cost for verification. Meanwhile, only four
types of SQL functional queries are supported in these schemes. It still
remains as an open problem to design a verifiable SQL query scheme
that provides affordable storage overhead, communication cost, compu-
tational cost and more SQL functional queries.

In this paper, we investigate this open problem and propose an efficient
verifiable SQL query scheme for outsourced dynamic databases. Different
from the previous state-of-the-art schemes, we reduce the complexity of
storage overhead from O(mn) to O(n) and move most computation tasks
from client side to cloud server side. Compared with the recently pro-
posed scheme that also achieves O(n) storage overhead, we not only cut
the communication complexity for verification from O(n) to O(logn), but
also release the client from O(n) exponentiation operations to O(1). In
addition, our proposed scheme improves the previous ones by allowing
more aggregate queries including variance query, weighted exponenti-
ation sum query of any degrees, etc. Thorough analysis shows the effi-
ciency and scalability of our proposed scheme. The security of our scheme
is proved based on Strong Diffie-Hellman Assumption, Bilinear Strong
Diffie-Hellman Assumption and Computational Diffie-Hellman Assump-
tion.

Keywords: Integrity Check, Dynamic Database Outsource, SQL Query,
Authenticated Data Structure, Cloud Storage

1 Introduction

The unprecedented advantages of cloud computing (e.t., on-demand self-service,
transference of risk and resource elasticity, etc[19]) make it become a raising
prevalent choice for database outsourcing. To take advantages of cloud comput-
ing, millions of organizations and individuals have moved their databases as well
as services to the cloud infrastructures including Amazon EC2, Microsoft Azure



and Google Cloud. Utilizing cloud platforms as data centers is increasingly be-
coming a clear trend in today’s Internet.

Although cloud computing introduces the above advantages more appealing
than ever, it also causes challenging security concerns due to the cloud servers’
shortages. For databases that outsourced to cloud for query, there are three ma-
jor security concerns: Integrity, Completeness and Freshness. Specifically, for any
query request Qry with range [a, b] on the database of version V er, we need to
assure that the query result is correct(i.e., the data executed for query and the
result returned have not been modified), complete(i.e., the result cannot belong
to some other ranges [a′, b′], where a′ > a and b′ < b) and up-to-date(i.e., the
query must be executed on the database of latest version V er instead of any other
version V er′). To ensure the users’ confidence of their query results’ integrity,
completeness as well as freshness, a series of schemes have been proposed[14, 16,
9, 12, 13, 5, 17, 11, 15, 20]. These existing schemes can be mainly divided into two
groups: the tree-based scheme[14, 9, 5, 11, 15] and the signature-based scheme[16,
12, 13, 17]. The best tree-based scheme[9] enables the users to simultaneously
check the integrity, completeness and freshness for the query result. However,
this scheme requires storage overhead linear to the tuple and attribute numbers
in the databases, and only supports selection query, projection query and join
queries with pre-defined keyword attributes. Moreover, the communication com-
plexity of Ref.[9] is linear to the number of tuples and attributes associated with
the query result. Compared with the tree-based schemes, the best signature-
based scheme[17] can achieve the same functionality with lower communication
complexity. While, this scheme introduces exponentiation operations linear to
the tuple number associated with query result on user side and makes no con-
tributions to the storage overhead as well as SQL functional query types. To
overcome the limitations in the previous schemes, Zheng et.al[20] recently pro-
posed a novel query integrity check approach for outsourced dynamic databases.
By utilizing Merkle hash tree and Homomorphic Linear Tag (HLT), their pro-
posed approach makes the storage overhead on cloud server side independent to
the number of attributes in each tuple and supports flexible join queries as well
as aggregate queries (only weighted sum queries). Nevertheless, each query verifi-
cation in Ref.[20] introduces communication and computational complexities on
user side linear to the number of tuples associated with the query result, which
limit its scalability in database size and query ranges. To our best knowledge,
there is no existing scheme proposed for verifiable SQL query on outsourced
dynamic databases that achieves affordable communication cost, computational
cost, storage overhead and more types of SQL functional query at the same time.
The problem of designing such a verifiable SQL query scheme is still largely open.

In this paper, we investigate this open problem and design an efficient ver-
ifiable SQL query scheme for outsourced dynamic databases. By uniquely in-
corporating our proposed polynomial based authentication tag and the Merkle
hash tree[10], our scheme can efficiently and simultaneously check the integrity,
completeness and freshness of SQL query in cloud. Moreover, besides SQL query
types achieved in the previous schemes, our scheme supports additional aggre-



gate queries including variance query, weighted exponentiation sum query of any
degrees, etc. The main idea of our proposed scheme can be summarized as fol-
lows: a database owner first generates a Merkle hash tree for the database and
authentication tags {σi} for each tuple {ri}, 1 ≤ i ≤ n in the database. Then,
the database, tags {σi} and auxiliary information Au of Merkle hash tree are
outsourced to the cloud server and root state information StateR of the tree
is published. When a client queries the databases in cloud, the cloud returns
the result and the corresponding auxiliary information to it. The client then
runs the first part of QueryV erify algorithm to check the completeness and
freshness of the result. After that, the client generates a challenge message for
integrity check and sends it to the cloud. Based on the received message, the
cloud server produces the proof information that it actually executes the query
correctly and sends it to the client. On receiving the proof information, the
client runs the second part of QueryV erify algorithm to check the correctness
of the query result. In our proposed scheme, we tailor a constant size polynomial
commitment technique[8] and allow the cloud server to aggregate all the proof
information into three elements to reduce communication cost. In addition, our
authentication tag also enables the client to move most computation tasks to
the cloud server. Any client can perform the verification process without the
help of database owner, who is only responsible for the database update after
data outsourcing. Thorough analysis shows that our proposed scheme is effi-
cient and scalable. We prove that our proposed scheme is secure under based on
Computational Diffie-Hellman Assumption(CDH), Strong Diffie-Hellman(SDH)
Assumption and Bilinear Strong DiDiffiee-Hellman(BSDH) Assumption.

We summarize the main contributions of this paper as below.

– We proposed an efficient verifiable SQL query scheme for outsourced dy-
namic databases in cloud, which reduces storage overhead, communication
cost and computational cost simultaneously compared with the existing
schemes.

– Our proposed scheme achieves aggregate queries that cannot be supported
in the previous schemes, including variance query, weighted exponentiation
sum query of any degrees, etc.

– We formally prove the security of our proposed scheme and valid the its
advantages through thorough analysis.

– Our proposed polynomial based authentication tag can be used as an in-
dependent solution for other related application, such as database auditing,
encrypted key word search, etc.

The rest of this paper is organized as follows: We review and discuss the re-
lated works in Section 2. Section 3 describes the models and assumptions of
our scheme. In Section 4, we introduce the technique preliminaries of this work,
which is followed by the solution space in Section5. In Section 6, we analyze our
proposed scheme in terms of security and performance. We conclude our paper
in Section 7.



2 Related Work

There are mainly two groups of approaches for verifiable query on outsourced
databases: the tree-based approaches[14, 9, 5, 11, 15] and the signature-based ap-
proaches[16, 12, 13, 17].

In the tree-based approaches, a Merkle hash tree[10] or its variants[14, 9, 5,
11, 15] are always used to assure the integrity of the data associated with the
leaves for query. Among the existing tree-based approaches, the best one is pro-
posed by Li et.al.[9], which introduces an embedded Merkle B+-Tree structure
to reduce I/O operations and first considers the dynamic databases. In Ref.[9],
the integrity, completeness and freshness of the query result can be achieved at
the same time with simple hash operations. However, the communication com-
plexity of Ref.[9] is linear to the number of tuples and attributes associated with
the query results, which limits its performance for queries on large ranges. In
addition, Ref.[9] requires O(mn) storage overhead on cloud server side and only
supports selection query, projection query as well as joint query with pre-defined
keyword attributes.

The signature-based approaches[16, 12, 13, 17] always utilize signature aggre-
gation technique[2] and its variants to aggregate the proof information of query
result. Compared with the tree-based approaches, this kind of approaches greatly
reduce the communication complexity for query verification. But these signature-
based approaches require more computational cost to handle query verification,
especially for some powerful queries(e.g., projection query, joint query). In the
best signature-based approach[17], a chaining signing technique is introduced to
facilitate queries and the proof information of query result are aggregated into
one single signature. However, this approach needs the client to perform expen-
sive exponential operations linear to the number of tuples and attributes asso-
ciated with the query result, which limits its application for large range queries.
No improvement is brought for both storage overhead and SQL functional query
types.

To improve the previous approaches, Zheng et.al[20] proposed a SQL query
integrity check scheme for outsourced dynamic database based on Merkle hash
tree and HLT. Compared with the previous schemes[9, 17], the storage overhead
on cloud side in Ref.[20] is reduced from O(mn) to O(n). Moreover, their pro-
posed scheme supports flexible joint query and weighted sum query. However,
Ref.[20] requires the transmission of authentication tags that linear to the num-
ber of tuples associated with the query results, which can be worse in their
weighted sum query(i.e, instead of returning the tag for the single sum query
result, tag for every tuple involved in the sum computation are needed). What
is more, the client in Ref.[20] has to perform all integrity verification operations,
which are linear to the number of tuples associated with the result and make it
become impractical to be applied on large database or large query ranges.



3 Model and Assumption

3.1 System Model

In this work, we consider a system consists of three major entities:Database Owner,
Cloud Server and Client. The database owner has a relational database with
multiple tables, each of which consists of multiple tuples and multiples attributes.
The owner outsources his databases to the cloud server together with the cor-
responding authentication tags as well as the auxiliary information of Merkle
hash tree, and publishes the root state information of the tree. The client who
shares the database with the owner can perform verifiable SQL query on it with-
out help of the owner. To check the integrity, completeness and freshness of the
query result, the client requests the proper auxiliary information from the cloud
server, and then challenges it with a random message. On receiving the message,
the cloud server generates the proof information and returns it to the client.
Based on the proof information, the client verifies the query results by running
QueryV erify algorithm. W.l.o.g, we define the one-round version of our system
model as below.

– KeyGen: Given a security parameter λ, the randomized KeyGen algorithm
produces the public key and private key for the system as (PK,SK)

– Setup: Given a database DTB, the public key PK and private key SK,
the Setup algorithm outputs the authentication tag σ, auxiliary information
AU and root state information StateR of Merkle hash tree, in which σ and
AU will be outsourced to the cloud server and StateR will be published.

– Update: Given the public key PK and private key SK, the Update al-
gorithm generates the updated authentication tag σ′, auxiliary information
AU ′ and root state information State′R and verifies whether or not the out-
sourced database is updated correctly.

– Prove: Given the public key PK, a query request and a challenge message
Chall, the Prove algorithm generates the proof information Prf .

– QueryVerify: Given the public key PK, the query result and the corre-
sponding auxiliary information, root state information, the proof informa-
tion Prf , the QueryVerify algorithm checks the integrity, completeness and
freshness of the query result and outputs result as either accept or reject.

3.2 Security Model

We consider the cloud server as untrusted and potentially malicious, which is
consistent with the previous schemes[9, 17, 20]. In our model, we need to assure
that our construction is sound and correct. With regard to the soundness, if
any malicious cloud server can generate the proof information and makes the
QueryV erify algorithm output accept, it must execute the query correctly on
the right query range and up-to-date database. For the correctness, we require
that the QueryV erify algorithm outputs accept for any valid proof information
produced from all key pairs(PK,SK), all up-to-date database, all authentication
tag σ, all auxiliary information AU and root state information StateR. W.l.o.g,
we define the following security game for the soundness of our proposed scheme.



Definition 1. Let ∇ = (KeyGen, Setup, Update, Prove,QueryV erify) be a
verifiable SQL query scheme and Adv be a probabilistic polynomial-time adver-
sary. Consider the following security game among an Adv, a trust authority(TA),
a challenger(C).

– TA runs KeyGen(1λ)→ (PK,SK) and sends the public key PK to Adv.

– Adv chooses a database(DTB) and gives it to TA. TA runs Setup(DTB,
SK,PK)→ (σ,AU, StateR) to produce σ, AU and StateR and sends them
back to Adv. TA also publishes StateR.

– Adv chooses some data D in DTB and modifies it to D′. Adv sends D′ to
TA and asks it to generate the corresponding updated authentication tag
σ′, auxiliary information AU ′ and root state information State′R. TA runs
Update(D′, SK, PK) → (σ′, AU ′, State′R) and returns the output to Adv.
TA publishes State′R.

– With regard to the updated database DTB′, the challenger C sends a query
request Qry to Adv. Adv returns the query result Rst together with the
corresponding number of AU . C then challenges Adv with a random mes-
sage Chall. Adv responses C with the proof information Prf generated by
running an arbitrary algorithm instead of the Prove algorithm.

– C checks Prf by runningQueryV erify(Rst, Prf, PK, State′R, Au
′)→ (V Rst).

– Adv wins the game if and only if it can produce AU and Prf without
executing the query correctly and make C output V Rst as accept.

We can consider ∇ is sound if any probabilistic polynomial-time adversary Adv
has at most negligible probability to win the above game.

3.3 Assumption

Definition 2. Computational Diffie-Hellman (CDH) Assumption[4]

Let a, b
R← Z∗p . Given input as (g, ga, gb), it is computationally hard to calcu-

late the value gab, where g is a generator of a cyclic group G of order p.

Definition 3. t-Strong Diffie-Hellman (t-SDH) Assumption[1]

Let α
R← Z∗p . For any probabilistic polynomial time adversary(Adv), given in-

put as a (t+1)−tuple (g, gα, · · · , gαt) ∈ Gt+1, the probability Prob[Adv(g, gα, · · · ,
gα

t

) = (c, g
1

α+c )] is negligible for any value of c ∈ Z∗p/−α, where G is a cyclic
group of order p and g is the generator of G.

Definition 4. t-Bilinear Strong Diffie-Hellman (t-BSDH) Assumption[6]

Let α
R← Z∗p . For any probabilistic polynomial time adversary(Adv), given

input as a (t + 1) − tuple (g, gα, · · · , gαt) ∈ Gt+1, the probability Prob[Adv

(g, gα, · · · , gαt) = (c, e(g, g)
1

α+c )] is negligible for any value of c ∈ Z∗p/−α,where
G is a multiplicative cyclic group of order p and g is the generator of G.



4 Technique Preliminaries

4.1 Bilinear Map

For a Bilinear Map[3]: e : G × G → GT , where G and GT are multiplicative
cyclic groups of the same prime order p, it has the following properties:

– Bilinear: for any a, b
R← Z∗p and g1, g2 ∈ G, there exists e(ga1 , g

b
2) = e(g1, g2)ab.

– Non-Degenerate: for any g ∈ G, e(g, g) 6= 1.
– Computable: a Bilinear Map e can always be computed efficiently with a

computable algorithm.

4.2 Merkle Hash Tree

Merkle hash tree is first proposed in Ref.[10] to prove that a set of elements has
not been modified. In a Merkle hash tree, each leaf node contains the hash value
of the corresponding data and each non-leaf node contains the hash value of
the concatenation of its children’s values. Specially, for two leaf nodes leaf1 and
leaf2, whose values are hash(data1) and hash(data2), the value of their father
node is hash(hash(data1)||hash(data2)). For verification purpose, the hash value
of the root of a Merkle hash tree is always published. To check the integrity of
data associated with a leaf node, a verifier first generates the hash value of the
data. Then, by combining the generated hash value and the siblings of nodes
on the path that leads the checking node to root, the verifier can calculate the
value of root. If the calculated root hash value is equal to the published value, the
checking data is valid; otherwise, the data has been modified. For more details,
please refer to Ref.[10].

4.3 Constant Size Polynomial Commitment

Secure polynomial commitment scheme is proposed to allow a committer to
commit a polynomial with a short string. Based on the algebraic property of
polynomials f(x) ∈ Z[x]: f(x)− f(r) can be perfectly divided by (x− r), where

r
R← Z∗p , Kate et.al.[8] proposed a constant size polynomial commitment scheme.

In their construction, to verify the correctness of a polynomial evaluation f(r),
where r is a random index on f(x), the committer of f(x) can aggregate all the
proof information into a single element. Specially, the construction of polyno-
mial commitment scheme with constant communication size in Ref.[8] can be
summarized as follows.

– Setup: Given a security parameter λ and a fixed number s, a trust authority
outputs the public key and private key as:

PK = (G,GT , g, g
α, · · · , gαs−1

), SK = α
R← Z∗p

where G and GT are two multiplicative cyclic groups with the same prime
order p, g is the generator of G and e : G×G→ GT .
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Fig. 1. Merkle Hash Tree: the auxiliary information AU for element E3 is: the node
value of Nodes A,B and C.

– Commit: Given a polynomial fm(x) ∈ Zp[x], wherem = (m0,m1, · · · ,ms−1)
R←

Z∗p is the coefficient vector, a committer generates the commitment C =

gfm(α) ∈ G and publishes C.

– CreateWitness: Given a random index r
R← Z∗p , the committer computes

fw(x) ≡ fm(x)−fm(r)
(x−r) using polynomial long division, and denote the coeffi-

cients vector of the resulting quotient polynomial as w = (w0, w1, · · · , ws−1).
Based on the public key PK, the witness ψ can be computed as ψ = gfw(α).

– VerifyEval: Given the witness ψ, a verifier checks whether or not fm(r) is
the evaluation at index r of the polynomial committed by C as:

e(C, g)
?
= e(ψ, gα/gr) · e(g, g)fm(r)

For the detail security and correctness of this polynomial commitment scheme,
please refer to Ref.[8].

5 Solution Space

In this section, we first introduce the two building blocks for our efficient ver-
ifiable SQL query scheme on outsourced database: Authenticated outsourced
ordered data set (AORDS) and Polynomial based authentication tag (PAT).
Then, we describe how to construct different type of verifiable SQL query based
on these two blocks.

5.1 Authenticated Outsourced Ordered Data Set

Authenticated Outsourced ordered data set (AORDS) is constructed based on
the Merkle hash tree[10]. Let E be an ordered set of elements and Sign() as a
signature scheme[1], we describe our construction of AORDS as below.

– KeyGen(1λ)→ (PK,SK): Given a selected security parameter λ, the ran-
domized KeyGen algorithm produces the public-private key pairs (PK,SK)
of Sign().

– SetUp(E,SK) → (AU, StateR): Given SK and an ordered data set E =
{E1, E2, · · · , En}, the SetUp algorithm generates a Merkle hash tree. In the
generated tree, each node stores the hash value of one element in E and



the value of each internal node is the hash value of concatenation of its
children’s values. The state information of root is StateR = Sign(Root) and
the auxiliary information AU for each leaf node leafi is node values on paths
from leafi to root and the values of these nodes’s siblings’ as shown in Fig.1.

– Update(SK,E)→ (E′, AU ′, State′R): Here we describe the update for data
modification in E. Our construction can also support insertion and deletion
update, which are the same as introduced in Ref.[9, 20]. Due to the space
limitation, we leave details of insertion and deletion operations for reference
[9, 20]. Given a some modified elements E′i, the cloud server replaces the
Ei with E′i and also updates the corresponding AU, StateR to AU ′, State′R
based on E′i. State

′
R is sent to the data owner. The owner computes the

new root value StateR” based on E′i and checks State′′R
?
= State′R. If so, the

owner publishes State′R as the new root state information; otherwise, reject
the update.

– QueryVerify(PK,StateR) → (V Rst): Given a range query Qry(a, b) re-
quest, the cloud server gives the query result Rst and corresponding AU to
the client.

Case 1: Rst = {Ec, Ec+1, · · · , Ec+k−1} is not empty, the cloud server sends
AU of nodes Ec−1 and Ec+k to the client. The client then recomputes the
root value Root′ based on the AU and Rst. After decrypting the published

signature of root Sign(Root) with PK, the client checks Root
?
= Root′.

V Rst = accpet if Root = Root′; otherwise V Rst = reject.

Case 2: Rst is empty. In this case, there must have a Ec that Ec < a, b <
Ec+1. The cloud server sends AU of Ec and Ec+1 to the client. Same to
Case 1, the client produces Root and Root′. V Rst = accpet if Root = Root′;
otherwise V Rst = reject.

5.2 Polynomial Based Authentication Tag

Construction Description In this section, we propose a polynomial based
authentication tag (PAT), which can be used to verity the integrity of query
result. We consider a database DTB consists of n tuples {r1, r2, · · · , rn}, each
of which has s attributes {a0, a1, · · · , as−1}. Let e : G×G→ GT and H be the
one-way hash function, where G is a multiplicative cyclic group of prime order
p and g be a generator of G. We define fc(x) as a polynomial with coefficient
vector c = (c0, c1, · · · , cs−1) and describe our PAT construction as follows.

– KeyGen(1λ) → (PK,SK): Choose a random prime p(λ bits security) and

generate a random signing keypair ((spk, ssk)
R← Sign()) using BLS sig-

nature[1]. Choose two random numbers α, ε
R← Z∗p and compute v ← gε,

κ← gαε as well as {gαj}s−1
j=0. The public and private keys are

PK = {p, v, κ, spk, {gα
j

}s−1
j=0}, SK = {ε, ssk, α}



– Setup(PK,SK) → (σ, τ): Choose a random table name name from some
sufficiently large domain(e.g., Z∗p ). Let τ0 be “name||n”; the table tag τ is τ0
together with a signature on τ0 under ssk: τ ← τ0||Sign(τ0). For each tuple
ri, 1 ≤ i ≤ n, an authentication tag is computed as:

σi = (gH(name||i) ·
s−1∏
j=0

gri.ajα
j

)ε (1)

= (gH(name||i) · gfβi (α))ε

where βi,j = ri.aj and βi = {βi,0, βi,1, · · · , βi,s−1}.
– QueryVerify(PK, τ)→ Chall:

Stage 1: Verify the signature on τ : if the signature is not valid, reject and
halt; otherwise, parse τ to recover name, n. W.o.l.g, to check the integrity
of any k query results form {ri.aj , 1 ≤ i ≤ n, 0 ≤ j ≤ s − 1}, the client

randomly chooses k numbers vi
R← Z∗p for these tuples and gets k−elements

set K = (i, vi). Choose a random number q
R← Z∗p . Produce the challenge

message as

Chall = {q,K}

Challenge the server with Chall.
– Prove(PK,Chall, τ)→ (ψ, y, σ): Compute

σ =
∏

(i,vi)∈K

σvii (2)

We denote vector

A = (
∑

(i,vi)∈K

vi ∗ ri.a0, · · · ,
∑

(i,vi)∈K

vi ∗ ri.as−1)

Compute

y = fA(q) (3)

Since polynomials f(x) ∈ Z[x] have the algebraic property that (x − q)

perfectly divides the polynomial f(x) − f(q), q
R← Z∗p . Now, divide the

polynomial fA(x) − fA(q) with (x − q) and denote the coefficients vector
of the resulting quotient polynomial as w = (w0, w1, · · · , ws−1), that is,

fw(x) ≡ fA(x)−fA(q)
x−q . Produce

ψ =

s−1∏
j=0

(gα
j

)wj = gfw(α) (4)

Response Prf = {ψ, y, σ}.



– QueryVerify(PK,Prf)→ V Rst:
Stage 2: On receiving the proof response Prf, compute

ηi = v−H(name||i)vi , (i, vi) ∈ K (5)

η =
∏

(i,vi)∈K

ηi (6)

where v = gε in PK. Parse Prf as {ψ, y, σ} and check

e(ψ, κ · v−q) ?
= e(σ · η, g) · e(g−y, v) (7)

where κ = gεα in PK. The QueryV erify algorithm outputs V Rst = accept
if Eq.7 holds; otherwise, V Rst = reject.

Correctness of PAT For the cloud server that correctly executes the query
request on the right data and generates proof information Prf = {ψ, y, σ}, we
analyze the correctness of our proposed PAT as follows. Consider the left part
and right part of Eq.7, we have: Left Part:

e(ψ, κ · v−q) (8)

= e(gfw(α), gε(α−q))

= e(g, g)
fA(α)−fA(q)

α−q ·ε(α−q)

= e(g, g)ε(fA(α)−fA(q))

Right Part:

e(σ · η, g) · e(g−y, v) (9)

= e(g
ε(
∑

(i,vi)∈Q
H(name||i)vi+fA(α))+ε

∑
(i,vi)∈Q

−H(name||i)vi

, g) · e(g−fA(q), gε)

= e(g, g)εfA(α) · e(g, g)−εfA(q)

= e(g, g)ε(fA(α)−fA(q))

Based on Eq.8 and Eq.9, it is easy to verify that our construction of PAT is
correct if the cloud server honestly produces the Prf .

Properties of PAT We first show that our PAT supports homomorphic ad-
dition. Specifically, considering any k, 1 ≤ k ≤ n attributes in same position
of different tuples(i.e.,{ri.aj , ri+c.aj , · · · , ri+d.aj}) and their corresponding tags,
we can calculate the tag for the sum of these k attributes as:

σ =

k∏
i=1

σi = (g
∑k

i=0
H(name||i) ·

k∏
i=0

s−1∏
j=0

gri.ajα
j

)ε (10)

= (g
∑k

i=0
H(name||i) ·

s−1∏
j=0

g
∑k

i=0
ri.ajα

j

)ε

= (g
∑k

i=0
H(name||i) · gf=(α))ε



where = = {
∑k
i=0 βi,0,

∑k
i=0 βi,1, · · · ,

∑k
i=0 βi,s−1}.

Now, we describe how to construct the tag for any attribute’s exponential
value. For the exponential value (ri.aj)

x
, 1 ≤ i ≤ n, 1 ≤ j ≤ s, x ∈ Z∗p , we can

calculate its tag as:

expx.σij = σij
(ri.aj)

x

· v(−(ri.aj)
x+1)H(name||i) (11)

= gH(name||i)ε · (gfβi (α)ε)
(ri.aj)

x

(12)

= (gH(name||i) · gfBi (α))ε

where v = gε in PK, Bi,j = (ri.ak)x ∗ βi,j and Bi = {Bi,0, Bi,1, · · · , Bi,s−1}.
It is easy to verify that the exponential tag still has additional homomorphic
property similar to Eq.10. Meanwhile, the exponential tag fullfills the Proof and
QueryV erify algorithms in our PAT construction. Due to the space limitation,
we do not provide detail discussion here.

5.3 Construction of Efficient Verifiable SQL Query Scheme for
Outsourced Dynamic Database

Considering a table TB consists of n tuples {r1, r2, · · · , rn}, each of which has
s attributes {a0, a1, · · · , as−1}. For simplicity, TB is ordered by attribute a0(it
can also be ordered by any other attributes). We set L and U as the lower and
upper bounds of the search key attribute a0. Let e : G×G→ GT and H be the
one-way hash function, where G is a multiplicative cyclic group of prime order
p and g be a generator of G. Based on our two building blocks AORDS and
PAT , we describe our efficient verifiable SQL query scheme as below.

– KeyGen(1λ) → (PK,SK): Given a security parameter λ, the database
owner runsAORDS.KeyGen→ (AORDS.PK,AORDS.SK) and PAT.KeyGen→
(PAT.PK,PAT.SK). Get the public key and private key as:

PK = {p, v, κ, spk, {gα
j

}s−1
j=0}, SK = {ε, ssk, α}

where v ← gε, κ← gαε and α, ε
R← Z∗p .

– SetUp(PK,SK, TB) → (σ, τ, StateR, AU): Generate two additional tu-
ples r0 and rn+1 for the table, where r0.a0 = L and rn+1.a0 = U . Run
AORDS.SetUp to produce the root state information StateR and auxiliary
information AU . Run PAT.SetUp to generate authentication tags σi for
each tuple ri, 0 ≤ i ≤ n+ 1. Outsource TB, AU and σi to the cloud server.
Make StateR as public information.

– Update(PK,SK, TB)→ (TB′, σ′, State′R, AU
′):

Modification: Suppose the database owner modifies the tuple ri to r′i. The
owner first generates the authentication tag σ′i for r′i and sends it to the
cloud server. Then, the owner runs AORDS.Update and updates the ri,
AU , StateR on the server side to r′i, AU

′, State′R with verification. The
owner publish State′R.



Insertion: Suppose the database owner inserts the tuple ri between rc and
rc+1. The owner first generates the authentication tag σi for ri and outsource
it to the cloud server together with ri. Then, the owner runs AORDS.Update
to adds ri and updates the corresponding AU , StateR on the server side to
AU ′, State′R with verification. The owner publish State′R.
Deletion: Suppose the database owner delete the tuple ri. The owner runs
AORDS.Update and updates AU , StateR on the server side to AU ′, State′R
with verification. The owner publish State′R.

Since the Prove and QueryV erify algorithms for different types of SQL queries
have some difference, we describe them according to query types.

– Selection Query: Suppose a selection query Qry = “select * from TB
where b ≤ a0 ≤ d”. The client first runs AORDS.QueryV erify with the
range query Qry(b, d) to check the freshness and completeness. If the output
is reject, the client aborts. Otherwise, if the query result Rst is empty, the
client accepts the result as null. IfRst consists of k tuples {rt, rt+1, · · · , rt+k−1},
the client runs PAT.QueryV erify.Stage1 to generate the challenge message
Chall = {q,K} and sends it the cloud server. The cloud server then pro-
duces the proof information Prf = {ψ, y, σ} by running PAT.Prove. On
receiving Prf , the client runs PAT.QueryV erify.Stage2 to verify the in-
tegrity of these k tuples. If the output V Rst is accept, accept Rst as the
query result; otherwise, reject Rst.

– Projection Query: Suppose a projection query Qry =“select a0, · · · , ak
from TB”, where 1 ≤ k ≤ s−1. The cloud sends Rst = {ri.a0, · · · , ri.ak}, 1 ≤
i ≤ n to the client. The client first runs AORDS.QueryV erify with the
range query Qry(L,U) to check the freshness and completeness. If the output
is reject, the client aborts. Otherwise the client runs PAT.QueryV erify.Stage1
to generate the challenge message Chall = {q,K} and sends it the cloud
server. The cloud server then produces the proof information Prf = {ψ, y, σ}
by running PAT.Prove. On receiving Prf , the client runs PAT.QueryV erify.
Stage2 to verify the integrity of Rst. If the output V Rst = accept, accept
Rst as the query result; otherwise, reject Rst.

– Join Query: Suppose there are two tables {TB1, TB2} processed same as
TB and a projection query Qry =“select R∗1, R

∗
2 from TB1, TB2, where

R1.ad = R2.at”. The cloud sends Rst = {R∗1, R∗2} to the client. The client
first runs Projection Query algorithm for Qry =“select ad, a0 from TB1”
and Qry =“select at, a0 from TB2”. If either query outputs reject, the
client aborts, otherwise, the client gets r1i.ad, r2i.at, 1 ≤ i ≤ n. The client
then identifies the tuples that fulfills r1i.ad = r2j .at and gets two sets
of index I1, I2, where i ∈ I1, j ∈ I2. Then client checks whether or not
the number of elements in I1 and I2 are equal to the number of tuples
in R∗1 and R∗2 respectively. If not, the client aborts; otherwise, the client
runs PAT.QueryV erify.Stage1 to generate the challenge messages with
Chall1 = {q1,K1}, Chall2 = {q2,K2} and sends them the cloud server for
TB1 and TB2 respectively. The cloud server then produces the proof in-
formation Prf1 = {ψ1, y1, σ1}, P rf2 = {ψ2, y2, σ2} by running PAT.Prove.



On receiving Prf1 and Prf2, the client runs PAT.QueryV erify.Stage2 to
verify the integrity of these tuples. If the output V Rst is accept, accept Rst
as the query result; otherwise, reject Rst.

– Aggregate Query:
Weighted SUM Query: Suppose a weighted SUM queryQry =“select SUM(ci∗
at) from TB where b ≤ a0 ≤ d”. The cloud sends Rst =

∑k
i=1 ci ∗ ri.at

to the client, where k is the number of tuples satisfying query condition
and ci is the weight values. The client runs AORDS.QueryV erify with
range query Qry(b, d) to check the freshness and completeness. If the output
is reject, the client aborts. Otherwise, if the output is empty, the client
accepts the result as null. If the output has k elements, the client runs
PAT.QueryV erify.Stage1 to generate the challenge message Chall = {q,K}
and sends it the cloud server, in which the k random elements in set K
is replaced with the k weight values ci for sum computation. The cloud
server then produces the proof information Prf = {ψ, y, σ} by running
PAT.Prove. Note that in both proof information ψ and the aggregated tag

σ, the sum value
∑k
i=1 ci∗ri.at is embedded(i.e.,in ψ, it has term g

Atα
t−Atqt
α−q ,

where At =
∑k
i=1 ci ∗ ri.at; in σ, it has term (gAtα

t

)ε. On receiving Prf ,
the client runs PAT.QueryV erify.Stage2 to verify the integrity of the sum
value. If the output V Rst is accept, accept Rst as the query result; other-
wise, reject Rst.

Weighted Exponentiation SUM Query: Suppose a weighted SUM queryQry =
“select SUM(ci ∗ at)x from TB where b ≤ a0 ≤ d”. The cloud sends Rst =∑k
i=1 ci ∗ (ri.at)

x to the client, where k is the number of tuples satisfying
query condition. The client performs same as in Weighted SUM Query
algorithm to generate Chall = {q,K} and sends it the cloud server. On re-
ceiving the challenge message, the cloud first produces the tags for (ri.at)

x

as:

expx.σit = σit
(ri.at)

x

· v(−(ri.at)
x+1)·

∑k

i=1
H(name||i) (13)

= (gH(name||i) · gfBi (α))ε

where Bi,j = (ri.ak)x ∗ βi,j , 0 ≤ j ≤ s− 1 and Bi = {Bi,0, Bi,1, · · · , Bi,s−1}.
Then, the cloud server runs PAT.Prove to generate the first part of proof
information and sends it to the client as Prf1 = {ψ, y}. The client chooses u
random elements in K as set U and sends it to the cloud(we discuss the selec-
tion of U in Section5.4). The cloud returns the tuples ri as well as their tags
σi to the client, where i ∈ U . The client runs PAT.QueryV erify.Stage2
to verify the integrity of tuples ri, i ∈ U . If the output is reject, aborts;
otherwise, the client generates the exponentiation tags expx.σit and ag-
gregates them as σ′ =

∏
i∈U expx.σit

ci . The cloud generates the second
part of proof information Prf2 as {σ′′ =

∏
expx.σit

ci , i ∈ K, i /∈ U} and
sends it to the client. The client then computes σ = σ′ ∗ σ′′ and runs
PAT.QueryV erify.Stage2 with {ψ, y, σ} to verify the integrity of the sum



value. If the output V Rst = accept, accept Rst as the query result; other-
wise, reject Rst.

Variance Query: For any k numbers ci, 1 ≤ i ≤ k, their variance is calculated

as V ari =

∑k

i=1
(ci−cm)2

k and cm is the mean value of the ci. Suppose a
variance query Qry =“select Vari(at) from TB where b ≤ a0 ≤ d. The cloud
sends Rst = V ari(at) to the client. Assume there are k tuples satisfying the
query condition, the client first runs Weighted SUM Query algorithm to
get the verified mean value of k tuples, denoted as am. Since the tag for −am
can be generated similar to the exponentiation tag:

σ−am = σ−1
am · v

(1+1)
∑k

i=1
H(name||i) (14)

the clients can run Weighted Exponentiation SUM Query algorithm to
verify Rst. If the output V Rst is accept, accept Rst as the query result;
otherwise, reject Rst.

Note that, our proposed can also supports other aggregate queries based on
weighted sum query and weighted exponentiation sum query like variance query
does. Due to the space limitation, we does not provide details here.

5.4 discussion

In this section, we discuss about how to choose the set U in weighted expo-
nentiation sum query and how to move computation tasks to the cloud side.
Suppose there are k tuples that satisfying the query condition, when generat-
ing Prf1 = {ψ, y}, the cloud server can guess the u tuples will be selected
by the client with probability 1

Cu
k

(e.g., k = 100, the client can set u = 2 to

get 99.9899% confidence that the cloud server cannot guess the set U). If the
cloud does not compute ψ rightly according to the right exponentiation tags, it
has only 1 − 1

Cu
k

probability to pass the verification algorithm. Therefore, the

client can choose the set U based on the size of set K. When K’s size is really
small(e.g.,k = 5), the client can locally generate the exponentiation tags and
aggregate them with few computational cost. Similarly, our proposed scheme
also allows the client to outsource the most computation tasks for calculating η
in the PAT.QueryV erify.Stage2 to the cloud server, where η =

∏
(i,vi)∈K ηi.

Specifically, after receiving the proof information Prf , the client can randomly
compute m ηi locally and aggregate them as η′. Then, the client lets the cloud
calculate the rest ηi and aggregate them η′′. The client finally gets η = η′ · η′′.

6 Analysis Of Our Proposed Scheme

6.1 Security Analysis

In this section, we first prove the security for the two building blocks for our pro-
posed efficient verifiable SQL query scheme. Then, we give the security analysis
of each query type in our scheme.



Security of AORDS

Theorem 1. The design our AORDS is secure assuming the collision-resistance
of the hash function is computationally infeasible and the signature is secure.

Proof. The construction of AORDS is purely based on the Merkle hash tree,
which have been proved to be secure if the collision-resistance hash function
and the signature scheme are secure[10]. Therefore, if the our AORDS can be
broken by an existed probabilistic polynomial-time adversary, we can construct
algorithm B that breaks the either collision-resistance hash function or signature
scheme.

Security of PAT We prove that our proposed polynomial based authentication
tag is secure and unforgeable as below:

Theorem 2. If t-SDH Assumption holds and an existed probabilistic polynomial
time adversary A can forge gfc(x), we can construct an algorithm B that outputs
the solution to t-SDH problem based on A efficiently.

Proof. Suppose A can forge f1
c (α) that achieves gf

1
c (α) = gfc(α), where c is the

coefficient vector, he can obtain gf
2
c (α) = gf

1
c (α)/gfc(α) = gf

1
c (α)−fc(α). Since

f1
c (α) = fc(α) and f2

c (α) = 0, α is a root of polynomial f2
c (x). By factoring

f2
c (x)[18], B can find SK = α and solve the instance of the t-SDH problem

given by the system parameters.

Theorem 3. If CDH problem is hard, BLS signature scheme is existentially
unforgeable, t-SDH Assumption and t-BSDH Assumption hold. The proof infor-
mation Prf = (y, ψ, σ) in PAT is unforgeable.

Proof. Suppose a probabilistic polynomial time adversity A can generate Prf ′ =
(y′, ψ′, σ′) to forge Prf after receiving a challenge message from the client,
(y′, ψ′, σ′) 6= (y, ψ, σ). As both Prf ′ and Prf can be accepted by theQueryV erify
algorithm, we can get the following two equations:

e(ψ, κ · v−q) = e(σ · η, g) · e(g−y, v) (15)

e(ψ′, κ · v−q) = e(σ′ · η, g) · e(g−y
′
, v) (16)

Dividing Eq.15 with Eq.16, we obtain:

e(ψ, g)ε(α−q)

e(ψ′, g)ε(α−q)
=

e(g, g)
εE−

∑
(i,vi)∈Q

H(name||i)vi−y

e(g, g)
εE′−

∑
(i,vi)∈Q

H(name||i)vi−y′

(
e(ψ, g)

e(ψ′, g)

)ε(α−q)
= e(g, g)ε(E−E

′)+y′−y (17)

where we denote σ as gEε and σ′ as gE
′ε for simplicity.



We do a case analysis on whether σ = σ′.

Case 1: σ 6= σ′. As gEε = σ and gE
′ε = σ′, we can infer E 6= E′. Since

e(g, g)y
′−y, e(g, g)Eε = e(g, σ) and

(
e(ψ,g)
e(ψ′,g)

)ε(α−q)
are knowledge to a, we rewrite

Eq.17 as

Υ = e(g, g)εE
′

(18)

where we denote Υ = e(g, g)Eε+y
′−y/

(
e(ψ,g)
e(ψ′,g)

)ε(α−q)
as knowledge to the adver-

sary.
Suppose any A can find E′ 6= E and makes Eq.18 hold with non-negligible

probability, we can construct an algorithm B that computes Υ = e(g, g)εE
′

as
solution for CDH problem of e(g, g)ε and e(g, g)E

′
. Therefore, a valid forged

response (y, ψ, σ) 6= (y′, ψ′, σ′) and σ 6= σ′ cannot be found by A with non-
negligible probability.
Case 2: σ = σ′. In this case, we can rewrite Eq.17 as:

(
e(ψ, g)

e(ψ′, g)

)ε(α−q)
= e(g, g)y

′−y (19)

Now We do a case analysis on whether y = y′.

Case 2.1: y = y′. As (y, ψ, σ) 6= (y′, ψ′, σ′), σ = σ′ and y = y′, we can infer that
ψ 6= ψ′. In this case, since y = y′, we rewrite the Eq.19 as:

(
e(ψ, g)

e(ψ′, g)

)ε(α−q)
= 1 (20)

As ψ 6= ψ′, i.e., e(ψ,g)
e(ψ′,g) 6= 1, and ε 6= 0, we can obtain α = q from Eq.20. In PAT ,

q is known to the A(i.e., A can find SK = α). As we proved in Theorem 2, if A
can find SK = α, we can can construction an algorithm B to solve the instance
of the t-SDH problem. Thus, A cannot find a valid forged (y, ψ, σ) 6= (y′, ψ′, σ′)
and y = y′ with non-negligible probability.

Case 2.2: y 6= y′. From Eq.19 and y 6= y′, we can imply that α 6= q. In this
case, we show how to construct an algorithm B, using the A, that can break the

t-BSDH Assumption with a valid solution (−q,
(
e(ψ,g)
e(ψ′,g)

) 1
y′−y

).

We denote ψ as gθ and ψ′ as gθ
′
, and rewrite Eq.19 as :

(
e(ψ, g)

e(ψ′, g)

)ε(α−q)
=

e(g, g)−y

e(g, g)−y′

θε(α− q) + y = θ′ε(α− q) + y′

ε(θ − θ′)
y′ − y

=
1

α− q
(21)



Therefore, algorithm B can compute

(
e(ψ, v)

e(ψ′, v)

) 1
y′−y

= e(g, g)
ε(θ−θ′)
y′−y = e(g, g)

1
α−q (22)

and returns (−q, e(g, g)
1

α−q ) as a solution for t-BSDH instance. It is easy to see
that the success probability of solving the instance is the same as the success
probability of the adversity, and the time required is a small constant larger than
the time required by the adversary.

Therefore, the security of our PAT construction is proved.

Security of Selection Query, Projection Query, Join Query, Weighted
SUM Query, Weighted Exponentiation SUM Query and Variance Query

Theorem 4. If an existed probabilistic polynomial time adversity A can con-
vince the querier with an invalid query result for Selection Query, Projection
Query, Join Query, Weighted SUM Query, Weighted Exponentiation SUM Query
or Variance Query in our proposed scheme, we can construct an algorithm B
using A to break either AORDS or PAT .

Proof. With regard to Selection Query, Projection Query, Join Query and Weighted
SUM Query, the querier directly verifies the completeness and freshness of the
query result using AORDS and checks its integrity using PAT . Therefore, if A
can convince the querier with an invalid result with non-negligible probability, it
can break either AORDS or PAT , which have been proved to be secure above.

For Weighted Exponentiation SUM Query and Variance Query, the differ-
ence between them and the other query types is the tag generation outsourcing.
As described in Section 5.4, the querier can outsource some tag generation and
aggregation to A and easily achieve more than 99.99% confidence security. If the
client processes all the tag generation and aggregation locally, the Weighted Ex-
ponentiation SUM Query and Variance Query become purely based on AORDS
or PAT . Therefore, if A can convince the querier with an invalid result with
non-negligible probability, it can break either AORDS or PAT , which have
been proved to be secure above.

6.2 Performance Evaluation

In this section, we numerically evaluate the performance of our proposed scheme
and compare it with the existing schemes[9, 17, 20] in terms of computational
complexity, communication complexity and and storage overhead. For simplicity,
we denote the complexity of one multiplication operation and one exponentiation
operation on Group G as MUL and EXP1 respectively.

1
When the operation is on the elliptic curve, EXP means scalar multiplication operation and MUL
means one point addition operation.



Ref.[9] Ref.[17] Ref.[20] Our Scheme

Data Comp.C O(sn)Hash O(sn)EXP O(n)Hash + O(n)EXP O(sn)MUL + O(sn)EXP
+O(1)Sig +O(1)Sig +O(n)Hash + O(1)Sig

Pre-Processing Comm. O(sn)|Hash| O(sn)|AggSig| O(n)|Hash| + O(n)|Tag| O(n)|G| + O(n)|Hash|
+O(1)|Sig| +O(1)|Sig| +O(1)|Sig|

Stor. Oerhead O(sn)|Hash| O(sn)|AggSig| O(n)|Hash| + O(n)|Tag| O(n)|G| + O(n)|Hash|
+O(1)|Sig| +O(1)|Sig| +O(1)|Sig|

Comp.S O(logn)Hash N/A O(logn)Hash O(logn)Hash
Update Comp.O O(logn)Hash O(s)EXP O(logn)Hash O(logn)Hash

+O(s)EXP O(s)MUL + O(s)EXP
Comm. O(z) O(z) O(z) O(z)
Comp.S N/A O(k)MUL N/A O(s + k)MUL + O(s + k)EXP

Selection Comp.C O(sk)Hash O(k)EXP O(k)Hash + O(k)EXP O(k)Hash + O(1)EXP+
Query O(1)MUL + O(1)Pairing

Comm. O(slogn)|Hash| O(k)|Bitmap| O(logn)|Hash| + O(k)|Tag| O(logn)|Hash| + O(1)|G|
Comp.S N/A O(mn)MUL O(n)MUL O(s + n)MUL + O(s + n)EXP

Projection Comp.C O(mn)Hash O(mn)EXP O(n)Hash + O(n)EXP O(n)Hash + O(1)EXP+
Query O(1)MUL + O(1)Pairing

Comm. O(mlogn)|Hash| O(n)|Bitmap| O(logn)|Hash| + O(n)|Tag| O(logn)|Hash| + O(1)|G|
Comp.S N/A O(n)MUL O(n)MUL O(s + k)MUL + O(s + k)EXP

Join Comp.C O(nlogn)Hash O(n)EXP O(n)Hash + O(n)EXP O(n)Hash + O(1)EXP+
Query O(1)MUL + O(1)Pairing

Comm. O(nlogn)|Hash| O(n)Bitmap O(logn)|Hash| + O(n)|Tag| O(logn)|Hash| + O(1)|G|
+|R̂| +|R̂| +|R̂| +|R̂|

Weighted Comp.S N/A N/A N/A O(s + k)MUL + O(s + k)EXP
SUM Comp.C N/A N/A O(k)Hash + O(k)EXP O(k)Hash + O(1)EXP+
Query O(1)MUL + O(1)Pairing

Comm. N/A N/A O(logn)|Hash| + O(k)|Tag| O(logn)|Hash| + O(1)|G|
Weighted Comp.S N/A N/A N/A O(s + kx)MUL + O(s + kx)EXP

Exponentiation Comp.C N/A N/A N/A O(n)Hash + O(1)MUL
SUM +O(1)EXP + O(1)Pairing
Query Comm. N/A N/A N/A O(logn)|Hash| + O(1)|G|

Comp.S N/A N/A N/A O(s + k)MUL + O(s + k)EXP
Variance Comp.C N/A N/A N/A O(n)Hash + O(1)MUL
Query +O(1)EXP + O(1)Pairing

Comm. N/A N/A N/A O(logn)|Hash| + O(1)|G|

Table 1. Complexity Summary: In this table, n is the number of tuples in the database, s is the
number of attributes in each tuple, Sig is the sign operation for signature function, z is the number
of modified tuples, k is the number of tuples satisfying the query condition, m is the attributes
chosen in projection, |G|, |Hash| and |Sig| are the size of a group element, hash value, and signature
respectively. |Tag| is the size of authentication tag in Ref.[20]. |AggSig| and |Bitmap| is the size of
aggregated signature and associated tuple information in Ref.[17]

.

Database Pre-processing Before outsourcing the database to the cloud, the
owner needs to generate the authentication tags σ, auxiliary information Au
and root state information StateR for the database. With regard to the tag
generation, the owner performs O(sn)MUL + O(sn)EXP operations, where n
is the number of tuples in the database and s is the attribute number in each
tuple. For the computation of AU and StateR, the owner needs O(n)Hash and
O(1)Sig respectively, where Sig is the signature operation. Therefore, the total
computational complexity for the pre-processing is O(sn)MUL+O(sn)EXP +
O(n)Hash+O(1)Sig. For communication cost, all the generated tags as well as
Au need to be outsourced to the cloud server, and thus cause a communication
complexity as O(n)|G| + O(n)|Hash| + O(1)|Sig|, where |G|, |Hash| and |Sig|
are the size of a group element, hash value, and signature respectively. With
regard to the storage overhead, our proposed scheme requires the cloud to store
O(n)|G|+O(n)|Hash|+O(1)|Sig|.

Compared with the existing schemes[9, 17, 20] as shown in Table 1, although
our proposed require more computational cost and communication cost during
the pre-processing, they are one-time cost and will not influence the real-time
query performance. For storage cost, Table 1 shows that our proposed scheme
achieves comparable complexity to Ref.[20], which outperforms Ref.[9, 17] by
removing the influence of number of attributes in each tuple.



Update To modify or insert a tuple in the outsourced database, our proposed
scheme requires O(s)MUL+O(s)EXP operations on the owner side to generate
the new tag and O(logn)Hash and one Sig operation to update the auxiliary
information and root state information. For deleting a tuple, O(logn)Hash and
one Sig operations are required in our scheme. Since the communication data are
the new root state information, new tuples as well as new tags, its complexity is
O(z), where z is the number of modified tuples. With regard to the cloud server,
it takes O(logn)Hash and one Sig operations to update the its stored database.

Compared with the existing schemes[9, 17, 20], our scheme introduces more
MUL operations to the owner side for the tag update as shown in Table 1.
However, the EXP operations needed in our scheme and Ref.[17, 20] are com-
parable, which is about 10 times more expensive than MUL operation[7]. Thus,
our scheme can achieve similar cost compared to Ref.[17, 20]. In addition, our
tag construction makes great contributions to the real-time query performance in
terms of computational and communication cost. For the computational cost on
cloud server side and communication cost, our scheme achieves the comparable
complexity to the existing schemes[9, 17, 20].

Selection Query To perform a verified selection query, the client in our scheme
needs O(k)Hash operations to check the result’s completeness and freshness,
where k is the number of tuples satisfying the query condition. Moreover, 3
Pairing operations, small number of EXP and MUL operations are needed to
ensure the integrity of result(e.g., for a query result consists of 100 tuples, only
2MUL and 2EXP operations are required as we discussed in Section 5.4). On
the cloud side, it performs O(s+ k)MUL and O(s+ k)EXP operations to gen-
erate the proof information. For communication complexity, since our proposed
scheme aggregates the proof information for integrity check into 3 elements, it
causes O(logn)|Hash|+O(1)|G| complexity.

Compared with the existing schemes[9, 17, 20], Table 1 demonstrates that
the computational complexity and communication complexity in our proposed
scheme outperforms Ref.[9, 17, 20]. This is because our scheme allows the client
to move most computation tasks of verification to the cloud and the proof in-
formation of integrity check is aggregated into 3 element. Differently, the tag
construction in Ref.[20] requires all the integrity checking operations to be per-
formed by the client itself, which introduces EXP operations linear to k as well
as the communication of k tags. The same issue also occurs in Ref.[17], which
requires expensive EXP operations to linear to k.

Projection Query To perform a projection query, our proposed scheme re-
quires the client to perform O(n)Hash operations for the verification of result’s
completeness and freshness. Since the most integrity checking tasks in our scheme
are moved to the cloud server, the client performs O(1)MUL, O(1)EXP and
O(1)Pairing operations. On the cloud server side, it performs O(s+ k)MUL+
O(s+ k)MUL operations to produce all the proof information. For communica-



tion complexity, by aggregating the integrity checking proof information into 3
elements, our scheme introduces O(logn)|Hash|+O(1)|G| complexity.

Compared with the existing schemes[9, 17, 20], our proposed scheme outper-
forms them in terms of both computational cost and communication cost as
shown in Table 1. Specifically, the computational cost of Ref.[9, 17] on client side
are linear to m(the number of attributes chosen for query), which is indepen-
dent to the computational cost in our scheme. Unlike our proposed scheme that
moves most computation tasks from client side to cloud side, Ref.[20] remains
the operations on client side, which is linear to n(the number of tuples in the
database). For communication cost, Ref.[9] is linear to m and Ref.[20] is linear
to n. While, our scheme makes communication cost independent to m and the
proof information of integrity checking as constant size.

Join Query To perform a join query, the our scheme first requires the client
to perform two projection query for freshness checking, each of which causes
O(n)Hash + O(1)MUL+O(1)EXP + O(1)Pairing computational complexity
and O(logn)|Hash|+ O(1)|G| communication complexity. For attributes in the
projection query result that does not match the join query condition, we denote
it as |R̂|. To check the integrity join query result, the client needs additional
computational complexity as O(1)MUL+O(1)EXP + O(1)Pairing and com-
munication complexity as O(1)|G|. For the cloud server side, it has computation
complexity as O(s+ k)MUL+O(s+ k)EXP .

Compared with the existing schemes[17, 20], our proposed scheme has better
performance in both computational cost and communication cost. Specifically,
Ref.[17, 20] requires expensive EXP operation linear to n. Differently, by moving
computation tasks to the cloud, our scheme only requires the client to perform
cheap Hash operation as well as small number of EXP , MUL and Pairing op-
erations. Additionally, we reduce the O(n) communication complexity in Ref.[17,
20] to O(logn). With regard to Ref.[9], we reduce the O(nlogn)Hash computa-
tional complexity to O(n)Hash+ O(1)MUL+O(1)EXP + O(1)Pairing(since,
the value of n is always large in outsourced database, our scheme can achieve
lower computation complexity). Moreover, instead of the O(nlogn)|Hash| com-
munication complexity introduced in Ref.[9], our scheme just requiresO(logn)|Hash|.

Weighted SUM Query In our proposed scheme, the only difference between
weighted SUM query and selection query is the random numbers chosen in chal-
lenge message generation. For weighted SUM query, the client replaces the ran-
dom numbers with the weight values for calculation. Therefore, as shown in Ta-
ble 1, the computational complexity and communication complexity on client for
weighted SUM query are O(k)Hash+O(1)MUL+O(1)EXP+O(1)Pairing and
O(logn)|Hash|+O(1)|G| respectively, which are same as the selection query. For
cloud server side, its computational complexity is O(s+k)MUL+O(s+k)EXP .

Compared with Ref.[20], which introduces EXP operations linear to k, our
proposed scheme moves it to the cloud server side to enhance the query perfor-
mance. In addition, our scheme enables the aggregation of authentication tags



into 3 elements, and thus outperforms Ref.[20] in communication complexity,
which requires the transmission of all tags.

Weighted Exponentiation SUM Query and Variance Query To perform
a weighted exponentiation SUM query, our proposed scheme needs the client side
to perform u more MUL and EXP operations than weighted SUM query(e.g.,
u = 2 when k = 100 as we discussed in Section 5.4). Therefore, the computation
complexity on client side is O(n)Hash+O(1)MUL+O(1)EXP +O(1)Pairing.
For communication complexity, our scheme causes O(logn)|Hash|+O(1)|G| on
the client side. As our scheme requires the cloud server to generate the au-
thentication tags for the exponentiation values, its computation complexity is
O(s+ kx)MUL+O(s+ kx)EXP as shown in Table 1, where x is the degree of
exponentiation value.

With regard to variance query, as it is purely based on weighted SUM query
and weighted exponentiation SUM query, its computational complexity on client
side and communication complexity are O(n)Hash + O(1)MUL+O(1)EXP +
O(1)Pairing and O(logn)|Hash| + O(1)|G| respectively. For the cloud server,
since the value of x for variance query is 2, it has computational complexity is
O(s+ k)MUL+O(s+ k)EXP

7 Conclusion

In this work, we present an efficient verifiable SQL query scheme in the setting of
outsourced dynamic databases. Our proposed scheme not only allows the cloud
server to perform most computational tasks for the query verification, but also
aggregates the proof information to reduce communication cost. Compared with
the previous solutions, our scheme achieves better computational, communica-
tion and storage performance, especially for the powerful queries(e.g., projec-
tion query, aggregate queries). In addition, our proposed scheme supports more
powerful aggregate queries that are never achieved in previous works, including
weighted exponentiation sum queries of any degrees, variance queries, etc. More-
over, our proposed polynomial based authentication tag can also be used as an
independent solution for other related application, such as database auditing,
encrypted key word search, etc. One interesting future work is to enable more
powerful SQL queries in verifiable ways.
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