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Abstract. Akleylek et al. [S. Akleylek, L. Emmungil and U. Nuriyev, A mod-

ified algorithm for peer-to-peer security, journal of Appl. Comput. Math., vol.
6(2), pp.258-264, 2007.], introduced a modified public-key encryption scheme
with steganographic approach for security in peer-to-peer (P2P) networks. In
this cryptosystem, Akleylek et al. attempt to increase security of the P2P

networks by mixing ElGamal cryptosystem with knapsack problem. In this
paper, we present a ciphertext-only attack against their system to recover
message. In addition, we show that for their scheme completeness property
is not holds, and therefore, the receiver cannot uniquely decrypts messages.

Furthermore, we also show that this system is not chosen-ciphertext secure,
thus the proposed scheme is vulnerable to man-in-the-middle-attack, one of
the most pernicious attacks against P2P networks. Therefore, this scheme is
not suitable to implement in the P2P networks.

We modify this cryptosystem in order to increase its security and efficiency.
Our construction is the efficient CCA2-secure variant of the Akleylek et al.’s
encryption scheme in the standard model, the de facto security notion for
public-key encryption schemes.

1. Introduction

The use of computer network is raised day by day. This increment causes the num-
ber of nodes to increase. By increasing the client, the server becomes busy and
insufficient although the bandwidths are high enough. Moreover, since the variety
of requests is increased, servers may not have data the user needs. We can over-
come these obstacles by using peer-to-peer (P2P) network. The P2P networks have
become popular as a new paradigm for information exchange and are being used
in many applications such as file sharing, distributed computing, video conference,
VoIP, radio and TV broadcasting. The P2P networks did not have centralized
servers; some powerful nodes act as server. The fourth generation supports streams
over P2P networks and each node can talk with another. In these networks, since
server has been decentralized and each node can directly communicate with other
nodes, management and security become a most important problem. There are
several ways to make P2P networks secure. Cryptography plays the most impor-
tant role in each way. Cryptography is the art of keeping the data secure from
eavesdropping and other malicious activities. Therefore, cryptographic algorithms
are very essential in the P2P systems since they can uniquely protect message for
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an individual, and verify its integrity.
Due to peer-relying nature of the P2P networks, they are susceptible to many gen-
eral attacks. Man-in-the-middle attack is one the most pernicious attacks against
P2P networks. The man-in-the-middle attack is an indirect intrusion, where the
attacker inserts its node undetected between two nodes. It is typically used for
eavesdropping a public-key encrypted conversation to retrieve, modify or cut the
information being sent by adopting some strategies and tricks. Therefore, the
public-key encryption (PKE) scheme must resist against this type of powerful at-
tack. Security against adaptive chosen-ciphertext attack (i.e., CCA2 security) [17]
is the strong security notion for a PKE scheme. This notion is known to suffice for
many applications of encryption in the presence of active attackers — a man-in-
the-middle adversary — including: secure P2P transmission, secure communication,
auctions, voting schemes, and many others. In this scenario, the adversary has seen
challenge ciphertext before having access to the decryption oracle. The adversary
is not allowed to ask the decryption of the challenge ciphertext, but can obtain
the decryption of any relevant ciphertext even modified ones based on the challenge
ciphertext. A cryptosystem is CCA2-secure if the cryptanalyst fails to obtain any
partial information about the plaintext relevant to the challenge ciphertext. The
most cryptographic protocols cannot prevent chosen-ciphertext attacks mounted by
a man-in-the-middle adversary who has full control of the communication channel
between the sender and the receiver. Indeed, design efficient CCA2-secure encryp-
tion scheme is a challenging problem in cryptography.

In [2], Akleylek et al. introduced a modified algorithm with steganographic ap-
proach for security in the P2P networks. In this cryptosystem, Akleylek et al. at-
tempt to increase security of the P2P system by mixing ElGamal cryptosystem [8]
with knapsack problem. The knapsack problem is a decision problem which is NP-
complete [11, 12, 13]. That is to say, this problem cannot be easily solved even
using quantum computers. They use the ElGamal encryption scheme to disguise
private knapsack (easy knapsack) in order to produce public key (hard knapsack).
In this paper, we show that this combination leaks the security and makes the cryp-
tosystem vulnerable to ciphertext-only attack. Any encryption scheme vulnerable
to this type of attacks is considered to be completely insecure. In addition, we show
that in most cases completeness property does not holds for their system. There-
fore, the receiver cannot uniquely decrypts ciphertexts. Besides, their construction
is deterministic and so each message has one primage. Therefore, an attacker can
simply distinguish between decryptions of the two different messages. Hereupon,
this encryption scheme does not satisfies indistinguishability (a.k.a semantic se-
curity) against chosen ciphertext attack1. Hence, in the network an attacker can
apply these attacks and simply can recover plaintext from any challenge ciphertext.
Thereupon, this scheme is not suitable for using in a P2P network. We propose
a modification to this scheme in order to increase security, efficiency and usability
for using in the P2P networks. Our construction is a CCA2-secure PKE scheme
in the standard model, the de facto security notion for PKE schemes. The main
novelty is that scheme’s consistency check can be directly implemented by the sys-
tem without having access to some external gap-oracle as in [3, 4] or using other
extrinsic rejection techniques [6].

1Randomized encryption algorithm is a necessary condition for CCA2 security. Although
randomness is necessary, it is not sufficient (see subsection 2.4).
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1.1. Related works. In 1998, Cai and Cusick [5] proposed an efficient lattice-
based public-key cryptosystem with much less data expansion by mixing the Ajtai-
Dwork cryptosystem [1] with an additive knapsack. Recently, their cryptosystem
was broken by Pan and Deng [16]. They presented an iterative method to recover
the message encrypted by the Cai-Cusick cryptosystem under a ciphertext-only
scenario. They also present two chosen-ciphertext attacks to get a similar private
key which acts as the real private key. In another work, with several known attacks
in mind, very recently Pan et al. [15] introduced a new lattice-based PKE scheme
mixed with additive knapsack problem which has reasonable key size and quick
encryption and decryption. Unfortunately, their scheme was broken by Xu et al.
[19]. They proposed two feasible attacks on the cryptosystem of Pan et al.; the first
one is a broadcast attack assuming a single encrypted message directed towards
for several recipients with different public keys, the message can be recovered by
solving a system of nonlinear equations via linearization technique. The second one
is a multiple transmission attack in which a single message is encrypted under the
same public key for several times using different random vectors. In this situation,
the message can be easier to recover. Very recently, Rasatghi [18] introduced an
efficient PKE scheme which is robust against man-in-the-middle adversaries for the
P2P networks. His scheme uses RSA cryptosystem in combination of the additive
knapsack problem. Since RSA encryption scheme is deterministic and therefore
does not satisfies CCA2 security requirements, the encryption algorithm uses a
new padding scheme for encoding input messages in order to secure mixed scheme
against chosen-ciphertext attack.

Organization. The rest of this paper is organized as follows: In the next sec-
tion, we give some mathematical background and definitions. Akleylek et al.’s
cryptosystem will be presented in section 3. Section 4 presents our cryptanaly-
sis and in section 5, we modify this cryptosystem to achieve desired security i.e.,
CCA2-security and efficiency. Some conclusion is given in section 6.

2. Preliminaries

2.1. Notation. We will use standard notation. If x is a string, then |x| denotes
its length. If k ∈ N, then {0, 1}k denote the set of k -bit strings, 1k denote a string
of k ones and {0, 1}∗ denote the set of bit strings of finite length. y ← x denotes
the assignment to y of the value x. For a set S, s ← S denote the assignment to
s of a uniformly random element of S. For a deterministic algorithm A, we write
x← AO(y, z) to mean that x is assigned the output of running A on inputs y and
z, with access to oracle O. We denote by Pr[E] the probability that the event E
occurs.

2.2. Mathematical background.

Definition 2.1 (Subset sum problem 2). Given a set of positive integers (a1, . . . , an)
and a positive integer s. Whether there is a subset of the ais such that their sums

2Additive knapsack problem.
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equal to s. That is equivalent to determine whether there are variables (x1, . . . , xn)
such that

s =
n∑

i=1

aixi, xi ∈ {0, 1}, 1 ≤ i ≤ n.

The subset sum (0− 1 knapsack) is a decision problem which is NP-complete. The
computational version of the subset sum problem is NP-hard [13]

Definition 2.2 (Super-increasing sequence). The sequence (a1, . . . , an) of pos-

itive integers is a super increasing sequence if ai >
∑i−1

j=1 aj for all i ≥ 2.

There is an efficient greedy algorithm to solve the subset sum problem if the bis
are a super-increasing sequence: Just subtract the largest possible value from s
and repeat. The following algorithm efficiently solves the subset sum problem for
super-increasing sequences in the polynomial time.

Algorithm 1 Solving a super-increasing subset sum problem.

Input: Super-increasing sequence (a1, . . . , an) and an in-
teger s which is the sum of a subset of the ai.
Output: (x1, . . . , xn) where xi ∈ {0, 1}, such that s =∑n

i=1 aixi.

(1) i← n

(2) While i ≥ 1 do the following:

(a) If s ≥ ai, then xi ← 1 and s← s− ai. Other-
wise xi ← 0.

(b) i← i− 1.

(3) Return (x1, . . . , xn).

Definition 2.3 (Subset product problem3). A set of positive integers (a1, . . . , an)
and a positive integer d are given. Whether there is a subset of the ai’s such that
their product equals to d. That is equivalent to determine whether there are vari-
ables (x1, . . . , xn) such that

d =

n∏
i=1

axi
i , xi ∈ {0, 1}, 1 ≤ i ≤ n.

The multiplicative knapsack (subset product) problem is a decision problem which
is NP-complete [11, 12]. As observed in [10, 11, 12, 14], if the ais are relatively
prime, then this problem can be solved in polynomial time by factoring d. Their
result can be summarized in the following lemma.

Lemma 2.4. If (a1, a2, . . . , an) are relatively prime, then we can solve subset prod-
uct problem in the polynomial time.

3Multiplicative knapsack problem.
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Proof. Since the ais are relatively prime and xi ∈ {0, 1}, so we have

xi =

{
1 if gcd(d, ai) = ai
0 if gcd(d, ai) = 1

, 1 ≤ i ≤ n

Hence,

xi =

{
1 if ai | d
0 if ai - d

, 1 ≤ i ≤ n

where gcd means the greatest common divisor. �

Definition 2.5 (Discrete logarithm problem (DLP)). Given a prime p, a
generator g of Z∗

p , and an element y ∈ Z∗
p. Find integer x, 0 ≤ x ≤ p− 2, such that

gx = y mod p.

is called the discrete logarithm problem.

Fact 2.6. Suppose that g is a generator of Z∗
p. Then b = gi mod p is also a

generator of Z∗
p if and only if gcd(i, p− 1)) = 1.

Definition 2.7. A safe prime p is a prime of the form p = 2q + 1 where q is also
prime.

2.3. Definitions.

Definition 2.8 (Public-key encryption scheme). A PKE scheme is a triple of
probabilistic polynomial time (PPT) algorithms (Gen,Enc,Dec) such that:

• Gen is a probabilistic polynomial-time key generation algorithm which takes
a security parameter 1n as input and outputs a public key pk and a secret
key sk. We write (pk, sk)← Gen(1n). The public key specifies the message
spaceM and the ciphertext space C.

• Enc is a (possibly) probabilistic polynomial-time encryption algorithm which
takes as input a public key pk, a m ∈M and random coins r, and outputs
a ciphertext C ∈ C. We write C ← Enc(pk,m; r) to indicate explicitly that
the random coins r is used and C ← Enc(pk,m) if fresh random coins are
used.

• Dec is a deterministic polynomial-time decryption algorithm which takes as
input a secret-key sk and a ciphertext C ∈ C, and outputs either a message
m ∈M or an error symbol ⊥. We write m← Dec(C, sk).

• Completeness. For any pair of public and secret keys generated by Gen
and any message m ∈ M it holds that Dec(sk, Enc(pk,m; r)) = m with
overwhelming probability over the randomness used by Gen and the random
coins r used by Enc.

Definition 2.9 (Ciphertext-only attack). A ciphertext-only attack is a scenario
by which the adversary (or cryptanalyst) tries to deduce the decryption key by only
observing the ciphertexts or decrypt a challenge ciphertext.

Attacker knowledge: some y1 = Enc(x1, pk), y2 = Enc(x2, pk), . . . .

Attacker goal: obtain x1, x2, . . . or the secret-key sk.
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Any encryption scheme vulnerable to this type of attacks is considered to be com-
pletely insecure.

Definition 2.10 (CCA2-security). A PKE scheme is secure against adaptive
chosen-ciphertext attacks (i.e. IND-CCA2) if the advantage of any two-stage PPT
adversary A = (A1, A2) in the following experiment is negligible in the security
parameter k:

Expcca2
PKE,A(k) :

(pk, sk)← Gen(1k)

(m0,m1, state)← ADec(sk,·)
1 (pk) s.t. |m0| = |m1|

b← {0, 1}
C∗ ← Enc(pk,mb)

b′ ← ADec(sk,·)
2 (C∗, state)

if b = b
′
return 1, else return 0.

The attacker may query a decryption oracle with a ciphertext C at any point during
its execution, with the exception that A2 is not allowed to query Dec(sk, ·) with

challenge ciphertext C∗. The decryption oracle returns b′ ← ADec(sk,·)
2 (C∗, state).

The attacker wins the game if b = b′ and the probability of this event is defined as
Pr[Exp cca2

PKE,A (k)]. We define the advantage of A in the experiment as

Advcca2PKE,A (k) =

∣∣∣∣Pr[Exp cca2
PKE,A (k) = 1]− 1

2

∣∣∣∣ .
2.4. ElGamal Cryptosystem. The ElGamal cryptosystem [8] is a PKE scheme
based on discrete logarithm problem (DLP) in (Z∗

p, ·). Let p ba a large prime such
that the DLP is infeasible in (Z∗

p , ·), and let g ∈ Z∗
p be a primitive element. Each

user selects a random integer x, 1 ≤ x ≤ p − 2, and computes y = gx mod p.
(p, g, y) is the public key and x is the secret key.
For encrypts a message, the sender randomly chooses integer r, 1 ≤ r ≤ p − 2
and computes C1 = gr, C2 = myr and send C = (C1, C2) to the receiver. To
recover message m from ciphertext C, the receiver using private key x computes
m = C2(C

x
1 )

−1 mod p.

Altough the ElGamal scheme is randomized, but it not CCA2-secure. An at-
tacker can pick a random number r′ and generate the ciphertext C ′

1 = gr+r′ , C ′
2 =

myr+r′ = mgx(r+r′), as the values g and y are known from the public key. The
attacker can then query for the decryption of this modified ciphertext and receive
the message m as answer.

3. Akleylek et al. Cryptosystem

In this section, we present Akleylek et al. cryptosystem [2]. They wish to increase
security of proposed cryptosystem by mixing the ElGamal cryptosystem with mul-
tiplicative knapsack problem.

(1) Key generation
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(a) We choose a super-increasing sequence A = (a1, . . . , an), such that

ai >
∑j−1

i=1 ai, 2 ≤ j ≤ n, and all ai’s are integer.

(b) The keys of the ElGamal cryptosystem (y, g, p, x) are calculated, where
y = gx.

(c) For calculating public knapsack B = (b0, . . . , bn), randomly select an
integer k, 1 ≤ k ≤ p− 2 and compute:

y = gx mod p, si = gk mod p,

ui = yk.ai mod p, bi = (si, ui) for 1 ≤ i ≤ n.

Finally, B = (b1, . . . , bn) = ((s1, u1), . . . , (sn, un)) is the public key and
(y, g, p, x, (a1, . . . , an)) is the secret key.

(2) Encryption
To encrypt n bit binary message m = (m1, . . . ,mn), we compute

(3.1) C = (C1, C2) =
n∏

i=1

(si, ui)
mi ,

and send ciphertext C to the receiver.

(3) Decryption
To decrypt the ciphertext C, the receiver firstly calculates

(3.2) d = C2.(C
x
1 )

−1 mod p =

∏n
i=1 u

mi
i∏n

i=1(s
x
i )

mi
mod p =

n∏
i=1

ami
i mod p.

After calculating d, we must obtain plaintext m = (m1, . . . ,mn) from d =
am1
1 am2

2 . . . amn
n . Note that ui = yk.ai mod p = gxk.ai mod p = (si)

x.ai
mod p.

Remark 3.1. We stress that for the decryption algorithm works, we need to choose
prime p such that p ≥

∏n
i=1 ai, which does not remark on the Akleylek et al.’s

original paper. We illustrate this with an example in the next subsection.

3.1. On the Completeness of the Akleylek et al.’s Cryptosystem. The
Akleylek et al.’s cryptosystem has some ambiguity. Completeness property for a
PKE scheme (Definition 2.3) guarantees that for any message m ∈M it holds that
Dec(sk, Enc(pk,m)) = m. In the Akleylek et al.’s cryptosystem, after apply secret
key we have d = C2.(C

x
1 )

−1 mod p =
∏n

i=1 a
mi
i mod p 4, where ai, 1 ≤ i ≤ n

is a supper-increasing sequence. If the Hamming weight of the input message is
small, for small ais we can efficiently retrieve the input messages but for large
Hamming weight, d is the product of the large subset of the a1, . . . , an and therefore
it maybe impossible for the receiver to efficiently recovers mis from d. The main
drawback is that the small ais maybe the divisors of the larger ais and therefore
a ciphertext maybe does not decrypted uniquely and has several decryptions. A
moment’s reflection reveals that if we want any ciphertext decrypts uniquely, the
ais must be pairwise primes. Therefore, super-increasing assumption on the ais

4As we mentioned in Remark 3.1, we suppose that p ≥
∏n

i=1 ai and therefore d =
∏n

i=1 a
mi
i

mod p =
∏n

i=1 a
mi
i and we have no problem for decrypting the input messages. See Example 3.3

for more details.
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is not sufficient for completeness of the PKE scheme and their system does not
satisfies completeness property. We illustrate our claims with a small example.

Example 3.2. Suppose (a1, a2, a3, a4, a5) = (2, 3, 6, 12, 24) be a super-increasing
sequence. Let p = 2579 and g = 2, where g is a generator of Z∗

2579. If we randomly
choose k = 348 and x = 1500, then we have:

y = gx mod p = 21500 mod 2579 = 862,

si = gk mod p = 2348 mod 2579 = 104,

u1 = yk × a1 mod p = 862348 × 2 mod 2579 = 2165,

u2 = 1958, u3 = 1337, u4 = 95, u5 = 190.

Suppose (m1, . . . ,m5) = (0, 1, 0, 0, 1) be an input message. For encrypts message
m, we compute C1 = s2 × s5 = 1042 = 10816 and C2 = u2 × u5 = 1958 ×
190 = 372020. For decrypt ciphertext C = (10816, 372020), receiver computes d =
372020 × (108161500 mod 2579)−1 mod 2579 = 372020 × 2483 mod 2579 = 72.
Based on the super-increasing sequence (2, 3, 6, 12, 24), we have: 72 = 3︸︷︷︸

a2

× 24︸︷︷︸
a5

=

6︸︷︷︸
a3

× 12︸︷︷︸
a4

and therefor the input message (0, 1, 0, 0, 1) has two decryptions: itself

and (0, 0, 1, 1, 0). Therefor, completeness does not holds for the Akleylek et al.’s
encryption scheme.

As we mentioned in Remark 3.1, if p <
∏n

i=1 ai, then the decryption algorithm
does not works properly. In the previous example, since p > a2 × a5, we have no
problem for decryption of the input message.

Example 3.3. Now, consider input message m = (0, 1, 1, 1, 1). For encrypt mes-
sage m, one computes C1 = s2 × s3 × s4 × s5 = 1044 = 116985856 and C2 =
u2×u3×u4×u5 = 47252120300. For decrypt ciphertext (116985856, 27107795330),
receiver computes d = 27107795330 × (1169858561500 mod 2579)−1 mod 2579 =
47252120300 × 1479 mod 2579 = 26 ̸= 3︸︷︷︸

a2

× 6︸︷︷︸
a3

× 12︸︷︷︸
a4

× 24︸︷︷︸
a5

. It is because

p = 2579 < a2 × a3 × a4 × a5 = 5184.

Therefore in such cases, we cannot efficiently retrieve the input messages from the
corresponding ciphertexts.

4. Cryptanalysis of the Akleylek et al. Cryptosystem

In this section, we propose our ciphertext-only attack against Akleylek et al.’s
cryptosystem to recover message. We also show since encryption algorithm of the
system is deterministic, therefore cryptosystem is not chosen-ciphertext secure. As
we previously mentioned, randomness is the necessary property for CCA2 security,
but it is not sufficient.

4.1. Ciphertext-only attack. In this subsection, we show that the Akleylek et
al.’s cryptosystem is vulnerable to ciphertext-only attack. In other words, we can
obtain message from challenge ciphertext.
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Suppose C = (C1, C2) be any challenge ciphertext which encrypted with this cryp-
tosystem and we wish to find the corresponding message. From equation 3.1, we
have C = (C1, C2) =

∏n
i=1(si, ui)

mi = (s1, u1)
m1(s2, u2)

m2 . . . (sn, un)
mn . We note

that the components si = gk mod p of the public key are constant respect to i and
we have

(4.1) C1 =
n∏

i=1

smi
i = si

m1 × . . .× si
mn = si × . . .× si︸ ︷︷ ︸

h−times

= si
h,

where h =
∑n

i=1 mi is the Hamming weight (the number of mi = 1) of the input
message m = (m1, . . . ,mn). From equation 4.1, we can compute the Hamming
weight h of the message m = (m1, . . . ,mn), as the values si and C1 are known.
Thus, we know the number of the mis, where mi = 1. From equation 3.1, we have

C2 =
n∏

i=1

umi
i = u1

m1 × . . .× un
mn ,

and therefore from C2, we know the number of the uis where product of them equal
to C2, but we do not know which of them. For obtaining these uis, we need to find
a h-tuple subset of the (u1, . . . , un) from public key B = ((∗, u1), . . . , (∗, un)) such
that product of them equals to C2. We denote this subset by S. One can chooses
h elements of (u1, . . . , un) in

(
n
h

)
ways. Therefore, we need at most

(
n
h

)
operations

to find such subset. After obtaining these uis, we can obtain original message from
the following equation

mi =

{
1 if ui ∈ S
0 if ui /∈ S

, 1 ≤ i ≤ n.

PROBABILITY OF SUCCESS: For small n, we can efficiently compute
(
n
h

)
.

For sufficiently large fixed integer n, we provide an upper bound for
(
n
h

)
.

Lemma 4.1. Suppose that h = λn is an integer in the range [0, n]. Then(
n

λn

)
≤ 2nH(λ),

where H(λ) = −λ lg λ − (1 − λ) lg(1 − λ) is the binary entropy function and lg is
the binary logarithm.

Proof. The statement is trivial if λ = 0 or λ = 1, so assume that 0 < λ < 1. To
prove the upper bound, by the binomial theorem we have(

n

λn

)
λλn(1− λ)(1−λ)n ≤

n∑
k=0

(
n

k

)
λk(1− λ)(n−k) ≤ (λ+ (1− λ))n = 1.

Hence, (
n

λn

)
≤ λ−λn(1− λ)−(1−λ)n = 2−λn lg λ2−(1−λ)n lg(1−λ) = 2nH(λ).

�

We show that the number of binary strings of length n with Hamming weight
h = λn is bounded by 2nH(h/n). Thus, the running time of the proposed attack is
O(2nH(h/n)), and depends on the value of h. For small and large h i.e., for small
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and large λ, H(λ) is small and we can efficiently compute
(
n
h

)
for all n. Therefore, if

the Hamming weight of the input message is either small or large, we can efficiently
break the cryptosystem for all value of n. H(·) takes the maximum its value on
λ = 1/2, where H(1/2) = 1. Thus,

(
n
h

)
takes the maximum its value if h = n/2 and

the running time of the attack is O(2n). Therefore, if n chosen enough large and the
input message has Hamming weight close to n/2, then the proposed ciphertext-only
attack seem does not works. But on the other hand, as we stated in subsection 3.1,
for large n, h, completeness is not holds for the encryption scheme. From equation
3.2, we have d =

∏n
i=1 a

mi
i . From Lemma 2.4 and [10, 11, 12, 14], when the ais are

relatively prime, we can efficiently calculate mis from d. In the Akleylek et al.’s
cryptosystem, since the ais are super-increasing sequence and are not relatively
prime, so small ais are the divisors of the larger ais. Thus, as we showed in the
example 3.2, we cannot uniquely obtain m1, . . . ,mn from equation 3.2. Namely,
the problem remains NP-complete and we cannot solve it, especially when h, n is
large, i.e., d is the product of the large subset of the (a1, . . . , an).

As a result, for enough large n we have three cases:

(a) Input messages with small hamming weight. In theses cases, we can effi-
ciently compute

(
n
h

)
and therefore we can apply proposed ciphertext-only

attack in polynomial time.

(b) Input messages with medium hamming weight, i.e., h is close to n/2. In
theses cases,

(
n
h

)
takes the maximum its value and if n chosen enough large,

we cannot efficiently compute it. In such cases, the system has ambiguity
and completeness does not holds. Therefore, encryption scheme is not
usable.

(c) Input messages with large hamming weight. In theses cases, we can effi-
ciently compute

(
n
h

)
, however, such as previous case, completeness does not

holds.

4.2. Chosen ciphertext security. As we previously stated in the introduction
section, the Akleylek et al.’s PKE scheme is deterministic and therefore does not
satisfies CCA2 security conditions. Following definition 2.10, in the CCA2 security
experiment, the challenger runs the key generation algorithm and gives the public
key pk to the adversary. The adversary chooses two messages m0,m1 with |m0| =
|m1| and gives it to the challenger. The challenger chooses b ∈ {0, 1} at random and
encrypts mb, obtaining the challenge ciphertext C∗ = Encpk(mb) and gives it to the
adversary. Since the encryption algorithm is deterministic, thus each message has
one preimage. Therefore, CCA2 adversary simply can compute encryption of m0

with public key pk, namely C = Encpk(m0), and then compare it with the challenge
ciphertext. If they are equal then mb = m0, otherwise mb = m1.

We summarize the results in the following table.

Table 2. Security and Efficiency Analysis of the Akleylek et al.’s Cryptosystem
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Input Message Proposed Attack Efficiency Security
With small hamming weight Ciphertext-only attack — Not secure

With medium hamming weight Ciphertext-only attack ? 1 ≈ O(2n)
With large hamming weight Ciphertext-only attack — Not secure

Any input message CCA attack — Not secure

1. Completeness does not holds.

5. Modified Cryptosystem

In this section, we propose our modified encryption scheme based on the Akleylek
et al.’s construction.

• Key generation. On security parameter n, key generator algorithm Gen(1n):

(a) Randomly chooses n primes pi and safe prime p = 2q + 1 such that p >∏n
i=1 pi. It is clear that |p| ≫ n.

(b) Randomly chooses integers x, k such that 1 < x, k < p−2 and gcd(k, p−1) =
1. Computes

y = gx mod p,

si = gk mod p,

ui = yk.pi mod p,

and bi = (si, ui) for 1 ≤ i ≤ n. Outputs (n, p, (b1, . . . , bn)) as the public key and
(y, g, x, k, (p1, . . . , pn)) as the private key.

Remark 5.1. Note that since gcd(k, p− 1) = 1, from fact 2.6, si = gk mod p also
is a generator.

• Encryption. On inputs m ∈ Z∗
p, pk, encryption algorithm Enc:

(a) Uniformly chooses n-bit integer r = (r1, . . . , rn) ∈ {0, 1}n with r ̸= 0, 1 at
random and computes h =

∑n
i=1 ri.

(b) If r is even then r′ ← r + 1, else r′ ← r.

(c) Computes

(5.1) C1 = (C ′
1, C

′′
1 ) =

n∏
i=1

(si, ui)
ri mod p and C2 = (m+ h)r

′
mod p,

and outputs (C1, C2).

It is obviously clear that the modified scheme is chosen-plaintext secure. Each mes-
sage has 2n corresponding ciphertext, and therefore, the probability of distinguish
between two message is 2−n which is negligible.

• Decryption. In the decryption phase, firstly we recover randomness r′ was used
for encrypts message m from C1. Then r′ used to recover message m from C2.
It is clear that for correctly recover message m, we must recover exact the same
randomness r from C1. To recover message m from (C1, C2), decryption algorithm
Dec performs as follows:
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(a) Computes

d̂ = C ′′
1 .(C

′x
1 )−1 mod p =

∏n
i=1 u

r̂i
i∏n

i=1(s
x
i )

r̂i
mod p =

n∏
i=1

pr̂ii mod p.

(b) Since p >
∏n

i=1 pi and r̂i ∈ {0, 1}, hence
∏n

i=1 p
r̂i
i mod p =

∏n
i=1 p

r̂i
i and

so we have

d̂ =
n∏

i=1

pr̂ii .

Since r̂i ∈ {0, 1}, then d̂ is the product of some distinct primes pi. By
Lemma 2.4, we conclude that

r̂i =

{
1 if pi | d
0 if pi - d

, 1 ≤ i ≤ n.

(c) With retrieved randomness r̂ = (r̂1, . . . , r̂n) and secret key (y, k, (p1, . . . , pn)),

computes ĥ =
∑n

i=1 r̂i and checks wether

(5.2) C ′′
1

?
= ykĥ

n∏
i=1

pr̂ii mod p

holds (consistency checking) and rejects the ciphertext if not. If it holds

then r ← r̂ and h ← ĥ. Note that C ′′
1 =

∏n
i=1 u

ri
i mod p = ykh

∏n
i=1 p

ri
i

mod p.

(d) If r is even then r′ ← r + 1, else r′ ← r.

(e) Finds integer w, 1 ≤ w ≤ p− 2 such that w · r′ = 1 mod p− 1. 5

(f) Computes m̂ = ((C2)
w mod p)− h.

(g) Checks wether

(5.3) C2
?
= (m̂+ h)r

′
mod p

holds (consistency checking) and rejects the ciphertext if not. If it holds
then outputs m = m̂.

5.1. Security analysis.

5.1.1. Provable Security. The basic idea of provable security theory [9] is to
reduce the security of a PKE scheme under some attack model to a mathemati-
cally hard problem i.e., integer factorization, discrete logarithm problems and NP-
complete problem such as knapsack problem. Provable security has been widely
accepted as a standard method for analyzing the security of cryptosystems. Such
as original Akleylek et al.’s scheme and previous knapsack-based PKE schemes
[5, 12, 14, 15], we fail to obtain any security proof. In this subsection we nonethe-
less recall certain security-related facts for the clarity of this paper.

Proposition 5.2. If the discrete logarithm problem (DLP) can be computed very
efficiently, then the proposed system is not secure.

5Since |r′| = n ≤ |p|, thus r′ < p. r′ is odd and p− 1 = 2q is even and has two divisor (2, q),
therefore, gcd(r′, p− 1) = 1 and r′ has multiplicative inverse modulo p− 1.
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Proof. First note that even the DLP is computable, we cannot compute x, k from
si = gk mod p, y = gx mod p and ui = yk ·pi mod p, since (y, g, x, k, (p1, . . . , pn))
is secret.
In the modified cryptosystem, we have

C ′
1 =

n∏
i=1

srii mod p = s
∑n

i=1 ri
i mod p = shi mod p,

where h =
∑n

i=1 ri and si = gk mod p is a generator of Z∗
p. If the DLP is com-

putable, then we can determine Hamming weight h from C ′
1 = Sh

i mod p. Accord-
ing to the discussion in subsection 4.1, then the modified scheme is vulnerable to
ciphertext-only attack if n, h are small or h is large. In such cases, the adversary can
retrieve randomness r from C1 = (C ′

1, C
′′
1 ) and then recover m from C2 = (m+h)r

′

mod p. Even if the DLP is computable, then the proposed scheme is not completely
breaks. The ciphertext-only attack will works for small (n, h) and large h. It cannot
not break system for large n with medium Hamming weight. �

Proposition 5.3. If a certain special knapsack-type problem can be solved very
efficiently, then the proposed system is not secure.

Proof. Given p, u1, . . . , un and a ciphertext C1 = (C ′
1, C

′′
1 ), we want to find a subset

T of {1, . . . , n} such that

(5.4)
∏
i∈T

ui mod p = C ′′
1 .

Then we can immediately recover randomness r from C ′′
1 and then compute message

m from C2 = (m + h)r
′
mod p. Finding such a subset T is a kind of knapsack

problem. �

Note congruence 5.4 is a disguised version of the easy knapsack-type problem of
finding a subset T of {1, . . . , n} such that∏

i∈T

pi mod p = C ′′
1 .(C

′x
1 )−1 mod p,

which we solve by computing gcd((C ′′
1 .(C

′x
1 )−1 mod p), pi) for i = 1, 2, . . . .

Birthday Attack. If prime p is chosen too small, then from inequality p >∏n
i=0 pi, it follows that n is small. Hence p must be sufficiently large to prevent

birthday-search through two lists A and B of 2n/2 elements to find a couple of sets
such that: ∏

i∈A

ui = (
∏
i∈B

ui)
−1.C ′′

1 mod p.

Therefore n must be chosen such that the adversary’s running time is significantly
smaller than 2n/2 steps.

5.1.2. CCA2 Security. In this subsection, we show that the modified scheme
satisfies CCA2 security. As we showed in subsection 2.4, the ElGamal system is not
CCA2-secure. It is because values g, y are public. Unlike the ElGamal system, in
the modified system values (y, g, x, k, (p1, . . . , pn)) are secret and we cannot perform
any modification to the (C ′

1, C
′′
1 ) in order to retrieve randomness r. Even if we can
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perform any modifications to the challenge ciphertext, then the maliciously-formed
ciphertexts will be rejected in the scheme’s consistency checking step in (5.2). If
we can retrieve randomness r, then we can simply recover message m.

Theorem 5.4. If the mixed ElGamal-Knapsack encryption scheme is secure, then
the modified PKE scheme satisfies CCA2 security in the standard model.

Proof. In the proof of security, we exploit the fact that for a well-formed ciphertext,
we can recover the message if we know the randomness r that was used to create
the ciphertext.
In the CCA2 experiment (Definition 2.10), the challenger runs the key generation
algorithm and gives the public key pk to the adversary.
Challenge Ciphertext. The adversary chooses two messages m0,m1 with |m0| =
|m1| and gives it to the challenger. The challenger chooses b ∈ {0, 1} at random,
randomness r∗ and encrypts mb, obtaining the challenge ciphertext C∗ = (C∗

1 , C
∗
2 ),

where C∗
1 =

∏n
i=1(si, ui)

r∗i mod p and C∗
2 = (mb + h∗)r

′∗
mod p and gives it to

the adversary, where h∗ is the Hamming weight of the randomness r∗. We denote
by r∗ the corresponding intermediate quantity chosen by the challenger.

The challenger has to simulate the decryption oracle. The CCA2 adversary submits
a request C = (C1, C2) to the challenger, and it outputs decryption of the queried
ciphertext to the adversary. He attempts to guess the challenge bit b based on the
output of the challenger. In the CCA2 experiment, the adversary is not allowed
to ask the decryption of the challenge ciphertext, but can obtain the decryption of
any modified ones based on the challenge ciphertext.
To investigate CCA security experiment, we consider two potential cases chosen by
the adversary for querying from the challenger. We also show that any modifica-
tion to the challenge ciphertext does not reveal any useful information about the
challenge message mb.
Case 1: C1 = C∗

1 and C2 ̸= C∗
2 . In this case, the adversary chooses C2 at random

and queries on ciphertext (C∗
1 , C2). The challenger takes as input (C

∗
1 , C2) and com-

putes r = Decpk(C
∗
1 ) = r∗, h = h∗ and r′ = r′∗. It also computes m̂ = ((C2)

Inv(r′∗)

mod p)− h∗ ̸= ((C∗
2 )

Inv(r′∗) mod p)− h∗ = mb, where Inv(r′) = (r′)−1 mod p− 1

is the multiplicative inverse of r. Since C∗
2 = (mb + h∗)r

′∗
mod p ̸= (m̂ + h∗)r

′∗

mod p, thus the simulator rejects the ciphertext in (5.3). Therefore, the system
does not reveal any information about the challenge message mb, and so, advan-
tage of the adversary to guess the challenge bit b in this case is zero.
In this case, the adversary cannot perform any modification to C2 based on C∗

2 in
order to retrieve mb, since he does not know the internal random component r∗

was chosen by the challenger for encrypts mb.

Case 2: C1 ̸= C∗
1 and C2 = C∗

2 . In this case, the adversary chooses C1 at ran-
dom and queries on ciphertext (C1, C

∗
2 ). The challenger takes as input (C1, C

∗
2 )

and computes r = Decpk(C1). Since encryption algorithm of C1 is determin-
istic, therefore any randomness r has one preimage. Thus if C1 ̸= C∗

1 , then
r = Decpk(C1) ̸= Decpk(C

∗
1 ) = r∗. In the worst case, we assume r and r∗

have the same Hamming weight, namely h = h∗. So, we have m̂ = ((C∗
2 )

Inv(r′)

mod p) − h∗ ̸= ((C∗
2 )

Inv(r′∗) mod p) − h∗ = mb. Hence, the simulator rejects the
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ciphertext in (5.3), since C∗
2 = (mb + h∗)r

′∗
mod p ̸= (m̂ + h∗)r

′
mod p. There-

fore, the encryption scheme does not reveal any information about the challenge
message mb and so, advantage of the adversary to guess the challenge bit b in this
case is zero.
As shown in [7, 18], in the knapsack-based PKE schemes, CCA2 adversary cannot
efficiently produces legitimate ciphertext based on C∗

1 . As shown in [18], the prob-
ability of succeed adversary for retrieve r with one bit differ from r′∗ is 1/2n which
is smaller than 1/2 (note in general, the probability of guessing b is 1/2; b = 0
or b = 1). We stress that even if the adversary can computes r with probability
greater than 1/2, then since the retrieved randomness r is not equal to r∗ (differ

from one bit), therefore m̂ = ((C∗
2 )

Inv(r′) mod p) − h∗ is not equal to mb, where
we assume r and r∗ have the same Hamming weight. So, as we state above, the
simulator will rejects the ciphertext in (5.3). �

6. Conclusion

In this paper, we consider a knapsack-based PKE scheme mixed with the ElGamal
cryptosystem. This cryptosystem uses the ElGamal system in the key generation
stage to disguise the secure knapsack (super-increasing sequence) in order to pro-
duce the public knapsack. It uses subset product (multiplicative knapsack) problem
as encryption function which is NP-complete problem. We showed that this combi-
nation leaks the security and makes the cryptosystem vulnerable to ciphertext-only
attack. In addition, since encryption algorithm for the mentioned scheme is de-
terministic, therefore it does not satisfy CCA2 security requirements. Thus, the
resulting encryption scheme is also vulnerable to man-in-the-middle attack, and
therefore, the scheme is not suitable to implement in a P2P network. Besides, as
we showed, completeness property does not holds for the system in the general.
We modified this cryptosystem to improve its security and efficiency. The modified
scheme is CCA2-secure and the proposed ciphertext-only attack is not applicable.
Completeness holds for all cases and each ciphertext decrypts uniquely.
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