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Abstract

Applying cut-and-choose techniques to Yao’s garbled circuit protocol has been a promising approach
for designing efficient Two-Party Computation (2PC) with malicious and covert security, as is evident from
various optimizations and software implementations in the recent years. We revisit the security and ef-
ficiency properties of this popular approach and propose alternative constructions and definitions that are
more suitable for use in practice.

• We design an efficient fully-secure malicious 2PC protocol for two-output functions that only requires
O(t|C|) symmetric-key operations (with small constant factors) where |C| is the circuit size and t
is a statistical security parameter. This is essentially the optimal complexity for protocols based on
cut-and-choose, resolving a main question left open by the previous work on the subject.
Our protocol utilizes novel techniques for enforcing garbler’s input consistency and handling two-
output functions that are more efficient than all prior solutions.

• Motivated by the goal of eliminating the all-or-nothing nature of 2PC with covert security (that privacy
and correctness are fully compromised if the adversary is not caught in the challenge phase), we
propose a new security definition for 2PC that strengthens the guarantees provided by the standard
covert model, and offers a smoother security vs. efficiency tradeoff to protocol designers in choosing
the right deterrence factor. In our new notion, correctness is always guaranteed, privacy is fully
guaranteed with probability (1 − ε), and with probability ε (i.e. the event of undetected cheating),
privacy is only “partially compromised” with at most a single bit of information leaked, in case of an
abort.
We present two efficient 2PC constructions achieving our new notion. Both protocols are competitive
with the previous 2PC based on cut-and-choose. E.g., the price of strengthening a covert 2PC to
satisfy our notion (to obtain full correctness and maximum leakage of a single bit), is only 1

ε additional
garbled circuits.

A distinct feature of the techniques we use in all our constructions is to check consistency of inputs and
outputs using new gadgets that are themselves garbled circuits, and to verify validity of these gadgets using
multi-stage cut-and-choose openings. These techniques may be of an independent interest.
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1 Introduction

Informally, a secure two-party protocol for a known function f(·, ·) is a protocol between Alice and Bob with
private inputs x and y that satisfies the following two requirements: (1) Correctness: If at least one of the
players is honest then the result should be the correct output of f(x, y); (2) Privacy: No player learns any
information about the other player’s input, except for the function output.

Security is defined with respect to an adversary, who is semi-honest if the corrupted players always follow
the protocol, is malicious if the players can arbitrarily deviate, and is covert in case a cheating player has an
incentive not to be caught (or more specifically, any deviation can be detected with a constant probability).

A classical solution for the case of semi-honest players (i.e., players who do not deviate from the proto-
col) is to use a garbled circuit and oblivious transfer [Yao86, LP09]: The resulting protocol is fairly efficient,
since computing each gate requires a constant number of symmetric-key encryptions. Furthermore, recent
results show how to improve both the computation and communication cost of the garbling process (e.g., get-
ting XOR gates for free [KS08], reducing communication [GMS08, PSSW09], and designing tailored circuits
[HEKM11]).

The case of malicious players is more complicated and less efficient. A classical solution is to use zero-
knowledge proofs to verify that the players follow the protocol. However, the proofs in this case are rather
inefficient. [JS07, NO09] show how to garble a circuit in such a way that these proofs can be instantiated
more efficiently. Still, these constructions require a constant number of exponentiations per gate, making them
inefficient for large circuits. See Appendix A for other approaches we do not discuss here.

THE CUT-AND-CHOOSE APPROACH. A slightly more explored direction is based on the cut-and-choose
method. (E.g., see implementations by [PSSW09, SS11, KSS12].) Instead of sending only one (and possi-
bly not properly constructed) garbled circuit, Alice sends t garbled circuits. Then, Bob asks her to open a
constant fraction of them. For those circuits, Alice sends all the randomness she used in the garbling process.
Bob can check that the opened circuits were indeed correctly garbled. If that is not the case, Bob knows that
Alice has cheated and aborts. Otherwise, Bob evaluates the remaining garbled circuits and computes the major-
ity output. It is shown in [LP11, SS11] that with high probability the majority of the evaluated garbled circuits
are properly constructed.

However, the above cut-and-choose of the circuits is not sufficient to obtain a fully-secure 2PC. There are
three well-known issues to resolve: (1) Garbler’s input consistency: Since Bob evaluates many circuits, he
needs assurance that Alice uses the same input in all of them. (2) Evaluator’s input consistency: Alice can use
different input labels in the oblivious transfers and in creation of the garbled circuits, in such a way that reveals
Bob’s input. (E.g., she can use invalid labels for the input bit 0 in the oblivious transfer, but valid ones for 1,
causing Bob to abort if his input bit is 0.) (3) Two-output functions: There are cases in which the players want
to securely compute two different functions f1, f2 where each party only learns his own output and is assured
he has obtained the correct result.

When addressing these issues, the deciding efficiency factors are both the number and the type of additional
cryptographic operations required. By expensive operations, we refer to cryptographic primitives that require
exponentiations (e.g. oblivious transfer, or public-key encryption), and by inexpensive operations we mean the
use of primitives that do not require exponentiations (e.g. symmetric-key encryption, commitments, or hashing).
To simplify the exposition, from now on we omit small constants and complexities that are independent of the
computation size or input length, unless said otherwise.

To address the first issue, how to make sure Alice is using the same input in all circuits, [MF06, LP07]
present two methods that require O(n1 · t2) inexpensive cryptographic operations (commitments), where n1 is
the length of Alice’s input, and t is the number of circuits we use in the cut-and-choose. ([Woo07] shows how
to reduce this asymptotic overhead, but with large constants even for small security parameters.) [MF06, LP11,
SS11] show alternative methods that requireO(n1 ·t) expensive cryptographic operations (i.e. exponentiations).
These consistency-checking mechanisms can lead to significant overhead. Recall that garbling of a single gate
requires a constant number of symmetric encryptions, where the constant is 4 in most implementations. Thus,
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e.g. for t = 130, the price of checking consistency for a single input bit is roughly equivalent to the price
of garbling several tens of additional gates in each circuit in the first method, and even more in the second.
Moreover, the first method has a large communication overhead (e.g., for input size n1 = 500 and t = 130, it
requires several millions of commitments, with a total communication overhead of hundreds of megabytes).

To address the second issue, i.e. making sure Alice is using the same labels in her OT answers and the
garbled circuits, [LP07] presents a method that requiresO(max(4n2, 8t)·t) expensive cryptographic operations
(specifically, oblivious transfer), where n2 is the length of Bob’s input. [LP11, SS11] introduce alternative
methods that require O(n2 · t) expensive cryptographic operations.

To address the last issue, of verifying the computation output, [LP07] proposes to apply a one time MAC to
the output and XOR the result with a random input to hide the outcome (both are done as part of the circuit).
However, this solution increases Alice’s input with additional q1 + 2t input bits and increases the circuit size
by O(q1 · t) gates, where q1 is Alice’s output length (i.e. overall overhead of O(q1 · t2) inexpensive operations).
[SS11] suggests a solution that requires the use of digital signatures and a witness-indistinguishable proof,
resulting in a total overhead of O(q1 · t) expensive operations.

In the covert case, the techniques are similar, although usually the issue of garbler’s input consistency is not
relevant since there is only one circuit to evaluate [GMS08, AL10].

ALL-OR-NOTHING SECURITY VS. SECURITY WITH INPUT-DEPENDENT ABORT. All the cut-and-choose
protocols discussed above provide an all-or-nothing guarantee, which means that both correctness and privacy
are preserved with the same probability (the probability of getting caught in case of cheating), and are com-
pletely compromised if cheating is not detected. For example, in case of a protocol with covert security and
deterrence factor of 1/2, there is a 50% chance that the protocol reveals the honest party’s input and provides
him with an incorrect output. This can become an obstacle to using covert security, in some practical scenarios.
For example, the participants of an MPC protocol may not be able to afford the lack of correctness or privacy
(even if only with a constant probability), due to the high financial/legal cost, or the loss of reputation.

[MF06] suggests an alternative to the all-or-nothing approach and designs a secure two-party protocol that
always guarantees correctness but may leak one bit of information to a malicious party. While this security
guarantee is weaker than the standard definition of security against covert/malicious adversaries, it ensures
correctness and ”partial privacy” even in case of successful cheating, making it a reasonable relaxation in some
scenarios. More importantly, the resulting protocol is much more efficient than the best known protocols with
full security against malicious players. (See [HKE12] for an optimized variant of the protocol of [MF06] and
its performance.)

The idea behind the protocols of [MF06, HKE12] is as follows: Alice garbles a circuit gc1 and sends it to
Bob, along with the labels of Alice’s input-wires. They execute a fully-secure oblivious transfer protocol in
which Bob learns the labels for his input-wires. Then, they run the same steps in the other direction, where
Bob garbles gc2 and Alice is the receiver. Next, each player evaluates the garbled circuit he or she received,
resulting in output-wire label outi (we require that the output-wire labels are the actual outputs concatenated
with random labels). Last, each player computes the supposed to be concatenation out1 ◦ out2. (Alice gets
out1 from her evaluation, learns the actual output bit of the computation b, and since she knows the labels for
the output-wires of gc2, she can determine the value of out2 by herself. Bob does the same.) Now they run a
protocol for securely testing whether their values out1 ◦ out2 are the same. If they are indeed the same, they
output b. Otherwise, they abort.

The resulting protocol is highly efficient, with only two garbled circuit executions and the associated obliv-
ious transfers. Since one of the players is honest, the result from his garbled circuit will be correct. Thus, if the
honest party does not abort, the output is indeed correct. On the other hand, if one of the players is malicious, he
can always learn one bit of information by observing whether the honest party aborts or not in the final equality
check. We call this scenario Input-Dependent Abort (IDA).
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P1’s input P2’s input Two-output Overhead

[LP07] inexpensive(t2n1)
expensive(max(4n2, 8t))+

inexpensive(t ·max(4n2, 8t))
inexpensive(t2q1)

[LP11, SS11] expensive(tn1) expensive(tn2) expensive(tq1)
Our protocol inexpensive(tn1) inexpensive(t ·max(4n2, 8t)) inexpensive(tq1)

Table 1: Comparison of different fully secure 2PC protocols. ni is the length of Pi’s input, q1 is the length of
P1’s output, and t is a statistical security parameter. The number of base OTs in the OT extension is omitted as
it is independent of the circuit and input sizes.

1.1 Our Contributions

Given the discussion above, we put forth and answer the following two questions: (1) Can we improve on the
efficiency of the existing solutions for checking input-consistency and handling two-output functions, to the
extent that they are no longer considered a major computation/communication overhead? (2) Can we design
cut-and-choose protocols that do not suffer from the all-or-nothing limitation of standard constructions but that
provide better security guarantees than those of 2PC with input-dependent abort?

In the process of answering these questions, we introduce a set of new techniques to enforce consistency
of inputs and outputs in garbled circuits. Interestingly, these techniques themselves employ specially-designed
garbled circuits (gadgets) correctness of which is checked as part of a modified cut-and-choose process con-
taining multiple opening stages.

1.1.1 Optimal Fully-Secure 2PC Based on Cut-and-Choose

Towards answering the first question, we propose new and efficient solutions for the three problems of (1)
garbler’s input consistency (2) evaluator’s input consistency and (3) handling two-output functions, that asymp-
totically and concretely improve on all previous solutions.

First, we show how to use garbled XOR-gates to efficiently enforce the garbler’s input consistency, while
requiring onlyO(t·n1) inexpensive operations. This approach asymptotically improves the solutions in [MF06,
LP07], and only requires inexpensive operations in contrast to the solution of [SS11]. Second, we show how to
combine the efficient OT extension of [NNOB12] with the technique of [LP07], to get an efficient realization
of OT in which the sender is committed to his inputs. This primitive is used to solve the evaluator’s input
consistency issue with complexity of O(t · max(4n2, 8t)) inexpensive operations. Third, we show how to
use garbled identity-gates to efficiently solve the two-output function problem, while requiring only O(t · q1)
inexpensive operations, where q1 is the Garbler’s output length, improving on the recent construction of [SS11]
which requires the same number of expensive operations. The resulting 2PC protocol is constant round and
asymptotically better than all previous constructions based on the cut-and-choose method [MF06, LP07, LP11,
SS11] (except for [Woo07], which is impractical due to large constants). In Table 1, we compare the protocol’s
complexity with previous constructions. We stress that the efficiency of our protocol highly depends on the
efficient OT extension of [NNOB12], which allows one to efficiently extend a small number of OTs to n OTs
with the price of onlyO(n) invocations of a hash function. The protocol of [NNOB12] is in the Random Oracle
Model (ROM) and therefore our construction inherit this assumption as well.

We remark that our proposed solutions can be modified to work with any of the existing garbled-circuit
optimization techniques of [KS08, GMS08, PSSW09, HEKM11, KSS12]. Furthermore, in Appendix C.2 we
show how to transform the protocol to be universally composable secure [Can01] by adding only t oblivious
transfers.

Our main contributions are the new techniques we use for solving the Garbler’s input consistency issue
and handling two-output functions. Next, to give a flavor of those techniques, we present the ideas behind our
solutions.
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MULTI-STAGE CUT-AND-CHOOSE AND HANDLING TWO-OUTPUT FUNCTIONS. From now on we denote by
P1 the Garbler (Alice), and by P2 the Evaluator (Bob). Note that the main difficulty here is to convince the
garbler, P1, that the output he receives is correct. (Privacy of the output is easily achieved by xoring the output
with a random string.) Without loss of generality, assume P1 needs to learn a single output bit. Extending our
solution to any number of output bits is straightforward.

A common method for authenticating the output of a garbled circuit is to send the random labels resulted
from the evaluation of the garbled circuit. However, when we use the cut-and-choose method, many circuits
are being evaluated, and sending the labels for all the garbled circuits can leak secret information (e.g., P1 can
create a single bad circuit that simply outputs P2’s input, and not get caught with high probability). We can fix
this issue by using the same output-wire labels in all the garbled circuits, but then we would lose our authenticity
guarantee since P2 learns all the output-wire labels from the opened circuits and can use that information to
tamper with the output of the evaluated circuits.

We propose a workaround that allows us to simultaneously use the same output-wire labels in all circuits,
and preserve the authenticity guarantee, in cut-and-choose 2PC. We separate the “cut” step from the “opening”
step (this is a recurring idea in all our constructions). After P1 sends the t garbled circuits, P2 picks a random
subset S which he wants to check and sends it to P1. Then, instead of opening the garbled circuits in S, they
proceed to the evaluation of the rest of the garbled circuits. I.e., P1 sends the labels of his input-wires for the
garbled circuits not in S; P2 evaluates all of them and takes the majority; he then commits to the output along
with the corresponding output-wire label. (Note that since the opening step is not performed yet, P2 cannot
guess the unknown output-wire label and commit to the wrong output). Now, they complete the cut-and-choose
and do the opening step: P1 sends the randomness he used for all the garbled circuits in S, and P2 verifies
that everything was done correctly. If so, P2 decommits the output and reveals to P1 the actual output and its
output-wire label. To summarize, since P1 learns the output only after P2 has verified the garbled circuits, he
cannot cheat in this new cut-and-choose strategy, differently than he could in regular cut-and-choose. On the
other hand, since P2 is committed to his output before the opening, he cannot change the output after he sees
the opened circuits.

The above solution only requires a single commitment (per output wire), and can be applied to all previous
2PC protocols based on cut-and-choose to obtain their two-output variants. But since the circuit checking is
done after the circuit evaluation, the above solution falls short when combined with circuit streaming or paral-
lelized garbling techniques [HEKM11, KSS12]. In Section 3.2, we describe a second variant of this protocol
that is compatible with those techniques. The overhead of this variant is only t · q1 additional commitments.

XOR-GADGETS AND GARBLER’S INPUT CONSISTENCY. Recall that our goal is to make sure P1 uses the
same input in all (or at least most of) the evaluated garbled circuits. Observe that we do not have the same issue
with P2’s input since for each specific input bit, P2 learns the t corresponding input-wire labels using a single
OT. But, since P1 does not use OT to learn the labels for his input-wires, the same approach does not work here.

First, we augment the circuit C being computed with a small circuit we call an XOR-gadget. Say we want
to compute the circuit C(x, y) where x is P1’s input, and y is P2’s. Instead of working with C, the players
work with a circuit that computes C1(x, y, r) = (C(x, y), x ⊕ r), where r is a random input string of length
|x| generated by P1. Note that x is kept private from P2 if r is chosen randomly. Denote P1’s inputs to the t
garbled circuits of C1 by x1

1, x
1
2, . . . , x

1
t and r1

1, r
1
2, . . . , r

1
t . If P1 is honest, the r1

i -s are chosen independently
at random while all the x1

i -s are equal to x.
Let C2(x, r) = x⊕ r, where x and r are P1’s input of the same length. (Note that y is not an input here.) In

addition to P1’s garbled circuits, P2 also generates t XOR-gadgets, which are the garbled circuits of C2. These
garbled XOR-gadgets will be evaluated by P1 and on his own inputs. Denote P1’s inputs to these t garbled
circuits by x2

1, x
2
2, . . . , x

2
t and r2

1, r
2
2, . . . , r

2
t . If P1 is honest, then r1

i = r2
i for all i, and all the x2

i -s are equal to
P1’s actual input x.

We enforce that x1
i -s are the same in the majority of the evaluated circuits, using a combination of three

different checks: (1) We check that P1 uses the same value x′ for all x2
i -s. We can easily enforce this since

P1 learns the input-wire label for each bit using a single OT. (E.g., if the first bit of x′ is zero, P1 will learn
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t concatenated labels that correspond to the bit zero in the t XOR-gadgets P2 prepared.) (2) We check that
(x2
i + r2

i ) = (x1
i + r1

i ) in all the evaluated circuits. We enforce this, by evaluating the two XOR-gadgets
corresponding to the i-th garbled circuit (one created by P1 and one created by P2), and checking the equality
of their outputs (see Section 3 for subtleties that need to be addressed when doing so). (3) We check that
r1
i = r2

i in the majority of the evaluated circuits. We enforce this as part of the cut-and-choose: When P1 sends
his garbled circuits, he also sends the labels that correspond to all r1

i -s. After P1 learns the labels for r2
i -s (from

the OTs), they do the opening phase and P1 opens the subset of garbled circuits chosen by P2. In addition, for
each opened circuit, P1 reveals the labels of the r2

i -s he learned, and P2 verifies that r1
i = r2

i . (Note that once
P1 sends the labels of r1

i and the garbled circuit, he cannot change r1
i . On the other hand, P1 cannot fake a valid

label for r2
i that is different from the one he used in the OTs.) As a result, P2 knows that with high probability

(in terms of t) r1
i = r2

i in the majority of the evaluated circuits.
It is easy to see that the above three checks imply (with high probability) that x1

i -s are the same in the
majority of the evaluated circuits. Since P2 outputs the majority result, this is sufficient for our needs.

Figure 1 shows an example of the above technique for the circuit that computes AND and t = 2. We stress
that the above is only part of our techniques, and in particular, does not guarantee protection against a malicious
P2.

=
?

=
?

yx

r 2

2

yx1

1
x1

2
r 1

2

x2

1
r 2

1

r 1

1

outoutout

Figure 1: Example of garbling the simple AND circuit on the left that computes the AND between P1’s bit x
and P2’s bit y. P1 garbles the upper circuits and P2 the lower ones. Specifically, P1 garbled two AND circuits
(i.e., t = 2) and 2 XOR-gates, and P2 garbled two XOR-gates. P2’s input is the same for all garbled circuits
because of the OT (the top dashed line). Recall that the first input P1 learns in all of P2’s XOR-gates is the
same since P1 learns the corresponding input-wire labels from the OT (the lower dashed line). Also, that the
equality of r1

i and r2
i , i = 1, 2, is checked in the cut-and-choose (e.g., by P1 revealing the labels of r1

1 and r2
1 if

P2 picked to check the first set) and hence holds with high probability. Combining these two observations with
the fact that P2 compares the outputs of the XOR-gates, P2 gets the assurance that x1

1 = x1
2.

1.1.2 Security with Input-Dependent Abort in the Presence of Covert Adversaries

We propose a new security definition that naturally combines security with input-dependent abort of [IKO+11a]
(alternatively, security with limited leakage of [MF06, HKE12]), with security against covert adversaries
[AL10]. The resulting security guarantee, denoted by ε-CovIDA, is a strict strengthening of covert security
(hence more desirable in practice): In covert security, with probability ε both correctness and privacy are gone!
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Overall Complexity Security
[GMS08] inexpensive(1

ε (|C|+ n2)) Covert with ε-deterrent
[HKE12] inexpensive(2|C|) IDA

Section 4.2 inexpensive(1
ε (2|C|+ n1 + n2)) ε-CovIDA

Appendix D.2 inexpensive(log(1
ε )(2|C|+ n1 + n2 + q)) ε-CovIDA

Table 2: Comparison with covert and IDA protocols. ni the length of Pi’s input and q is the output length.

Our definition always guarantees correctness, and with probability ε, privacy is only “slightly compromised”,
i.e. only a single bit of information may be leaked in case of an abort.

We stress that simply combining the protocols of [MF06, HKE12] with the cut-and-choose method is not
secure under our definition. Say that instead of garbling a single circuit, each player Pi garbles t circuits
gci1, . . . , gc

i
t and sends them to the other player. Players pick a random value e ∈ [t], open all the circuits gcij 6=e

(i.e., reveal the randomness used to generate them), and verify that they were constructed properly. This assures
that with probability 1− 1/t, the remaining two circuits (one circuit from each player) is properly constructed.
Parties then engage in the dual-execution protocol discussed above using these two garbled circuits. Although
the above protocol guarantees correctness similar to [MF06, HKE12], the protocol does not satisfy our security
definition. One main problem is that a malicious player can use different inputs in each of the two evaluated
circuits, and learn whether their outputs are the same or not based on the outcome of the final equality check.
Note that this attack is successful even if all the circuits (including the two being evaluated) are constructed
correctly.

We show two constructions that do achieve our definition. Both constructions require a constant number
of rounds. In our first construction, each player garbles only 1

ε circuits and n
ε additional XOR gates, where n

is the length of the input. We emphasize that compared to the protocol of [HKE12], where the adversary can
always learn one bit of information, our protocol leaks one bit only with probability ε.

The first construction is sufficient for large values of ε but fails to scale for the smaller ones. For example,
if one aims for a probability of leakage of less than 2−10, the first protocol would require the exchange of a
thousand garbled circuits. A more desirable goal is a protocol with a cost that grows only logarithmically in 1

ε .
We achieve this in our second protocol. See Table 2 for a complexity comparison of our protocols with those
of the input-dependent abort model and the standard covert model.

DIFFICULTIES AND OUR TECHNIQUES. Both protocols use techniques that are similar to those used in our
fully-malicious 2PC protocol. We now briefly discuss the difficulties that arise and how we solve them using
those techniques. In our first protocol, each player prepares t garbled circuits and opens all but one of them.
The main difficulty is to make sure each player uses the same input in the evaluation of the circuit generated by
himself and in the one by his counterpart. In the second protocol, each player opens a constant fraction of his
garbled circuits, and thus, the issue of Garbler’s input consistency must also be addressed. Here, however, this
issue is relevant for both players. Somewhat surprisingly, we show that our XOR-gadget technique can be used
to solve both issues by forcing each player to use the same input not only in the garbled circuits generated by
himself, but also in the ones generated by his counterpart.

An additional difficulty is in the last step of the protocol, wherein the players need to check the equality of
the outputs they receive from each others’ evaluation(s). The correctness of this step relies on the authenticity of
the outputs (i.e., that forged outputs cannot be used in the equality checks). But which output should the players
use when they evaluate more than one circuit? Interestingly, this is closely related to the issue we needed to
address in standard 2PC for two-output functions: in both cases, a player who evaluates a set of circuits wishes
to learn the output along with an unforgeable authentication of that output. We show how the same techniques
can be used here as well. See Sections 4.2 and D.2 for the details of the two constructions.
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2 Preliminaries

Throughout this work we denote by t a statistical security parameter and by s a computational security param-
eter. For a fixed circuit in use, we denote by INPi the set of indexes of Pi’s input-wires to the circuit, by INP
the set INP1 ∪ INP2, by OUTi the set of indexes of Pi’s output-wires, and by OUT the set OUT1 ∪ OUT2.
For shortening, we sometimes refer to |INPi| by ni, to |OUTi| by qi, and set n = n1 + n2 and q = q1 + q2.

We also use the following notation for the next cryptographic primitives and functionalities.

COMMITMENT. Denote by Com(m, r) the commitment on message m using randomness r. The decommit-
ment of Com(m, r) is m and r.

We will also use a special type of commitment called trapdoor commitments. These can be constructed
efficiently from a variety of assumptions such as DDH and RSA (see [Fis01]). Denote by Comck(m, r) the
commitment on message m using randomness r and commitment key ck, and by m and r the decommitment
of Comck(m, r). A party who knows the trapdoor ct can commit to Comck(m, r), and later on decommit to
whatever message m′ it wants. Without the knowledge of trapdoor, the commitment scheme functions as a
normal commitment scheme with the standard hiding and binding properties.

YAO’S GARBLING. For the sake of simplicity and generality, we do not go into the details of the garbling
mechanism and only introduce the notations we need to described our protocols. We refer the reader to [LP09,
BHR12] for different approaches to creating the garbled circuits.

Denote by Enc(sk,m) the encryption of message m under secret key sk. Given a boolean circuit C, the
garbled circuit consists of the following: For each gate g with input-wires u, v and output-wire w, for each
c0, c1 ∈ {0, 1}, the encryption

Encg,c0,c1(kuc0⊕ru ◦ k
v
c1⊕rv , k

w
c ◦ c)

where for each wire j, kj0, k
j
1 are random labels of length l, and rj is a random bit (all chosen by the circuit

garbler), c = g(c0 ⊕ ru, c1 ⊕ rv)⊕ rw, and ◦ is the concatenation operator. For simplicity, we require that for
any of the circuit’s output-wires, rj is zero (thus, revealing their actual output bits).

We require the garbling scheme to be private and authenticated, meaning that given a garbled circuit and
input labels of a specific input, nothing is revealed except for the output of the circuit, and, that the output-wire
labels authenticate the actual output (thus, the actual output cannot be forged).

Given a garbled circuit gc, we denote by label(gc, j, b) the label of wire j corresponding to bit value b
(i.e. kjb of that garbled circuit). Also, we denote by Garb(C, r) the (deterministic) garbling of circuit C using
randomness r. (In practice, r would be a short seed for a pseudo-random function).

UNDENIABLE OBLIVIOUS TRANSFER. Here, sender S has n sets, each of m pairs of inputs, and receiver
R has a vector of input bits b̄ = (b1, · · · , bn). An undeniable OT has two stages: The first is similar to the
standard OT for many inputs, where R learns the outputs according to his input bits; In the second, both parties
request the same subset I ⊆ [m] and R learns the j-th pair for all j ∈ I , in all n sets. We formally define
this functionality denoted by F l,m,nUOT in Figure 4. See a diagram explaining the functionality in Figure 5 of
Appendix B. Also in Appendix B, we present realizations of it with different complexities. In our protocols we
will specifically use two implementations of UOT which have different properties: The first, UOT2, works for
any I and requires expensive(s) + inexpensive(max(4n, 8t) ·m) operations, and the second, UOT3, works for
I = [m] and requires expensive(s) + inexpensive(nm) operations.

TWO-STAGE EQUALITY TESTING. In this protocol, player P1 has input x1 and player P2 has input x2. They
want to test whether x1 = x2. The functionalityF l2SET is split into two stages in order to emulate a commitment
on the inputs before revealing the result (we will use this property in our constructions). I.e., in the first stage
players submit their inputs and learn nothing, and in the second stage, only if they both ask for the output,
they receive the result. In Appendix B we formally define this functionality and present realizations of it with
different complexities.
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First Stage

Inputs: S inputs n sets, each of m pairs {(xj,z0 , xj,z1 )} of strings of length l, for j = 1 . . . n, z =
1 . . .m. R inputs a binary vector b ∈ {0, 1}n.

Outputs: For all j and z, R obtains xj,zbj
.

Second Stage

Inputs: Both S and R input Reveal I .

Outputs: For all j and for each z ∈ I , R obtains (xj,z0 , xj,z1 ).

Figure 2: F l,m,nUOT .

3 An Efficient 2PC for Two-output Functions with Full Security

In this section, we describe an efficient 2PC protocol with full security against malicious adversaries. In Sec-
tion 3.1 we review the main steps of the protocol and highlight the new techniques, considering the case where
only P2 needs to learn the output. In Section 3.2, we show how to extend the ideas in order to handle two-output
functions. Due to lack of space, a detailed description of the protocol and the proof of the following theorem
appear in Appendix C. (We use the standard security definition of 2PC with malicious players as defined in
[Gol04].)

Theorem 3.1. The protocol from Figure 7 is a secure two-party computation against malicious players. In the
hybrid FUOT model, the complexity of the protocol is O(t · (|C|+ n1)) inexpensive operations. The number of
calls to FUOT is 3 with O(t · n) inputs overall.

When realized using UOT2 and UOT3, the overall cost is O(t · (|C|+n)) inexpensive operations and O(s)
expensive ones.

3.1 Overview of the Construction

We recall the high-level description from Section 1.1. Consistency of the Garbler’s input is done using the
XOR-gadgets. Consistency of the Evaluator’s input is taken care of by working with UOT: when the players
open a subset of the garbled circuits for checking, P1 also reveals his inputs to the UOT and P2 verifies that
they are consistent with the opened garbled circuits. By the definition of UOT, P1 is committed to those inputs,
thus his only option to cheat is to call the UOT with values that are different than the ones used for garbling.
However, since P2 checks that option, we are assured that with high probability (in terms of t), most of the
evaluated garbled circuits and their corresponding OTs are consistent.

We now describe the main steps of the protocol.
Garbling stage and the XOR-gadgets. Say the players want to computeC(x, y), where x is P1’s input and y is
P2’s input. Based on C, we define the following two circuits: (1) C1(x, y, r), which computes (C(x, y), x⊕ r)
where r is a random input string of length |x| selected by P1; (2) C2(x, r), which computes x⊕ r, where x and
r are P1’s inputs and are of the same length. In both circuits we assume the indexes of the input-wires are the
same as in C and we define the function α(k) to be the function that given k ∈ INP1 returns the index of the
input-wire of the random bit that is xored with input-wire k. (For simplicity, we assume the same function is
applicable for both C1 and C2.)

P1 picks a random string zi and generates a garbled circuit gci = Garb(C1, zi), for i = 1 . . . t. In addition,
P2 picks a random string z′i and generates a garbled circuit xgci = Garb(C2, z

′
i), for i = 1 . . . t. Both players

send the garbled circuits they created to each other. Next, P1 picks rj at random for j ∈ [t] and sends to P2 the
labels that correspond to rj in gcj .
OTs for input labels. Parties call the UOT functionality in order for each to learn the input-wire labels for his
inputs in the circuits/gadgets created by his counterpart. More specifically, first they run the UOT2 protocol
where P1 acts as the sender and P2 acts as the receiver. P1’s inputs for UOT are the input labels of input-wire
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k in all gcj (i.e., the inputs are label(gcj , k, 0) and label(gcj , k, 1) for k ∈ INP2 and j ∈ [t]). P2’s input is
his actual input. Second, they call UOT3 where P2 acts as the sender and P1 acts as the receiver: P2’s inputs
are the labels of the input-wires in his XOR-gadgets xgj , and P1’s inputs are his random input and actual input
to the gadget (i.e., P2 inputs are label(xgj , k, 0) and label(xgj , k, 1) while P1’s inputs are his actual input bits,
and P2’s inputs are label(xgj , α(k), 0) and label(xgj , α(k), 1) while P1’s inputs are the bits of rj). Note that
the second UOT can be realized using a regular OT and OT-extension as described in Appendix B.

We note that P1 is yet to send the labels for his input wires in the circuits he garbled himself, i.e. gci-s.
(In the protocol itself, these UOT calls are done before the garbled circuits are exchanged because this order

is needed for the simulation. However, the intuition stays the same.)
Cut-and-Choose (first stage): After the OT-s, P1 opens a constant fraction of his garbled circuits/gadgets. In
particular, P1 opens the garbled circuit gcj for all j /∈ E, whereE is chosen randomly using a joint coin-tossing
protocol. (A joint coin-tossing protocol is needed for the simulation to work.) Moreover, P1 reveals the random
strings rj-s he used in the opened circuits (by simply showing the labels he learned in the second UOT), and
then they ask the first UOT functionality to reveal all the inputs it received for the opened circuits. P2 checks
the correctness of the opened circuits/gadgets and verifies that the same rj-s were used in both gcj and xgj .
Cut-and-Choose (second stage): P1 evaluates all the XOR-gadgets he received from P2, and sends a commit-
ment on all the output-wire labels he obtained to P2. P2 answers with opening all the XOR-gadgets xgj for
j ∈ E, and by asking the second UOT to reveal all his inputs to it for those gadgets. P1 checks that all the
XOR-gadgets he received were properly constructed, and that the labels are consistent with the UOT answers.
If so, P1 decommits the output-wire labels of the XOR-gadgets to P2.
Evaluation: P1 sends to P2 the labels of his inputs for the remaining garbled circuits and XOR-gadgets. P2 uses
them to evaluate all his remaining circuits and gadgets. He checks that the output-wires of the XOR-gadgets
are the same as the values P1 sent him. If so, he takes the majority of the outputs to be his output.

Note that now, with high probability, not only do we know that the majority of the circuits being evaluated
are correct, but also that P1 used the same rj-s in the XOR-gadget pairs (Check 3 from introduction). Also,
recall that in the UOT for XOR-gadgets created by P2, P1 can learn the labels for exactly one possible value
of x. Thus, his x is the same for all the t XOR-gadgets P2 generated (Check 1). Combined with the fact that
P2 checks equality of the output of the XOR-gadget pairs (Check 2), he is ensured that the same input bits are
being used in gcj and xgj . See Figure 1 for a diagram explaining the above intuition.

ADVANTAGES OVER PREVIOUS WORK. The resulting protocol has two main advantages over previous con-
structions: (1) The second OT is a regular one (i.e. we use UOT3), thus we can use OT-extension which results
in O(t · |INP1|) inexpensive operations for checking P1’s input consistency. This is in contrast to the pre-
vious (efficient) constructions, which require either O(t2 · |INP1|) inexpensive operations [MF06, LP07], or
O(t · |INP1|) expensive ones [MF06, LP11, SS11]. (2) Even if we do not use OT extension (e.g. to avoid mak-
ing less standard assumptions about the hash function) the overhead of both input consistency checks is now
reduced to the cost of performing a UOT. Previous constructions [LP07, LP11, SS11] use different techniques
for checking consistency of P1’s and P2’s inputs, that are incomparable and with difficulties that look unrelated.
Having one concrete primitive to focus on is a cleaner approach for improving efficiency.

Moreover, as we show in Appendix B, there are several efficient candidates for UOT. More specifically,
when the input size of one of the players is small, running the above protocol with that player as the evaluator,
and using the UOT of [SS11] results in a very efficient protocol. In cases where both players have long inputs,
the UOT construction based on [LP07] could give the most efficient protocol. (Note that using the later option
is actually asymptotically optimal, since it needs only a constant number of inexpensive operations per input
bit.)

3.2 Handling Two-Output functions

As discussed in the introduction, we have two (related) solutions for handling two-output functions. Here we
describe the second one which allows circuit streaming and computation in parallel (e.g., as done in [KSS12]).
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The additional cost over the above protocol is small as summarized in the following theorem.

Theorem 3.2. Extending the protocol from Figure 7 with the below method results in a secure two-party com-
putation against malicious players for two-output functions. The overhead over the protocol from Figure 7 is
O(t · q1) inexpensive operations.

We augment the garbling stage as follows. Let OUT1 be the set of P1’s output wires. For each k ∈ OUT1,
P1 picks two random strings wk,0, wk,1. In addition to the garbled circuits, P1 garbles t · |OUT1| identity-
gates. The garbled identity-gate igj,k for garbled circuit gcj and output-wire k is the garbled version of an
AND gate that receives the same input twice and has the output-wire labels wk,0, wk,1. (In practice, only
two encryptions are needed: Enc(label(gcj , k, 0), wk,0) and Enc(label(gcj , k, 1), wk,1).) P1 does not send
those garbled identity-gates, but only sends t commitments, one for each circuit committing to all its garbled
identity-gates.

Now, the players execute the protocol from above. They follow the protocol upto the final equality-check
stage. Then, P1 decommits the garbled identity-gates only for the circuits being evaluated. P2 uses the output-
wire labels from the evaluation stage to evaluate the identity-gates, takes the majority (taking into account
the output-wire labels of P1’s output) and sends a commitment on the output-wire labels for k ∈ OUT1 to
P1. P1 decommits all the remaining garbled identity-gates, and P2 verifies they were constructed properly (or
otherwise aborts). Note that for the opened sets, P2 has both labels, so essentially he concludes, again from
the cut-and-choose, that the identity-gates are correct for the majority of the circuits. If everything was ok, P2

decommits his commitment and P1 checks that the labels are legal outputs.
The above protocol provides authenticity of the output. In case privacy of the output is also needed, we can

modify the circuit being evaluated in a standard way: For each output-wire we add one input bit and one XOR
gate. P1 will pick a bit at random, and xor it with the actual output bit. The above protocol would then be run
for this new circuit. The overhead of the resulting protocol is only O(t · |OUT1|) inexpensive operations.

4 Security with Input-Dependent Abort in the Presence of Covert Adversaries

4.1 The Model

Following [LP07, AL10, GMS08, HKE12], we use the ideal/real paradigm for our security definitions. Loosely
speaking, the execution of the protocol in the real model, in which the adversary controls several parties, is
compared to an execution in an ideal model in which a trusted third-party computes the output of the function.
We say that a protocol is secure if there exists a simulator S such that the view of the adversary in the real
model is indistinguishable from a simulated view generated by S in the ideal model.

REAL-MODEL EXECUTION. The real-model execution of protocol Π takes place between players (P1, P2),
at most one of whom is corrupted by a non-uniform probabilistic polynomial-time machine adversary A. At
the beginning of the execution, each party Pi receives its input xi. The adversary A receives an auxiliary
information aux and an index that indicates which party it corrupts. For that party, A receives its input and
sends messages on its behalf. Honest parties follow the protocol.

Let REALΠ,A(aux)(x1, x2) be the output vector of the honest party and the adversary A from the real exe-
cution of Π, where aux is an auxiliary information and xi is player Pi’s input.

IDEAL-MODEL EXECUTION. Let f : ({0, 1}∗)2 → {0, 1}∗ be a two-party functionality. In the ideal-model
execution, all the parties interact with a trusted party that evaluates f . As in the real-model execution, the ideal
execution begins with each party Pi receiving its input xi, and A receives the auxiliary information aux. The
ideal execution proceeds as follows:

Send inputs to trusted party: Each party P1, P2 sends x′i to the trusted party, where x′i = xi if Pi is honest
and x′i is an arbitrary value if Pi is controlled by A.
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Abort option: If any x′i = ⊥, then the trusted party returns abort to all parties and halts.

Attempted cheat option: If Pi sends cheati(ε′), then:

• If ε′ > ε, the trusted party sends corruptedi to all parties and the adversary A, and halts.

• Else, with probability 1 − ε′ the trusted party sends corruptedi to all parties and the adversary A
and halts.

• With probability ε′,

– The trusted party sends undetected and f(x′1, x
′
2) to the adversary A.

– A responds with an arbitrary boolean function g.
– The trusted party computes g(x′1, x

′
2). If the result is 0 then the trusted party sends abort to all

parties and the adversary A and halts.

Otherwise, the trusted party sends f(x′1, x
′
2) to the adversary.

Trusted party answers honest parties: If the adversary sends abort in response, the trusted party sends abort
to all parties. Else, it sends f(x′1, x

′
2).

Outputs: The honest parties output whatever they are sent by the trusted party. A outputs an arbitrary function
of its view.

Let IDEALεf,A(aux)(x1, x2) be the output vector of the honest party and the adversary A from the execution
in the ideal model.

Definition 4.1. A two-party protocol Π is secure with input-dependent abort in the presence of covert adver-
saries with ε-deterrent (ε-CovIDA) if for any probabilistic polynomial-time adversaryA in the real model, there
exists a non-uniform probabilistic polynomial time adversary S in the ideal model such that{

REALΠ,A(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

c
≈

{
IDEALεf,S(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

for all |x1| = |x2| and aux.

COMPARISON WITH COVERT SECURITY. When we let ε = 1/t for any constant t, the above definition is
strictly stronger than the standard definition of security against covert adversaries. In covert security, in case of
undetected cheating which happens with probability ε, the adversary learns all the honest parties’ private inputs
and is able to change the outcome of computation to whatever value it wishes (i.e. no privacy or correctness
guarantee). In our definition, however, the adversary can learn at most a single bit of information (from the
abort), and under no condition is able to change the output (full correctness).

In the above definition, in contrast to the standard covert security, the adversary can choose the exact
probability he gets caught (i.e. 1− ε′) as long as this probability is larger than 1− ε (where ε is the deterrence
factor). Note that this is not a relaxation in security since the adversary can only increase the probability of
itself getting caught. We believe that the way we let the adversary to cheat in the ideal-model with probability
smaller than ε is of independent interest. Specifically, it could give a different definition of covert security that
is more convenient to use in simulation-based proofs. (To get the definition of covert security, replace the steps
that are done with probability ε′ with the steps: (1) The trusted party sends x′1, x

′
2 to A; (2) A sends the value y

to the trusted party, and the trusted party sends it to all parties as the function output.)
A REMARK ON ADAPTIVENESS. In the above definition, the leakage function g can be chosen adaptively
after seeing f(x′1, x

′
2). Somewhat surprisingly, this does not give any extra power to the adversary compared

to the non-adaptive case since even in the non-adaptive case, g can be chosen to be a function that computes
f(x′1, x

′
2), emulates the adversary’s computation given that value and evaluates the leakage function he would

have chosen in the adaptive case.
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4.2 An Efficient Protocol with 2
ε

Circuits

In this section, we review the main steps of our protocol and highlight the new techniques. Due to lack of space,
a detailed description of the protocol and the proof of the following theorem appear in Appendix D.1.

Theorem 4.2. The protocol from Figure 9 is ε-CovIDA. In the hybrid (FUOT ,F2SET )-model, the complexity
of the protocol is O(2

ε · (|C| + n)) inexpensive operations. The number of calls to FUOT is 4 with O(2
ε · n)

inputs overall.

Also in Appendix D.2, we show how to modify the protocol to work with a smaller number of garbled
circuits (i.e., logarithmic in 1

ε instead of linear).

As discussed in the introduction, in the dual-execution protocol of [MF06, HKE12] parties engage in two
different executions of the semi-honest Yao’s garbled circuit protocol, and then run an equality testing protocol
to confirm that the outputs of the two executions are the same before revealing the actual output values.

We show how to extend this protocol to work in the presence of covert adversaries using the ideas presented
in Section 3. For simplicity of the description, from now on we work with t = 1

ε instead of ε since t would be
the number of circuits each party garbles. (This is a statistical parameter.)
Dual-execution & cut-and-choose. Our first step is to combine the dual-execution protocol with a standard
cut-and-choose protocol for covert players. Instead of garbling a single circuit, each player garbles t circuits
and sends them to the other player. Denote the circuits generated by player Pi by gci1, . . . , gc

i
t, and denote by

the pair (gc1
j , gc

2
j ) a circuit-pair. Parties pick a random value e ∈ [t], open all the circuits gcij 6=e and verify

that they were constructed properly. This assures that with probability 1− 1/t, the remaining circuit-pair (one
circuit from each player) is properly constructed. As before, they send the garbler’s input-wire labels for the
e-th circuit, execute OTs for the respective evaluators to learn their input-wire labels, evaluate the circuits, call
the Equality Testing functionality and output accordingly.

The above protocol would guarantee correctness similar to the dual-execution protocol, and it would ensure
that the evaluated circuits are correct with probability 1 − 1/t. However, the protocol does not satisfy our
security definition. The first issue is that a malicious player can execute a selective-OT attack to learn a bit of
information about the other player’s input with probability greater than 1/t. But this can be solved using a UOT
with 1/t privacy (see Appendix B).

A more subtle attack to address is that a malicious player can learn one bit of information about an honest
party’s input with probability greater than 1/t (in fact with probability 1). In particular, a malicious player can
use different inputs in each of the two evaluated circuits, and learn whether their outputs are the same or not
based on the outcome of the Equality Test. Note that this attack is successful even if all the circuits (including
the two being evaluated) are constructed correctly. We prevent this attack using the XOR-gadget techniques we
discussed earlier along with some enhancements. We discuss the details next:
XOR-gadgets. Based on C, we define the following four circuits: (1) C1(x, y, r1) = (C(x, y), x⊕ r1), where
r1 is a random input string of length |x| selected by P1; (2) C2(x, y, r2) = (C(x, y), y ⊕ r2) where r2 is a
random input string of length |y| selected by P2; (3) C ′1(y, r2) = y⊕ r2 evaluated by P2 on his own inputs; (4)
C ′2(x, r1) = x ⊕ r1 evaluate by P1 on his own inputs; In all circuits we assume the indexes of the input-wires
are the same as in C and we define the function α(k) to be the function that given k ∈ INP returns the index
of the input-wire of the random bit input-wire that is xored with input-wire k. (For simplicity, we assume the
same function is applicable for all four Ci-s.)

Instead of garbling C, each player Pi generates and sends t garbled circuits for Ci: gci1, . . . , gc
i
t and t

garbled circuits of C ′i: xg
i
1, . . . , xg

i
t. Note that here, in contrast to protocol of Section 3.1, the XOR-gadgets

include XOR-gates for the inputs of both players.
After sending the sets of garbled circuits, for each j ∈ [t], player Pi picks at random a string rij and sends

the input-wire labels that correspond to rij in gcij .
OTs for input labels. Then, they call the UOT functionality in order to learn the input-wire labels for both
their actual inputs and the rij-s in their counterpart’s circuits. More specifically, first they run the UOT2 protocol
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where P1 acts as the sender and P2 acts as the receiver. P1’s inputs for UOT are the input-wire labels of input-
wire k in all gc1

j -s (i.e., the input pairs are label(gc1
j , k, 0), label(gc1

j , k, 1) and label(xg1
j , k, 0), label(xg1

j , k, 1)
for k ∈ INP2 and j ∈ [t]). P2’s input is his actual input. They also call UOT3 with the labels for the rest of
the input-wires of xg1

j (i.e., label(xg1
j , α(k), 0) and label(xg1

j , α(k), 1) for k ∈ INP2 and j ∈ [t], where P2’s
inputs are the bits of r2

j ). The players run the same protocols in the opposite direction (switching roles). At the
end, each player learns the labels for his input-wires of gc3−i

j and of xg3−i
j . But we note that Pi is yet to send

the labels for his input wires in the circuits he garbled himself, i.e. gcij and xgij .
(In the protocol itself, these UOT calls are done before the garbled circuits are exchanged because this order

is needed for the simulation. However, the intuition stays the same.)
Cut-and-Choose Phase (first opening). Next, as before, parties agree on a random e ∈ [t] (using a joint coin-
tossing protocol), and open the rest of the garbled circuits. In particular, they open the garbled circuit-pairs
(gc1

j , gc
2
j ) and the XOR-gadgets (xg1

j , xg
2
j ) for all j 6= e. Moreover, for j 6= e, they reveal to each other the

random strings rij-s they used in the opened circuits (by simply showing the labels they learned in the UOTs),
and then ask the UOT functionality to reveal all the inputs it received for the opened circuits. The players check
the correctness of the circuits and verify that the same rij-s were used in both gcij and xg3−i

j . (Note that at the
end of the opening phase, the players know that with 1 − 1/t probability the remaining circuit-pair (gc1

e, gc
2
e)

and the XOR gadget-pair (xg1
e , xg

2
e) are properly constructed, and, that the inputs rie used by the players in both

gcie, and xg3−i
e are the same.)

Evaluation. Each party sends to his counterpart the input-wire labels for his inputs in the unopened circuit-pair.
Parties then evaluate the circuit-pair (gc1

e, gc
2
e) and the XOR-gadgets (xg1

e , xg
2
e). (i.e., Pi evaluates gc3−i

e , and
xg3−i

e .) Pi sends a commitment on the concatenation of the output labels he obtained after evaluating xg3−i
e to

P3−i.
Cut-and-Choose Phase (second opening). P3−i now opens the remaining XOR-gadget xg3−i

e , and they ask
both UOT functionalities to reveal all the inputs they received from P3−i for the inputs of the XOR-gates (i.e.,
label(xg3−i

e , k, 0), label(xg3−i
e , k, 1) in the first UOT, and label(xg3−i

e , α(k), 0), label(xg3−i
e , α(k), 1) in the

second, both for k ∈ INPi). (We stress that only the XOR-gates of wires INPi are opened, and that those were
generated using random labels independently of the garbled circuits. The XOR-gadgets of wires INP3−i are
checked as part of the previous phase.) Pi verifies that these XOR-gates were generated properly and that the
UOT inputs were consistent with the XOR-gates. If everything is ok he decommits his commitment, otherwise
he outputs ⊥ and aborts. (Note that Pi reveals his output only after he verified that all the XOR-gates P3−i
generated were properly constructed. Since the only secrets in these gates are Pi’s inputs, revealing them does
not help Pi learn any new information.) P3−i confirms that the decommitted values are valid output-wire labels,
and compares the actual output with their output he obtains from evaluation of xgie. If either check fails, P3−i
outputs ⊥.
Equality-check. If there is no abort, the players call the Equality Testing functionality as before to obtain their
final output.

Note that now, with probability 1− 1/t, not only we know that the circuits being evaluated are correct, but
also that the players use the same rie-s in the final XOR gadget-pair. Combined with the fact that the players
check equality of the output of the final XOR gadget-pair, they are ensured (with probability 1 − 1/t) that the
same input strings are being used in gc1

e and gc2
e or else, x⊕ rie would be different. (Recall that in the UOT for

the XOR gadgets, each party can learn the labels for exactly one possible value of x. Thus his x is the same for
all sets.)

Putting things together, correctness is always guaranteed due to the dual execution; full-privacy is guaran-
teed with probability 1 − 1/t due to the discussion above; and privacy with 1-bit leakage is guaranteed in the
case that a cheating adversary is not caught, which only happens with probability 1/t.
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A Other Related Work

[IPS08, LOP11] show how to use semi-honest secure two-party, and honest-majority multi-party protocols to
achieve security against malicious players. Although asymptotically this approach is very efficient, the constant
factors seem to be large and we are not aware of any working implementation that evaluates its efficiency in
practice. [NNOB12] constructs a protocol in the Random Oracle model, based on OT extension [IKNP03] and
the classic GMW protocol [GMW87]. However, this protocol requires a number of rounds that depends on
the depth of the circuit. Still, for some computations [NNOB12] shows better performance than the previous
cut-and-choose based protocols.

[IKO+11b] considers non-interactive secure computation protocols. Their first construction, which is
asymptotically very efficient, achieves similar guarantees to the protocol of [HKE12] (though, in a single
round of interaction). Combining that protocol with the cut-and-choose method can result in constructions
that achieve similar guarantees to our ε-CovIDA protocols. However, it is not clear what would the efficiency
of these protocols in practice be.

B Functionalities

Here we define all the functionalities we need in our constructions.

B.1 Oblivious Transfer

In this protocol, sender S has two inputs x0, x1 ∈ {0, 1}l and receiver R has input bit b. At the end of the
protocol, R should learn xb and S should learn nothing. We define the functionality F lOT to be:

Inputs: S inputs x0, x1 ∈ {0, 1}l and R inputs b ∈ {0, 1}.

Outputs: R obtains xb.

Figure 3: F lOT .

[PVW08] shows an efficient construction of fully-secure universally-composable OT based on a variety of
standard assumptions. When instantiating based on the DDH assumption, the protocol requires O(1) exponen-
tiations, O(l) inexpensive operations and a constant number of rounds.

[IKNP03] presents how to extend O(s) OT-s of length s strings to any number n of semi-honest OT-s of
length l strings, using only additional O(n · l) inexpensive operations. [NNOB12] extends their results to fully-
secure OT-s in the (amortized) price of only a (small) constant number of inexpensive operations per OT.1 Note

1[IKNP03] also presents how to extend fully-secure OT-s. However, their construction has an overhead of O(t) inexpensive opera-
tions per OT.
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that the construction of [IKNP03] is secure assuming the hash function in use is correlation-robust, whereas the
construction of [NNOB12] is proved secure in the Random Oracle Model. (See [NNOB12] for more details.)

Throughout this work we assume that the strings we transfer in the OT protocols are shorter than the output
length of the hash function in use, and therefore we omit the factor l from the complexities. (Specifically, we
say that the amortized cost per OT when we use the OT extension protocol of [NNOB12] is a constant number
of hashes.) When we concatenate several strings in one OT, we count the cost of each of them separately.

B.2 Undeniable Oblivious Transfer

Here, sender S has n sets, each of m pairs of inputs, and receiver R has a vector of input bits b̄ = (b1, · · · , bn).
An undeniable OT has two stages: The first is similar to the standard OT for many inputs, where R learns the
outputs according to his input bits; In the second, both parties request the same subset I ⊆ [m], and R learns
the j-th pair for all j ∈ I , in all n sets. See Figure 4 for a formal definition of this functionality, denoted by
F l,m,nUOT , and see Figure 5 for an example of a UOT execution.

First Stage

Inputs: S inputs n sets, each of m pairs {(xj,z0 , xj,z1 )} of strings of
length l, for j = 1 . . . n, z = 1 . . .m. R inputs a binary vector
b ∈ {0, 1}n.

Outputs: For all j and z, R obtains xj,zbj .

Second Stage

Inputs: Both S and R input Reveal I .

Outputs: For all j and for each z ∈ I , R obtains (xj,z0 , xj,z1 ).

Figure 4: F l,m,nUOT .
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Figure 5: UOT Functionality Example. On the left is the first stage in which the receiver inputs his input bits bi
and learns the red elements. On the right is the second stage in which the receiver asks for all the elements in
the selected rows to be revealed.

UOT FROM NUMBER-THEORETIC ASSUMPTIONS (UOT1). This functionality is somewhat similar to the
Committing OT functionality [KS06] and can be realized under the DDH assumption using O(nm) exponen-
tiations [SS11]. (We note that the cut-and-choose OT of [LP11] provides a similar functionality with similar
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complexity in a single stage.) The possibility of efficiently extending this functionality (a la. [IKNP03]) is an
interesting open question.
UOT FROM STANDARD OT (UOT2). Alternatively, a more efficient construction can be based on the tech-
nique of [LP07] which only uses standard OT in a black-box way. Combined with the OT-extension of
[NNOB12], it results in complexity of O(s) OT-s and O(4nm) inexpensive operations. (A similar construction
is implemented in [KSS12], though we are not aware of any description of its details, nor its complexity.)

We start with some intuition of that construction. Say the receiver input bit is b and the sender’s inputs are
x0, x1. Let d = x0 ⊕ x1. Instead of running one OT with their actual inputs, the players execute k OTs (k is
even), where in the i-th OT, the receiver uses the bit bi and the sender uses the inputs ri, ri ⊕ d. The bi-s are
chosen such that their xor equals b and ri are chosen such that their xor equals x0. Therefore, after executing
the k OTs, the receiver can xor the outputs he learned to get the actual output xb. On the other hand, if after the
execution of the OTs, the receiver asks the sender to reveal to him his inputs x0, x1, the sender sends him these
values along with all the ri-s as a proof. The sender checks that these values are consistent with the outputs he
received from the OTs. If the sender tries to cheat on x0, x1, he will be caught with probability that depends
on k. Furthermore, the amount of information that the sender will learn about the receiver’s input is negligible
in k. (See [LP07] for complete details.) However, note that we increased the inputs by a factor of k, which is
of course undesirable. In order to reduce this overhead, when we have more than one OT we can “share” the
random bits among many input bits.

We now describe the more efficient construction in more detail (see [LP07] for concrete analysis of the
parameters): For simplicity, let’s assume m = 1. The extension to larger m is straightforward. In the first
stage, the parties do the following: The sender picks at random 4n strings r1, . . . r4n and a random string d, all
of length l. The receiver picks at random n random strings z1, . . . zn of length 4n and sends them to the sender.
Then, he picks at random a string b′ of length 4n such that for each input bit bi, < b′, zi >= bi, where < ·, · >
is the inner product operator. They call F lOT 4n times, where the sender’s input pairs are (rj , rj ⊕ d) and the
receiver’s input is b′j for j = 1, . . . , 4n. The receiver stores all the answers he received from the OT. Moreover,
for each i, the receiver computes the xor of the answers of the indecies in the set {j| the j-th bit of zi is 1}.
These are his outputs in the first stage of the UOT.

In the second stage, the sender simply sends all the pairs (rj , rj ⊕ d) and d. The receiver compares these
strings with the ones he received in the first stage and verifies that the xor of each pair is d. If there is a problem,
he outputs ⊥. That completes the description.

Note, however, that here the sender did not use specific inputs for the OT, and that all pairs were xor-ed
with the same d. Since the inputs we use in our protocols are random labels for garbled circuits, the first issue
is not problematic since we can simply use the random strings of the above protocol as the circuit’s input-wire
labels. As for security, since all pairs use the same d, we need to assume that the hash function in use is circular
2-correlation robust [CKKZ12]. (We remark that in the Random Oracle Model, the circular 2-correlation
robustness is satisfied.)

For statistical security parameter t, max(4n, 8t) inputs are needed in order to obtain a negligible probability
failure against the selective-OT attack [LP07]. Thus, for computations with large enough input (e.g. n ≥ 260
for t = 130), this is rather efficient. However, for computations with short inputs, we can take the simpler
approach of using zi-s with Hamming Weight t, such that < zi, zj >= 0 for all i 6= j, and using n · t inputs
in total. (Another useful property of this approach is that it allows one to control the probability of potential
leakage by adjusting t. In particular, we can choose a non-negligible probability of leakage in our covert
protocol and gain better efficiency. We omit further details.)

Last, we note that the error probability of the cut-and-choose protocol is 2−0.311t (according to [LP11]),
while the above protocol has much smaller error probability for the same t. Still, for simplicity and since the
difference is by a small constant in the exponent, we use the same parameter t for both. (Indeed, taking the
optimal parameters for each of them will result in a more efficient protocol in practice.)
A SIMPLE UOT FOR THE CASE OF I = [m] (UOT3). Last, we note that in the OT construction of [PVW08]
and the transformation of [NNOB12], the sender is committed to its inputs since the transcripts are essentially
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binding. This means that after the protocol ended, if the receiver asks the sender to reveal all his inputs for
I = [m] (namely, all his inputs in the protocol), the sender can reveal his inputs and the randomness he used in
the protocol as a proof. Hence, this is another efficient realization of F l,m,nUOT for the case where I = [m]. When
using OT extension, this requires only O(s) OT-s and O(mn) inexpensive operations.

We remark that the resulting protocol could be proven to be a secure realization ofF l,m,nUOT assuming the hash
function used in [NNOB12] is a programmable random oracle. However, in the simulation of our protocols, the
simulator does not need to interact with the trusted party for F l,m,nUOT at all, thus the simulation in this case does
not require the mentioned assumption.

The complexities of the different realizations is summarized in Table 3.

Based on Possible I Complexity
[SS11] any expensive(nm)

[LP07], random zi any expensive(s) + inexpensive(max(4n, 8t) ·m)

[LP07], disjoint zi any expensive(s) + inexpensive(nmt)

[PVW08, NNOB12] [m] expensive(s) + inexpensive(nm)

Table 3: Comparison of the four realizations of F l,m,nUOT . s is a statistical security parameter.

B.3 Two-Stage Equality Testing

In this protocol, player P1 has input x1 and player P2 has input x2, and they want to test whether x1 = x2. We
define the functionality F l2SET to be:

First Stage

Inputs: P1 inputs x1 and P2 inputs x2 (both of length l).

Outputs: Both players receive Inputs Accepted.

Second Stage

Inputs: Both players input Reveal.

Outputs: Both players obtain (x1 = x2).

Figure 6: F l2SET .

[HKE12] REALIZATIONS. [HKE12] uses a similar functionality, that has only one stage in which the players
learn if x1 = x2. For that functionality, they present two possible realizations: The first is to execute a fully-
secure two party computation for this functionality. This option is quite efficient since we only need to compare
the hashes of the strings, resulting in complexity that is independent of the circuit size or the input length. The
second construction is based on [FNP04] in the random oracle model and requires an additively homomorphic
encryption. However, the construction does not achieve simulation-based security, thus it is only conjectured
to be secure in composition.

We note that both constructions can be modified to have two stages like we require. The idea is to replace
the first step in which they send information that will reveal some information to the other player, with a
commitment on the next message. Then, in the second stage, they decommit this message and continue the
protocol. (E.g., in the fully-secure 2PC based on cut-and-choose we show in Section 3, P1 sends a commitment
on the labels of his inputs at the end of the protocol, before P2 evaluates the garbled circuits.)
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OTHER REALIZATIONS IN THE ROM. A simulation-based provable option is to slightly modify the fully-
secure Private Equality Test of [FNP04], which requires t encryptions and hashes. Specifically, in case the
equality test succeeds, the receiver sends to the sender the randomness he retrieved from the encryption. That
proves also to the sender that indeed the two inputs are the same.

Another efficient option in case the inputs have high-entropy (as is the case in all our protocols) is the
following: (1) P2 generates trapdoor commitment keys ct, ck, sends ck and proves using ZK-PoK that he
knows ct; (2) P1 sends Comck(H(x1), r); (3) P2 sends H(x2); (4) P1 decommits (by sending H(x1), r); (5)
Both players check if H(x1) = H(x2). Details of the (simulation-based) proof are omitted.

C Detailed Construction and Proof of Our Fully-secure 2PC Construction

Figure 7 presents our protocol in detail. A simple example of the XOR-gadgets technique is given in Figure 1.
Before we prove Theorem 3.1, we need to discuss the cut-and-choose step and its simulatability in more

depth. Recall that in the cut-and-choose phase, we need to choose a random subset of [t] of size t · c, where
c is the constant fraction of the sets we use for evaluation. In particular, this step needs to be performed in a
fashion that is simulatable in the proof. We note that a similar issue exists in previous 2PC constructions as
well. In [LP07], this is resolved by generating a random bit for each set and decide whether to open or evaluate
the set based on the bit. As shown in [LP07], this approach is efficiently simulatable but does not yield a
previously agreed-on fraction c (e.g. c = 3/5 for better security). To the best of our knowledge, the remaining
2PC protocols do not specify the exact procedure with which the random subset is chosen.

For the sake of completeness, we propose one such procedure that is also efficiently simulatable. The
intuition is simple, in each iteration 1 ≤ j ≤ t · c, one element is sampled uniformly at random from the
previously unchosen elements in [t]. It is easy to confirm that this yields a uniformly random subset of size t · c.
The element to be chosen is decided using a uniformly random integer 1 ≤ v < (t− j + 1) generated by both
parties using the following coin-tossing protocol:

• Parties initialize a boolean string ρ of length t to be all zeros.

• For j = 1, . . . , (t · c), each player Pi picks a random value vij ∈ [1..(t− j + 1)].

• P2 sends a commitment Com(v2
1 ◦ v2

2 ◦ · · · ◦ v2
t·c).

• P1 sends his values v1
1, . . . , v

1
t·c.

• P2 decommits and reveal v2
1, . . . , v

2
t·c.

• For j = 1, . . . , (t · c), let v = ((v1
j + v2

j ) mod (t − j + 1)) + 1 and let k be the v-th zero bit of ρ. Set
ρk = 1.

• Let the set E be {j|ρj = 1}. E would be the set of indexes in which the players will evaluate (and open
all sets with indexes not in E).

C.1 Proof of Theorem 3.1

Proof. Let A be an adversary controlling P1 in the execution of the protocol in the F l,t,nUOT -hybrid model. We
describe a simulator S that runs A internally and interacts with the trusted party that computes f . S does the
following: It emulates an honest P2 with random input until the end of stage Input-equality Check. Note that S
learned A’s input to the OT-s (used for him to learn the input-wire labels of his actual input). Denote by x′ this
input. If P2 did not abort, S calls the trusted party with x′ and outputs its answer.
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Garbling:
Let C1, C2, α(·) as defined in Section 3.1.
For j = 1, . . . , t, player P1 picks random strings zi (of length s) and ri (of length |INP1|), and computes the set Sj containing:

1. A garbled circuit gci = Garb(C1, zi)

2. The input-wire labels corresponding to rj in gcj .

For j = 1, . . . , t, player P2 picks at random a string z′i and computes XOR-gadget xgj = Garb(C2, z
′
i), each includes |INP1|

XOR-gates.

Oblivious Transfer:
They execute UOT2 protocol in which P1 is the sender: P1’s input is |INP2| sets of t pairs

(
label(gcj , k, 0), label(gcj , k, 1)

)
for

k ∈ INP2 and j ∈ [t], and P2 uses his actual input bits.
They execute two regular OT protocols (i.e. UOT3) in which P2 is the sender: (We separate the two for simplifying the description.
However, both protocols can be executed together to reduce seed OTs.) In the first, P1 inputs the bits of rj and P2 inputs the pairs
( label(xgj , α(k), 0), label(xgj , α(k), 1) ) for k ∈ INP1 and j ∈ [t]. In the second, P1 inputs his input bits and P2 inputs the
pairs ( label(xg1, k, 0) ◦ label(xg2, k, 0) ◦ · · · ◦ label(xgt, k, 0), label(xg1, k, 1) ◦ label(xg2, k, 1) ◦ · · · ◦ label(xgt, k, 1) ) for
k ∈ INP1. (Note that in the last OT, P1 gets the labels for all t circuits together. Because of that, he cannot use inconsistent inputs
for P2’s XOR-gadgets.)

Cut-and-choose:
P1 sends the sets S1, . . . , St and P2 sends the XOR-gadgets xg0, xg1, . . . , xgt.
They pick a random E ⊂ [t] of size t · c in the following way:

1. They initialize a boolean string ρ of length t to be all zeros.

2. For j = 1, . . . , (t · c), each player Pi picks a random value vij ∈ [1..(t− j + 1)].

3. P2 sends a commitment Com(v21 ◦ v22 ◦ · · · ◦ v2t·c).
4. P1 sends his values v11 , . . . , v1t·c.

5. P2 decommits and reveal v21 , . . . , v2t·c.

6. For j = 1, . . . , (t · c), let v = ((v1j + v2j ) mod (t− j + 1)) + 1 and let k be the v-th zero bit of ρ. Set ρk = 1.

7. Let the set E be {j|ρj = 1}. E would be the set of indexes in which the players will evaluate (and open all sets with
indexes not in E).

Checking Opened Circuits:
For all j /∈ E, P1 sends: 1) zj ; 2) The labels he learned from the (first) OT for rj .
For the opened sets, P2 verifies that the circuits and gadgets were constructed properly, and that P1 used the same rj for xgj and
gcj . Then, they ask the UOT functionality for all the inputs P1 used in the opened sets and P2 verifies that all the values are
consistent with the opened circuits.

Input-equality check:

1. P1 evaluates the remaining XOR-gadgets he has. He sends a commitment com on all the output-wire labels he got from the
XOR-gadgets (or on a random value if there was a problem in the evaluation).

2. P2 opens all his XOR-gadgets in the set E (by sending z′i-s), and reveals all the randomness he used in the regular OTs. P1

verifies that the XOR-gadgets were constructed properly and consistent with the OT inputs. (If not, he aborts.)

3. P1 decommits com and reveals the output-wire labels he got from the XOR-gadgets. P2 verifies that all labels are valid
ones (i.e., generated by him).

4. P1 sends the input-wire labels for his input in Sj where j ∈ E.

5. P2 evaluates the XOR-gadgets in the sets Sj , j ∈ E and compares the results to the output-wire labels sent by P1. If the
outputs are not the same, P2 aborts.

Evaluation: P2 evaluates all the garbled circuits gcj where j ∈ E. He takes the majority to be his output.

Figure 7: A Fully-secure 2PC Protocol.
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From the cut-and-choose we know that with probability 1− neg(t) (see [LP07, SS11]), at least for half of
j ∈ E it holds that: 1) rj are the same for both gcj , xgj ; 2) gcj is properly constructed. Denote the by Eg ⊂ E
the indexes in which it holds.

Denote by xj the input P1 used for circuit gcj . Observe that if all the XOR-gadgets that P1 generated are
correct, and P1 uses the same rj for gcj , xgj , then if he uses even a single xi 6= x′ then P2 catches him (since
P1 learns only the labels for x′ in xgj for all j ∈ Eg). Therefore, from the cut-and-choose, P2 is assured with
probability 1− neg(t) that P1 used the same input for at least half of the sets, and for the same sets he garbled
the circuit properly. Thus, the majority of the answers is correct with probability 1− neg(t).

We note that the simulation is distributed exactly as the execution in the real model, except when P1 is able
to cheat (and then P2’s output in the real model would be different than in the ideal model). However, from the
analysis above, this can happen with 1− neg(t) probability.

Let A be an adversary controlling P2 in the execution of the protocol in the F l,t,nUOT -hybrid model. We
describe a simulator S that runs A internally and interacts with the trusted party that computes f . S does the
following:

• Picks at random a subset E and a random permutation π(E).

• Emulates an honest P1 until the end of stage Oblivious Transfer. It learns P2’s input from the UOT.

• Calls the trusted party with P2’s input and receives the output z.

• Constructs the sets such that for j ∈ E, gcj outputs the constant z, and for j /∈ E, gcj is a legal garbling.

• Emulates P1 in the Cut-and-choose stage, until step 5. Learns P2’s v2
j -s.

• Rewinds to step 4 and picks v1
j -s such that π(E)j = v1

j + v2
j .

• Emulates P1 with a random input until the end.

Recall that if P2 creates illegal XOR-gadgets, then P1 always catches him since they always open all those
gadgets and their corresponding OT-s.

Note that the only part in which the simulation is different than the execution in the real model is where
the simulator constructs the fake garbled circuits. However, by the results of [LP09, BHR12], this difference is
indistinguishable. (This can be done, e.g., by setting the output gates to be constant gates of the actual outputs.
Then, by the security of the garbling scheme, this change is indistinguishable.)

C.2 Achieving UC Security

The only part in which the simulations of our 2PC protocol require rewinding, is for choosing the set of circuits
for evaluation. (The rest of the protocol and its sub-protocols do not need rewinding.) Thus, all we need to
change is the way this set is chosen.

We replace the cut-and-choose stage with the one described in Figure 8. Now, the simulator can extract ρ
from P2’s OT queries, and be able to generate fake garbled circuits without rewinding. The rest of the simulation
stays the same. The overhead over the stand-alone protocol is merely t OT-s. We omit a formal proof since the
simulation for the environment is roughly the same.
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Cut-and-choose:
They pick a random E ⊂ [t] of size t · c in the following way:

1. P1 picks t pairs of random strings (aj , bj)tj=1.

2. P2 picks at random a boolean string ρ of length t with exactly |E| non-zero elements.

3. They execute OT where P1 inputs the t pairs (aj , bj), and P2 inputs the bits ρj .

4. P1 sends the t sets S1, . . . , St to P2, and P2 sends the XOR-gadgets xg0, xg1, . . . , xgt.

5. For each j ∈ [t], P2 sends the j-th string it learned from the OT and ρj . P1 verifies that the two are consistent with his
pairs. If so, they set E be {j|ρj = 1}.

Figure 8: UC compatible cut-and-choose.

D More on Our ε-CovIDA Constructions

D.1 Detailed Construction and Proof of the Protocol from Section 4.2

Before we present the detailed construction, we note that a few interesting issues arise in the simulation-
based proof of the protocol that do not exist in the previous standard 2PC constructions. For example, in
the simulation-based proofs of previous 2PC constructions, the random challenge is used for checking only one
player, the garbler. However, here we use the same challenge for checking both players. This prevents us from
using regular commitments everywhere and constructing the simulation using the standard commit, decommit
and rewind operations. Roughly speaking, the challenge is to construct two different simulators (for the two
corruption cases) that can open the coin-toss to any challenge value.

To overcome these issues we use trapdoor commitments in some places in the protocol (i.e. when P1

commits to his coins and when he commits to his garbled sets). The intuition is that each player generates a
pair of a public key and a trapdoor to a trapdoor commitment scheme, and proves using a zero-knowledge proof
of knowledge protocol (ZK-PoK) that he knows the trapdoor. Each player then uses the other player’s public
key to commit to his values. In the simulation, the simulators can rewind the ZK-PoK, extract the trapdoor, and
open the commitment to an appropriate value of their choice.

One option is to use DDH based trapdoor commitment and standard ZK-PoK of discrete-log (see [Fis01]).
Then, the overhead introduced here is only a (small) constant number of exponentiations. The total overhead is
very small since the commitment scheme is only invoked O(t) times in the entire protocol.

We remark that for the same purpose we can also use UC commitments [Lin11] and the simulation would
be similar.

Figure 9 presents our protocol in detail.

D.1.1 Proof of Theorem 4.2

Proof. Let A be an adversary controlling P1 in the execution of the protocol in the (F l,t,nUOT ,F l2SET )-hybrid
model. We describe a simulator S that runs A internally and interacts with the trusted party that computes f .
S does the following:

1. Invokes A and emulates honest P2 with random inputs until the end of the stage Evaluation and Input-
equality Check. During the execution, S records all the opened sets and A’s inputs to UOT. Also, it
extracts the trapdoor ct1 from A (using the ZK-PoK extractor).

2. Rewinds A until the Cut-and-choose stage in order to pick a different e. Since S already saw A’s coins,
S simply picks the appropriate coins on behalf of P2 to obtain the desired value for e. S emulates honest
P2 and continues again until the end of the stage Evaluation and Input-equality Check.

3. Repeats the above rewinding t times, until it has used all e ∈ [t] (we assume this is done in a random
ordering). This means that S now knows: 1) All the openings of the sets; 2) All of A’s inputs to the
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We describe P1’s actions in the protocol. The protocol is symmetric, hence the same steps take place for P2 as well.
Garbling:
Let C1, C2, C

′
1, C

′
2, α(·) as defined in Section 4.2.

For j = 1, . . . , t, player P1 picks random strings z1j , z
1′
j (of length s) and rj (of length |INP1|), and computes the set S1

j containing:

1. Garbled circuits gc1j = Garb(C1, z
1
j ) and xg1j = Garb(C′1, z

1′
j )

2. The input-wire labels corresponding to rj in gcj .

Oblivious Transfer:
Players execute two series of UOT protocols where P1 is the sender, with all the input-wire labels for gc1j and xg1j as described
before. More specifically, in the first execution P1’s input is |INP2| sets of 2t pairs

(
label(gc1j , k, 0), label(gc

1
j , k, 1)

)
and(

label(xg1j , k, 0), label(xg
1
j , k, 1)

)
for k ∈ INP2 and j ∈ [t], and P2 uses his actual input bits. In the second execution P1 inputs

one set of |INP2| · t pairs ( label(xg1j , α(k), 0), label(xg
1
j , α(k), 1) ) for k ∈ INP2, j ∈ [t], and P2 inputs the bits of his input r2j .

We note that P1 is yet to send the labels for his input wires in gc1j .

Committing to the sets and inputs:

1. P1 generates a key pair (ck1, ct1) for a trapdoor commitment where ct1 is the trapdoor and ck1 is the public key. He sends
ck1 to P2 and proves to him, using ZK-PoK that he knows the corresponding trapdoor. (P2 does the same.)

2. P1 sends the commitment Comck2(H(S1
1 ◦ . . . ◦ S1

t )) to P2. (I.e. a commitment to the hash of his sets, using P2’s
commitment key.)

3. P1 sends t (regular) commitments c11, . . . , c1t , where c1j is a commitment to the labels that correspond to his inputs in gc1j .

Cut-and-choose:
They pick a random e ∈ [t] in the following way (this part is done only once):

1. They both toss t coins.

2. P1 sends a commitment on his coins Comck2(coins1).

3. P2 sends his coins coins2.

4. P1 opens the decommitment and they both set coins = coins1 ⊕ coins2.

5. They use coins to pick (uniform) e ∈ [t].

P1 sends the t sets S1
j to P2, and decommits Comck2(H(S1

1 ◦ . . . ◦ S1
t )). (P2 does the same for his sets and commitments, and P1

verifies that they are consistent.)

Checking Opened Circuits:
For (S1

j , S
2
j )j 6=e, the players send to each other: 1) zij , z

i′
j , 2) The labels they have learned from the UOT for rij . For the opened

sets, each player verifies that the circuits and gadgets were constructed properly, and that the other player used the same rij for gcij
and xg3−i

j . Then, they ask the first UOT functionality for all the inputs used in the opened sets and verify that all the values are
consistent with the opened circuits.

Evaluation and Input-equality check:
Each player sends his input-wire labels for the e-th circuit, along with the decommitment of cie. They evaluate the circuits and the
XOR-gadgets.
P1 sends to P2 a commitment on the concatenation of the labels he obtained from evaluation of xg2e (or to a random string if there
was a problem with the XOR-gates evaluation). Next, P2 sends the randomness he used for garbling the XOR-gadget xg2e , they ask
the first UOT functionality to reveal all corresponding inputs (i.e., the pairs

(
label(xg1e , k, 0), label(xg

1
e , k, 1)

)
for k ∈ INP2)

and the second UOT to reveal all P2’s inputs to it. P1 verifies that the XOR-gadget was constructed properly and consistently with
the UOT inputs (otherwise, outputs ⊥) and decommits his commitment to P2.
P2 checks that the output-wire labels he received are valid (i.e. generated by him for these gates) and compares them with the
output-wire labels he got from his evaluation of the corresponding XOR-gates. If there is a problem, he outputs ⊥.
(Recall that the same process goes in both directions, one for P1’s inputs and one for P2’s inputs.)

Equality-Testing:
They call the Equality Testing functionality with the outputs of the e-th garbled circuits (including the labels as before) and output
accordingly.

Figure 9: 1/t-CovIDA Protocol.
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different sets; 3) A’s inputs to the UOT.

4. Checks if some of the sets are problematic, which means that one (or more) of the following occurs: 1)
The garbled circuits or the XOR gadgets are not generated correctly; 2) The labels of the garbled circuits
and XOR gadgets are inconsistent withA’s input to the UOT, or 3) The used inputs in the Evaluation and
Input-equality Check stage are inconsistent with A’s queries to the UOT.

If all are correct,

• Calls the trusted party with A’s input and receives the output z.
• Rewinds to step 3 in the Cut-and-choose stage. Plays the honest P2 in order to generate a random
e ∈ [t]. For the set e, S replaces P2’s garbled circuit with one that always outputs z with labels that
are consistent with previous steps. S computes the hash of P2’s sets after this replacement and uses
ct1 to decommit successfully.
• Emulates honest P2 (still with a random input) in the rest of the steps, but in the Equality-Testing

step uses the output-wire labels that correspond to z (it knows the labels from the sets opening).

If more than one set is incorrect,

• Sends ⊥ to the trusted party.
• Emulates honest P2 until the end of the protocol. (Note that P2 will abort.)

Otherwise,

• Sends to the trusted party cheat1(1/t).
• If the trusted party returns corrupted1, S rewinds until step 3 in the Cut-and-choose stage, and

sends instead coins2 such that P1 will be caught later. Emulates honest P2 until the end. (Note that
P2 will abort.)
• If the trusted party returns undetected,

– As before, S rewinds and makes sure that e is corresponding to the malicious set/inputs, and
also, replaces P2’s e-th garbled circuit with one that always outputs z.

– S emulates honest P2 in the rest of the protocol until the Equality-Testing stage.
– Receives A’s input w to the Equality-Testing functionality, and sends to the trusted party the

description of the following function g: Let g be the function that has hardcoded the circuit
gc1
e, the input labels thatA used in the UOT for P2’s inputs of gc1

e, the labels thatA sent in the
Evaluation and Input-equality Check stage for his inputs, the output-wire labels of gc2

e and w.
The function evaluates the garbled circuit using the real input of P2 and returns 0 if the input
of an honest P2 to the Equality Testing functionality after the evaluation does not equal to w.

• The trusted party returns a bit and S sends it to A.

5. Sends A’s response to the trusted party (whether to abort or not).

Inspecting the simulation shows that it simulates the adversary perfectly except for two differences:

• The garbled circuit that P1 evaluates is not a correct garbled circuit of the function they compute. How-
ever, [LP09, BHR12] show that the two views are indistinguishable (under minor changes to the circuit
in use).

• The output of honest P2 in the real model might be different than his output in the ideal model but this
happens only in case the Equality Testing succeeds, which means that A guessed correctly the output-
wire labels of gc2

e not corresponding to the output he received from the evaluation. However, this can only
happen with probability negligible in l (where l is the length of the labels) unless the garbling procedure
is not secure (this property is sometimes referred to as authenticity of the outputs of a garbling scheme).
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The simulation for the case where A controls P2 is the same, except that for changing the coins S now
needs to utilize the trapdoor ct2.

D.2 Reducing the Number of Circuits

A shortcoming of the previous protocol is that the probability of leakage decreases slowly with the number of
circuits t. In particular, aiming for a probability of leakage of 1/1000 would require the exchange of a thousand
garbled circuits which is not practical. A more desirable goal is to make the leakage probability exponentially
small in t while the protocol cost still grows linearly in t.

The standard solution for reducing the probability of cheating in cut-and-choose protocols is to issue t
garbled circuits, open a constant fraction of them (e.g. half) and verify that they were constructed properly, and
evaluate the rest. Using this method (ignoring the challenges in enforcing consistency of inputs and the OTs)
we have that the majority of the evaluated circuits are correct, and thus the majority output is the correct output
with all but negligible probability in t. (See [SS11] for a concrete analysis.)

However, if we try to combine this approach and dual execution, it is not clear how to perform the equality
testing at the end, since now each player evaluates multiple circuits with different output-wire labels, some of
which may encode the wrong result.

To overcome this issue we need a solution that ensures that the output labels are (1) the same for all the
evaluated circuits and (2) unpredictable (i.e. hard to guess when not learned through evaluation), as is the case
with output-wire labels in the standard garbled circuits. One possibility is to embed a carefully designed one-
time MAC in the circuits being garbled and evaluated. The overhead of this solution, however, is too high to
be of practical interest. Next we discuss an alternative and very efficient solution based on identity-gates and a
two-stage opening.
An efficient solution via identity-gates. For each k ∈ OUT, each player Pi picks two random strings
wik,0, w

i
k,1. Note that these random strings are the same for all t circuits. In addition to the garbled circuits

and XOR-gadgets, for each set it also garbles |OUT| identity-gates. The garbled identity-gate igij,k for garbled
circuit gcij and output-wire k is the encryptions Enc(label(gcij , k, 0), wik,0) and Enc(label(gcij , k, 1), wik,1). The
players do not send those garbled identity-gates as part of the sets, but only send one commitment per set,
committing to all the garbled-identity gates for that set.

Now, the players execute the protocol from Section 4.2, but open only a constant fraction of the sets (without
opening the commitments on the identity-gates). They follow the protocol upto the final Equality-check step.
Then, each player decommits the garbled identity-gates for the circuit-pairs being evaluated. Each player uses
the output-wire labels from the circuit evaluations to evaluate the identity-gates, and then takes the majority
to be his input to the Equality Testing functionality (or a random string if there is no majority). However, if
the identity-gates were invalid, this step might reveal information. Thus, the players run only the first stage of
the Equality Testing functionality (and essentially commit to their inputs). Then each player decommits all the
remaining garbled identity-gates he generated and opens their secrets, while the other player verifies they were
constructed properly (or otherwise aborts). If everything was ok, they execute the second stage of the Equality
Testing functionality and proceed accordingly.

The resulting protocol adds onlyO(t · |OUT|) inexpensive operations since for each output-wire the players
compute t garbled identity-gates. Specifically, we prove the following theorem.

Theorem D.1. The above protocol is ε-CovIDA secure. In the hybrid (FUOT ,F2SET ) model, the complexity
of the protocol is O(log(1

ε ) · (|C| + n + q)) inexpensive operations. The number of calls to FUOT is 4 with
O(log(1

ε ) · n) inputs overall.

Before we present the proof, we describe the coin-tossing protocol we use in this protocol. We replace
the coin-tossing step of the protocol from Figure 9 with the one from Figure 7, and modify it to use trapdoor
commitments for the same reason explained in Appendix D.1. Specifically, the coin-tossing protocol we use is:
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• Parties initialize a boolean string ρ of length t to be all zeros.

• For j = 1, . . . , (t · c), each player Pi picks a random value vij ∈ [1..(t− j + 1)].

• P1 sends a commitment Comck2(v1
1 ◦ v1

2 ◦ · · · ◦ v1
t·c).

• P2 sends his values v2
1, . . . , v

2
t·c.

• P1 decommits and reveal v1
1, . . . , v

1
t·c.

• For j = 1, . . . , (t · c), let v = ((v1
j + v2

j ) mod (t − j + 1)) + 1 and let k be the v-th zero bit of ρ. Set
ρk = 1.

• Let the set E be {j|ρj = 1}. E would be the set of indexes in which the players will evaluate (and open
all sets with indexes not in E).

Proof of Theorem D.1. Let A be an adversary controlling P1 in the execution of the protocol. The simulation
is very similar to the one from Appendix D.1 except for some small changes.

We describe a simulator S that runs A internally and interacts with the trusted party that computes f . S
does the following:

1. InvokesA and emulates honestP2 with random inputs until the end of stage Evaluation and Input-equality
Check. During the execution, S records all the opened sets and A’s inputs to UOT. Also, it extracts the
trapdoor ct1 from A (using the ZK-PoK extractor).

2. Rewinds A until the middle of the Cut-and-choose step in order to pick a different E ⊂ [t]. Since S
already sawA’s v1

j -s, S simply picks the appropriate v2
j -s on behalf of P2 to obtain the desired subset E.

S emulates honest P2 and continues again until the end of the first stage of the equality testing where all
the identity-gates are also opened.

3. Repeats the above rewinding enough times until the union of the chosen [t]\E-s covers all of [t]. This
means that S now knows: 1) All the openings of the sets; 2) All ofA’s inputs to the different sets; 3)A’s
inputs to the UOT.

4. Checks to see which sets are not generated correctly, are inconsistent with A’s input to the UOT, or, use
inputs in the Evaluation and Input-equality Check stage that are not consistent withA’s input to the UOT.
Let B = {i|set i is problematic}. If all are correct,

• Calls the trusted party with A’s input and receives the output z.

• Rewinds to step 3 of the Cut-and-choose stage, plays the role of honest P2 to generate a uniformly
random subset E of [t] (of size t · c). For the sets of circuits/gadgets in E, S replaces P2’s gar-
bled circuits with ones that always output z with labels that are consistent with previous steps. S
computes the hash of P2’s sets after this replacement and uses ct1 to decommit successfully.

• Emulates honest P2 in the rest of the steps, but in the Equality-Testing step uses the output-wire
labels of the identity-gate that correspond to z (it knows the labels from the opening phase).

If more than |E| of the sets are incorrect (|E| < |B|),

• Sends ⊥ to the trusted party.

• Emulates honest P2 until the end of the protocol. (Note that P2 will abort.)

If more than |E|/2 but less than |E| of the sets are incorrect ( |E|2 ≤ |B| ≤ |E|),
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• Set ε′ =

 t− |B|
t− |E|


 t
t− |E|

 . (This is the probability of not being caught for the given set of problematic

sets.)

• Sends to the trusted party cheat1(ε′).

• If the trusted party returns corrupted1, S rewinds until step 3 in the Cut-and-choose stage, and
makes sure that a subset E will be chosen such that P1 will be caught later. Emulates honest P2

until the end. (Note that P2 will abort.)
We now describe how E is chosen. Let ρ be a binary string of length t, and let c be the constant
fraction of sets we evaluate (i.e., c = |E|/t). S chooses ρ using the following strategy: Pick at
random a binary string ρB of length |B| that has at least one zero element. Pick at random a binary
string ρG of length t− |B| that has exactly t · c− HW(ρB) non-zero elements. Choose ρ such that
ρ : B = ρB and ρ : [t] − B = ρG, where x : S denotes the substring of x containing all indexes in
set S.
Set E to be the set of indexes {i|ρi = 1}. Note that E is uniform over all the challenges that reveal
problematic sets.
Let π(E) be a random permutation of the indexes in E. In order to decide on E, for each round j
in the protocol from above, S does the following:

– Receives P1’s commitment.
– Sends random v2

j -s and receives P1’s v1
1, . . . , v

1
t·c.

– Rewinds A and sends him v2
j = π(E)j − v1

j mod (t− j + 1)) + 1 for j = 1, . . . t · c.
• If the trusted party returns undetected,

– As before, S rewinds and makes sure that all the malicious set/inputs are in E, and also,
replaces P2’s garbled circuits in the set E with ones that always output a fake output z. (Here
we use the same process for picking E as before, but instead we take ρB to be all ones.)

– S emulates honest P2 in the rest of the protocol until the Equality-Testing stage.
– Receives A’s input w to the Equality-Testing functionality, and sends to the trusted party the

description of the following function g: Let g be the function that has hardcoded the circuit gc1
e

for all e ∈ E, the input labels that A used in the UOT for P2’s inputs of gc1
e, the labels that

A sent in the Evaluation and Input-equality Check step for his inputs, the output-wire labels of
gc2
e and w. The function evaluates the garbled circuits using the real input of P2, computes the

majority output and returns 0 if the input of an honest P2 to the Equality Testing functionality
after the evaluation does not equal to w.

• The trusted party returns a bit and S sends it to A.

If less than |E|/2 of the sets are incorrect (|B| < |E|/2),

• Rewinds to step 3 of the Cut-and-choose stage, plays the role of honest P2 to generate a uniformly
random subset E of [t] (of size t · c).
• If any of the incorrect sets is in the [t] − E opened ones, sends ⊥ to the trusted party, simulates

honest P2 aborting and outputs what A does.

• If all the incorrect sets are in E, we still have that the majority of the sets in E are correct, i.e. the
circuits are correct, and both parties inputs to them are the same (due to the XOR gadgets). S sends
A’s input in the good sets to the trusted party, receives the output z, replaces P2’s garbled circuits
in E with ones that always output z, and simulates honest P2 for rest of the simulation.
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The rest of the proof is as in Appendix D.1.
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