
Some Improved Complexity Results for GapSVP and uSVP

Cheng Kuan

February 3, 2013

Abstract

In this paper, first, it is proved that finding the approximate shortest vector with

length in [λ1, γλ1] could be Karp-reduced to GapSVPγ̃ where γ = γ
1

n(n+log2(γn))(n−1) .
Second, it is proved that shortest vector problem itself could be reduced to

GapSVP with a quite small gap.
Third, we improve the complexity results of uSVP, proving uSVP could be re-

duced from SVP (our results are better than any known result). What’s more, we
prove that the search version of uSVP could be reduced to decisional version of
uSVP with almost the same gap.

1 Introduction

Lattice is a wonderful mathematical structure. It is a set of all integer combinations
of linearly independent base vector b1, b2, . . . , bn in Rm. Shortest vector problem is a
NP-hard problem under random reduction which is proved by Micciancio[7]. However,
the complexity relation among shortest vector problem and its related problems are still
not very explicit.

Our contribution. In section 3 of this paper, we proves that finding the approximate
shortest vector with length in [λ1, γλ1] could be Karp-reduced to GapSVPγ̃ where γ̃ =

γ
1

n(n+log2(γn))(n−1) . The reduction between the two problems has never been done before.
In section 4, we reduce SVP to GapSVP. Our work makes an improvement in proving

the hardness of GapSVP. In this way, the complexity of GapSVP is more explicit than
before.

In section 5, we proved SVP could be reduced to uSVP. Our result is slightly better
than [3]. We also proved that the search version of uSVP could be reduced to its decision
version, with almost the same gap.

2 Preliminaries

Given a base of n-dimensional space, a Lattice could be formulated by linear combi-
nation of base vectors using integer coefficients.

Definition 1 (Lattice). Given n linearly independent vectors b1, b2, . . . , bn ∈ Rm, the
lattice generated by them is defined as

L(b1, b2, . . . , bn) = {
n∑
i=1

xibi|xi ∈ Z}.

We refer to b1, . . . , bn as a basis of the lattice. Equivalently, if we define B as the
m× n matrix whose columns are b1, b2, . . . , bn, then the lattice generated by B is

L(B) = L(b1, b2, . . . , bn) = {Bx|x ∈ Zn}.

1

Definition 2 (Span). The span of a lattice L(B) is the linear space spanned by its
vectors,

span(L(B)) = span(B) = {By|y ∈ Rn}.

Definition 3 (Shortest Vector Problem (SVP)). Given a basis B ∈ Rm×n, find a nonze-
ro lattice vector Bx(with x ∈ Zn \ {0}) such that

‖Bx‖ ≤ ‖By‖

for any other y ∈ Zn \ {0}.

Always, researchers use λi (also λi(B) with respect to basis B) to denote the ith
shortest vector in a lattice. Pay attention that λ0 is 0, and λ1 is the shortest vector. I
also use Λ to denote a lattice.

GapSVP is defined as the following.

Definition 4 (GapSVPγ). The input consists of B ∈ Zm×n and r ∈ Q.

• In YES instances, λ1(L(B)) ≤ r.

• In NO instances, λ1(L(B)) > γ · r.

Now I give the definition of the problem finding the approximate shortest vector
problem of a lattice.

Definition 5 (SVPγ). Given lattice L(B) where basis B ∈ Rm×n, find the vector v such
that ‖v‖ ∈ [λ1(B), γλ1(B)).

Definition 6 (Unique Shortest Vector Problem(uSVPγ)). Given a lattice B such that
λ2(B) > γλ1(B), find a nonzero vector v ∈ L(B) of length λ1(B).

In the following passage, without loss of generality, assume that input basis B is full
rank and is an integer matrix.

3 The Reduction from SVPγ to GapSVPγ̃

In this section, the first result of this paper is given.

3.1 The Capability of GapSVP Oracle

Lemma 1. Given Lattice Basis B ∈ Zn×n, using GapSVPγ oracle, a range (α, γα],
α ∈ R, could be found such that λ1(B) ∈ (α, γα].

Proof. We propose an algorithm just like binary search to prove this lemma.
First, pick a real number α0 such that α0 ≥

√
n det (B)1/n ≥ λ1. Run GapSVPγ

oracle on input instance 〈B,α0〉. If it returns “yes”, then set α1 = α0/2. And the range
of λ1 reduces to (0, γα0]. It’s impossible for the oracle to return “no” at this step.

Each time we got αi, i ≥ 0, we do the following operations. Check the result of
GapSVPγ oracle on input instance 〈B,αi〉. If it returns “yes”, then set αi+1 = αi/2.
The range of λ1 reduces to (0, γαi]. We redo this step until the oracle returns “no”.

Once the oracle returns “no”, the situation needs to be discussed. We enter the
second part of our algorithm. Here, we just consider situation of the most difficult input
instance, because other input instance will lead us to get a even smaller range of λ1.

To be more precisely, assume the oracle returns “no” on input 〈B,αk+1〉. The range
of λ1 is (αk+1, γαk]. Two situations are here.

2

• λ1 is in (αk, γαk].

• λ1 is in (αk+1, αk].

No matter in which situation, next step, we will set αk+2 = (αk+1 +αk)/2. On input
〈B,αk+2〉, if the oracle returns “no”, then the range reduces to (αk+2, γαk]. If the oracle
returns “Yes”, then the range reduces to (αk+1, γαk+2].

Then at each of the following step (considering the k̃th step), we set αk̃ = (a+b/γ)/2,
where (a, b] denotes the range we got of λ1 at hand. Run GapSVP oracle on 〈B,αk̃〉.
No matter what the result is, the range reduces. Renew the value of a, b. Do the k̃+1th
step the same way as we do the k̃th until, b < γa. Let α = a. Finally, we got that
λ1(B) ∈ [α, γα].

λ1 ≤ 2p(m), where m is the length of input. As a result, the proposed algorithm
could be done in polynomial time of input length. This algorithm directly proves the
lemma.

3.2 The Reduction

We give the following theorem to reduce the approximation version of SVP to
GapSVP. The method is just adapted from the proof reducing uSVP to GapSVP in
[1].

Theorem 1. For any given γ ≥ 1, Approximate SVPγ ≤p GapSVPγ̃ , γ̃ = γ
1

n(n+log2(γn))(n−1) .

Proof. Given the input instance B = [b1, . . . , bn] which is the basis of a lattice. Now I
will show the algorithm to compute a vector v such that ‖v‖ ≤ γλ1(B).

The main idea is to obtain lower rank sublattice of L(B) such that the approximate
shortest vector are still in the sublattice.

As L(B) is n dimensional lattice, we only need to lower the rank by n− 1 times.
To be more precisely, for the given lattice basis L(B), we find a serial of sublattices

with rank decreased gradually. Assume that the serial of sublattices are denoted by
B1, . . . , Bn, where B1 = B and rank(Bi)− 1 = rank(Bi+1).

We use the following method to lower the rank by 1.
Now I describe how to obtain Bi+1 from Bi.
Given basis Bi, applying the method proposed in lemma 1, we could found the range

r = [α, γ̃α] where λ1(Bi) is in.
Generate three sublattices of B̃0 = Bi. They are B̂0 = [2b1, b2, . . . , bk], B̂c = [b1 +

cb2, 2b2, b3, . . . , bk], c = 1, 2. It could be found that the shortest vector of B̃0 is in one
of the three generated sublattices. Apply the method proposed in lemma 1, we could
find the range containing the length of shortest vector for each of the three sublattice.
Assume the three ranges we got are rj , j = 0, 1, 2. At least one sublattices has rj
intersecting r. Set B̃1 to be B̂j if rj intersects r. If more than one sublattice has rj
intersecting r, set B̃1 to be arbitrarily one of them. We do this for t times to get a serial
of sublattices, where

L(B̃0) ⊃ L(B̃1) ⊃ · · · ⊃ L(B̃t)

.
Here, t > n(n+ log2(γn)).
It could be concluded that λ1(B̃t) ≤ γ̃tλ1(B̃0). Also we know that det(B̃t) ≥

2t det(B̃0), because each time we select a sublattice the value of the determinant at
least doubles. Assume D to be the dual of B̃t. det(D) ≤ 1/(2t det(B̃0)). Applying the
LLL algorithm we can find a vector u ∈ L(D) such that

‖u‖ ≤ 2n
√
n det(D)1/n ≤

√
n2n

2t/n det(B̃0)1/n
.

3

Suppose the shortest vector of L(B̃0) is ũ0. According to Minkowski’s bound, we
have ‖ũ0‖ ≤

√
n det(B̃0)

1/n. Consequently, the shortest vector of B̃t (suppose to be ũt)
meet the following bound.

‖ũt‖ ≤ γ̃t
√
n det(B̃0)

1/n

Using Cauchy-Schwarz inequality,

|〈ũt, u〉| ≤ ‖ũt‖ · ‖u‖ ≤ γ̃tn2n−t/n < 1.

We know ũt ∈ L(B̃t), u ∈ L(D). It means that 〈ũt, u〉 is an integer. This concludes
that |〈ũt, u〉| = 0. Taking the sublattice of B̃t orthogonal to u, we get a lower rank
sublattice L(Bi+1) ⊂ L(Bi) such that λ1(Bi+1) ≤ γ̃tλ1(Bi).

Finally, after lowering rank for n− 1 times, we could finally got L(Bn) such that its
rank is 1 which mean its shortest vector could be found trivially. Also we have

λ1(Bn) ≤ γ̃(n−1)tλ1(B).

We know γ̃ = γ
1

n(n+log2(γn))(n−1) . As a result, the final conclusion is

λ1(Bn) ≤ γλ1(B).

This completes our proof.

3.3 Improved Result

What’s more, the result still has space for improvement. The improvement is depen-
dent on the effectiveness of approximating algorithm for shortest vector problem. In the
proof of theorem 1, we use the LLL algorithm, but there are more effective algorithm,
so the result could be improved.

Theorem 2. According to the effective polynomial time approximating algorithm of

shortest vector problem, in theorem 1, γ̃ could be set to γ
1

n(n log logn/ logn+log(γn))(n−1) .

Proof. According to the effective polynomial time approximating algorithm of shortest
vector problem proposed in [2],it is clear that in polynomial time of input length, a
vector of length in 2O(n log logn/ logn) could be found. In this way, the parameter t in the
proof of theorem 1 could be n(n log log n/ log n+log n). As we need γ̃(n−1)t ≤ γ, γ̃ could

be set to γ
1

(n−1)t = γ
1

n(n log logn/ logn+logn)(n−1) .
However, the algorithm is probabilistic, so the reduction turns to be a random re-

duction.

Theorem 3. According to the effective polynomial time deterministic approximating

algorithm of shortest vector problem, in theorem 1, γ̃ could be set to γ
1

n(14 (n−1)+log(γn))(n−1)

.

Proof. According to the most effective polynomial time approximating algorithm of
shortest vector problem proposed in [2],it is clear that in polynomial time of input

length, a vector of length in 4
3

(n−1)/2
λ1 could be found. In this way, the parameter t in

the proof of theorem 1 could be n(14(n − 1) + log n). As we need γ̃(n−1)t ≤ γ, γ̃ could

be set to γ
1

n(14 (n−1)+logn)(n−1) .
However, the algorithm is probabilistic, so the reduction turns to be a random re-

duction.

4

4 The Reduction from SVP to GapSVP

This proof use the method also adapted from the method in [1].

Theorem 4. SVP could be cook-reduced to GapSVPγ, where γ =
√

1 + 1
λ1(L(B))2

.

Proof. Given the input instance B = [b1, . . . , bn] which is the basis of a lattice. The
following algorithm computes the shortest vector of L(B), saying v, using GapSVP
oracle.

The main idea is to obtain a lower rank sublattice of L(B) such that the shortest
vector are still in the sublattice.

As L(B) is n dimensional lattice, we need to lower the rank by n− 1 times.
To be more precisely, for the given lattice basis L(B), we find a serial of sublattices

with rank decreased gradually. Assume that the serial of sublattices are denoted by
B1, . . . , Bn, where B1 = B and rank(Bi)− 1 = rank(Bi+1).

We use the following method to lower the rank by 1. The method describes how to
obtain Bi+1 from Bi.

Given basis Bi, applying the method proposed in lemma 1, we could found the range
r = (α, γα] which λ1(Bi) is in.

Generate three sublattices of B̃0 = Bi. They are B̂0 = [2b1, b2, . . . , bk], B̂c = [b1 +
cb2, 2b2, b3, . . . , bk], c = 1, 2. It could be found that the shortest vector of B̃0 is in at least
one of the three generated sublattices. Apply the method proposed in lemma 1, we could
find the range containing the length of shortest vector for each of the three sublattice.
Assume the three ranges we got are rj , j = 0, 1, 2. At least one of them contain λ1(B).
Assume λ1(B) is in ri, corresponding to L(B̂i). If L(B̂j) do not have the shortest vector
of L(B), then λ1 /∈ rj . This is because, according to lemma 1, if λ1 ∈ rj , rj will not

contain λ1(B̂j), as the gap of the oracle is
√

1 + 1
λ1(L(B))2

and λ1(B̂j)
2 ≥ λ1(B)2 + 1.

sup{x|x ∈ rj} < γλ1(B) ≤ λ1(B̂j)

As a result, we could find the sublattice L(B̂i) which contains the shortest vector.
Set B̃1 = B̂i. We do this for t times to get a serial of sublattices, where

L(B̃0) ⊃ L(B̃1) ⊃ · · · ⊃ L(B̃t)

.
Here, t > n(n+ log2 n).
It could be concluded that λ1(B̃t) = λ1(B0). Also we know that det(B̃t) ≥ 2t det(B̃0),

because each time we select a sublattice the value of the determinant at least doubles.
Assume D to be the dual of B̃t. det(D) ≤ 1/(2t det(B̃0)). Applying the LLL algorithm
we can find a vector u ∈ L(D) such that

‖u‖ ≤ 2n
√
n det(D)1/n ≤

√
n2n

2t/n det(B̃0)1/n
.

According to Minkowski’s bound,

‖v‖ ≤
√
n det(B̃0)

1/n

Using Cauchy-Schwarz inequality,

|〈v, u〉| ≤ ‖v‖ · ‖u‖ < 1.

As |〈v, u〉| is an integer, |〈v, u〉| = 0. Taking the sublattice of B̃t orthogonal to u, we
get a lower rank sublattice L(Bi+1) ⊂ L(Bi) such that λ1(Bi+1) = λ1(B).

5

Finally, after lowering rank for n− 1 times, we could finally got L(Bn) such that its
rank is 1 which mean the shortest vector could be found trivially.

5 Complexity Results of Unique Shortest Vector Problem

5.1 Reduction from SVP to uSVP

In [3], it is proved that SVP ≤p uSVPγ , γ =
√

1 + 1

c·24n2λ21
. This could be improved.

Lemma 2. For basis B = [b1, b2, . . . , bn], it could be reduced to B′ such that, if u =∑
i αib

′
i is a shortest vector, then |αi| < cn(32)n−i · (rk(1 + ε))

pk
k−1 ,where rk denotes the

hermite constant, k is the block size (O(log n/(log log n))) and p = n/k.

Proof. This could be done according to the slide reduction method proposed in [5].
Here I will explain why this basis reduction will meet the proposed property. The
reduction method proposed in [5] require the dimension to be n = pk, here I made a
little adjustment so that n could be any positive integer.

A basis B of an n-dimensional lattice L where n = kp + q is slide reduced with a
factor ε ≥ 0 if it is size-reduced and satisfies the following two conditions.

• ∀i ∈ [0, p− 1], the block B[ik+1,ik+k] is HKZ-reduced.

• ∀i ∈ [0, p − 1], the block B[ik+2,ik+k+1] is (1 + ε)-DSVP-reduced. (If q = 0, i ∈
[0, p− 2].)

As a result, we have ‖b∗ik+1‖ ≤ (rk(1 + ε))
k
k−1 ‖b∗ik+k+1‖.

This induces ‖b∗1‖ ≤ (rk(1 + ε))
ik
k−1 ‖b∗ik+1‖ ⇒ ‖b∗1‖ ≤ (rk(1 + ε))

pk
k−1 ‖b∗pk+1‖.

According to [5] B′ is LLL-reduced. We have

‖b∗1‖ ≤ (rk(1 + ε))
pk
k−1 ‖b∗pk+1‖ ≤ (

√
4

3
(1 + ε))q−1(rk(1 + ε))

pk
k−1 ‖b∗n‖

‖b1‖ = ‖b∗1‖ ≥ ‖u‖ ≥ |αn|‖b∗n‖ ≥ ((

√
4

3
(1 + ε))q−1(rk(1 + ε))

pk
k−1)−1|αn|‖b∗1‖

This implies |αn| ≤ (
√

4
3(1 + ε))q−1(rk(1 + ε))

pk
k−1 . q < k = O(log n/ log log n), so

(
√

4
3(1 + ε))q−1 is a linear polynomial of n.

Suppose the lemma holds for αi, ∀i > n− l. According to Gram-Schmidt orthogonal
method, we have the following.

‖b∗1‖ ≥ ‖u‖ ≥ |αn−l + (
n∑

j=n−l+1

µj,n−lαj)|‖b∗n−l‖

≥ {(rk(1 + ε))
b(n−l−1)/kc

k−1 (

√
4

3
(1 + ε))(n−l−1) mod k}−1

· |αn−l + (
n∑

j=n−l+1

µj,n−lαj)|‖b∗1‖

(1)

√
4
3(1 + ε))(n−l−1) mod k is also a linear polynomial of n. Suppose it is less than c2n.

We also knows that ∀1 ≤ j < i ≤ n, |µi,j | ≤ 1/2.

6

|αn−l| ≤ c2n(rk(1 + ε))
b(n−l−1)/kc

k−1 + (
n∑

j=n−l+1

|µj,n−lαj |)

≤ c2n(rk(1 + ε))
b(n−l−1)/kc

k−1 + 1/2
n∑

j=n−l+1

|αj |
(2)

c2n(rk(1 + ε))
b(n−l−1)/kc

k−1 + 1/2
n∑

j=n−l+1

|αj | ≤ c3n(rk(1 + ε))
pk
k−1 (

3

2
)n−l

As a result, we could conclude that ∀i, |αi| < cn(32)n−i · (rk(1 + ε))
pk
k−1 .

For LLL reduction, we could have a similar result. It is αi < 2n/2(32)n−i.

Theorem 5. If the shortest vector u of the input lattice L(B) could be denoted as

u =
∑

i αibi, knowing |αi| < ti, then SVP ≤p uSVPγ, γ =
√

1 + 1
c(
∏n
i=1 ti)

2λ1(L(B))2
.

Proof. Suppose mj =
∏j
i=1 ti. Denote m0 = 1.

Consider the following matrix.

B′ =



mnb1 mnb2 . . . mnbn−1 mnbn
1

m1

. . .
mn−2

mn−1


I will prove that, L(B′) has a unique shortest vector corresponding to one of the

shortest vector of L(B).

∀x ∈ Zn, ‖B′x‖2 = m2
n‖Bx‖2 +

n∑
i=1

(mi−1xi)
2 < m2

n(‖Bx‖2 + 1)

If ‖Bx‖ = ‖By‖ = λ1(B), then ∃k, ∀i, k < i ≤ n, xi = yi, |xk| > |yk|. We could see
‖B′x‖ > ‖B′y‖. The reason follows.

It is easy to see that (xkmk−1)
2−(ykmk−1)

2 ≥ m2
k−1 = (tk−1mk−2)

2 ≥ (|yk−1|mk−2)
2+

m2
k−2 ≥

∑k−1
j=1(|yj |mj−1)

2 +m2
0 >

∑k−1
j=1(|yj |mj−1)

2. So we have that |xi| = |yi|.
According to [6], when two shortest vectors, say Bx and By, have the same parity

vector (for Bx the parity vector is p(x) = [x1 mod 2, . . . , xn mod 2]), then Bx = By.
This implies if ‖Bx‖ = ‖By‖ = λ1,∀i ∈ [n], |xi| = |yi|, then ∀i ∈ [n], xi = yi.

As a result, we could see that there is only one unique shortest vector for L(B′).

λ22(B
′)− λ21(B′) ≥ 1. So the gap is

√
1 + 1

c(
∏n
i=1 ti)

2λ1(L(B))2

Theorem 6. SVP could be reduced to uSVPγ with

γ =

√
1 +

1

c1(c2n)2n(3/2)(n−1)n(rk(1 + ε))2n
pk
k−1λ1(L(B))2

,

for some constant c1, c2. rk is the kth hermite constant. k is the block size (O(log n/(log log n)))
and p = n/k.

If using LLL reduction, we could get that SVP ≤p uSVPγ , γ =
√

1 + 1

c2n2 (3
2
)(n−1)nλ21

.

Proof. The theorem follows immediately from lemma 4 and theorem 5.

7

5.2 Search versus Decision

We will show that the search version uSVP could be reduced to decision version
uSVP maintaining almost the same gap.

In order to do this reduction, we adapted the methods of Kannan[4] and the methods
of Hu and Pan[2].

Both of the two methods aimed to reduce SVP to decisional SVP. However, the
parameters in their methods are very large. If just apply their methods to do the
reduction we cannot get results better than [3].

Lemma 3. Given the value of an integer r, knowing r = m+
∑n

i=1 αipi, where pn|m, pi|pi+1,
αi < bp12 c, αi (i ∈ [n− 1]) could be computed. Here, ∀i, pi and αi are integers.

Proof. First, we compute rn = r mod pn. Here, we do not need to know the value of αn.
Once we have ri, we compute ri−1 = ri mod pi−1, choosing αi−1 such that αi−1 · pi−1
closest to ri (αi−1 is unique. Only one value of αi−1 could be choose). In this way, we
could compute αi, (i ∈ [n− 1]) one by one.

Lemma 4. Given the value of an integer r, knowing r = mpn+1 +
∑n

i=1 αipi, where
pi|pi+1, αi < bpi+1

pi
c, αi (i ∈ [n]) and m could be computed. Here, m ≥ 0,∀i, pi > 0, αi ≥

0.

Proof. First, we compute rn = r mod pn+1,m = r/pn+1. Once we have ri, we compute
ri−1 = ri mod pi, αi = ri/pi. In this way, we could compute αi, (i ∈ [n]) one by one.

Lemma 5. Using duSVP oracle, the exact length of the shortest vector of the given
input lattice could be found.

Proof. This could be done using binary search.
According to Minkowski’s bound, we have the following bound for shortest vector u

of input lattice L(B).
‖u‖ ≤

√
n det(B)1/n

First we just take 〈B, d〉, where d =
√
n det(B)1/n, as the input for duSVP oracle.

Set the original range of λ1(B) to be [a, b] = [0, d] (means a = 0, b = d =
√
n det(B)1/n).

We do the following iteration.
For each time run the duSVP oracle on 〈B, d〉, d = (a + b)/2. If it returns “Yes”,

then the range of λ1(B) is set to be [a, b] = [a, d], else set the range to be [a, b] = [d, b].
Finally, the length of λ1(B) could be settled in polynomial time of the input length.

Theorem 7.
search-uSVPγ ≤p decision-uSVPγ

√
1−ε

Proof. According to lemma 4, we could assume that we have the oracle O which could
output the length of the unique shortest vector given any input lattice basis with gap
γ′.

Now, given the input lattice basis B, we construct the following new lattice.

B′ = LLL(B)

8

B′′ =



mnb
′
1 mnb

′
2 . . . mnb

′
n−1 mnb

′
n

1
m1

. . .
mn−2

mn−1


ti = 2n/2(32)n−i, mi =

∏i
j=1 tj . We already know that if u =

∑n
i=1 αib

′
i then αi < ti.

Assume m0 = 1.
If B′′x is the shortest vector of L(B′′) then, B′x is the shortest vector of L(B′). If

not, assume B′y is the shortest vector of L(B′). That is ‖B′y‖ < ‖B′x‖. It means
‖B′x‖2 − ‖B′y‖2 ≥ 1. Consider the vector B′′y in L(B′′). ‖B′′y‖2 = m2

n‖B′y‖2 +∑n
i=1(yimi−1)

2 < m2
n‖B′x‖2 < ‖B′′x‖2. This contradicts B′′x is the shortest vector of

L(B′′).
We could also know that L(B′′) has a unique shortest vector. If not, assume that

B′′x,B′′y are two shortest vector B′′x 6= ±B′′y. ‖B′′x‖2 = m2
n‖B′x‖+

∑n
i=1(ximi−1)

2.
It should be ‖B′′x‖ = ‖B′′y‖. So we have ‖B′x‖ = ‖B′y‖. It means both B′x and B′y
are the shortest vector of L(B′). This is impossible, as L(B′) a unique shortest vector.

Suppose B′′x is the shortest vector of L(B′′). Using our oracle, we could get λ1(B
′′).

According the above lemma, we could get |xi|, i = 1, . . . , n.
Now we compute the sign for each xi.
Construct the following basis.

B̃ =

(
m1x1b

′
1 m1x2b

′
2 . . . m1xn−1b

′
n−1 m1xnb

′
n

1 −1

)
Assume that x1 > 0, x2 6= 0. Now we compute the sign of x2. It is easy to see that

B̃ has unique shortest vector.
Run O on B̃. We get λ1(B̃). According to lemma 3 and 4, we could get λ1(B̃)

mod m1. If it is 0, we know x2 is positive, else it is negative. In this way, all the sign of
xi could be got. So we could get the shortest vector of B.

Next we analysis the gap that O need.
Denote the gap between λ1 and λ2 of B′′ to be γ′′.
If γ′ < γ′′, run O on B′′. We could get λ1(B

′′)2 = m2
n‖B′x‖2 +

∑n
i=1 x

2
im

2
i−1.

According to lemma 3, we could get x and B′x is the unique shortest vector of L(B).

γ′′ =

√
(λ′′2)2

(λ′′1)2
>

√
λ22

λ21 + 1
= γ

√
λ21

λ21 + 1

Set γ′ = γ

√
λ21
λ21+1

= γ
√

1− 1
λ21+1

= γ
√

1− ε. The proof is complete.

References

[1] Vadim Lyubashevsky, Daniele Micciancio, “On Bounded Distance Decoding, U-
nique Shortest Vectors, and the Minimum Distance Problem”, 2009.

[2] Gengran Hu, Yanbin Pan, “A New Reduction from Search SVP to Optimization
SVP”, 2012.

[3] Divesh Aggarwal, Chandan Dubey, “Improved Hardness Results for Unique Short-
est Vector Problem”, 2011.

9

[4] Ravi Kannan, “Minkowski’s Convex Body Theorem and Integer Programming”,
1987.

[5] Nicolas Gama, Phong Q. Nguyen, “Finding Short Lattice Vectors within Mordell’s
inequality”, 2008.

[6] R Kumar, D Sivakumar, “A note on the shortest lattice vector problem”, 1999.

[7] S. Goldwasser and D. Micciancio, “Complexity of lattice problems”, Springer, 2002.

10

