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Abstract. In this work we come up with two fully homomorphic schemes.

First, we propose an IND-CPA secure symmetric key homomorphic en-

cryption scheme using multivariate polynomial ring over finite fields.

This scheme gives a method of constructing a CPA secure homomorphic

encryption scheme from another symmetric deterministic CPA secure

scheme. We base the security of the scheme on pseudo random functions

and prove the scheme to be IND-CPA secure, rather than basing security

on hard problems like Ideal Membership and Gröbner basis as seen in

most polly cracker based schemes which also use multivariate polynomial

rings. This scheme is not compact but has many interesting properties-

It can evaluate circuits of arbitrary depths without bootstrapping for

bounded length input to the algorithm. Second, we also describe another

similar symmetric key scheme which is compact, fully homomorphic and

doesn’t require bootstrapping. The scheme is on the lines of the work

of Albrecht et. al. (Asiacrypt-2011) and is proven to be bounded CPA

secure. Proof is based on Ideal Membership/ Ideal Remainder/Gröbner

basis problem.

Keywords: Fully Homomorphic Encryption, Multivariate Polynomials,

Bootstrapping, Symmetric Key Cryptography
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1 Introduction

There have been schemes based on Gentry’s blueprint like the [1], [2] scheme.

Problem with those is inefficient bootstrapping and huge keys and cipher text

sizes. [3] tells us that it is possible to create a public FHE from a symmetric key

FHE. We have also seen a construction of public key homomorphic crypto sys-

tem from a symmetric key crypto system in DGHV paper [2]. Hence, we will just

consider symmetric key cryptosystems here. Let us examine, what goes wrong

with having an FHE?

Consider the DGHV scheme which is probably simplest to understand: Secret is

an odd number p.

KeyGen(λ): Output a secret odd number p depending on security parameter.

Plaintext space : {0, 1}

Encrypt(p, b): Output p× q + 2× r+ b, where q is a random number and r is a

low norm random number depending on λ

Decrypt(p, c) : Output (c mod p) mod 2

Why is it Somewhat homomorphic? Because, If a cipher text has the form

p × Q + 2 × R + B where B is the bit in the plaintext space to be encrypted,

the decryption algorithm outputs B correctly as long as |2 × R + B| ≤ p.

When we multiply cipher-texts (or add many of them) |2 × R + B| part grows

and becomes more than p so the decryption algorithm outputs B′ 6= B where

p×Q+ 2×R + B = p×Q′ + 2×R′ + B′ and |2×R′ + B′| ≤ p. This is what

happens in scheme’s based on Gentry’s blue print using ideal lattices.

One solution: What if we encrypt b now in [0, p− 1] as follows:

KeyGen: Same as before as in the DGHV scheme.

Encrypt(p, b) output p× q + b for a random q.

Decrypt(p, c) Output c mod p.
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This scheme would be homomorphic and work fine but would no longer be

secure! This is because if an eavesdroper has two encryptions of 0 : p × q1 and

p×q2, and he takes gcd of those, he would recover p. Now in this(insecure) scheme

observe that Encrypt(b) outputs b+ i where i ∈ I = (p) in Z. For such a scheme

to be secure we atleast want that the ideal I should have (practically)infinite

or exponential number of generators. Every Ideal in Z in principal. Number

rings have ideals that are generated with 2 generators. We will have to look at

rings that have ideals that have large number of generators. For this project we

propose analysing the ring of multivariate polynomials Fq[t1, t2, ...., tN ] where

Fq is a finite field.

2 Related Work

After Gentry’s initial kick to the field of homomorphic encryption whole new

ideas have emerged in a short span of time. Majority of work has been done on

lattice based primitives. Gentry based his scheme on ideal lattices. [2] presents

a simple construction using integers and explored the fact that a public key ho-

momorphic encryption can be built based on a secret key scheme. [5] presents a

scheme based on the LWE problem by Brakerski and Vaikunthanathan. Gentry

and Halevi, have been able to implement all aspects of Gentry’s scheme in [6]

including the bootstrapping step. This work was an improvement to [15]. Boot-

strapping step renders the scheme impractical and hence recent constructions lie

[7], [8] aim to avoid it.

We base our scheme on rings of multivariate polynomials and there has been

a lot of work in this area. [4] is the main reference to this work. This paper

generalizes our second scheme to a generic construction. Bounded CPA security

of our second scheme follows directly from [4]. Schemes outlined in [4] is based

upon Gröbner basis/ Ideal Remainder/Ideal Membership problem. Any of these

problem reduce to any other of these. We will not be delving into these problems

and the security proof for the second scheme and for detailed treatment refer

[4].
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In 1993, Barkee et al. wrote a paper [9] to challenged that one should not base

crypto on Gröbner basis theory. This was done by proposing a scheme and high-

lighting a fact that it can be broken in singly exponential time using ideas in

[12]. Subsequently, there have been many proposals. All of them were broken by

attacks. [11] gives a very good survey of polly cracker style schemes and attacks.

The only scheme that is not broken is [10], which is closely related to lattices.

3 Our Contributions

This leads us to the motivation of this work: What goes wrong in having a FHE

without bootstrapping? Intutively, When one multiplies(or adds) cipher-text,

the size of the cipher-text grows. In order to fix that we go for ”noise” based

schemes on lattices. Introducing noise makes the scheme somewhat homomorphic

and one has to come up with bootstrapping and squashing etc. to make it fully

homomorphic. When one tries to design a homomorphic scheme without using

”noise”, compactness and security becomes a problem. Schemes using ”noise” are

based on established hard problems like the LWE, Approximate GCD problems

etc. while those without noise are based on problems like Gröbner basis problem

and the ideal membership problems whose average case hardness is not known.

Compactness is ensured by publishing set of encryptions of objects depending on

the secret key, though this is not always possible. A similar thing is done in the

second scheme we describe in this paper. In noisy schemes we output a similar

set for bootstrapping, but we have to typically squash the decryption circuit to

a lower depth and this new scheme leads to even more huge cipher-text. Our

second construction avoids this.

Currently, all homomorphic Encryption scheme are impractical and characteris-

tic of the following issues:

– Bootstrapping

– Squashing step

– Huge cipher text
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In this work we propose two scheme. First, we come up with a CPA secure,

symmetric key, non compact, fully homomorphic scheme that can’t be made

into a public key scheme using the known standard transformations. Scheme

uses for its construction a randomly chosen member of a family pseudo-random

functions and has some very interesting properties. Second, we propose a scheme

that is bounded CPA secure, symmetric key, fully homomorphic and doesn’t

require squashing. Since it is bounded CPA secure it can’t be made into a public

key scheme. This scheme is based on symmetric polly cracker scheme from [4].

Their scheme is not compact and we come up with a transformation to make it

compact.

4 Preliminaries

4.1 Homomorphic Encryption

In this work we consider symmetric key homomorphic encryption with respect

to the addition and multiplication gates in the ring form by plain-text space.

A homomorphic public key encryption scheme ε has four algorithms: the usual

KeyGen, Encrypt, and Decrypt, and an additional algorithm Evaluate. The

algorithm Evaluate takes as input a a circuit C, a tuple of ciphertexts c =

(c1, ..., ci) (one for every input of C), and outputs another ciphertext c using

publicly available information(typically some function of the secret key).

Definition 1. (Correct Homomorphic Decryption).

The scheme ε = (KeyGen,Encrypt,Decrypt, Evaluate) is correct for a given

t-input circuit C if, for any key sk output by KeyGen(λ), any t plaintexts

m1, ..,mt, and any cipher-texts c = c1, ..., ct with ci ← Encryptε(sk,mi), it

is the case that: Decrypt(sk,Evaluate(C, c)) = C(m1, ....,mt)

Definition 2. (Homomorphic Decryption).

The scheme ε = (KeyGen,Encrypt,Decrypt, Evaluate) is homomorphic for a

class C of circuits if it is correct ∀ circuits C ∈ C. ε is fully homomorphic if it

is correct for all boolean circuits.
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The semantic security(IND-CPA) of a homomorphic encryption scheme is

defined in the usual way [14], without reference to the Evaluate algorithm.

(Indeed Evaluate is a public algorithm with no secrets.)

The ”real challenge” in constructing fully homomorphic encryption comes

from the compactness property, which essentially means that the size of the

cipher-text that Evaluate generates does not depend on the size of the circuit

C.

Definition 3. (Compact Homomorphic Encryption).

The scheme ε = (KeyGen,Encrypt,Decrypt, Evaluate) is compact if there ex-

ists a fixed polynomial bound b(λ) so that for any key sk output by KeyGen(λ),

any circuit C and any sequence of cipher-text c = (c1, ...., ct) that was generated

with respect to sk, the size of the cipher-text Evaluate(C, c) is not more than

b(λ) bits (independently of the size of C)

If a scheme can evaluate class of circuits with bounded-depth correctly it is called

Somewhat homomorphic. Gentry suggests in his work [1] that if a scheme can

evaluate its decryption circuit then it can be made into a fully homomorphic

encryption using a process called bootstrapping.

Definition 4. (Augmented Decryption Circuits).

Let ε = (KeyGen,Encrypt,Decrypt, Evaluate) be an encryption scheme, where

decryption is implemented by a circuit that depends only on the security param-

eter. For a given value of the security parameter λ, the set of augmented de-

cryption circuits consists of two circuits, both take as input a secret key and two

ciphertexts: One circuit decrypts both ciphertexts and adds the resulting plain-

text, the other decrypts both ciphertexts and multiplies the resulting plaintext

bits. We denote this set by Dε(λ)

Definition 5. (Bootstrappable Encryption).

Let ε = (KeyGen,Encrypt,Decrypt, Evaluate) be a homomorphic encryption

scheme, and for every value of the security parameter λ let Cε(λ) be a set of

circuits with respect to which ε is correct. We say that ε is bootstrappable if

Dε(λ) ⊆ Cε(λ) holds for every λ.
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Now, [1] says that given a bootstrappable somewhat homomorphic encryption

scheme it is possible to construct a compact and secure leveled homomorphic

encryption (one that can evaluate circuits of depth d for an input d). If the

scheme ε is ”KDM” or ”circular secure” then its possible to make this scheme

fully homomorphic using explicit transformations- a process called Bootstrap-

ping. Since both the schemes we present is fully homomorphic inherently, we

don’t talk about bootstrapping.

4.2 Fundamentals of Gröbner basis Theory

We refer to [4] for detailed Gröbner theory and list out the main points required.

Assume the ring P = Fq[t1, .., tN ] the ring of multivariate polynomials over

the finite field Fq having q elements. Assume q to be prime. We consider a

polynomial ring P, some monomial ordering on elements of P. We denote by

M(f) the set of all monomials appearing in f ∈ P . By LM(f) we denote the

leading monomial appearing in f ∈ P according to the chosen term ordering.

We denote by LC(f) the coefficient ∈ Fq corresponding to LM(f) in f and set

LT (f) = LC(f)LM(f). We denote by P<d the set of polynomials of degree < d

(and analogously for >,≤,≥, and = operations).We define P=0 as the underlying

field including 0 ∈ Fq. We define P<0 as zero. Finally, we denote by M<m the set

of all monomials < m for some monomial m (and analogously for >,≤,≥, and

= operations).We assume the usual power product representation for elements

of P.

Definition 6. (Gröbner basis). Let I be an ideal of P = F [x1, ..., xn−1] and

fix a monomial ordering. A finite subset G = {g0, ...., gm−1} ⊂ I is said to be a

Gröbner basis of I if for any f ∈ I there exists gi ∈ G such that LM(gi) | LM(f).

It is possible to extend the division algorithm to multivariate polynomials:

we write r = f mod G when f = Σi=n−1
i=0 higi + r with M(r)∩ < LM(G) >= 0.

When G is a Gröbner basis r is unique and is called the normal form of f with

respect to the ideal I. In particular we have that f mod I = f mod G = 0 if
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and only if f ∈ I. Together P and I define the quotient ring P/I and, by abuse

of notation, we write f ∈ P/I if f mod I = f where equality is interpreted as

those on elements of P . That is, we identify elements of the quotient P/I with

their minimal representation in P .

Definition 7. (Reduced Gröbner basis). A reduced Gröbner basis for an ideal

I ⊂ P is a Gröbner basis G such that:

1. LC(g) = 1 ∀g ∈ G

2. ∀g ∈ G, @m ∈M(g) such that m is divisible by some element of LM(G�{g})

[4] provides an algorithm ReduceGB(G) to find a reduced Gröbner basis

from a Gröbner basis and it is unique i.e. Reduced gröbner basis for an ideal is

unique and we refer to the paper for the algorithm. As outlined, Buchbergers

Criterion provides a criterion to check if a set forms a Gröbner basis. We now

state an important result, refer [4] for a proof.

Theorem 1. A set {g1, .., gN} ⊂ P with LM(gi) = tdii with di ≥ 0∀i ∈ [1, N ]

is a Gröbner basis.

This theorem motivates us algorithms to construct Gröbner basis. We are

interested in Gröbner basis with a non-empty variety i.e. for P = Fq[t1, .., tN ]

we will be interested in Gröbner basis G = {g0, .., gN−1} such that V (G) 6=

φ(equivalently ∃v ∈ FNq such that gi(v) = 0∀i ∈ [1, N ]). Hilbert Nullstellensatz

for finite fields say the following [16]:

Theorem 2. For an arbitrary Finite Field Fq, given m polynomials f1, .., fm ∈

Fq[t1, .., tN ] have no common zero in FNq if and only if 1 ∈< f1, .., fm, t
q
1 −

t1, .., t
q
N − tN >⊆ Fq[t1, .., tN ]

Hence with a good chance an ideal will have a non-empty variety. Let’s dis-

cuss algorithms now:

GBGen(λ, P, d): Generates a Gröbner basis for an ideal in P with a non-

empty variety where the generators have a degree d. In actual instantiation we

would replace this with GBGendense(λ, P, d) which does the following.
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Algorithm 1 GBGendense(λ, P, d)

(a1, .., aN )← (Fq∗)N

for i ∈ [1, N ] do

gi ← tdi

for mj ∈M<tdi
do

ci,j ←$ Fq

gi ← gi + ci,jmj

end for

gi ← gi − gi(a1, .., aN )(still forms a GB)

end for

G← {g1, .., gN}

return ReduceGB(G), a1, .., aN

So based on this property of Gröbner’s basis three problems have been defined

and here we will give an informal definition of all these problems. For details

refer [4]. We refer to the framework of [4]. Assume there is an oracle O which

takes as input ring P of polynomials over n(λ)(is a polynomial) finite field Fq of

characteristic q(λ), a Gröbner basis G having n elements, a constant d which is

the degree of the elements in G, a constant b which is the maximum degree of

polynomial released by the oracle. Assume d < b. O returns random polynomials

of degree at most b in the Ideal generated by G. The problems also depends on

apriori fixed polynomial m() which denotes the maximum number of queries

made to O.

– Gröbner Basis Problem(GB): The game is as follows. Challenger samples

a ring P and G. It then gives adversary A an access to O which can query at

most m() times. Adversary has to output a Gröbner basis of Ideal generated

by G. A wins if it returns a correct Gröbner basis.

– Ideal Remainder Problem(IR): The game is as follows. Challenger sam-

ples a ring P and G. It then gives adversary A an access to O which can

query at most m() times. Challanger than challenges A with a random poly-
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nomial in P≤b, f . Adversary has to output r ← f mod G. A wins if it answers

correctly.

– Ideal Membership Problem(IM): The game is as follows. Challenger

samples a ring P and G. It then gives adversary A an access to O which

can query at most m() times. Challanger than challenges A with a random

polynomial in P≤b, f . Adversary has to output if f is in ideal generated by

G or not. A wins if it answers correctly.

[4] gives a reduction of each of these problems to each other when qdimP/<G>

is small i.e. polynomial in λ. If we assume any one to be hard then other two

are equally hard. More generally GB ≥ IR ≥ IM .

Paper also suggests that it is reasonable to assume:

Definition 8. (GB/IR/IM Assumption).

Let P be such that n(λ) = Ω(λ). Assume b−d > 0, b > 1, and that m(λ) = cn(λ)

for a constant c ≥ 1. Then the advantage of any ppt algorithm in solving the

GB/IR/IM problem is negligible as function of λ.

4.3 Pseudo-Random Functions(PRF)

Let l1 and l2 be positive integers (which are actually polynomially bounded

functions in a security parameter). Let F := {Fs | s ∈ S} be a family of keyed

functions, where each function Fs maps {0, 1}l1 to {0, 1}l2 . Let Γl1,l2 denote the

set of all functions from {0, 1}l1 to {0, 1}l2 . Informally, we say that F is pseudo-

random if it is hard to distinguish a random function drawn from F from a

random function drawn from Γl1,l2 . More formally, consider an adversary A that

has oracle access to a function in Γl1,l2 , and suppose that A always outputs a

bit. Define the PRF-advantage of A to be | Pr[s←$ S : A(Fs) = 1]− Pr[f ←$

Γl1,l2 : A(f())] = 1] |. We say that F is pseudo-random if any efficient ppt.

adversary’s PRF-advantage is negligible.
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5 Our first Construction

Fix the ring as R = Fq[t1, t2, ...., tN ]/(tq1− t1, .., t
q
N − tN ). Fq is a finite field with

q elements. q is chosen to be O(1). For this work we choose q = 2. Analysis

is similar for fields of higher characteristic. Idea we propose is to have N is

exponential in the security parameter or Ω(2λ). As discussed earlier we would

only be describing a symmetric key crypto system.

Let there be two parties, Alice and Bob. We want them to have as a shared

secret a secure function g : [1, N ]→ Fq. g is sampled randomly from the family

of pseudo random functions G = {gk | k ∈ K}. Key space, K has atleast ω(2λ) el-

ements. Heuristically, one possible construction is assuming they(Alice and Bob)

have a prior key exchange to a deterministic secure(at least λ bit secure) symmet-

ric key Encryption scheme(EncK(∗))(AES let’s say) then, g(n) = H(EncK(n))

for n ∈ [1, N ] where H(∗) is a hash(compression) function and maps encryption

to Fq. Let’s us describe our first candidate scheme π = (KeyGen, Enc, Dec,

Eval) now.

KeyGen(λ): Output a secret function g that allows to compute g(n) for

n ∈ [1, N ] in polynomial time. Alternately, we could have stored as secret key

a vector which stores a sequence in the field Fq, (a1, ..., aN ). Since N is expo-

nential in the security parameter, it would make the KeyGen scheme exponen-

tial in time and space. This is the reason we just store a secret function and

g(n) is calculated whenever required. Ideal in the ring that we will be using is

I = (t1−g(1), ..., tN−g(N)). This is the set I = {
∑i=N
i=0 (ti−g(i))×fi(t1, ..., tN )}

where fi(t1, ..., tN ) are random polynomials in the ring. Our plain-text space is

P = F2

Theorem 3. Let R be the ring described above, I be the ideal (t1− g(1), .., tN −

g(N)) then, i(t1, .., tN ) ∈ I iff i(g(1), .., g(N)) = 0 [13]
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Encrypt(g, b): Select m numbers from [1, N ](can be repeated). m is O(log(λ))

for reasons described later. Order them in ascending order, denote this random

number vector R = (R1, R2, ..., Rm). To encrypt a bit b, do the following:

f ←$ F2[tR1
, .., tRm

]/(t2R1
− tR1

, .., t2Rm
− tRm

). This f is linear in m selected

indeterminates.

Output c← b+ f(tR1 , .., tRm)− f(g(R1), .., g(Rm)).

Note that cipher text is a polynomial with at most m variables. Since, we

are working an extension ring of F2, for our purpose, t2i = ti∀i ∈ [1, N ] when

evaluated at 0 and 1. The multiplication is done using the rule t2i = ti∀i ∈ [1, N ].

For example, (t1t5t11 + t2) × (t7 + t5) = t1t5t11t7 + t2t7 + t1t5t11 + t2t5. This

makes cipher-text is linear in all indeterminates.

Decrypt(g, c(t1, ..., tN )): Evaluate the cipher-text polynomial at ti = g(i)∀i ∈

[1, N ], as usual. Formally,

Output, b← c(g(1), .., g(N))

This is a polynomial time algorithm because the cipher text polynomial is

linear in all m indeterminates, such a cipher text can have 2m monomials. Since

m is chosen to be O(log(λ)) the length of the cipher-text is at most a polynomial

in the security parameter. Since each cipher text is a function of at most m

variables, decryption algorithm computes g(∗) on at most O(log(λ)) points and

evaluates a polynomially long cipher-text, decryption takes polynomial number

of operations.

Evaluate(c1(t1, ..., tN ), c2(t1, ..., tN )): It would be sufficient to describe Addi-

tion and Multiplication gates for the purpose of describing Evaluate algorithm.

Let’s define add (similarly multiplication- replace + with × in the argument) in

the following manner:

Add(c1(t1, ..., tN ), c2(t1, ..., tN )): first compute

c(t1, ..., tN ) = c1(t1, ..., tN ) + c2(t1, ..., tN ).
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c(t1, ..., tN ) will be a polynomial in at most 2m variables if the input cipher-text

is fresh. Multiplication is done similarly,

In summary,

Add(c1(t1, ..., tN ), c2(t1, ..., tN )):

Compute c(t1, ..., tN ) = c1(t1, ..., tN ) + c2(t1, ..., tN )

Mult(c1(t1, ..., tN ), c2(t1, ..., tN )):

Compute c(t1, ...., tN ) = c1(t1, ...., tN )× c2(t1, ...., tN )

CORRECTNESS: Scheme is correct as encrypt algorithm takes as input a

secret function g and a bit b in the plain text space F2 and outputs an element in

the coset b+I, where I is the ideal (t1−g(1), .., tN−g(N)). Suppose Encrypt(b, g)

outputs i(t1, .., tN ) + b for i(t1, .., tN ) ∈ I, Decrypt evaluates this cipher-text at

(g(1), .., g(N)) and outputs b + i(g(1), .., g(N)) = b since i(t1, .., tN ) ∈ I and

by theorem 1 i(g(1), .., g(N)) = 0. Multiplication and addition works correctly

because of the ring structure of the cipher texts.

It is observed when we keep on adding or multiplying various cipher-text the

size of cipher-text grows and hence the scheme is not compact. For compactness

it is desirable to have a procedure like cipher text reduction, which is based on the

fact that intermediate cipher-text c(t1, .., tN ) depends upon at most 2m variables

and would contain at most 22m monomials, which is polynomially bounded in

the security parameter. Suppose that monomials appearing in the cipher-text

look like te11 t
e2
2 ...t

eN
N where exponents ei ∈ [0, 1]∀i ∈ [1, N ] and at most 2m of the

exponents are non zero. If we replace this monomial by g(1)e1g(2)e2 ...g(N)eN +

Encrypt(g, 0), we still get a valid cipher-text. Hence, we replace each monomial

te11 t
e2
2 ...t

eN
N with g(1)e1g(2)e2 ...g(N)eN + Encrypt(g, 0), where the encryptions of

0 depend on selected m variables. This gives us a cipher-text depending upon at

most m variables. One can check this is a polynomial time algorithm. Since, an

untrusted sever cannot store exponential number of encryptions of product of the
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secret key’s this is not how we achieve compactness. For this variant of scheme

just consider add and multiply without any cipher-text reduction so that the

cipher text size increases with multiplication and addition. In the next scheme,

we describe degreereduction using similar concepts which ensures compactness.

Since we want our cipher text size to be polynomially bounded we can only solve

circuits of bounded depth.

Lets analyse depth using 2 fan in addition gates and 2 fan in multiplication gates.

If we start with a fresh cipher-text having m variables, at a depth d we have

about 2d.m variables. At this depth the maximum length of cipher text is 2m2d .

When we want length of the final cipher-text to be bounded by a polynomial

poly(λ) in that case the depth that we can solve is loglog(poly(λ)) − log(m).

But this is an overkill. If we somehow encrypt such that fresh-cipher text has at

most O(1) length, we can solve O(log(λ)) deep circuits. This is because at each

level the length of the cipher text squares so at level d it will be cd and for this

to be polynomially bounded we require d to be O(log(λ)), for a constant c.

One important feature is, given a cipher-text tuple of O(1) fresh cipher-texts, we

can evaluate circuits of any depth on this vector, because number of variables

appearing in the cipher text vector is still O(m), and hence it produces a bound

on the length of the final cipher-text.

5.1 Proof of Security

For arguing about the security of the scheme we consider number of games. De-

note FuncN () as set of all functions from [1, N ]→ F2. G denote the set of pseudo-

random functions from same domain and co-domain G = {gk | k ∈ K = {0, 1}λ}.

Consider these definition of games played between a challenger C and any ppt

adversary A.

Game 0:
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Setup:

Challenger

sk ← gk ←$ G. This is viewed as a secret key for encryption scheme π described

above.

Query Phase 1:

This is the query phase where A queries challenger C encryptions of messages.

A returns queries by using Encrypt(sk, ∗).

Challenge Phase:

C picks β ←$ {0, 1} and sends Encrypt(sk, β) to A.

Query Phase 2:

Same as Query Phase 1.

Guess

A tries to guess β and outputs β′. If β = β′, A wins the game.

Advantage of an adversaryA in wining the the Game 0 is defined asAdvGame−0A,π (λ) =

Pr[β = β′]− 1/2.

Game 1:

Game 1 is played same as Game 0 except that in setup phase Challenger assigns

secret key as sk ← f ←$ FuncN ()

AdvGame−1A,π (λ) is defined analogously.

Note that Game 0 is the same as the IND-CPA game for the scheme π. So,

AdvGame−0A (λ) = AdvIND−CPAA,π (λ). We will now prove that AdvIND−CPAA,π (λ) is

negligible for any ppt adversary A.

Lemma 1. If there is an Adversary A for which | AdvGame−0A,π (λ)−AdvGame−1A,π (λ) |

is not negligible then, we can construct a ppt adversary D which distinguishes

between a function chosen randomly from a family of pseudo random functions

G and a truly random function with a non-negligible advantage

Proof. Let, | AdvGame−0A,π (λ)−AdvGame−1A,π (λ) |= ε. Let us consider an adversary

D that uses A. Consider D that receives a function h from the challenger and
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D uses A and plays IND-CPA game with A and answering queries by using h

as the secret key. Suppose D challenges A by encrypting β and A outputs β′

then D returns xor(β, β′). For D the problem is the same as to tell whether

A is playing game 0 or game 1. For this distinguisher, D, PRF-Advantage is

defined as | Pr[f ← FuncN | D(f) = 1] − Pr[gk ← G | D(gk) = 1] |. This is

also equal to | Pr[f ← FuncN | D(f) = 0] − Pr[gk ← G | D(gk) = 0] |. Note

that, Pr[f ← FuncN | D(f) = 0] = 1/2 + Advgame−1A,π (λ) and Pr[gk ← G |

D(gk) = 1] = 1/2 + Advgame−0A,π (λ). So, PRF-Advanage for D comes out to be,

| Advgame−0A,π (λ)−Advgame−0A,π (λ) |= ε.

Lemma 2. Advgame−0A,π (λ) is negligible for any ppt adversary A.

Proof. Consider the following game,

Game 2

Setup:

Challenger

sk ← f ←$ FuncN (). This is viewed as a secret key for encryption scheme π

described above.

Query Phase 1:

This is the query phase where A queries challenger C encryptions of messages.

A returns queries by using Encrypt(sk, ∗).

Challenge Phase:

C picks β ←$ {0, 1} and sends Encrypt(sk, β) to A.

Query Phase 2:

Same as Query Phase 1.

Guess

If challenge cipher-text depends on the variable which has been encountered be-

fore in a queried cipher-text, abort the game call this event F . Else, A tries to

guess β and outputs β′. If β = β′, A wins the game. AdvGame−2A,π (λ) = Pr[β =
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β′]− 1/2

Observe that Game-2 is similar to Game-1 except when challenge cipher-text

depends on variables on which the queried cipher-text replies depend on. At this

even F , Game-2 aborts.

By using the difference lemma [17], | AdvGame−0A,π (λ)−AdvGame−2A,π (λ) |≤ pr[F ].

AdvGame−2A,π (λ) = 0, because in this game challenge cipher-text depend upon

completely new set of variables and decryption involves evaluation of this cipher-

text on random set of points(output of a truly random function). Lets, calculate

Pr[F ]. The probability that F ′ occurs is the probability that challenge cipher-

text doesn’t depend on variables involved in κ cipher-text queries replied.

Pr[F ′] ≥ (N−mκN )m ≈ 1 − m2κ
N as long as κ is O(N) and grows slower than N .

Since, N is exponential, κ is allowed to be exponential for this game. Pr[F ] ≤
m2κ
N . This implies that, | AdvGame−1A,π (λ)−AdvGame−2A,π (λ) |≤ m2κ

N orAdvGame−1A,π (λ) ≤
m2κ
N , which is negligible. Since, | AdvGame−0A,π (λ)−AdvGame−1A,π (λ) |= ε,AdvGame−0A,π (λ) ≤

AdvGame−1A,π (λ) + ε, As long as κ is polynomially bounded, D makes polynomial

queries with the function oracle and hence ε is negligible as PRF problem is

hard. Combining theses results we get AdvGame−0A,π (λ) ≤ AdvGame−1A,π (λ) + ε is

negligible.

5.2 What we achieve from the scheme

As one can clearly see, fresh cipher text polynomials are polynomials in at most

m variables and each cipher text can have at most 2m monomial terms. Since

the cipher-text size grows, the scheme is not compact, as seen in polycracker

based scheme such as [4].

For an input cipher-text vector of upto a constant length, the scheme can evalu-

ate circuits of all depths. We worked on field with characteristic 2 but one could

generalize the discussion above with field of higher characteristic q as long its

length is bounded by a constant. We base the CPA security of the scheme on in-
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formation theoretic arguments rather than basing them on problems like Gröbner

basis/ Ideal Membership/ Ideal Remainder which yield us at most bounded se-

curity.

Implementations show that homomorphic systems have huge cipher-texts and

generally cipher length is bounded by large degree polynomials in λ. In our

scheme, cipher-texts can be very small, as small as O(λ) without compromising

on the security. This is achieved when cipher-text depends on O(1) number of

variables. This gives us an efficient cryptosystem for circuits of smaller depth.

Evaluate algorithm can solve circuits of every depth when the input cipher-text

vector has length O(log(λ)) variables. This means it can handle for any depth,

constant number of cipher-text having O(log(λ)) variables or O(log(λ)) cipher-

texts with constant number of variables.

This also gives us a way of constructing a CPA secure symmetric homomor-

phic encryption scheme from a deterministic CPA secure symmetric encryption

scheme.

6 Second construction - N is O(poly(λ))

Scheme described above is secure for an exponential N . Once N is made to be

Ω(poly(λ)) we can make a similar scheme compact and public Key. We prove the

scheme to be bounded CPA secure. Security based on Ideal membership problem

follows from [4]. Since we choose q to be Ω(2λ) we do not know of a reduction

of Ideal Remainder(IR) problem to Ideal Membership(IM) problem.

6.1 Scheme

We are dealing with the ring P = Fq[t1, .., tN ] where N is a polynomial in λ.

Here, q is taken to be prime characteristic of the field. Here it is assumed that

q = q(λ) is Ω(2λ). The monomials in this ring take the form te11 ...t
eN
N , where ex-

ponents take values over non-negative integers. Degree of a monomial is defined

as e1 + ...+eN . Degree of a polynomial in this ring is the degree of the monomial
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occurring in the polynomial that has the maximum degree.

We describe a symmetric key scheme and later on describe how it can be made

into a public key scheme. Ideas used here are the similar to the ideas described

in the symmetric polly cracker scheme described in [4]. We first briefly describe

the scheme. Suppose Alice and Bob wants to communicate. They share as secret

key some ”special” polynomials that generate an ideal I = (f1, .., fN ). These

functions form a Gröbner basis for the ideal. It is assumed that V (I) 6= φ. So, that

(a1, .., aN ) ∈ V (I). This point forms the secret key along with the fi’s. Plaintext

space P is Fq. To encrypt a message π ∈ Fq, output π + i(t1, .., tN ) such that

i(t1, .., tN ) ∈ I. Decryption amounts to evaluating the cipher text at any point

in V (I). This scheme is homomorphic as π1 + i1 +π2 + i2 ∈ π1 +π2 +I and (π1 +

i1).(π2 + i2) ∈ π1.π2 +I∀i1, i2 ∈ I&π1, π2 ∈ P. Let’s describe these algorithms in

detail. Let us denote the scheme as ε = (KeyGen,Encrypt,Decrypt, Evaluate)

Assume there is an algorithm GBGen() that returns a Grobner basis with

one point in its variety or set of zeros.

KeyGen(λ): Fix N as a polynomial in λ. From the security proof, we can

release Ω(N) message-encryption pairs before security breaks down. Fix d a

constant, the degree of the generators of the secret ideal and a constant b which

is the degree of fresh cipher text.

(f1, .., fN , a1, .., aN )←$ GBGen(λ, P, d)

fi(a1, .., aN ) = 0∀i ∈ [1, N ]. Public Parameters also include the set K which is

by definition, K = {Encrypt(sk, ae11 ..a
eN
N ) |

∑i=N
i=0 ei ∈ [1, b + 1]}. K contains

O(N b) encryptions and hence it is a polynomial sized set.

In practice, instead of usingGbGen() one could useGbGendense() forKeyGen().

We will now describe Encrypt(, ∗).

Encrypt(sk, π) Select f ←$ P≤b

f ← f − fmodG, G is the Gröbner basis of the secret ideal

Output c← f + π
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Note that size of the cipher-text is polynomially bounded as number of mono-

mials of degree at most b is O(N b).

Decrypt(sk, c) Output π ← c(a1, .., aN ).

Decryption is correct as a valid cipher-text is of the form π+
∑i=N
i=1 hifi, evalu-

ation of which gives π.

Evaluate(K,C,c) : This algorithm takes as input a cipher-text vector c a

circuit C and a set K which has encryptions of all the product terms of b + 1

values of g functions. It replaces add and mul gates in the circuit with the

following description:

Add(c1(t1, .., tN ), c2(t1, .., tN )) compute c(t1, .., tN ) = c1(t1, .., tN )+c2(t1, .., tN ).

Since degree of c(t1, .., tN ) is less than or equal to b, output c(t1, .., tN ).

Mul(c1(t1, .., tN ), c2(t1, .., tN )) compute c(t1, .., tN ) = c1(t1, .., tN ).c2(t1, .., tN )

where ”.” is multiplication in the ring. Since the degree of the cipher text in-

creases, perform degree reduction(described) on the cipher-text.

degreereduction(K, c(t1, .., tN )): This algorithm takes as input the set K and

the cipher-text polynomial whose degree has to be reduced. If we encounter a

monomial of degree greater than or equal to b+ 1 say te11 ..t
eN
N of degree at most

2b, replace this with an encryption of ae11 ..a
eN
N . This is done inductively using

the set K. If we have a monomial of degree b + 1 replace it by corresponding

encryption from set K which is a polynomial of degree b. Otherwise for every

monomial of degree ≥ b + 2 club the monomial as a product of monomial of

degree b + 1 and a monomial of degree less than 2b − (b + 1) and substitute

the monomial of degree b + 1 with corresponding encryption from K. This will

reduce the degree of the polynomial by 1. Repeat this procedure at most b times.

For monomials of degree ≤ b− 1 replace by corresponding encryptions from K.

Upon completion we get a cipher text of degree at most b hence polynomially

bounded in size. Observe that this algorithm is a polynomial time algorithm. If

d = 1 we can optimize this procedure and reduce the size of the set K by keeping

encryptions of degree b+ 1 only.
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CORRECTNESS: Correctness of Evaluate() stems form correctness of ad-

dition and multiplication operation. Suppose, c1 = π1 +
∑i=N
i=1 hifi and c2 =

π2 +
∑i=N
i=1 gifi where c1, c2 are of degree at most b. Addition outputs c ←

c1 +c2 = π1 +π1 +
∑i=N
i=1 (hi+gi)fi which decrypts to π1 +π2 and is of degree at

most b. Upon multiplication we first multiply cipher-text and then perform de-

gree reduction. multiplication gives us something of the form π1π2 +
∑i=N
i=1 kifi

and is of degree at most 2b and decrypts correctly. When we perform degree

reduction, each monomial of the form te11 ...t
eN
N and degree greater than b is re-

placed by ae11 ...a
eN
N +

∑i=N
i=1 hifi. Decryption works correctly since the evaluation

at the point in the variety is the same and the form of the cipher-text is still

π +
∑i=N
i=1 gifi and has degree at most b.

6.2 Proof of Security

Security proof for the case when N was exponential will not work here. [4] pro-

vides a proof of bounded security for the scheme. The security proof is based on

Ideal membership problem. The maximum number of queries that an adversary

can make before security breaks down is m(λ) = Ω(N) [4]. N therefore can be

chosen as per requirements.

Definition 9. (m-time IND-BCPA Security). The m-time IND-BCPA security

of a (homomorphic) symmetric-key encryption scheme ε is defined by requiring

that the advantage of any ppt adversary A given by :

AdvIND−BCPAm,ε,A (λ) = Pr[IND −BCPAAm,ε,(λ)) = True]− 1/2

is negligible as a function of the security parameter λ . The game IND −

BCPAm,ε is the same as the IND-CPA game with one difference. The difference

with the usual IND-CPA security is that the adversary can query its encryption

and left-or-right oracles at most m(λ) times.

Theorem 4. Let A be a ppt adversary against the m-time IND-BCPA security

of the scheme. Then there exists a ppt adversary B against the IM problem such

that for all λ ∈ N we have AdvIND−BCPAm,ε,A (λ) = 2AdvIMP,d,b,m,B(λ). Conversely, let
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A be a ppt adversary against the IM problem. Then there exists a ppt adversary

B against the m-time IND-BCPA security of the scheme such that for all λ ∈ N

we have AdvIMP,d,b,m,A(λ) = AdvIND−BCPAm,ε,B (λ) [4].

Proof. Assume A is an adversary to the IND-BCPA security of the scheme, we

construct an IM adversary B from it. B is given λ, P,O. O is an oracle that

responds to queries of B and answers with elements in P≤b ∩ I, where I is the

secret ideal. B uses A as follows, If A queries Encrypt(m), B responds with

Sample(O) +m. When A sends B with challenge tuple (m0,m1), B responds by

choosing c←$ {0, 1} and sends f +mc to A. B declares f to be a member in I if

A answers correctly. In this case when f is in Ideal I advantage of B is the same

as advantage of A otherwise its advantage is 0. Hence, AdvIND−BCPAm,ε,A (λ) =

2AdvIMP,d,b,m,B(λ).

For the converse, we have an IM adversary A and we construct an IND-BCPA

adversary B from it. Challenger runs KeyGen(), B is given an access to an oracle

O that returns encryptions of messages queried. When A queries for elements

in the ideal B queries O with encryptions of 0 and sends them to B. In the

challenge phase B sends as a challenge tuple (0, r) where r is random in P to A.

If A responds with the challenge cipher text as an element of ideal (B) outputs

it to be an encryption of 0 else it declares is an encryption of a random element.

In this case advantage of A and B is the same. Hence,

AdvIMP,d,b,m,A(λ) = AdvIND−BCPAm,ε,B (λ) In both cases O replies queries at most m

times.

Corollary. From GB/IR/IM assumption and theorem 4, the scheme is IND-

BCPA secure.

6.3 KDM security

In order to ensure compactness of the scheme we ouptut encryptions products

of the secret key of degree ≤ b + 1. Hence we need to talk about ”circular”

or KDM security. We just assume KDM security and present a heuristic here

that suggests its not a bad assumption to make. Security breaks down when an
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adversary has a knowledge of Ω(m(λ)) or Ω(N) plaintext cipher text pairs. We

claim that the probability of that knowledge from the public set K is negligible.

Consider the distribution of {ae11 ..a
eN
N | ei ≥ 0∀i ∈ [1, N ]&

∑i=N
i=1 ei ∈ [1, b+ 1]}

where ai ∼ U(Fq∗)∀i ∈ [1, N ] is uniform in Fq∗ (units in Fq). So, for an attack

it is best bet to assume everything in the set K as an encryption of a particular

constant. Now we argue that in set K probability that an encryption corresponds

to an encryption of 1 or equivalently, a constant is negligible. Let Xi for i ∈ Fq∗

denote the random variable that exactly counts number of encryptions of i in

K. Note that it is a binomial random variable with parameters 1/(q− 1) and #

K.

Now probability for the event Xc ≥ m(λ) for a constant c is bounded by

markov inequality as: Pr[Xc ≥ m(λ)] ≤ # K/qm(λ), which is negligible as q is

Ω(2λ) and #K is polynomial.

6.4 Making the scheme public

The scheme described above can’t be made public key if we output many encryp-

tions of ”0” because this will enable an adversary to generate m(λ) encryptions

and produce an attack on the scheme. This is because the scheme is not IND-

CPA secure, instead it is IND-BCPA secure.

6.5 What we achieve from this scheme

We get a symmetric, bounded BCPA secure, compact, fully homomorphic en-

cryption without the need to bootstrap.
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