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Abstract. Akleylek et al. [S. Akleylek, L. Emmungil and U. Nuriyev,
Algorithm for peer-to-peer security, journal of Appl. Comput. Math., Vol.
6(2), pp.258-264, 2007.], introduced a modified algorithm with stegano-
graphic approach for security in peer-to-peer (P2P) network. In this
cryptosystem, Akleylek et al. attempt to increase the security of P2P
network by connecting the ElGamal cryptosystem with knapsack problem.
We show that this combination leak the security and makes the hybrid
cryptosystem vulnerable to ciphertext only attack. Thus, in the network,
an attacker can apply this attack and simply can recover the original
message (plaintext) from any challenge ciphertext. Moreover, we show
that the receiver cannot decrypt the ciphertext in polynomial time and
so, the proposed cryptosystem is completely impractical. We modify this
cryptosystem to increase security and efficiency.

1 Introduction

The use of computer network is increased day by day. This increment causes the
number of nodes to increase. By increasing the client, the server becomes busy
and insufficient although the bandwidths are high enough. Moreover, since the
variety of requests is increased, servers may not have data the user needs. We
can overcome these obstacles by using peer-to-peer (P2P) network. The P2P
network did not have centralized server, some powerful nodes act as servers. In
the fourth generation, streams over P2P network are supported. So each node
can talk with another. The most important problem in the P2P network is
management and security. There are several ways to make P2P networks secure.
Cryptography has the most important role in each way. Cryptography is the art
of keeping the data secure from eavesdropping and other malicious activities.
Therefore, cryptographic algorithms are very useful in P2P systems since they
can simultaneously protect message for an individual, and verify its integrity.



Akleylek et al. [1], introduced a modified algorithm with steganographic approach
for security in P2P networks. In this cryptosystem, Akleylek et al. attempt to
increase the security of P2P system by connecting the ElGamal cryptosystem [2]
with the knapsack problem. The knapsack problem is a decision problem, which
is NP-complete [3,5,6]. That is to say, this problem cannot be easily solved even
using quantum computers. They use the ElGamal scheme to disguise private
knapsack (easy knapsack) in order to produce public-key (hard knapsack). But
as we show, this combination leaks the security and makes the cryptosystem
vulnerable to ciphertext only attack. Hence, in the network an attacker can apply
this attack and simply can recover plaintext from any ”challenge ciphertext”. In
addition, we show that this cryptosystem is impractical. We try to modify it for
increasing security and efficiency.

The rest of this paper is organized as follows: In the next section we give some
mathematical background. Akleylek et al. cryptosystem will be presented in
Section 3. Cryptanalysis of this cryptosystem will be discussed in Section 4 and
in Section 5, we modify this cryptosystem to achieve the desired security and
efficiency. Some conclusion is given in Section 6.

2 Preliminaries

In this section, we give some mathematical background and definitions which are
needed to demonstrate our attack.

2.1 Mathematical background

Definition 1 (Subset sum problem1). Given a set of positive integers
(a1, . . . , an) and a positive integer s. Whether there is a subset of the ai’s such
that their sum equal to s. That is equivalent to determine whether there are
variables (x1, . . . , xn) such that

s =

n∑
i=1

aixi, xi ∈ {0, 1}, 1 ≤ i ≤ n.

The subset sum problem is a decision problem, which is NP-complete. The
computational version of the subset sum problem is NP-hard [5]

Definition 2 (super-increasing sequence). The sequence (a1, . . . , an) of pos-

itive integers is a super-increasing sequence, if ai >
∑i−1

j=1 aj for all i ≥ 2.

1 Additive knapsack problem



There is an efficient greedy algorithm to solve the subset sum problem if the ai’s
are a super-increasing sequence: Just subtract the largest possible value from s
and repeat. The following algorithm efficiently solves the subset sum problem for
super-increasing sequences in the polynomial time.

Algorithm 1[5] Solving a super-increasing subset sum problem.

Input: Super-increasing sequence (a1, . . . , an) and an integer s
which is the sum of a subset of the ai.
Output: (x1, . . . , xn) where xi ∈ {0, 1}, such that s =

∑n
i=1 aixi.

1. i← n

2. While i ≥ 1 do the following:

(a) If s ≥ ai, then xi ← 1 and s← s− ai. Otherwise xi ← 0.

(b) i← i− 1.

3. Return (x1, x2, . . . , xn).

Definition 3 (Subset product problem2). A set of positive integers (a1, . . . , an)
and a positive integer d are given. Whether there exist a subset of the ai’s such
that their product equals to d. That is equivalent determine whether there are
variables (x1, . . . , xn) such that

d =

n∏
i=1

axi
i , xi ∈ {0, 1}, 1 ≤ i ≤ n.

The Subset product problem is a decision problem, which is NP-complete [5].
As observed in [4,6], if the ai’s are small primes and much smaller than d, this
problem can be solved in polynomial time by factoring d. Their result can be
summarized in the following lemma.

Lemma 1. If (a1, . . . , an) are small primes, then we can solve the subset product
problem in polynomial time.

Proof. Since the ai’s are small primes and xi ∈ {0, 1}, so we have

xi =

{
1 if gcd(d, ai) = ai
0 if gcd(d, ai) = 1

, 1 ≤ i ≤ n

Hence

xi =

{
1 if ai | d
0 if ai - d

, 1 ≤ i ≤ n

where gcd means the greatest common divisor. Note that d is the product of
distinct primes ai, 1 ≤ i ≤ n.

2 Multiplicative knapsack problem



Definition 4 (Discrete logarithm problem (DLP)). Given a prime p, a generator
α of Z∗p , and an element β ∈ Z∗p. Find integer x, 0 ≤ x ≤ p− 2, such that

αx = β mod p.

is called the discrete logarithm problem.

2.2 The ElGamal cryptosystem

The ElGamal cryptosystem is a public key cryptosystem based on the discrete
logarithm problem in (Z∗p, .). Let p be a large prime such that the DLP in (Z∗p , .)
is infeasible, and let g ∈ Z∗p be a primitive element. Each user selects a random
integer a, 1 ≤ a ≤ p− 2, and compute β = ga mod p. {p, α, β} is public key and
a is private key.

Suppose that we wish to send a message x to receiver. First, we select a random
integer k such that 1 ≤ k ≤ p−2. Then we compute c1 = αk mod p and c2 = x.βk

mod p . We send ciphertext (c1, c2) to the receiver. The encryption operation in
the ElGamal cryptosystem is randomize, since the ciphertext depends on both
the plaintext x and on the random value k chosen by user. To recover plaintext
x from ciphertext c, receiver uses the private-key a and compute x = c2(ca1)−1

mod p.

2.3 Ciphertext-only attack

A ciphertext-only attack is a scenario by which the adversary (or cryptanalyst)
tries to deduce the decryption key by only observing the ciphertexts or decrypt
a challenge ciphertext.

Attacker knowledge: some y1 = Enc(x1, pk), y2 = Enc(x2, pk), . . . .

Attacker goal: obtain x1, x2, . . . or the secret-key sk.

Any encryption scheme vulnerable to this type of attacks is considered to be
completely insecure.

3 Akleylek et al. Cryptosystem

In this section, we present Akleylek et al. cryptosystem. The authors intend to
increase security of the proposed scheme by connecting the ElGamal cryptosystem
with the knapsack problem.



3.1 Key generation

(a) Each user chooses a super-increasing sequence, (a1, . . . , an), such that ai >∑j−1
i=1 ai, 2 ≤ j ≤ n, and all ai’s are integer.

(b) The keys of ElGamal cryptosystem {β, g, p, a} are calculated.

(c) For calculating public knapsack pk = (b1, . . . , bn), randomly select an integer
k, 1 ≤ k ≤ p− 1 and use the following operations:

β = ga mod p, si = gk mod p, ui = βk.ai mod p, and
bi = (si, ui), for 1 ≤ i ≤ n.

Finally, the public-key pk = ((s1, u1), . . . , (sn, un)) and the private-key sk =
{β, g, p, a, (a1, . . . , an)} is obtained.

Remark 1. Note that Component si = gk mod p of the public-key pk is constant
respect to i, 1 ≤ i ≤ n.

3.2 Encryption

To encrypt n-bit binary message x = (x1, . . . , xn), we compute

c = (c1, c2) =

n∏
i=1

(si, ui)
xi . (1)

We send ciphertext c to the receiver.

3.3 Decryption

To decrypt the ciphertext c, the receiver firstly calculates

d = c2.(c
−1
1 )a mod p =

∏n
i=1(ui)

xi∏n
i=1(sai )xi

mod p =

n∏
i=1

axi
i mod p. (2)

Note that ui = βk.ai mod p = gka.ai mod p = (sai ).ai mod p.

After calculating d, we must obtain plaintext x = (x1, . . . , xn) from d =
ax1
1 .a

x2
2 . . . . .a

xn
n .

3.4 A note about Akleylek et al. cryptosystem

From equation 2, we have d =
∏n

i=1 a
xi
i where a1, . . . , an is a super-increasing

sequence. From Lemma 1, when ai’s are small primes, we can calculate xi’s from
d, otherwise, the problem remains NP-complete and we cannot solve this prob-
lem. Here, since ai’s are super-increasing sequence, we cannot obtain x1, . . . , xn
from equation 2, in practice and so, Akleylek et al. cryptosystem is completely
impractical.



4 Cryptanalysis of Akleylek et al. cryptosystem

In this section, we show that Akleylek et al.’s cryptosystem is vulnerable to
ciphertext-only attack. In other words, we can obtain plaintext from any challenge
ciphertext.

Suppose c = (c1, c2) be any challenge ciphertext which encrypted with Akleylek
et al.’s cryptosystem and we intend to find the corresponding plaintext. From
equation 1, we have c = (c1, c2) =

∏n
i=1(si, ui)

xi = (s1, u1)x1 . . . (sn, un)xn . The
component si = gk mod p of the public-key is constant for each i and we can
assume si = t, 1 ≤ i ≤ n. We have

c1 =

n∏
i=1

sxi
i = t

∑n
i=1 xi = th, (3)

where h =
∑n

i=1 xi is the Hamming weight (the number of xi = 1) of the binary
message x = (x1, . . . , xn). From equation 3, we can compute Hamming weight
h of plaintext x1, . . . , xn and so, we know the number of the xi’s where xi = 1.
From equation 1, we have c2 =

∏n
i=1 u

xi
i and so, we know the number of ui’s

where product of them equals to c2, but we do not know which of them. For
obtaining these ui’s, we need to find a h-tuple subset of u1, . . . , un from public-key
((∗, u1), . . . , (∗, un)) such that product of them equal to c2. We denote this subset
by S. We can choose h elements of u1, . . . , un in

(
n
h

)
ways. So, we need at most(

n
h

)
bit operations to find such subsets. After obtaining these ui’s, we can obtain

original plaintext from the following equation

xi =

{
1 if ui ∈ S
0 if ui /∈ S

1 ≤ i ≤ n.

We have (
n

h

)
=
n(n− 1) . . . (n− h+ 1)

h(h− 1) . . . 1
<
nh

h!
< nh.

Hence, the complexity of attack is O(nh) and polynomial time.

5 Modified cryptosystem

This cryptosystem is based on multiplicative knapsack problem. The ciphertext
is obtained by multiplying the public-keys indexed by the message bits and the
plaintext is recovered by factoring the ciphertext raised to a secret power.

(1) Key generation [7] Each user

(a) Choose large prime p such that discrete logarithm problem in (Z∗p, .) is
infeasible.



(b) Determine the largest integer n such that p >
∏n

i=1 pi, where pi is the
i-th prime (start from p1 = 2).

(c) Randomly choose integer a, k such that 1 < a, k < p− 1 and compute

β = ga mod p,

si = gk mod p,

ui = βk.pi mod p,

and bi = (si, ui) for 1 ≤ i ≤ n. {n, p, (b1, . . . , bn)} is the public-key and
{β, g, a, k} is the private-key.

(2) Encryption To encrypt n-bit binary plaintext x = (x1, . . . , xn), we com-
pute:

c = (c1, c2) =

n∏
i=1

(si, ui)
xi mod p (4)

and send ciphertext c to the receiver.

(3) Decryption To recover plaintext x from ciphertext c, the receiver should
do the following:

(a) Compute

d = c2.(c
−1
1 )a mod p =

∏n
i=1(ui)

xi∏n
i=1(sai )xi

mod p =

n∏
i=1

pxi
i mod p.

(b) Since p >
∏n

i=1 pi and xi ∈ {0, 1} hence
∏n

i=1 p
xi
i mod p =

∏n
i=1 p

xi
i

and so we have

d =

n∏
i=1

pxi
i .

Since xi ∈ {0, 1}, then d is the product of some distinct primes pi. By
Lemma 1, we conclude that

xi =

{
1 if pi | d
0 if pi - d.

1 ≤ i ≤ n

Security analysis
In the modified cryptosystem, we have

c1 =

n∏
i=1

sxi
i mod p = t

∑n
i=1 xi mod p = th mod p,

where h =
∑n

i=1 xi and t = si = gk mod p are integers. Since discrete logarithm
problem is intractable, so, we cannot determine Hamming weight h from c1 = th



mod p and thus, the proposed attack is not feasible in this case.
Birthday Attack[7]
If the prime p is chosen too small, then from inequality p >

∏n
i=0 pi, it follows that

n is small. Hence p must be sufficiently large (we recommend at least n ≥ 1180)
to prevent birthday-search through two lists A and B of 2n/2 elements to find a
couple of sets such that:∏

i∈A
ui = (

∏
i∈B

ui)
−1.c2 mod p.

6 Conclusion

In this paper, we considered a hybrid public key cryptosystem. This cryptosystem
uses the ElGamal cryptosystem in the key generation stage for disguising the
secure knapsack (private-key) in order to produce the public knapsack (public-
key), and subset product (multiplicative knapsack) problem for encryption and
decryption. We show that this combination leaks the security and makes the cryp-
tosystem vulnerable to ciphertext-only attack. To avoid this attack, we compute
the ciphertext modulo a large prime p. Moreover, we showed that the proposed
cryptosystem is impractical. We modified this cryptosystem for increasing security
and efficiency. In this case, if one wishes to break the cryptosystem, he/she must
computes discrete logarithm problem which is infeasible.
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