
Fast and Maliciously Secure
Two-Party Computation Using the GPU

(Full version)∗

Tore Kasper Frederiksen1 and Jesper Buus Nielsen1

Department of Computer Science, Aarhus University
jot2re@cs.au.dk, jbn@cs.au.dk †

Abstract. We describe, and implement, a maliciously secure protocol for two-party computation in a
parallel computational model. The protocol is based on cut-and-choose of Yao’s garbled circuit and an
efficient oblivious transfer extension. The implementation is done using CUDA and yields fast results
in a financially feasible and practical setting by using a consumer grade CPU and GPU. Our protocol
introduces a novel construction in order to verify consistency of the garbled circuit constructor’s input
in a parallel and maliciously secure setting.

1 Introduction

Secure two-party computation (2PC) is the area of cryptography concerned with two mutually distrusting
parties who wish to securely compute an arbitrary function on their private input in order for each of them
to learn some private output. The area was introduced in 1982 by Andrew Yao [Yao82], specifically for the
semi honest case where both parties are assumed to follow the prescribed protocol. Yao showed how to
construct such a protocol using a technique referred to as the garbled circuit approach. Later, a solution in
the malicious setting, where one of the parties might deviate from the prescribed protocol in an arbitrary
manner, was given in [GMW87]. Unfortunately this protocol was very inefficient as it depended on public-key
operations for each Boolean gate in the circuit describing the function to compute. However, much research
has since been done in the area of 2PC, resulting in practically efficient protocols secure both against both
semi honest and malicious adversaries [LP07,LP11,NO09,NNOB12,HEKM11,PSSW09].

In general, the protocols secure against a semi honest adversary can become secure against a malicious
adversary by adding an additional layer of security. This can be either by compiling a semi honest secure
protocol to a maliciously secure protocol [GMW87] or using the cut-and-choose approach where several
instances of a semi honest secure protocol are executed in parallel with some random instances being com-
pletely revealed to verify that the other party has behaved honestly. However, novel approaches to achieve
malicious security do exist, such as the idea of MPC-in-the-head from [IPS08,LOP11] or by embedding the
cut-and-choose part at a lower level of the protocol as done in [NO09] or [NNOB12]. However, assuming
access to a large computer grid and using the cut-and-choose approach in a parallel manner has yielded
slightly better results than [NNOB12] as described in [KSS12].

Motivation. The area of 2PC and multi-party computation (MPC) (when more than two parties supply
input) is very interesting as efficient solutions yield several practical applications. The first case of this is
described in [BCD+09] where MPC was used for deciding the price of a national sugar beet auction in
Denmark. Several other applications for 2PC and MPC includes voting, anonymous identification, privacy
preserving database queries etc. For this reason we believe that it is highly relevant to find practically

∗ This is a revision handeling a bug in the way we previously avoided selective failure attacks on the input to the
oblivious transfers in our protocol. Notice that this bug was discovered after the extended abstract version of this
work [FN13] was published.
† Partially supported by the Danish Council for Independent Research via DFF Starting Grant 10-081612. Partially

supported by the European Research Commission Starting Grant 279447.

efficient protocols for 2PC and MPC. Most previous approaches have focused on doing this in a sequential
model [NNOB12,LP07,LP11]. However, considering the recent evolution of processors we see that the speed
of a processor seems to converge, whereas the amount of cores in a processor seems to increase. This in
turn implies that the increase in processing power in the future will come from having many cores working
in parallel. Thus, constructing both algorithms and cryptographic protocols that work well in a parallel
model will be paramount for hardware based efficiency increases in the future. For this reason we have
chosen to take a parallel approach to increase the practical speed of 2PC. Previous work taking the parallel
approach for efficient implementations of MPC starts with [PDL11] where a cluster of either CPUs or
GPUs is used to execute 3072 semi honest protocols for 1-out-of-2 oblivious transfer (OT) followed by gate
garbling/degarbling in parallel1. In [KSS12] the authors use up to 512 cores of the Ranger cluster in the Texas
Advanced Computing Center to do OTs along with circuit garbling/degarbling in parallel to achieve malicious
security using the cut-and-choose approach. In this manner they manage to use the inherit parallelism of the
cut-and-choose approach to achieve very fast and maliciously secure 2PCs. Any other work taking a parallel
approach to cryptography that we know of focuses either on attacks [XLZ11] or simultaneous applications
of more primitive cryptographic computations [NIK12].

Contributions. Our main contributions are a new approach to ensure consistency of the garbler’s inputs in
cut-and-choose based protocols of Yao’s garbled circuit, along with a careful implementation of a protocol
using this approach implemented on a Same Instruction, Multiple Data (SIMD), or Parallel Random Access
Model (PRAM) computation device. More specifically the protocol we implement is secure in the Random
Oracle Model (ROM), OT-hybrid model and loosely based on the protocol of [LP07] but combined with
several newer optimizations along with the OT extension (See Section 2) of [NNOB12]. Computationally our
protocol relies solely on symmetric primitives, except for a few seed OTs used in the OT extension which
only need to be done once for each pair of parties. Furthermore, our protocol is of constant round complexity
and, assuming access to enough cores, computationally bounded only by the number of layers in the circuit
to be computed and the block size of a hash function. Using a NVIDIA GPU as our SIMD device, we make
several experiments and we show that this approach is one of the fastest documented assuming a “practical”,
yet malicious, setting.2

Notation. We let ‖ denote string concatenation and let r[i] be the i’th element of a string r. We let ` be
a statistical security parameter and κ be the computational security parameter. In particular we let H(·)
denote a hash function with a digest of κ bits (in our implementation this will be 160 bits) and block size
ρ (in out implementation this will be 448 bits). We assume that Alice is the circuit constructor and Bob is
the circuit evaluator and we will use their names and roles interchangeably.

Overview. The rest of the paper is organized as follows: We start in Section 2 with an introduction to the
idea of parallel implementations and the overall structure of our computation device of choice; the GPU.
Then in Section 3 we go through the overall structure of our protocol. In Section 4 we go through the ideas
we used to make it suitable for the SIMD model. In Section 5 we discuss the security and complexity of our
approach. This is followed by Section 6 where we discuss the implementation details. Then in Section 7 we
review our results and end up with a discussion of future work in Section 8.

2 Background

Parallel Approach. In our approach we assume access to a massive parallel computation device which is
capable of executing the same instruction on each processor in parallel, but on different pieces of data. This

1 1-out-of-2 OT is the protocol where the first party, Alice, gives as input two bitstrings, and the second party, Bob,
gives a single bit. If Bob’s bit is 0 then he learns Alice’s first bitstring, if it is 1 then he learns Alice’s second
bitstring. However, Bob never learns more than exactly one of these bitstrings and Alice does not learn anything.

2 We refer to “practical” as either financially feasible using consumer hardware and/or having a liberal statistical
security parameter.

2

is in a sense the simplest way of modeling parallel computation, as a device capable of executing distinct
instructions on distinct pieces of data is clearly also capable of executing the same instruction on distinct
pieces of data. Furthermore, our protocol does not make any assumption on whether such a device has access
to shared memory between the processors, or only access to local memory. This applies completely for write
privileges, but also for read privileges with only a constant memory usage penalty.

GPGPU. We decided to implement our protocol using the GPU, the motivation being that GPUs are part
of practically all mid- to high-end consumer computers. Furthermore, using the GPU eliminates the security
problems of outsourcing the computation to a non-local cluster. Also, assuming access to a local cluster
seems to be an unrealistic assumption for many practical applications. Finally, using gaming consoles or
multi-cores CPUs might also have been an option. However, even the latest and best of these have orders of
magnitude cores less than the latest GPUs.

CUDA. Our implementation is done using the CUDA framework which is an extension to C and C++ that
allows using NVIDIA GPUs for general computational tasks. This is done by making CUDA programs. Such
a program does not purely run on the GPU. It consists of both general C classes, which run on the CPU,
and CUDA classes which run on the GPU.

In order to motivate our specific implementation choices it is necessary to describe a general CUDA
enabled GPU [KH10]: Each GPU consists of several (up to 192) streaming multiprocessors (SM), each of
these again contains between 8 and 192 streaming processors (SP), depending on the architecture of the
GPU. Each of the SPs within a given SM always performs the same operations at a given point in time, but
on different pieces of data. Furthermore, each of these SMs contains 64 KB of shared memory along with a
few kilobytes of constant cache, which all of the SPs within the given SM must share. For storage of variables
each SM contains 65.536 32-bit registers which are shared amongst all the SPs. Thus all the threads being
executed by a given SM must share all these resources.

We now introduce some notation and concepts which are used in the general purpose GPU community
and which we will also use in this paper; a GPU is called a device and the non-GPU parts of a computer is
called the host. This means that the CPU, RAM, hard drive etc., are part of the host. The code written for
the host will be used to interact with the OS, that is, it will do all the IO operations needed by the CUDA
program. The host code is also responsible for copying the data to and from the device, along with launching
code on the device. Each procedure running on a device is called a kernel. Before launching a kernel the
host code should complete all needed IO and copy all the data needed by the kernel to the device’s RAM.
The RAM of the device is referred to as global memory. After a kernel has terminated the host can copy the
results from the global memory of the device to its own memory, before it launches another kernel.

A kernel is more than just a procedure of code, it also contains specifications of how many times in parallel
the code should be executed and any type of synchronization needed between the parallel executions. A kernel
consists of code which is executed in a grid. A grid is a 2-dimensional matrix of blocks. Each block is a 3-
dimensional matrix of threads. Each thread is executed once and takes up one SP during its execution. When
all the threads, of all the blocks in the grid, have been executed the kernel terminates. The threads in each
block are executed in warps, which is a sequence of 32 threads. Thus, the threads must be partitioned into
blocks in multiples of the warp size, and contain no branching. The threads can then be executed completely
independent and in arbitrary order.

Furthermore, to achieve the fastest execution time one should coalescence the data in the global memory.
That is, to “sort” the data such that the word thread 1 needs is located next to the word thread 2 needs
and so on. This makes it possible to load these 32 words for the warp in one go, thus limiting the usage of
bandwidth, and in turn significantly increasing the speed of the program. This advice on memory organisation
is also relevant for the data in the shared memory. Finally, it is a well known fact [Cor12] that the bottleneck
for most applications of the massive parallelism offered by CUDA is the memory bandwidth, thus it should
always be a goal to limit the frequency of which a program access data in the global memory.

Maliciously Secure Garbled Circuits.

3

Generic Garbled Circuits. For completeness we now sketch how a generic garbled circuit is constructed. We
are given a Boolean circuit description, C, of the Boolean function we wish to compute, f , from which we
construct a garbled circuit, GC. For simplicity we assume that each gate consists of two input wires and one
output wire. However, we allow the output wire to split into two or more if the output of a given gate is needed
as input to more than one other gate. Each wire in C has a unique label, and we give the corresponding wire
in GC the same label. Each wire w has two keys associated, k0w and k1w, which are independent uniformly
random bitstrings. Here k0w represents the bit 0 and k1w represents the bit 1. If the bit on wire w in C is 0,
then the value on wire w in GC will be k0w, otherwise it will be k1w. Each gate in GC consists of a garbled
computation table. This table is used to find the correct value of the output wire given the correct keys for the
input wires. For a gate of C call the left input wire l, the right input wire r and the output wire o. Assume
the functionality of the gate is given by G(σ, υ) = ρ where σ, υ, ρ ∈ {0, 1}, then the garbled computation

table is a random permutation of the four ciphertexts Cσ,υ = Ekσl
(
Ekυr (kρo)

)
= Ekσl

(
Ekυr

(
k
G(σ,υ)
o

))
for all

four possible input pairs, (σ, υ), using some symmetric encryption function, Ekey(·). I.e., the entries in the
garbled computation table consists of “double encryptions” of the output wire’s values, where the keys for
each double encryption corresponds to exactly one combination of the input wires’ values. The encryption
algorithm is constructed such that given kσl and kυr it is possible to recognize and correctly decrypt Cσ,υ,
but it is not possible to learn any information about the remaining three encryptions.

Now let Alice’s input be denoted by x and Bob’s input be denoted by y. Then the generic version of semi
honestly secure 2PC based on GCs [LP09] goes as follows:

1. Alice starts by constructing a GC, GC, for a Boolean circuit, C, computing the desired function, f(x, y) =
(f1(x, y), f2(x, y)) where Alice is supposed to learn f1(x, y) and Bob is supposed to learn f2(x, y).

2. Alice sends to Bob the garbled computation table. She also sends both the keys of the output wires of
Bob’s output, along with the bit each of these keys represent.

3. Alice now sends keys for the first |x| input wires, corresponding to her desired input. That is, for
i = 1, ..., |x| she sends either k0i,a or k1i,a corresponding to her i’th input bit.

4. Next Alice and Bob complete a 1-out-of-2 OT protocol |y| times:

(a) For j = 1, ..., |y| Alice obliviously sends the keys k0j,b and k1j,b to Bob.
(b) Bob then chooses exactly one of these keys for each j, without Alice knowing which one.

5. Now Bob has the circuit along with a set of input keys. However, he does not know whether each of the
keys to Alice’s input represents a 0 or 1 bit, but he does know that the keys for his input represents the
correct bits in accordance with his bitstring, y.

6. Bob now degarbles the circuit and learns output keys for all the output wires. He then compares these
with the output keys he got from Alice and finds his output bits. He then sends to Alice the keys for the
output wires corresponding to her output.

7. Using these keys Alice finds the bits they represent and thus her output.

As soon as any of the players deviate from the protocol, this scheme breaks down completely.

Optimized Garbled Circuits. Several universal techniques for optimizing the generic (both malicious and semi
honest security) garbled circuit approach for 2PC exist, which we also implement in our protocol. We now
go through the specific and optimized construction of garbled circuits we use.

First notice that we did not specify exactly how to determine which entry in the garbled computation
table is the correct one to decrypt given two input wire keys. This is because several different approaches for
this exist. However, one efficient approach is the usage of permutation bits [NPS99]. The idea is to associate
a single permutation bit, πi ∈ {0, 1}, with each wire, i, in the circuit. The value on this wire is then defined
as kbi ‖ ci where ci = πi ⊕ b with b being the bit the wire should represent. We call ci the external value.
The entries in the garbled computation table are then sorted according to the external values. That is, if
the external value on both the left and right wire is 0 then the key in the first entry of the table will be
encrypted under these two wire keys. If instead the external value on the right wire is 1, then the key in the
second entry of the table will be encrypted under the left and right wire keys. Thus, we view the external

4

values as a binary number, specifying an entry in the garbled computation table. More formally, entry cl, cr
of the garbled computation table is specified as follows:

cl, cr : E
Gid‖cl‖cr
k
bl
l ,k

br
r

(
kG(bl,br)
o ‖ co

)
,

where cl = πl ⊕ bl, cr = πr ⊕ br, co = πo ⊕G(bl, br) and Gid is a unique gate ID. This means that given the
keys of the input wires the evaluator can decide exactly which entry he needs to decrypt, without learning
anything about the bits the input wires represent. Next, see that the encryption function for the keys in the
garbled computation tables can be described as follows:

Eskl,kr (ko) = ko ⊕KDF|ko|(kl, kr, s),

where KDF|ko|(kl, kr, s) is a key derivation function with an output of |ko| bits, independent of the two input
keys, kl and kr in isolation, and which depends on the value of some salt, s. If we assume the ROM, then
we are able to specify the KDF as follows [PSSW09]:

KDF|ko|(kl, kr, s) = H(kl ‖ kr ‖ s).

This means that the encryption function can be reduced to a single invocation of a robust hash function
with output length κ (assuming κ ≥ |ko|) along with an XOR operation.

Next we describe the optimization from [KS08] which will make it possible to evaluate all the XOR gates
in the circuit for “free”. Free here means that no garbled computation table needs to be constructed or
transmitted, and no encryption needs to be done in order to evaluate such a gate. The only thing we need
to do to get this possibility is to put a constraint on the way the wire keys are constructed. The constraint
is very simple, assuming that we wish to construct the keys for wire i, then it must be the case that

k1i = k0i ⊕∆,

where ∆ is a global key, used in the keys for all wires in the GC. Regarding the external values, this implies
the following:

πi ⊕ 1 = πi ⊕ 0⊕ 1.

So, in order to compute an XOR gate simply compute XOR of the keys of the two input wires of the gate,
that is:3

ko ‖ co = kl ⊕ kr ‖ cl ⊕ cr.

Finally, see that a row of the garbled computation table can be eliminated using the approach of [NPS99].
To see this remember that a single Boolean gate takes up four entries of κ bits. However, when using a KDF
for encryption we can simply define one of the output keys to be the result of this KDF on one input key
pair. This key pair is the one where the external values are 0, i.e. cl = 0 and cr = 0. In short, we must define
one of the output keys, and an external value as follows:

kG(πl⊕0,πr⊕0)
o ‖ co = KDFκ+1

(
kπl⊕0l , kπr⊕0r , Gid ‖ 0 ‖ 0

)
.

Depending on the type of gate, this again uniquely specifies the permutation bit of the output wire from
this calculation:

co = πo ⊕G (πl ⊕ 0, πr ⊕ 0) .

The three remaining entries in the garbled computation table are then the appropriate encryptions of the
output key or the output key XOR the global difference ∆.

3 Notice that when using the free-XOR approach Alice cannot simply send Bob both keys on the output wires since
this would make him learn ∆ which can be used to extract information about Alice’s input. Several solutions to
this exist, for example, the final garbled gates can simply encrypt the plain bits of their output instead of new
keys.

5

Optimized Approaches to Cut-and-Choose Malicious Security. In general OT is an expensive primitive, and
if the evaluator has a large input to the circuit this can contribute significantly to the execution time of the
whole protocol. However, the amount of “actual” OTs we need to complete can be significantly reduced by
using an OT extension: Beaver showed in [Bea96] that given a number of OTs it is possible to “extend” these
to give a polynomial number of random OTs which can easily be changed to specific OTs. Thus, making it
possible to do a few OTs once, and extend these almost indefinitely. The idea of an OT extension has been
optimized even further in [IKNP03] and [NNOB12] to yield significant practical advantages. Our protocol
uses a slightly modified version of the OT extension presented in [NNOB12].

Even when using a maliciously secure OT extension the cut-and-choose approach in itself is unfortu-
nately not enough to make a semi honestly secure protocol maliciously secure efficiently. In fact, several
problems arise from using cut-and-choose to get security against a malicious adversary, these problems can
be categorized as follows:

1. “Consistency of input bits”; both parties need to use the same input in all the cut-and-choose instances
to ensure that the majority of the garbled circuit evaluations are consistent and that a corrupt evaluator
does not learn the output of the function on different inputs.

2. “Selective failure attack”; we must make sure that both the keys the constructor inputs in the OT phase
are correct, to avoid giving away a particular bit value of the evaluator’s input, depending on failure or
not of the evaluation.

Consistency of the evaluator’s input is achieved by simply doing one OT for each of his input bits and have
the constructor input the 0-keys, respectively 1-keys, for each of his input wires in all the garbled circuits.
In this manner the evaluator only gets to choose his input bits once during the OTs and thus it will be
impossible for him to be inconsistent between the different garbled circuits.

Consistency of the Constructor’s Input. Letting |x| be the size of the constructor’s input and ` the statistical
security parameter then the first problem can be solved using O(|x| ·`2) commitments to verify consistency in
all possible cut-and-choose cases [LP07]. A more efficient approach is to construct a Diffie-Hellman pseudo
random synthesizer, which limits the complexity to O(|x| · `) symmetric and public-key operations and
also solves the selective failure attack [LP11]. Yet another solution is based on claw-free functions [SS11].
Our solution is different; we solve the problem by constructing a circuit extension making it possible to
verify, with statistical security, that the constructor has been consistent in her inputs to the circuit. Assume
the function we wish to compute is defined by f as f(x, y) = z. We then define a new function f ′ as
f ′(x′, y′) = f ′((x‖s), y‖r) = z‖t where s ∈R {0, 1}`, r ∈R {0, 1}|x|+` and t ∈ {0, 1}`. To compute t we
define a matrix M1 ∈ {0, 1}` × {0, 1}|x| where the i’th row is the first |x| bits of r << i where << denotes
the bitwise left shift. Specifically the j’th bit of the i’th row is the i + j’th bit of the binary vector r, i.e.
M1[i, j] = r[i+ j]. Using this matrix the computation of t is defined as t = (M1 · x)⊕ s, assuming all binary
vectors are in column form.

With this modification the new function computes the same as the original, but requires ` extra random
bits of input from the constructor and |x| + ` extra random bits from the evaluator. However, the new
function returns ` extra bits to the evaluator. These ` extra bits will work as digest bits and can be used
to check that the constructor is consistent with her inputs to the GCs by verifying that they are the same
in all the garbled circuits which are evaluated. However, it must clearly still be the case that honest parties
input the same input x‖s and y‖r for each of the garbled circuits.

This augmentation works since the new function computes, besides the original functionality, a family
of universal hash functions where the auxiliary input from both parties defines a particular hash function
from this family. The auxiliary output of the augmented function is then the digest of the constructor’s
input in this universal hash function. The proof that the augmentation is indeed a family of universal hash
functions was shown in [MNT90]. Intuitively, if the constructor’s tries to give inconsistent inputs between
the different garbled circuits, then this will result in different digests in each of these garbled circuits, except
with probability 2−`. Thus, the evaluator will be able to detect if the constructor has given inconsistent
input. Furthermore, notice that this augmentation does not give Bob any information about Alice’s true

6

input because Alice gets to mask each bit of M1 · x by a uniformly random bit selected by herself, i.e. the s
vector.

Selective Failure. In [SS11] the problem of a selective failure attack is solved using a special version OT, known
as committing OT. In [LP07] it is shown how to do this using a circuit extension which increases the amount
of input bits of the evaluator from |y′| to max(4 · |y′|, 8 · `). This is the solution we are using in our protocol.
More specifically, what we do is to choose a random binary matrix M2 ∈R {0, 1}max(4·|y′|,8·`) ×{0, 1}|y′| and
a random binary vector y′′ ∈R {0, 1}max(4·|y′|,8·`) but under the constraint that M2 · y′′ = y′ where y′ is the
“true” binary input of the evaluator to the, in our case already augmented, functionality f ′. Thus this new
functionality computes exactly the same as the original. Still, the idea of this approach is that if a selective
failure attack is done, using the augmented function will not leak any useful information as the entire vector
y′′ is random learning a single bit of this vector will only give the adversary a negligible advantage in learning
one of the constructor’s true input bits. This follows from the fact that the other bits of y′′ will be used
to hide each of the actual bits of y′. The details and a full proof of security of this approach can be found
in [LP07].

3 Protocol Description

We now describe the overall structure of our protocol. For simplicity we assume that only the evaluator is
supposed to receive output from the computation. If we wish to compute a circuit where the constructor
should also receive output then the circuit extension approach of [LP07], or the signed output approach
of [SS11], will work directly in our protocol and be scalable in parallel.

Abstractly our protocol can be described as follows:

1. The parties agree on a statistical security parameter, `, such that the probability of a total breakdown
is at most 2−`. They then agree on a binary function, f(x, y) = z where the constructor inputs x, the
evaluator inputs y and the evaluator learns the result z.

2. This functionality is extended to enforce consistency on the constructor’s input. The constructer extends
her input x to x′ such that x′ = x‖s where s ∈R {0, 1}`, similarly the evaluator extends his input y to
y′ such that y′ = y‖r where r ∈R {0, 1}|x|+`. We then define a new functionality as f ′(x′, y′) = f(x, y)‖t
where the value t is computed as (M1 · x)⊕ s. Finally, M1 is a `× |x| binary matrix where the i’th row
is the first |x| bits of r shifted i bits to the left.

3. The evaluator then decides on a random matrix M2 ∈R {0, 1}|y
′′|×{0, 1}|y′| and a random input y′′ such

that M2 · y′′ = y′ where we let |y′′| = max(4 · |y′|, 8 · `). He sends this matrix to the constructor and they
both agree on a Boolean function, f ′′ with this M2 embedded such that f ′′(x′, y′′) = f ′(x′,M2 · y′′) =
f ′(x′, y′) = f(x, y)‖t. Thus the Boolean functionality to be computed is extended once again.

4. The parties then agree on a binary circuit computing the functionality f ′′(x′, y′′) which we call C. The
constructor constructs `′ = 3.22 · ` GCs in parallel.4

5. The constructor and evaluator engage in OT in order for the evaluator to learn the keys corresponding
to his input for all `′ circuits. We call this the OT phase.
(a) The constructor and evaluator complete a modified OT extension which is 1-out-of-2 OTs of random

bitstrings.
(b) For each of these OTs the constructor extends the two random outputs to two `′ · κ “random”

bitstrings. The first representing the 0-keys of the `′ garbled circuits and the other the 1-keys. This
is done by using the inputs to the OT as seeds for a hash function.

(c) Similarly the evaluator extends his output of each OT to a `′ · κ “random” bitstring, representing
either the 0 or 1 keys of the `′ garbled circuits depending on his choice in the OT.

(d) From the circuit generation the constructor will have a 0 and 1 key for given wire in each GC. The
constructor then XORs each of the “random” bitstrings she learned from the modified OT extension
with the appropriate keys from the circuit generation and sends all these differences to the evaluator.

4 The constant increase in the amount of GCs stems from the fact that cut-and-choose of ` circuits only corresponds
to statistical security of 2−0.311` [LP11].

7

(e) The evaluator uses these bitstrings to find the correct input keys for the GCs by a simple XOR
operation.

6. The constructor then commits to each of the `′ GCs along with the input keys by hashing them and
sending the digests to the evaluator. These digests make it possible to avoid sending half of the garbled
computation tables as mentioned in [GMS08].

7. The constructor then commits to her input bits by computing a hash digest, concatenated with some
random salt, of the keys to each of the garbled circuits in correspondance with her input bits x′ to the
function f ′′. She sends these digests to the evaluator.

8. The parties then select `′/2 circuits for verification using a coin-tossing protocol5 and the constructor
sends the random seeds used to generate these circuits to the evaluator. We call this and the following
three steps for the cut-and-choose phase. The coin-tossing can for example be realized as follows:
(a) The evaluator chooses a random string ρ2 ∈R {0, 1}` and commits to this by sending a hash digest

of it to the constructor.
(b) The constructor also chooses a random string, ρ1 ∈R {0, 1}` and sends this to the evaluator.
(c) The evaluator sends the string ρ2 to the constructor, who computes a hash digest and verifies that

it matches the digest sent in the first step of the coin-tossing subprotocol.
(d) The constructor and evaluator now defines ρ = ρ1 ⊕ ρ2.
(e) The parties use the string ρ to deterministically select a subset of `′ with size `′/2.

9. Using the seeds the evaluator regenerates the garbled circuits’ garbled computation tables along with
the input keys and verifies that they are correct by hashing them and checking equality with the digests
he received in Step 6.

10. After this check the constructor sends the input keys in correspondence with her input, the random salt
she used in step 7 along with the garbled computation tables of the `′/2 circuits for which the evaluator
was not given the seeds.

11. The evaluator then hashes the garbled computation tables of these circuits and verifies them against the
hash digests he received in Step 6. He then hashes the constructor’s input keys concatenated with the
salt and verifies the digests against the values he received in step 7. Finally, he degarbles the circuits to
achieve the output keys along with their respective external values. We call this the evaluation phase.

12. If all checks pass, then the evaluator maps the output keys to their corresponding bits and take the
majority of the decrypted outputs of the `′/2 circuits to be the overall output of the protocol.

4 Specific Details

We now give a more technical description of the abstract parts of the protocol.

The Garbled Circuit. We construct the GCs in very much the same manner as described in [Yao82].
However, we use the optimizations for free XOR [KS08], garbled row reduction [NPS99] along with an
efficient encryption function using permutation bits [PSSW09]. The overall protocol for achieving malicious
security is very similar to that of [LP07], but combined with the sending of circuit seeds [GMS08] and the
efficient OT extension of [NNOB12]. Our optimizations arrive in the way we construct and evaluate the GCs
in a scalable parallel manner, along with our approach to verify consistency of the constructor’s input.

Constructing the Garbled Circuits. We turn the augmented function f ′′, into a circuit description which we
then parse. The parsing consists of finding all the gates which can be computed using only the input wires,
calling this set of gates for layer 0. We then find all the gates, not in layer 0, that can be computed using only
the input wires and the output wires of the gates in layer 0, calling this layer for layer 1. We continue in this
manner until all gates have been assigned a unique layer. The interesting thing to notice here is that we now
have a partition of the gates in such a manner that all gates in a single layer can be constructed or evaluated

5 A coin-tossing protocol is needed in order to make it possible to complete a simulation proof of security, since the
simulator needs to be able to extract the cut-and-choose challenge.

8

in parallel, in an arbitrary order, only requiring that gates at lower levels have been constructed or evaluated
beforehand. Thus, given the keys of the input wires we can construct the garbled computation tables of the
gates in layer 0 in an arbitrary order. Moreover, the heavy part of these computations, encryption, can be
done in a SIMD manner. The only part of the construction that varies, depending on the type of gate, is
which entries in the garbled computation table that should represent a 0-key and which that should represent
a 1-key. Notice, however, since we implement the free XOR approach this problem is eliminated, as we can
simply XOR the global key into the garbled computation table entries, which already represent a 0-key, if
the output of that table entry is supposed to be a 1-key. Still, using the free XOR approach gives another
problem, that is the need to further partition each layer into sets of XOR gates and non-XOR gates, in order
to achieve complete SIMD or to keep the amount of layers and instead execute each layer like it only consists
of XOR gates and execute it like it only consists of non-XOR gates and only use the relevant result of each
of the gates. In our implementation we do the latter since preliminary tests showed this was the fastest of
the two in our context.

Finally, it should be noted that the global key we choose needs to be the same for all the gates in one
GC, but different for each of the GCs we make to allow opening in cut-and-choose. Keeping these changes,
and this way to parallelize in mind, the protocol for construction is the same as the optimized protocol for
generic GC generation previously described in Section 2, repeated `′ times.

The evaluation proceeds in the same manner as in the generic garbled circuit evaluation. However, we
still use the same paradigm for parallelization as in the construction phase; we degarble each gate in a given
layer, in all the `′/2 circuits, in parallel, until the evaluator finds the output bits on the final layer. Finally,
the evaluator takes the majority of the outputs to be his output.

The Modified OT Extension. We use the approach from [NNOB12] (see Appendix A), as the base of
our modified OT extension. However, we make a few changes to reduce as many operations as possible to
parallel computable hashes of short bitstrings.

Assuming the existence of random oracles and a secure implementation of a κ-bit 1-out-of-2 OT as an
ideal resource, the protocol is UC secure against a malicious adversary. For the rest of this section we let τ
be the amount of bits in the evaluator’s input for the augmented circuit, i.e. τ = max(4 · (|y|+ |x|+ `), 8 · `),
where the term |y|+ |x|+ ` comes from the first augmentation to ensure consistency of Alice’s input.

Define the evaluator’s (Bob’s) input to the augmented circuit as a bitstring y′′ of τ bits. Define H(·) to
be a hash function with κ bits output. The modified OT extension goes as follows:

1. Bob chooses
⌈
8
3κ
⌉

pairs of seeds, each consisting of κ random bits. That is, for each i = 1, . . .
⌈
8
3κ
⌉

we
let (l0i , l

1
i) ∈R {0, 1}κ × {0, 1}κ be the i’th seed pair.

2. Alice now samples
⌈
8
3κ
⌉

random bits, x1, . . . , xd 8
3κe ∈R {0, 1}.

3. Alice and Bob then run
⌈
8
3κ
⌉

OTs where, for i = 1, . . . ,
⌈
8
3κ
⌉
, Bob offers (l0i , l

1
i) and Alice selects xi,

and receives lxii .
4. Now, for each of the i = 1, . . . ,

⌈
8
3κ
⌉

pairs of random bits Bob computes the following two vectors of τ
bits, using idi,j as a unique ID:

L0
i = H

(
idi,0‖l0i

)
‖H
(
idi,1‖l0i

)
‖ . . . ‖H

(
idi,τ/κ ‖ l0i

)
,

L1
i = H

(
idi,0‖l1i

)
‖H
(
idi,1‖l1i

)
‖ . . . ‖H

(
idi,τ/κ ‖ l1i

)
.

5. Now, in the same manner Alice extends each of her outputs of the OT from their original length of κ
bits, into strings of τ bits. Thus, Alice computes

Lxii = H (idi,0‖lxii) ‖H (idi,1‖lxii) ‖ . . . ‖H
(
idi,τ/κ ‖ lxii

)
.

6. Now, for each i = 1, . . . ,
⌈
8
3κ
⌉

Bob computes a bitstring, λi = L0
i ⊕ L1

i ⊕ y′′, and sends these to Alice.

7. For each i = 1, . . . ,
⌈
8
3κ
⌉

Alice computes a bitstring as follows

L′
xi
i = Lxii ⊕ (xi · λi) = L0

i ⊕ (xi · y′′).

9

8. Alice then picks a uniformly random permutation

π :

{
1, . . . ,

⌈
8

3
κ

⌉}
→
{

1, . . . ,

⌈
8

3
κ

⌉}
where, for all i, π(π(i)) = i, and sends these to Bob. Furthermore, define S(π) = {i|i ≤ π(i)}, that is,
for each pair, the smallest index is in S(π).

9. Now, for all the
⌊
4
3κ
⌋

indexes i ∈ S(π) do the following:
(a) Alice computes di = xi ⊕ xπ(i) and sends these to Bob.

(b) Alice and Bob both compute Zi =
(
L′
xi
i ⊕ L′

xπ(i)

π(i)

)
. This is possible for Bob since di uniquely

determines the way to compute Zi, i.e. if he should XOR L0
i with y′′.

10. For all i ∈ S(π), Alice and Bob concatenate the Zi strings, call Alice’s result ZA and Bob’s result ZB .
They then check that ZA = ZB using the following subprotocol:

(a) Alice chooses a random string r ∈R {0, 1}κ.

(b) She then views her input string and r as
⌈
|ZA|+κ

ρ

⌉
blocks, each of ρ bits. In parallel, she then hashes

each of these blocks using the hash function H(·).
(c) She now has

⌈
|ZA|+κ

ρ

⌉
hash values. She then concatenates two adjacent digests, and hash all of these.

(d) She continues in this manner, recursively concatenating and hashing the results from the previous
round. At the end she has a single hash value, call it c, which she sends to Bob. 6

(e) Bob then sends ZB to Alice, who checks that ZA = ZB , if this is so she then sends ZA and r to Bob.
(f) Bob then views ZA‖r as a string of ρ bit blocks, which he, like Alice, recursively hashes and con-

catenates to achieve a single hash value, c′.
(g) Bob then checks if c′ = c and that ZA = ZB .
(h) If all checks are successful then the strings are equal, and the protocol continues, otherwise the parties

abort.

11. For each i = 1, . . . ,
⌊
4
3κ
⌋

and for each j = 1, . . . , τ Alice defines Kj to be the string consisting of the j’th
bits from all the strings L′

xi
i , i.e.

Kj = L′
x1

1 [j]‖L′x2

2 [j]‖ . . . ‖L′
xb 4

3
κc

b 4
3κc

[j] .

This means that she gets τ keys consisting of
⌊
4
3κ
⌋

bits.

12. Now, for each i = 1, . . . ,
⌊
4
3κ
⌋

and for each j = 1, . . . , τ Bob sets Mj to be the string consisting of the
j’th bits from all the strings L0

i , i.e.

Mj = L0
2[j]‖L0

2[j]‖ . . . ‖L0

b 4
3κc[j] .

13. Alice lets ΓA be the string consisting of all the bits xi for i ∈ S(π), i.e. ΓA = x1‖x2‖ . . . ‖xb 43κc.
14. Bob now computes Yj = H(Mj) and achieves (Y0, . . . , Yτ). He then extends each of these to `′ random

values. That is, for each i = 1, . . . , `′ he computes Y ij = H (idi,j‖Yj).
15. Alice computes X0

j = H(Kj) and X1
j = H(Kj ⊕ ΓA) and achieves ((X0

1 , X
1
1), . . . , (X0

τ , X
1
τ)). She then

extends each of these pairs to pairs of `′ random values. Specifically for each i = 1, . . . , `′ she computes
the following: (

X0,i
j , X1,i

j

)
=
(
H
(
idi,j‖X0

j

)
,H
(
idi,j‖X1

j

))
.

If the parties have been honest it should be the case, that for each i = 1, . . . , `′ and j = 1, . . . , τ we have

Y
y′′[j],i
j = X

y′′[j],i
j .

6 Notice that if the original, sequential, hash function is collision free, then this block wise recursive hashing will also
be a collision free hash function. This is a result due to Damgaard [Dam89].

10

Fitting It Together. After completing the modified OT extension Bob has τ · `′ keys of length κ. However,
these keys are of course not consistent with the random keys used for the `′ circuits. So, for each of the τ · `′
pairs of keys Alice has, she computes the difference between the keys she achieved as a result of the modified
OT extension and the actual keys to the given GCs. That, is for each i = 1, . . . , `′ and each j = 1, ..., τ she
computes

δ0,ij = X0,i
j ⊕ k

0,i
j ,

δ1,ij = X1,i
j ⊕ k

1,i
j

where k0,ij is the 0-key and k1,ij is the 1-key for the particular wire, j, in the particular GC, i. Alice then

sends all the pairs of δs to Bob. For each pair, Bob can only know one X value, that is, either X0,i
j or X1,i

j ,
because of the hiding property of the OT. This means that Bob can compute exactly his choice of key, but
not the other. This follows from the security of the free-XOR approach, along with the power of the random
oracle for constructing X0,i

j and X1,i
j , i.e. they work as one-time-pads for the keys. Thus, we get a linking

between the modified OT extension and the GCs.

5 Security and Complexity

In this section we go through the complexities of our approach and sketch why our protocol is secure.

Security of the Modified OT Extension. The overall correctness and security of the modified OT
extension follow from the correctness and security of the original OT extension [NNOB12] (which is secure
in the random-oracle, OT-hybrid model). However, we do make several changes to this protocol. In the
following we will specify these change and sketch why they do not compromise the security of the protocol.
The most significant changes between the modified OT extension, and the OT extension from [NNOB12]
are; the non-random construction of y′′, the use of hashing to construct the strings L0

i , L
1
i and the extension

of the results in Step 14 and 15.

Non-random y′′. We need y′′ to be non-random in order for Bob’s output of the OT extension to be consistent
with his input bits for the GCs. We do this as part of the OT protocol in order to eliminate the need for
proving equality of random bits and sending permutation bits which would be the normal approach in order
to change random OTs into OTs of specific bitstrings and choices. By embedding this in the extension itself
we save some rounds of communication complexity and make the whole OT extension phase simpler by
eliminating these post processing steps. Intuitively it does not compromise the security for Bob as y′′ is
one-time-padded with the pseudo random strings L0

i in Step 6 and 7. It does not compromise the security
for Alice either, because of the bit switching in the end of the protocol (Step 11 and 12), along with the fact,
that Alice’s vector of x1, . . . , xd 8

3κe is random, and thus that Bob has no idea if y′′ will be XORed into a L0
i

in Step 7.

Construction of the L0
i s and L1

i s. In [NNOB12] a pseudo random generator is used to extend a random
string of length κ to a pseudo random string of length τ . However, our approach is based on invocations of
hash functions on a common seed concatenated with a unique ID. This is clearly secure in the random-oracle
model.

Step 14 and 15. Like for the L0
i s and L1

i s the extensions in Step 14 and 15 does not compromise security
because we assume the ROM and so as long as we extend each string along with a unique ID we can assume
the output is random.

11

Overall security assumptions. Notice that overall our protocol follows the approach for cut-and-choose
based garbled circuits of [LP07]. The major theoretical difference between their (abstract) protocol and ours
is the way we handle the problem of inconsistent input from the constructor. All other changes refer to
practical instantiations such as the fact that we use an OT extension for all OTs, send seeds of garbled
circuits instead of commitments, realize commitments using hash functions and the specific garbling scheme
used.

The protocol of [LP07] is secure in the commitment-, OT-hybrid model assuming the garbling scheme
is secure. For the garbling we use the scheme of [PSSW09], which was proved secure in the random oracle
model. Next, notice that in [GMS08] it is shown that sending the seeds of garbled circuits will be secure
when combined with the protocol of [LP07] if the hash function used is collision robust. Furthermore, we
have already argued that the OT extension is secure in the random oracle, OT-hybrid model and the fact
that our circuit augmentation ensures consistency of the constructor’s input or termination of the protocol
independent of the evaluator’s input, except with probability at most 2−`. In turn we conclude that out
protocol is secure in the random-oracle, OT-hybrid model.

Parallel Complexity. First see that many of the computationally heavy calculations in the protocol are
hashes. Next, notice that these hashes are of “small” bitstrings, bounded by O(κ). Now by our approach to
parallelization of the garbling and degarbling process we notice that the complexity becomes bounded by
the length of the input to the KDF and the depth of the circuit to securely compute. Thus, assuming access
to enough parallel processors the garbling and degarbling time will be bounded by O(κ · d) where d is the
depth of the circuit to garble and under the assumption that hashing κ bits takes O(κ) time.

Regarding the modified OT extension notice that all the hashes to be computed in a given step of the
modified OT extension can be done independently of each other, and thus in parallel. Looking at these steps
from each party’s point of view, we see that Step 14 is the step requiring the most computations for Bob. If
Bob has access to p ≤ `′ · τ processors the amount of bits he needs to hash sequentially in the SIMD parallel
model is O(τ · `′ · κ/p). If he has access to more processors then the amount of bits to hash sequentially is
only O(κ). For Alice the greatest amount of hashes are computed in Step 15. If she has access to p ≤ τ · `′
processors then the amount of bits she needs to hash sequentially in said model is O(τ · `′ · κ/p). If she has
access to more processors, then the amount of bits to hash is only O(κ). In conclusion, the overall parallel
computational complexity of the protocol is O(κ · d), not including the seed OTs.

6 Implementation

We now describe how we constructed our implementation in CUDA in order to achieve high efficiency, based
on the knowledge of the device hardware and scheduling. It should be noted that we use SHA-1 with 160
bits digest and 512 bits blocks [iosat02] as our hash function.

Gate Generation.

Kernel Structure. First, notice that we will have a case of SIMD for every circuit in `′. Thus, it is obvious
to have each thread in a warp processing a distinct circuit and thus having the blocks be 1-dimensional,
consisting of a constant amount of warps since this structure will give us high block occupancy. Now, since
preliminary tests showed that a single warp in a block achieved greater efficiency than two or more blocks
in a warp we chose to have blocks consist of 32 threads. A caveat with this is that if we wish to have `′ not
being a multiple of 32, we will need to allocate unused memory and cores and thus have SPs sit idle.

Next we notice that all gates within a single layer can be computed in arbitrary order, thus it is obvious
to have one grid dimension be the amount of gates in each layer. Furthermore, as we cannot know which
order the blocks will be computed in, we will need to have an iteration of kernel launches, one launch for
each layer in the circuit, in order to have the output keys of the previous layer computed and ready for
computing the next layer.

12

Regarding memory management, we first copy the seeds onto the device, and then compute the global
keys for all the circuits and the 0 keys for all the input wires in all the circuits, using a unique seed for each
circuit. This is done by hashing the seed along with a unique ID in order to get a “random” key (remember
we assume the ROM). Afterwards, using the generated keys, we initiate a loop of kernel launches in order to
compute each layer of keys and garbled computation table entries in each circuit. Between all these launches,
all the currently computed keys, along with the global keys, remain in the global memory of the device so
they can be used by the next kernels. Furthermore, we keep all the currently computed garbled computation
tables on the device so that all the results can be copied to the host as a batch after all the kernels have
finished. In order to save memory we only store the 0-key for each wire, since the 1-key can be efficient
computed by simply XORing it with the appropriate global key for a given circuit.

Finally notice that the structure of the kernel for degarbling is the same as for garbling. The only
difference is that before the initial launch the garbled computation table for the whole circuit is copied from
the host into the global memory along with the initial input keys, one key for each of the input wires, and
a description of the circuit.

Memory Coalescing. We memory coalesce all the data we use, both in the global memory and in the shared
memory. As both keys and garbled computation table entries consists of 160 bits (the digest size of SHA-1),
i.e. five 32-bit words, we stored all data in segments of 32 · 5 = 160 words. The first entry is the first word of
thread 1, the second entry is the first word of thread 2, and so on up to entry 33, which then contains the
second word of thread 1, entry 34 contains the second word of thread 2 and so on. Thus, all data access is
coalesced in a multiple of the warp size.

The Modified OT Extension. Unlike the generation and evaluation of the GCs, the modified OT extension
involves many phases, several of which are depended on the previous phases and results from interacting
with the other party. This means that we cannot have a single kernel, or even a single kernel function, in
order to complete all the steps of the protocol for each party.

Like we did for the GCs we coalesce all memory in blocks of 32 words. We also make segments, which
consists of 5 · 32 = 160 words, such that each segment holds a coalesced hash values or a small κ bit data
array, for 32 threads. For this reason we again construct kernels to use blocks of 32 threads.

Using this choice, no coalescence conversion needs to be done to use the data from the modified OT
extension with our implementation of GCs. Furthermore, this choice will still keep an efficient and scalable
organisation of the memory. Also, as all the data we use for computations here is completely independent,
we get the possibility of only launching a single kernel for each step of the protocol in order to avoid kernel
launch overhead, resulting from the iterative launching of kernels.

The kernels needed in Step 4 and 5, and Step 14 and 15, are almost the same so we only include a
description of Step 4 and 5.

Steps 4 and 5. Step 4, involves hashing 2 ·
⌈
8
3κ
⌉

seeds τ/κ times. In order to avoid redundant data copying
of L0

i and L1
i to the device when we need to construct λi, we compute parts of all the three vectors, L0

i ,
L1
i and λi, in each thread. That is, we include Step 6 in the kernel. To save memory usage and bandwidth

we let all the 32 threads of a single block use the same pair of seeds, thus we make each thread in a block
compute 160 bits of each of the three vectors L0

i , L
1
i and λi for the same i. Next, one dimension of the grid

is responsible for computing all τ bits of the three vectors, L0
i , L

1
i and λi, and thus contains

⌈
τ

32·κ
⌉

threads.

The other dimension of the grid is responsible for doing this for each of the
⌈
8
3κ
⌉

vectors that need to be
computed. Step 5 proceeds in the same manner, except each block only uses a single seed and each thread
only computes a single digest.

Further Improvements. For constructing and evaluating the GCs the hash operations are clearly the
main contributing time factor. However, regarding the modified OT extension it turns out, that computing
the hash values on the device, barely gave an improvement in the overall execution time, and that the main
contributing time factor was that of transposing bits, i.e. Steps 11 and 12. In order to achieve a significant

13

Constructor (Alice)
Ti

m
e

(m
s)

0

1,000

2,000

3,000

4,000

5,000

Statistical security parameter
0 20 40 60 80 100 120 140

Comm.
Comp.
Total

Evaluator (Bob)

Ti
m
e

(m
s)

0

1,000

2,000

3,000

4,000

5,000

Statistical security parameter
0 20 40 60 80 100 120 140

Comm.
Comp.
Total

Fig. 1. Timings in milliseconds for both Alice and Bob under different statistical security parameters when computing
oblivious 128 bit AES.

improvement in execution time we need to implement these steps efficiently in parallel. In order to do this
we need to keep the overall hardware structure and memory hierarchy in mind.

First of all, we should notice that in order to construct one word of Kj or Mj in Step 11 and 12, we
need a single bit from 32 different words in L′

xi
i or L0

i . In our memory organization, these are located in
non-consecutive order. However, it should be noted that the remaining 31 bits of each of the 32 words are
needed in the next 31 K bitstrings, Kj+1, ..., Kj+31. Thus, depending on the caches available, it makes
sense to construct the first word of Kj , Kj+1, ..., Kj+31 in a batch. That is, to load 32 words of L′

xi
i or L0

i

and use a single bit from each of these to construct the first word of Kj , Kj+1, ..., Kj+31. For this approach
to be successful we need a cache of 32 · 32 = 1024 words, or 4 kilo bytes in a 32 bit system. Fortunately, this
is well within the amount of shared memory on a device.

Next, consider the subprotocol for parallel equality (Step 10 of the modified OT extension). It is simple
to implement on the device, by again having blocks of 32 threads and a grid of all the blocks needed to
compute the individual digests. For each party we start by loading the input string into global memory and
then construct a hash value of each, sufficiently large, chunk of bits, by loading the bits directly from global
memory and storing the result back in global memory.

Using all these parallel optimizations for the modified OT extension, experiments show that the major
contributing time factor is Step 15, as one might also expect, since it involved the largest amount of bits to
hash.

Finally, we also introduced slight multi-threading in the host code to eliminate some idle time where one
of the parties might be doing, or waiting for, network communication but still is able to do computations
on the data it already has. For Alice this includes sending the difference strings in the OT extension while
computing commitments to her input keys. For Bob this includes receiving and verifying consistency of Alices
input keys while verifying the seeds of the check circuits.

7 Experimental Results

In this section we consider the efficiency of our protocol implementation by doing a bunch of tests. All of
these tests are based on the same, commonly used, circuit for oblivious 128 bit AES encryption.7 This circuit
is used as benchmark both in [HEKM11,LP11,NNOB12,HKS+10], and many more implementations of 2PC

7 We thank Benny Pinkas, Thomas Schneider, Nigel P. Smart and Stephen C. Williams for supplying the base circuit
which we augmented for our implementation.

14

Table 1. Timing comparison of secure two party computation protocols evaluating oblivious 128 bit AES. d is the
depth of the circuit to be computed.

Security ` Model Rounds Time (s) Equipment

[HEKM11] Semi honest - ROM O(1) 0.20 Desktop

This work Malicious 2−9 ROM O(1) 0.29 Desktop w. GPU

This work Malicious 2−29 ROM O(1) 0.78 Desktop w. GPU

[KSS12] Malicious 2−80 SM O(1) 1.4 Cluster, 512 nodes

[NNOB12] Malicious 2−58 ROM O(d) 1.6 Desktop

This work Malicious 2−59 ROM O(1) 1.8 Desktop w. GPU

[KSS12] Malicious 2−80 SM O(1) 115 Cluster, 1 node

for Boolean functions. What makes this circuit a good benchmark is its relatively random structure, its
relatively large size, along with its obvious practical usage, i.e. oblivious encryption.

To get the most diverse results we ran our experiments with several different statistical security parameters
from 2−9 to 2−119. We ran the experiments on two consumer grade desktop computers connected directly
by a cross-over cable. At the time of purchase each of these machines had a price of less than $1600. Both
machines had similar specifications: an Intel Ivy Bridge i7 3.5 GHz quad-core processor, 8 GB DDR3 RAM,
an Intel series-520 180 GB SSD drive, an MSI Z77 motherboard with gigabit LAN and an MSI GPU with
an NVIDIA GTX 670 chip and 2 GB GDDR5 RAM. The machines ran the latest version (at the time) of
Linux Mint. The experiments were repeated 30 times each and no front end applications were running on
either of the machines and visualized in Fig. 1. These timings include every aspect of the protocol including
loading circuit description and randomness along with communication between the host and device and
communication between the parties. However, in the same manner as done in [NNOB12] the timing of seed
OTs have not been included as this is a computation that practically only is needed once between two parties
and thus will get amortized out in a practical context. The time it takes to initialize the GPU device (driver
related overhead) has not counted, and generally would constitute between 50 and 60 milliseconds on our
test systems when the GPU is set to “persistence mode”.

The estimated total running time of the protocol is given by the total time Bob spends on the execution.
This follows from the following observations:

– In the beginning of the execution, before sending the first bits, both parties do the same computation,
except that Bob loads a few more bits to specify his input and Alice loads a few more bits of entropy.
Thus, the maximum of the IO of the parties describe the discrepancy in their concurrent execution. It
turns out, that Bob is always the one spending most time on IO.

– Alice terminates after sending the final bits of information to Bob, but Bob still needs to do more
computation. Thus Bob’s time gives the upper bound on the ending of the execution.

– Finally, we don’t count the discrepancy in the wall-clock time between the time Alice and Bob start to
execute the protocol program. I.e. we don’t count the time one computer waits until the other computer
starts to execute the protocol.

In conclusion, Bob’s timings are good estimates for the total execution time of the protocol.

7.1 Detailed Benchmarks

Table 2 shows our detailed benchmarks, we here give some details on what exactly is counted in each cell.
The “Total” timings describe the wall-clock timings of the execution, whereas the timings of the individual
parts might be counted twice because of the multi-threaded nature of the implementation. This in particular
means that the wall-clock time spent on “Circuit (comm.)” in one thread is also counted as “Circuit (comp.)”
in another thread since they are computed at the same time, but on different cores.

All communication happening as part of the OT extension is counted in the row “OT (comm.)” and
all other communication is counted in “Circuit (comm.)”. Everything else happening as part of the OT

15

extension, that is not communication, is counted in “OT (comp.)”, however, only garbling, degarbling and
hashing of garbled circuits are counted in “Circuits (comp.)”. All other computational aspects are reflected
in the “Total” row. Furthermore, a party being idle, trying to receive or send data to the other party, but
cannot do so because the other party is not yet at that step is counted in the “(comm.)” rows. This can in
particular be seen in the row “OT (comm.)” and “Bob” columns.

From the timings we see that the bottleneck of the protocol is the communication complexity, even when
care has been taken to do communication in parallel with computation. This becomes increasingly obvious
the higher the statistical security parameter is.

Table 2. Timing in milliseconds when computing oblivious 128 bit AES under different statistical security parameters.
Uncertainty is 95% confidence intervals.

` 9 19 29 39

Alice Bob Alice Bob Alice Bob Alice Bob

IO 4.584 ±
0.03356

6.009 ±
0.2572

5.018 ±
0.31758

6.349 ±
0.3827

5.302 ±
0.2743

6.855 ±
0.48984

5.733 ±
0.44256

7.156 ±
0.5989

OT (total) 22.84 ±
6.021

41.84 ±
0.2365

19.55 ±
4.974

75.40 ±
0.9913

20.62 ±
4.962

112.5 ±
1.429

28.81 ±
6.804

156.4 ±
2.519

OT (comm.) 17.56 ±
5.784

36.96 ±
0.2135

13.52 ±
4.786

69.82 ±
1.037

13.35 ±
4.750

106.1 ±
1.468

20.09 ±
6.478

149.3 ±
2.536

OT (comp.) 5.282 ±
0.2553

4.881 ±
0.1791

6.031 ±
0.2531

5.576 ±
0.2753

7.267 ±
0.3725

6.429 ±
0.3333

8.728 ±
0.4495

7.09 ±
0.3478

Circuits (total.) 194.9 ±
5.087

239.4 ±
8.323

364.2 ±
4.069

422.0 ±
5.688

519.1 ±
3.714

598.1 ±
5.096

719.1 ±
4.661

827.6 ±
6.444

Circuits (comm.) 165.1 ±
5.072

186.3 ±
8.424

301.1 ±
4.117

315.1 ±
5.607

419.9 ±
3.625

429.7 ±
5.087

576.9 ±
4.402

592.2 ±
6.438

Circuits (comp.) 29.76 ±
0.1916

53.11 ±
0.3411

63.14 ±
1.0099

107.0 ±
0.2420

99.14 ±
1.473

168.4 ±
0.2577

142.2 ±
2.502

235.4 ±
0.1839

Total 267.4 ±
8.513

291.9 ±
8.404

489.1 ±
5.653

533.4 ±
5.668

708.5 ±
5.150

776.0 ±
5.175

990.2 ±
6.533

1082 ±
6.503

` 59 89 119

Alice Bob Alice Bob Alice Bob

IO 6.247 ±
0.2747

8.067 ±
0.5317

7.110 ±
0.2761

8.481 ±
0.2683

8.551 ±
0.6838

9.681 ±
0.5724

OT (total) 25.79 ±
5.286

249.7 ±
3.470

29.58 ±
5.503

351.1 ±
2.341

38.28 ±
6.408

621.1 ±
3.746

OT (comm.) 14.62 ±
5.136

240.8 ±
3.394

15.97 ±
5.583

340.6 ±
2.293

20.20 ±
6.470

606.5 ±
3.831

OT (comp.) 11.18 ±
0.5113

8.93 ±
0.2483

13.62 ±
0.5328

10.49 ±
0.3104

18.08 ±
0.5546

14.65 ±
0.2814

Circuits (total.) 1176 ±
6.736

1335 ±
6.177

1714 ±
13.261

1929 ±
6.256

3134 ±
5.685

3488 ±
8.746

Circuits (comm.) 942.3 ±
5.759

945.8 ±
5.729

1381 ±
13.108

1370 ±
5.655

2534 ±
4.253

2487 ±
8.407

Circuits (comp.) 233.8 ±
3.372

388.8 ±
1.165

333.8 ±
2.291

559.3 ±
1.291

599.6 ±
3.850

1001 ±
0.83507

Total 1619 ±
6.194

1766 ±
6.372

2363 ±
6.355

2574 ±
6.280

4262 ±
7.391

4663 ±
8.254

16

8 Conclusion

We believe that our protocol approach along with the implementation yields the best practical results for
malicious security two-party computation. This is so since the faster timings of [KSS12] is achieved using a
large grid with an estimated purchase price of at least $129,168 per party8 which might not be feasible in
the majority of use cases. It should further be noted that their only timings are for statistical security 2−80

and that we do not expect a lower security parameter to yield a significant increase in speed due to their
approach in parallelization which uses one core per garbled circuit. I.e. they would not be able to utilize
more than 28 or 94 cores per player if using statistical security 2−9, respectively 2−29. Thus using a less
conservative statistical security parameter it seems highly plausible that our protocol implementation will
match the pricey grid computer implementation of [KSS12].

Next notice that the approach of [NNOB12] achieves a slightly faster result for a conservative statistical
security parameter. However, their round complexity is asymptotically greater than ours which could yield
performance issues if the protocol were to be executed on the Internet since several packet transmission must
be initialized several times during the execution. Furthermore, their timings are based on amortization of
54 instances (or 27 if one is happy with statistical security 2−55). Finally, by an artifact of their approach
choosing a lower security parameter will not give significant performance improvements. In particular, a
factor 2 in execution time seems to be the absolute maximal time improvement possible by an arbitrary
reduction of the statistical security.

In conclusion, we have showed that the construction of a parallel protocol for 2PC in the SIMD PRAM
model with implementation on the GPU can yield very positive results.

Future Work. Even though the time needed for the seed OTs can be amortized out from repeated use of the
protocol it would still be interesting to see how fast these could be done, in particular, in parallel using the
GPU.

Other interesting aspects one could try out with this protocol is to use another key derivation function,
such as one based on AES. Furthermore, using our parallel protocol for covert security would also be inter-
esting, since most of the communication complexity can be eliminated in the covert model when using seeds
for generations of the garbled circuits.

Finally, implementing some working set mechanism (as done in [KSS12]) would be interesting, as it would
make it possible to garble extremely large circuits.

The Code. The benchmark implementation we did for this work is freely available for non-commercial use
at http://daimi.au.dk/~jot2re/cuda.

Acknowledgment. The authors would like to thank Roberto Trifiletti for supplying the code we used for
circuit parsing and Springer for publishing the extended abstract of this work [FN13].

References

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P. Jakobsen, Mikkel
Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach,
and Tomas Toft. Secure multiparty computation goes live. In Financial Cryptography, pages 325–343,
2009.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, STOC ’96, pages 479–488, New
York, NY, USA, 1996. ACM.

8 We contacted the authors of [KSS12] who unfortunately did not have any price estimate on the Sun Blade x6240
system which they used for their timings results. Furthermore, as Sun Blade x6240 has reached end-of-life our
estimate is based on the minimal price of a 256 core x86 system of the current successor of Sun Blade x6240, i.e.
the Sun Blade X3-2B.

17

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Foundations
of Computer Science, IEEE Annual Symposium on, 0:136, 2001.

[Cor12] Nvidia Corporation. NVIDIA CUDA C Programming Best Practices Guide. Technical report, October
2012.

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In CRYPTO, pages 416–427, 1989.
[DNO08] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially optimal universally composable

oblivious transfer. In Pil Joong Lee and Jung Hee Cheon, editors, ICISC, volume 5461 of Lecture Notes
in Computer Science, pages 318–335. Springer, 2008.

[FN13] Tore Kasper Frederiksen and Jesper Buus Nielsen. Fast and maliciously secure two-party computation
using the gpu. In Applied Cryptography and Network Security - 11th International Conference, ACNS
2013, Banff, June 25-28, 2013. Proceedings, LNCS. Springer, 2013.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party computation
against covert adversaries. In EUROCRYPT, pages 289–306, 2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, 2011.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Tasty:
tool for automating secure two-party computations. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov, editors, ACM Conference on Computer and Communications Security, pages 451–462. ACM,
2010.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In In
CRYPTO 2003, Springer-Verlag (LNCS 2729, pages 145–161. SpringerVerlag, 2003.

[iosat02] National institute˜of˜standards˜and technology. FIPS 180-2, Secure Hash Standard, Federal Information
Processing Standard (FIPS), Publication 180-2. Technical report, DEPARTMENT OF COMMERCE,
August 2002.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[KH10] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach
(Applications of GPU Computing Series). Morgan Kaufmann, 1 edition, February 2010.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and applications.
In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 486–498.
Springer, 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious
adversaries. In Proceedings of the 21st USENIX conference on Security symposium, Security’12, pages
14–14, Berkeley, CA, USA, 2012. USENIX Association.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The ips compiler: Optimizations, variants and concrete
efficiency. In Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages
259–276. Springer, 2011.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Proceedings of the 26th annual international conference on Advances in
Cryptology, EUROCRYPT ’07, pages 52–78, Berlin, Heidelberg, 2007. Springer-Verlag.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation. J.
Cryptology, 22(2):161–188, 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 329–346. Springer,
2011.

[MNT90] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal hashing.
In Structure in Complexity Theory Conference, page 90. IEEE Computer Society, 1990.

[NIK12] Naoki Nishikawa, Keisuke Iwai, and Takakazu Kurokawa. High-performance symmetric block ciphers on
multicore cpu and gpus. International Journal of Networking and Computing, 2(2), 2012.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 681–700. Springer, 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. Lego for two-party secure computation. In TCC, pages 368–386,
2009.

18

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In
ACM Conference on Electronic Commerce, pages 129–139, 1999.

[PDL11] Shi Pu, Pu Duan, and Jyh-Charn Liu. Fastplay-a parallelization model and implementation of smc on
cuda based gpu cluster architecture. IACR Cryptology ePrint Archive, 2011:97, 2011.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel Smart, and Stephen Williams. Secure two-party computation is
practical. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of Lecture
Notes in Computer Science, pages 250–267. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-10366-
7 15.

[SS11] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries. In Ken-
neth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 386–
405. Springer, 2011.

[XLZ11] Lei Xu, Dongdai Lin, and Jing Zou. Ecdlp on gpu. IACR Cryptology ePrint Archive, 2011:146, 2011.
[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on

Foundations of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982. IEEE Computer
Society.

19

A The OT Extension of [NNOB12]

The following protocol from [NNOB12] shows how we can get a practically unbounded amount of 1-out-of-2
κ bits OTs using only

⌈
8
3κ
⌉

seed OTs of κ bit strings. The extension goes as follows, using ψ to denote the
amount of OTs we wish to construct with P2 denoting the player giving the input and P1 denoting the player
choosing the output:

1. P1 samples ΓB ∈R {0, 1}ψ and for i = 1, ..., d 83κe, it also samples L0
i , L

1
i ∈R {0, 1}κ.

2. P2 samples y1, ..., yd 83κe ∈R {0, 1}.
3. P1 and P2 then run d 83κe instances of a 1-out-of-2 OT protocol in the following manner:

– For i = 1, ..., d 83κe P1 offers (L0
i , L

1
i) to P2.

– P2 chooses yi ∈ {0, 1} such that it receives Lyii .
– Now, P1 runs a pseudo random number generator on all the candidate value,

(
L0
i , L

1
i

)
:

Y ′
0
i = prgψ

(
L0
i

)
, Y ′

1
i = prgψ

(
L1
i

)
.

– P2 now runs the same pseudo random number generator on all the d 83κe values of Lyii to extend each
of these from their original length of κ bits into strings of ψ bits. Thus it learns Y ′

yi
i = prgψ (Lyii).

– Now, P1 computes d 83κe bitstrings, λ1, ..., λd 83κe, and sends these to P2:

λi = Y ′
0
i ⊕ Y ′

1
i ⊕ ΓB .

– For i = 1, ..., d 83κe P2 computes a semi authenticated bit as follows

|yi〉 =
(
yi, Y

′yi
i ⊕ (yi · λi)

)
=
(
yi, Y

′0
i ⊕ (yi · ΓB)

)
4. P2 now picks a uniformly random permutation:

π :

{
1, ...,

⌈
8

3
κ

⌉}
→
{

1, ...,

⌈
8

3
κ

⌉}
,

such that for all i; π (π(i)) = i. That is, the permutation is a pairing. P2 sends this pairing to P1. Given
this pairing, let S(π) = {i|i < π(i)}. That is, S(π) contains the

⌊
4
3κ
⌋

elements which have the smallest
index of all pairs in π.

5. Now, for all the
⌊
4
3κ
⌋

indices, i ∈ S(π), do the following:
– P2 announces di = yi ⊕ yπ(i).
– P1 and P2 computes

|zi〉 = |yi〉 ⊕ |yπ(i)〉 ⊕ di = (zi, Zi) .

– Notice that P1 can simply compute this as:

|zi〉 =
(
yi ⊕ yπ(i) ⊕ di, Y ′

0
i ⊕ Y ′

0
π(i) ⊕ (di · ΓB)

)
= (zi, Zi) .

– P1 and P2 concatenate their bitstrings Zi for all i ∈ S(π). Call P1’s concatenation Z1 and P2’s
concatenation Z2. The parties then check equality of these strings using the following subprotocol:
• P1 chooses a random string r ∈R {0, 1}κ, computes c = H(Z1‖r) and sends c to P2.
• P2 sends Z2 to P1.
• P1 check that Z1 = Z2 and if so sends Z1 and r to P2, otherwise it aborts.
• P2 checks that H(Z1‖r) = c and that Z1 = Z2, if not, it aborts.
• If no party aborts then Z1 = Z2.

6. P1 then defines xj be the j’th bit of ΓB and Mj to be the string consisting of the j’th bits from all the

strings Y ′
0
i , i.e. Mj = Y ′

0
j [1] ‖ Y ′0j [2] ‖ ... ‖

(
Y ′

0
j

[⌊
4
3κ
⌋])

. So, because of the use of the pseudo random

number generator we get ψ bits, xj , and ψ bitstrings, Mj .

20

7. P2 then lets ΓA be the string consisting of all the bits, yi, i.e. ΓA = y1 ‖ y2 ‖ ... ‖ yb 4
3κc and lets Kj be the

string consisting of the j’th bits from all the strings Y ′
0
i ⊕ (yi ·ΓB), i.e. Kj = (Y ′

0
1⊕ (y1 ·ΓB))[j] ‖ (Y ′

0
2⊕

(y2 · ΓB))[j] ‖ ... ‖
(
Y ′

0

b 4
3κc ⊕

(
yb 4

3κc · ΓB
))

[j].

8. P1 now uses the hash function:
Yj = H(Mj)

on each of her ψ bitstrings. Thus, he ends up having ψ strings of κ bits,
(Y1, ..., Yψ) along with ΓB .

9. P2 also uses the hash function:

Xi,0 = H(Ki) , Xi,1 = H(Ki ⊕ ΓA),

twice on each of her ψ bitstrings, and ends up with ψ pairs of bitstrings,
((X0

1 , X
1
1) ..., (X0

ψ, X
1
ψ)).

Now it will be the case for i = 1, ..., ψ that if xi = 0 then Yi = X0
i and if xi = 1 then Yi = X1

i , i.e. a
random OT.

21

