
Symboli
 Universal ComposabilityFlorian BöhlKIT Dominique UnruhUniversity of TartuAbstra
tWe introdu
e a variant of the Universal Composability framework (UC; Canetti,FOCS 2001) that uses symboli

ryptography. Two salient properties of the UCframework are se
ure
omposition and the possibility of easily de�ning se
urity bygiving an ideal fun
tionality as spe
i�
ation. These advantages are now also availablein a symboli
 modeling of
ryptography, allowing for a modular analysis of
omplexproto
ols.We furthermore introdu
e a new te
hnique for modular design of proto
ols thatuses UC but avoids the need for powerful
ryptographi
 primitives that often
omeswith UC proto
ols; this �virtual primitives� approa
h is unique to the symboli
setting and has no
ounterpart in the original
omputational UC framework.Contents1 Introdu
tion 22 Review of the applied pi
al
ulus 52.1 Synta
ti
 sugar . 92.2 Additional
on
epts used in this work . 93 Useful properties of the pi
al
ulus 133.1 Relating events and observational equivalen
e 233.2 Unpredi
tability of non
es . 294 Symboli
 UC 315 Composition 356 Property preservation 587 Relation to Delaune-Kremer-Pereira 608 Example: Se
ure
hannels 638.1 Key ex
hange using NSL . 648.2 Se
ure
hannel from key ex
hange. 668.3 Generating many keys from one . 721

9 Virtual primitives 779.1 Realizing
ommitments . 789.2 Removing the virtual primitives . 849.3 On removing the CRS . 88A Limits for
omposition and property preservation 92Symbol index 99Index 1021 Introdu
tionIn the analysis of
ryptographi
 proto
ols, symboli
 analysis te
hniques (going ba
k toDolev and Yao [DY81℄) have shown to be very fruitful. Symboli
 te
hniques allow formu
h better automation than te
hniques working in the
omputational model (whereinmessages are bitstrings and adversaries are runtime-limited
omputations). In a symboli
model of
ryptography, messages are typi
ally modeled as terms in a
ertain algebra, andthe
apa
ities of the adversary are des
ribed by, e.g.,
ertain dedu
tion rules over theseterms.In this work, we show how to apply the idea of Universal Composability (UC) [Can01℄to the setting of symboli

ryptography. (The independently developed Rea
tive Simu-latability [BPW07℄ has the same idea. For simpli
ity, we only refer to UC in the following.)The Universal Composability framework is a framework for spe
ifying se
urity propertiesof
ryptographi
 proto
ols that has the following two salient properties:
• Spe
ifying se
urity properties via fun
tionalities. In the UC framework, the se
uritygoals of a proto
ol are spe
i�ed by des
ribing a so-
alled ideal fun
tionality whi
his a hypotheti
al entity whi
h, by
onstru
tion, a
hieves all the desired se
uritygoals. For example, if we wish to ask whether a proto
ol is a se
ure
ommuni
ationproto
ol, we simply spe
ify the se
ure
hannel fun
tionality. This very simplefun
tionality just takes a message from Ali
e, informs the adversary that Ali
e senta message, and gives that message to Bob. From the des
ription of the fun
tionality,it is then obvious what properties we a
hieve: The adversary learns nothing ex
eptthat a message is delivered (se
re
y). The message Bob re
eives is the same as theone that Ali
e sent (integrity).Given the des
ription of an ideal fun
tionality, we then
all a proto
ol se
ure if it�UC-emulates� that fun
tionality. UC-emulation essentially means that the proto-
ol is as se
ure as the fun
tionality, i.e., that any se
urity property satis�ed by thefun
tionality (se
re
y and integrity in our example) is also satis�ed by the proto
ol.Using ideal fun
tionalities to des
ribe what se
urity a proto
ol a
hieves is oftensimpler than expli
itly des
ribing all required properties one by one. For example,the se
urity of the Dire
t Anonymous Attestation proto
ol [BCC04℄ is only spe
i�edby an ideal fun
tionality. 2

Another view on this de�nition is one of se
urity preserving re�nement. The fun
-tionality is an abstra
t spe
i�
ation, and the proto
ol is a re�nement that preservesse
urity.1Note that the fa
t that UC-emulation preserves se
urity
an be formalized: For a
ertain
lass of se
urity properties we have that if the fun
tionality has this property,so has any proto
ol that UC-emulates that fun
tionality. (See Se
tion 6).
• Composition and modular design and analysis. Se
urity in the UC framework im-plies se
ure
omposition. That is, assume a se
ure proto
ol ρ that uses an idealfun
tionality F as a building blo
k (e.g., ρ uses a se
ure
hannel F). Then, ifanother proto
ol π UC emulates F (i.e., π is a message transmission proto
ol), we
an repla
e F by π in ρ and again get a se
ure proto
ol.This
omposition operation enables the modular design and analysis of a proto
ol.For example, in Se
tion 8, we show that a variant of the Needham-S
hroeder-Loweproto
ol NSL [Low95℄ UC-emulates the key ex
hange fun
tionality FKE whi
h givesa se
ure key to two parties. Another proto
ol SC UC-emulates the se
ure
hannelfun
tionality FSC . And �nally, assume we had some
omplex proto
ol X imple-menting some
omplex fun
tionality FX (think, e.g., of some large e-
ommer
eappli
ation), and that X uses se
ure
hannels. Then we
an plug X, NSL, and

SC together, and get a proto
ol X∗ that still UC-emulates FX . (And due to the
omposition theorem, we do not need to verify the
omposed proto
ol anew.) In
ontrast, without the
omposition theorem, we would have had to analyze X∗ inone go; that analysis being mu
h more
omplex be
ause the implementation of these
ure
hannel would be intermixed with the
omplex proto
ol X.The
omposition theorem also has the impli
ation that a proto
ol will keep its se
u-rity when run in other, as yet unknown,
ontexts. This is a very important property,be
ause on the Internet, a proto
ol will hardly run alone. (Cryptographers often
all se
urity de�nitions that do not have this property �stand-alone models�.)The UC framework has been de�ned in the
ontext of
omputational
ryptography.However, its two salient properties, se
urity spe
i�
ation via fun
tionalities and se
ure
omposition, are as useful in a
ontext where
ryptography is modeled symboli
ally.In parti
ular, even though
omputer veri�
ation in the symboli
 setting s
ales mu
hbetter than the usually manual veri�
ation in the
omputational setting, most analysiste
hniques still
annot deal with arbitrarily
omplex proto
ols.2 So being able to designand verify a proto
ol modularly will allow us to analyze more
omplex proto
ols.1Many other re�nement notions do not preserve, e.g., anonymity. For example, imagine a proto
olwhere user Ali
e sends A or B over the network (
hosen non-deterministi
ally). And Bob sends A or B.Then the adversary
annot distinguish Ali
e and Bob. A re�nement might be that Ali
e sends A andBob sends B. Obviously, the anonymity of Ali
e and Bob is now violated.2Veri�
ation by type
he
king (e.g., [BBF+11℄) being a notable ex
eption; this approa
h usually s
alesvery well. But annotating a proto
ol with types suitable for veri�
ation
an be daunting.3

Our
ontribution. In this work, we show that the ideas of the UC framework
arryover to the symboli
 setting. We show that the
omposition theorem and the fa
t thatse
urity properties
arry over still hold in the symboli
 UC framework. (Con
urrent
om-position turns out to be non-trivial be
ause we need to en
ode a spe
ial variant of pro
essrepli
ation in the applied pi
al
ulus that provides session ids to repli
ated pro
esses.)We present an example analysis of a key ex
hange using the Needham-S
hroeder-Loweproto
ol, and how to use it in a se
ure
hannel proto
ol via
omposition.We show that impossibilities from the
omputational UC framework unfortunatelystill apply in the symboli
 setting; in parti
ular, implementing a
ommitment fun
tion-ality without any trusted setup is impossible. On the positive side, we show that thisimpossibility
an be
ir
umvented to a large part by a tri
k that we
all �virtual primi-tives�; here we perform the proof of se
urity under the assumption that the
ryptographi
primitive have some exoti
 features, but in the end
on
lude se
urity for the original
ryp-tographi
 primitives without these exoti
 features. This �virtual primitives�-approa
h isunique to the symboli
 setting, to the best of our knowledge no
orresponding te
hniqueexists in the
omputational world.We also show how to use Proverif as a helping tool for performing the observationalequivalen
e proofs when showing se
urity in our framework. For this we develop a set oflemmas that help in rewriting pro
esses and allows us to use Proverif as a tool even forobservational equivalen
e proofs that do not involve so-
alled bipro
esses and are thusout of the s
ope of Proverif. (See Se
tion 8.) We believe that this set of lemmas is usefulalso in other settings than that of our work.Prior work. The problem of transporting the ideas of the UC framework into thesymboli
 setting has already been ta
kled by Delaune, Kremer, and Pereira [DKP09℄.They do, however, di�er from the original UC framework (and from our work) in one
ru
ial point: In the original framework, the existen
e of a so-
alled simulator is requiredthat makes two di�erent proto
ol exe
utions � the �real and ideal exe
ution� � indis-tinguishable (this will be
ome
learer later). Instead of indistinguishability, [DKP09℄use an observational preorder. That is, everything that
an happen in the real world
an non-deterministi
ally be mat
hed by the ideal world, but not ne
essarily vi
e-versa.This was due to
ertain problems in
onstru
ting simulators when using observationalequivalen
e instead. However, we show that using an observational preorder limits thestrength of the se
urity de�nition
onsiderably. For example, if a fun
tionality guaranteesanonymity (e.g., an anonymous broad
ast), a proto
ol that emulates that fun
tionalitywill not ne
essarily satisfy anonymity. On the other hand, we show that using observa-tional equivalen
e instead of an observational preorder gives a stronger de�nition thatdoes, e.g., preserve anonymity properties. Furthermore, we show that, when designingthe fun
tionality a

ording to a simple guideline, the problems with observational equiv-alen
e that [DKP09℄ observed vanish. (However, there are
hallenges when dealing with
on
urrent
omposition that apply only in our setting, and not when using the weakerde�nition based on observational preorders.) We explain the issues related to [DKP09℄in more detail in Se
tion 7. 4

On the
omputational side, relevant prior work is of
ourse the UC framework[Can01℄ itself. Other models based on the same ideas are Rea
tive Simulatability(RSIM) [BPW07℄, SPPC [DKMR05℄, IITM [Küs06℄, Task-PIOA [CCK+06a, CCK+06b℄,and GNUC [HS11℄. Some of our results are adaptations of existing
omputational sound-ness results: the impossibility of
ommitments [CF01℄ in Se
tion 9.3 and the joint statete
hnique [CR03℄ in Se
tion 8. Finally, the symboli
 setting is not the �rst example ofthe fa
t that the UC framework
an easily adapted to other settings to get di�erentor stronger se
urity guarantees, e.g., GUC (UC with shared fun
tionalities) [CDPW07℄,quantum-UC [Unr10, Unr11℄, UC with lo
al adversaries [CV12℄, UC/
 (in
oer
ibility)[UMQ10℄, UC with everlasting se
urity [MQU07℄. Furthermore, links between UC andsymboli
 models o

urred where UC-like models were used to establish
omputationalsoundness results [BPW03, CH11℄.Outlook. Further resear
h might ta
kle the following points:
• Using our framework for analyzing the se
urity of existing proto
ols. A parti
u-lar interesting
andidate is the Dire
t Anonymous Attestation proto
ol [BCC04℄be
ause its se
urity is already formulated in a UC model.
• Although we partially used Proverif for some of the proof steps, the analysis of ourexample proto
ols still used a lot of manual work. Can the veri�
ation of symboli
UC se
urity be automated?
• There are extensions of the UC framework. For example [UMQ10℄ provides an ex-tension that
aptures in
oer
ibility. That model
ould be translated to the symboli
setting and used for the analysis of voting proto
ols.
• In
ombination with
omputational soundness results (these are results that showthat symboli
 se
urity in
ertain
ases implies
omputational se
urity), the virtualprimitives approa
h
ould be a viable new te
hnique for showing
omputationalse
urity: Design the proto
ol symboli
ally modularly using virtual primitives, andthen
arry the se
urity over to the
omputational setting.2 Review of the applied pi
al
ulusIn this se
tion we review the variant of the applied pi
al
ulus from [BAF08℄ that we usein our paper. Below (Se
tion 2.2) we list some non-standard de�nitions that we will use,readers familiar with the applied pi
al
ulus
an dire
tly skip to that se
tion.The pro
ess
al
ulus presented in [BAF08℄ is a
ombination of the original applied pi
al
ulus [AF01℄ and one of its diale
ts [Bla04℄.We have a set of terms that is built upon three basi
 sets. The in�nite set of names N ,the in�nite set of variables V and the set of fun
tion symbols (
alled the signature Σ).Names des
ribe all kinds of atomi
 data, i.e. are used as non
es or to represent messages.5

We distinguish two
ategories of fun
tion symbols:
onstru
tors, whi
h are used to
on-stru
t terms of higher order, and destru
tors. Let T (Σ) be the set of terms built fromnames in N , variables in V and
onstru
tors in Σ.A substitution is a fun
tion from variables to terms σ : V → T (Σ). For a term T Tσdenotes the substitution of every variable x in T by σ(x) (all variables are repla
ed aton
e). We write {M1/x1 , . . . ,Mn/xn} for a substitution σ s. t. σ(xi) = Mi and σ(x) = xfor all x ∈ V \ {x1 , . . . , xn}.Sometimes it is desirable to
onsider two terms, that were
onstru
ted di�erently,equivalent. Therefore we have a �nite set E of equations (M ,N) (for M = N) where
M and N are terms that
ontain only variables and
onstru
tors. E is
alled equationaltheory.The equivalen
e relation =E on terms is de�ned as the re�exive, transitive and sym-metri

losure of E
losed under the appli
ation of substitutions3 and
ontexts (i.e. forall terms M , N and T M =E N ⇒ T{M /x} =E T{N /x}).To de�ne the semanti
s of a destru
tor d we introdu
e a �nite set R of rewrite rules
d(M1 , . . . ,Mn) → M where M and Mi , i ∈ {1, . . . , n} are terms that
ontain onlyvariables and
onstru
tors and the variables in M must be a subset of the variables usedin M1 , . . . ,Mn . The redu
tion of a term d(N1 , . . . ,Nn) where d is a destru
tor is de�nedi� there is a rewrite rule d(M1 , . . . ,Mn) → M and a substitution σ s.t. Ni =E Miσ forall i ∈ {1, . . . , n}. We have d(N1 , . . . ,Nn) → Mσ in this
ase. Analogous to [BAF08℄ weintrodu
e the rewrite rule f(M1 , . . . ,Mn) → f(M1 , . . . ,Mn) for ea
h
onstru
tor f ∈ Σ.

D ⇓ M denotes the evaluation of D to M where D is a destru
tor term, i.e., a termor the appli
ation of a fun
tion to destru
tor terms. For all terms M we de�ne M ⇓ M(i.e. when evaluating a term we obtain the term itself). If we have D = g(D1 , . . . ,Dn) fora fun
tion g whereDi are destru
tor terms we de�ne g(D1 , . . . ,Dn) ⇓ Mσ for substitution
σ i� there is a rewrite rule g(M1 , . . . ,Mn) → M and terms N1 , . . . ,Ni s.t. Di ⇓ Ni ,
Ni =E Miσ.De�nition 2.1 (Symboli
 model) By symboli
 model, denoted M = (Σ,E,R), werefer to the entity of a signature Σ, a �nite set of equations E and a �nite set of rewriterules R.Note that the in�nite set of names and in�nite set of variables are not expli
itly partof the symboli
 model sin
e they are not spe
i�
 for any
on
rete model in our setting.We refer to them globally as N and V respe
tively.Ex
ept for Se
tion 9, it will be
lear from the
ontext whi
h symboli
 model we use.In Se
tion 9 we fo
us on the relation between di�erent symboli
 models. Only then wewill introdu
e a notation that expli
itly states the symboli
 model underlying a property,e.g., observational equivalen
e of two pro
esses.We
an des
ribe pro
esses in our pro
ess
al
ulus using the indu
tively de�ned gram-mar from Figure 1. For a better understanding of the syntax we anti
ipate the following3I.e., for every substitution σ and M =E N we have Mσ =E Nσ.6

P ::= 0

P |Q

!P

M (x).P

M 〈N 〉.Plet x = D in P else Q
νa.PFigure 1: Syntax of pro
esses in the applied pi
al
ulusse
tion about its semanti
s and give a qui
k overview of the intuition
onne
ted to thesyntax. The 0-pro
ess simply does nothing and terminates (and is therefore often omit-ted). Two pro
esses, P and Q,
an be exe
uted in parallel (denoted P |Q) They mayintera
t with ea
h other or with the environment independently of ea
h other. A repli-
ation (!P) behaves as an in�nite number of
opies (instan
es) of P running in parallel.The s
ope of a name n may be restri
ted to a pro
ess P (νn.P). M (x).P allows P tore
eive a message (a term) T on a
hannel identi�ed by the term M . The variable x isused in P as a referen
e to the input. The
ounterpart of M (x) is M 〈T 〉.P whi
h sendsa message (a term) T on M and then behaves like P .The sequential exe
ution operator does have a higher pre
eden
e than parallel exe
u-tion operator.In let x = D in P else Q the symbol D stands for a term or a destru
tor term. If wehave D ⇓ M for a term M the pro
ess behaves like P{M /x} otherwise it behaves like Q.Ex
ept for the let-statement and parallel exe
ution, pro
esses do have the stru
ture

statement.P and we say for P (or any part of P) that it is under the statement (e.g. wesay that �P is under a bang� in !P or that P is under an input in c(x).νn.P). We saythat P is under a let if P o

urs in one of the two bran
hes of a let.An o

urren
e of a name n in a pro
ess is bound if it is under a νn. An o

urren
e ofa variable x is bound if it is under a M (x) or in the P -bran
h of a let x = D in P else Q.
bn(P) resp. bv(P) denotes the set of names resp. variables with bound o

urren
es in P .If an o

urren
e is not bound, it is
alled free and fn(P), fv(P) denote the
orrespondingsets for names resp. variables. A pro
ess is
losed if it has no free variables.A
ontext C is a pro
ess where exa
tly one o

urren
e of 0 is repla
ed with �. C[P]denotes the pro
ess resulting from the repla
ement of � with P in C. An evaluation
ontext is a
losed
ontext C built from �, C|P , P |C, and νa.C. We
all an o

urren
e ofa term or pro
ess within a pro
ess unprote
ted if it is only below parallel
ompositions(|) and restri
tions (ν).De�nition 2.2 (Stru
tural equivalen
e (≡)) Stru
tural equivalen
e, denoted ≡, is7

PAR-0 P ≡ P | 0PAR-A P | (Q | R) ≡ (P | Q) | RPAR-C P | Q ≡ Q | PNEW-C νu.νv .P ≡ νv .νu.PNEW-PAR u 6∈ fn(P) ⇒
P | νu.Q ≡ νu.(P | Q)Figure 2: Rules for stru
tural equivalen
eREPL !P → P |!PCOMM C 〈T 〉.P | C ′(x).Q

→ P | Q{T/x} if C =E C ′LET-THEN let x = D in P else Q
→ P{M /x} if D ⇓ MLET-ELSE let x = D in P else Q
→ Q if ∄M s.t. D ⇓ MFigure 3: Rules for internal redu
tionthe smallest equivalen
e relation on pro
esses that is
losed under α-
onversion4 on namesand variables, appli
ation of evaluation
ontexts and the rules from Figure 2.5De�nition 2.3 (Internal redu
tion (→)) Internal redu
tion, denoted →, is thesmallest relation on
losed pro
esses
losed under stru
tural equivalen
e and appli
ationof evaluation
ontexts su
h that the rules from Figure 3 hold for any
losed pro
esses Pand Q. →∗ denotes the re�exive, transitive
losure of →.A
losed pro
ess P emits on M (denoted P ↓M) if P ≡ C[M ′〈N 〉.Q] for some eval-uation
ontext C that does not bind fn(M) and M =E M ′.6 Analogously it reads on

M (denoted P ↑M) if P ≡ C[M ′(N).Q]. We say that P
ommuni
ates on M (denoted
P lM) if P ↓M or P ↑M .De�nition 2.4 A simulation R is a relation on
losed pro
esses su
h that (P,Q) ∈ Rimplies4An α-
onversion is a renaming pro
ess that doesn't
hange the meaning of a term. E.g. renam-ing b to c in νa.νb.net〈a〉.net〈b〉 is a valid α-
onversion (and thus we have that νa.νb.net〈a〉.net〈b〉 ≡
νa.νc.net〈a〉.net〈c〉), renaming b to a is not.5We di�er from [BAF08℄ by de�ning ≡ also for non-
losed pro
esses. But on
losed pro
esses, ourde�nition
oin
ides with that from [BAF08℄.6It is indeed intentional that the de�nition requires C not to bind fn(M) (as opposed to fn(M ′)) eventhough we
onsider the pro
ess C[M ′〈N 〉.Q]. This way the de�nition is equivalent to the following: P ↓Mi� P ≡E C[M〈N〉.Q] for some evaluation
ontext C not binding fn(M), and some pro
ess Q [Bla12a℄.Here ≡E is stru
tural equivalen
e modulo repla
ing terms by equivalent ones, see De�nition 2.6.8

(i) if P ↓M then for some Q′ we have that Q→∗ Q′ and Q′ ↓M(ii) if P → P ′ then for some Q′ we have that Q→∗ Q′ and (P ′, Q′) ∈ R(iii) (C[P], C[Q]) ∈ R for all evaluation
ontexts C.A relation R is a bisimulation if both R and R−1 are a simulation.Observational equivalen
e (≈) is the largest bisimulation.It is easy to
he
k that the transitive hull of ≈ satis�es the
onditions (i), (ii) and (iii)from above. Hen
e ≈
ontains its own transitive hull and thus is indeed an equivalen
erelation.Substitutions on pro
esses work like substitutions on terms but must additionallyrespe
t the s
opes of names and variables (bound or free). Sin
e renaming of boundnames and variables doesn't
hange the stru
tural equivalen
e
lass of a pro
ess weassume w.l.o.g. from now on that for Pσ we have σ(x) = x for all x ∈ bv(P) and σ(x)does not
ontain names n ∈ bn(P) for all x ∈ fv(P).2.1 Synta
ti
 sugarWe introdu
e if D = D ′ then P else Q as synta
ti
 sugar forlet x = equals(D ,D ′) in P else Q where x must not o

ur in P or Q and D ,D ′are destru
tor terms. Note that we assume the existen
e of an equals destru
torwith the rewrite rule equals(x , x) → x throughout this paper (see De�nition 2.5 (iii)).Furthermore, we write C().P for C(x).P where x is a fresh variable, and C〈〉.P for
C〈empty〉 assuming a nullary
onstru
tor empty (see De�nition 2.5 (i)).Later, when dealing with Proverif pro
esses, e.g., in De�nition 8.3, we use the Proverifsyntax for pattern mat
hing in inputs and lets: E.g., (let (=n, x) = D in P else Q)exe
utes P{T/x} if D ⇓ (n,T) (i.e., D has to evaluate to a pair with n beeing the �rstvalue while x is used as a referen
e for the arbitrary se
ond value T) and Q otherwise.Inputs of type C ((x,_)) expe
t a pair as input where the �rst value is referen
ed by xwhile the se
ond value is dropped (i.e., when re
eiving an input (T ,T ′) on C , C ((x ,_)).P
ontinues to run as P{T/x}. For more details see the Proverif manual [Bla12b℄ We stressthat these
onstru
tions are just synta
ti
 sugar and
an be repla
ed by statementsa

oding to the grammar of the pi
al
ulus we des
ribed above.2.2 Additional
on
epts used in this workIn this se
tion, we des
ribe several nonstandard
on
epts related to the applied pi
al
ulusthat we use in this work.Mis
ellaneous. A
ontext always
ontains a single o

urren
e of the hole. Sometimeswe need a
ontext whi
h may or may not
ontain a hole: A 0-1-
ontext is de�ned like a
ontext, ex
ept that there may be zero or one o

urren
es of the hole.9

We refer to o

urren
es of terms that identify
hannels in a pro
ess as
hannel iden-ti�ers. E.g., in M 〈T 〉 M is a
hannel identi�er and T is not � even if we had M = T .Natural symboli
 models. A number of lemmas in this paper only hold when thesymboli
 model we use satis�es
ertain natural
onditions. Instead of stating theseexpli
itly ea
h time, we
olle
t all these
onditions in the following de�nition:De�nition 2.5 (Natural symboli
 model) We say a symboli
 model is natural if itsatis�es the following
onditions:(i) there is a
onstru
tor empty/0 ∈ Σ,(ii) a
onstru
tor for pairings, denoted (�,�), is part of the signature Σ,(iii) there is a destru
tor equals/2 ∈ Σ with rewrite rule equals(x , x) → x and no furtherrewrite rules that
ontain equals ,(iv) there are destru
tors fst/1, snd/1 ∈ Σ with rewrite rules fst((x , y)) → x and
snd((x , y)) → y,(v) for all terms T , T1 with fst(T) ⇓ T1 there exists a term T2 with snd(T) ⇓ T2 andfurthermore (T1,T2) =E T for all su
h T2 and vi
e versa,(vi) for arbitrary terms T1,T2,T

′
1,T

′
2 we require that (T1,T2) =E (T ′

1,T
′
2) entails

T1 =E T ′
1 and T2 =E T ′

2(vii) for any destru
tor term D and any name n 6∈ fn(D) we require that D ⇓ T for aterm T entails the existen
e of a term T ′ with D ⇓ T ′, n 6∈ fn(T ′) and T =E T ′(viii) for all names n and all terms T T =E n entails n ∈ fn(T)7.In the following, we will always assume that the symboli
 model is natural in thesense of De�nition 2.5.Equivalen
e of pro
esses modulo rewriting. Stru
tural equivalen
e ≡ does notallow us to repla
e a term M by another term M ′ =E M . In some pla
es, we willtherefore need to apply =E to pro
esses, and we will also use an extension ≡E of ≡ thatallows us to repla
e terms:De�nition 2.6 We extend =E to destru
tor terms and pro
esses as follows:Given two destru
tor terms D,D′, we have D =E D
′ i� D
an be rewritten into D′ byrepla
ing subterms by =E-equivalent subterms. (But repla
ing destru
tors is not allowed.E.g., if d is a destru
tor and f, g are
onstru
tors, and g(x) =E g(y) is in the equationaltheory, we have d(f(a)) =E d(g(a)) but not f(d(a)) =E g(d(a)). Formally, =E is thesmallest equivalen
e relation on destru
tor terms su
h that D{M/x} =E D{M ′/x} fordestru
tor terms D and terms M =E M

′.Given two pro
esses P,P ′, we have P =E P ′ i� P
an be rewritten into P ′ by α-
onversion and by repla
ing terms and destru
tor terms by =E-equivalent ones. Formally,
=E is the smallest equivalen
e relation
losed under α-renaming su
h that P{M/x} =E

P{M ′/x} for pro
esses P and terms M =E M
′.7All names would be equivalent otherwise. An example of a symboli
 model not satisfying (viii) isone with an equation x =E y. 10

Given two pro
esses P,P ′, we have P ≡E P
′ i� P
an be rewritten into P ′ by =E and

≡. Formally, ≡E := (=E ∪ ≡)∗.Full observational equivalen
e. A substitution σ is a
losing substitution if Pσ is
losed. We
all two (not ne
essarily
losed) pro
esses P and Q fully observationallyequivalent (denoted P ∼∼∼ Q) i� Pσ ≈ Qσ for all
losing substitutions σ (where weimpli
itly assume that the bound names in P,Q are renamed so that they are distin
tfrom the free names of σ). Sin
e ≈ is
losed under ≡ it follows in a straightforward waythat ∼∼∼ is
losed under ≡.The motivation behind the de�nition of ∼∼∼ is the following lemma whi
h allows us torepla
e fully observationally equivalent subpro
esses by ea
h other.Lemma 2.7 Let P and Q be pro
esses and P ∼∼∼ Q. Then C[P] ∼∼∼ C[Q] for every
on-text C.To show this lemma, we �rst prove the following lemma:Lemma 2.8 Let P and Q be
losed pro
esses. We have P ≈ Q ⇒ !P ≈ !Q .Proof. We de�ne a relationR := ≈ ∪ {(νn.(IP |!P), νn .(IQ |!Q)) : IP , IQ
losed pro
esseswith IP ≈ IQ and n a ve
tor of names }
losed under stru
tural equivalen
e. Intuitively,
IP and IQ represent the running instan
es of P resp. Q. For (A,B) ∈ R we show thethree points of observational equivalen
e.If (A,B) ∈ ≈ there is nothing to show. Otherwise (A,B) = (νn.(IP |!P), νn .(IQ |!Q)).

• If νn.(IP |!P) ↓M we have νn.IP ↓M and, sin
e IQ ≈ IQ , νn.IQ ↓M . Therefore
νn.(IQ |!Q) ↓M .

• For internal redu
tions → in νn.(IP |!P) we distinguish two
ases:� A new instan
e of P spawns, i.e., νn.(IP |!P) → νn.(IP |P |!P). We de�ne
IP ′ := IP |P and IQ ′ analogously. Then there is a
orresponding internalredu
tion (following the REPL rule) for the Q-side νn.(IQ |!Q) → νn.(IQ ′|!Q)and therefore (νn.(IP ′|!P), νn .(IQ ′|!Q) ∈ R (note that IP ′ ≈ IQ ′ sin
e IP ≈
IQ and P ≈ Q).� The redu
tion → only a�e
ts !P stru
turally. That is, we basi
ally have
νn.(IP |!P) → νn.(IP ′|!P). Sin
e IP ≈ IQ we �nd →∗ s.t. IQ →∗ IQ ′ and
IP ′ ≈ IQ ′. (νn.(IP ′|!P), νn .(IQ ′|!Q) ∈ R.

• For any evaluation
ontext C we have C[νn.(IP |!P)] ≡ νn ′.(C′[IP]|!P) where C′is C with all restri
tions moved into n ′. Analogously we have C[νn.(IQ |!Q)] ≡
νn ′.(C′[IQ]|!Q) with the same C′, n ′. Sin
e C′ is an evaluation
ontext, C′[IP] ≈
C′[IQ]. Altogether we have (νn ′.(C′[IP]|!P), νn ′.(C′[IQ]|!Q)) ∈ R.11

This
on
ludes our proof sin
e the de�nition of R is symmetri
. �We
an now show Lemma 2.7:Proof of Lemma 2.7. First
onsider the
ase that C is an evaluation
ontext whi
h isallowed to have free variables here. For all
losing substitutions σ we have Pσ ≈ Qσ andhen
e Cσ[Pσ] ≈ Cσ[Qσ]. Therefore C[P]σ ≈ C[Q]σ whi
h entails C[P] ∼∼∼ C[Q].To expand the proof from evaluation
ontexts to general
ontexts C we show thefollowing properties for ∼∼∼ from whi
h the Lemma immediately follows by indu
tion:1. If P ∼∼∼ Q then M〈T 〉.P ∼∼∼M〈T 〉.Q for arbitrary terms M and T :Let σ be a
losing substitution for M〈T 〉.P and M〈T 〉.Q . We de�ne the relation
R := ≈ ∪ {(C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) : C
losed evaluation
ontext}
losedunder stru
tural equivalen
e. We show that R satis�es the three points of obser-vational equivalen
e. Let (A,B) ∈ R. For (A,B) ∈ ≈ there is nothing to do.Otherwise (A,B) = (C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) for some
losed evaluation
ontext C.

• A ↓N : If C[0] ↓N obviously B ↓N as well. Otherwise (M 〈T 〉.P)σ ↓N wherethe free names of N are not bound by C whi
h requires N =E M and hen
eleads to (M 〈T 〉.Q)σ ↓N⇒ B ↓N .
• For internal redu
tions in A we distinguish two
ases:� → is the COMM redu
tion C[(M 〈T 〉.P)σ] → C′[Pσ] (up to stru
turalequivalen
e). In the same way we
an redu
e C[(M 〈T 〉.Q)σ] → C′[Qσ].Sin
e Pσ ≈ Qσ and C′ is
losed we have (C′[Pσ], C′[Qσ]) ∈≈⊆ R .� The redu
tion → a�e
ts (M 〈T 〉.P)σ only stru
turally. That is, we basi-
ally have C[0] → C′[0]. In this
ase we apply the same redu
tion in e�e
tto B and have (C′[(M 〈T 〉.P)σ], C′[(M 〈T 〉.Q)σ]) ∈ R.
• Obviously, R is
losed under the appli
ation of
losed evaluation
ontexts.This
on
ludes our proof sin
e the de�nition of R is symmetri
.2. If P ∼∼∼ Q then M (x).P ∼∼∼ M (x).Q for an arbitrary term M :We prove this statement analogously to the previous one: It only di�ers in thedire
tion of message �ow on M . In the
orresponding bran
h of the proof an inputof N on M results in P{N /x} resp. Q{N /x} (note that C is
losed and hen
e Nis
losed). Sin
e we have Pσ ≈ Qσ in parti
ular for every
losing σ with σ(x) = Nwe have that P{N /x} ∼∼∼ Q{N /x} holds.3. If P ∼∼∼ Q then !P ∼∼∼ !Q:A
losing substitution σ with Pσ ≈ Qσ but !Pσ 6≈ !Qσ
ontradi
ts Lemma 2.8.4. If P1

∼∼∼ Q1 and P2
∼∼∼ Q2 then (let x = D in P1 else P2) ∼∼∼ (let x =

D in Q1 else Q2) for an arbitrary destru
tor term D:Again, the
omplete proof is analogous to the one in
ase 2. Hen
e we onlydis
uss the redu
tion of the let-statement here: For all
losing substitutions σ12

for let x = D in P1 else P2 and let x = D in Q1 else Q2 we have that Dσ is
losed. If we have Dσ ⇓ M for a (
losed!) term M the let-statement redu
esto P1{M /x}σ ≈ Q1{M /x}σ (note that σ(x) = x sin
e x is a bound variable)whi
h holds sin
e P1
∼∼∼ Q1. Otherwise it redu
es to P2σ ≈ Q2σ whi
h holds sin
e

P2
∼∼∼ Q2. �Produ
t pro
esses. In order to argue about
on
urrent
omposition, as a te
hni
altool, we will need an extension of the applied pi
al
ulus that supports in�nite parallel
ompositions of pro
esses whi
h are tagged with distin
t terms.Intuitively, the indexed repli
ation ∏x∈S P stands for P{s1/x}|P{s2/x}| . . . when

S = {s1, s2, . . . }. (Like !P stands for P |P |) We
all pro
esses from this extended
al
ulus produ
t pro
esses. Note that our main de�nitions and results are still statedwith respe
t to the original
al
ulus from [BAF08℄; we only use produ
t pro
esses insome spe
i�
 situations.De�nition 2.9 (Produ
t pro
esses) Produ
t pro
esses are de�ned by the grammarin Figure 1 with the additional
onstru
t ∏x∈S P where x is a variable, S a (possiblyin�nite) set of terms, and P a produ
t pro
ess. (We
all ∏x∈S P an indexed repli
ation.)(Note that we
onsider ∏x∈S to be a binder. I.e., in ∏x∈S P , we
onsider x a boundvariable.)Stru
tural equivalen
e (≡) on produ
t pro
esses is de�ned using the same rules as onpro
esses (see Figure 2).The redu
tion relation → on produ
t pro
esses is de�ned using the same rules as onpro
esses (see Figure 3), with the following additional rule (IREPL): If M ∈ S, then∏
x∈S P →

(∏
x∈S′ P

)
| P{M/x} with S′ := S \ {M ′ : M =E M ′}. (Essentially S istreated as a set of session ids whi
h
ontains ea
h sid at most on
e modulo =E.)Observational equivalen
e (≈) on produ
t pro
esses is de�ned like observational equiv-alen
e on pro
esses (De�nition 2.4). In parti
ular, as in De�nition 2.4, in rule (iii) wequantify over evaluation
ontexts that do not
ontain indexed repli
ations.Noti
e that pro
esses are also produ
t pro
esses, and that on pro
esses, the newde�nitions of ≡, →, and ≈ from De�nition 2.9
oin
ide with the original de�nitions.3 Useful properties of the pi
al
ulusIn this se
tion, we introdu
e a number of useful lemmas for the applied pi
al
ulus.These lemmas are useful to derive observational equivalen
es of pro
esses by step by steprewriting (and for using Proverif as a tool in deriving equivalen
es that Proverif
annothandle). We believe that they may be useful in other similar situations, too.Lemma 3.1 If n /∈ fv(M), then n 6=E n.Proof. �13

Lemma 3.2 Let P,P ′ be pro
esses. Let D,D′ be destru
tor terms. Let M,M ′ be terms.(i) If a /∈ fn(P), then P ∼∼∼ νa.P .(ii) If a /∈ fn(M), then νa.M(x).P ∼∼∼M(x).νa.P .(iii) Assume P is
losed and that P does not
ontain unprote
ted inputs or outputs.Assume P → P ′, and that for all P ′′ with P → P ′′ we have P ′ ≈ P ′′. Then
P ≈ P ′.(iv) If M,M ′ are terms with M =E M

′, then P{M/x} ∼∼∼ P{M ′/x}.(v) If for all substitutions σ that
lose D,M we have Dσ ⇓ Mσ, and for all M ′ with
Dσ ⇓M ′σ we have Mσ =E M

′σ, then (let x = D in P else P ′) ∼∼∼ P{M/x}.(vi) If D is
losed and there is no M with D ⇓M , then (let x = D in P else P ′) ∼∼∼ P ′.(vii) If for all substitution σ that
lose D,D′ there exist M,M ′ with Dσ ⇓ Mσ, D′σ ⇓
M ′σ and Mσ =E M

′σ then (if D = D′ then P else P ′) ∼∼∼ P(viii) We have !P ≈ P |!P .(ix) ∏x∈SID P ≈
∏

x∈SID\{t1,...,tn}
P |P{ t1

x }| . . . |P{
tn
x } for t1, . . . , tn ∈ SID .Proof. We show (i): Let R := {(Q, νa.Q) : Q a
losed pro
ess, a /∈ fn(Q) a name} up tostru
tural equivalen
e. It is easy to see that R is a bisimulation. Thus Q ≈ νa.Q forany
losed pro
ess. This implies that Pσ ≈ νa.(Pσ) ≡ (νa.P)σ for any
losing σ. Hen
e

P ∼∼∼ νa.P .We show (ii): Let R := {(E[νa.M(x).Q], E[M(x).νa.Q])}∪≈ up to stru
tural equiv-alen
e where E ranges over all evaluation
ontexts, Q over
losed pro
esses, a over names,and M over terms with a /∈ fn(M). One
an
he
k that R satis�es the
onditions fora bisimulation. To show νa.M(x).P ∼∼∼ M(x).νa.P , �x a
losing substitution σ. Then(
(νa.M(x).P)σ, (M(x).νa.P)σ

)
∈ R, thus (νa.M(x).P)σ ≈ (M(x).νa.P)σ. Sin
e thisholds for any
losing σ, we have νa.M(x).P ∼∼∼M(x).νa.P and (ii) follows.We show (iii): Let R := {(E[P], E[P ′]) : E evaluation
ontext}∪≈. (Here P,P ′ referto the pro
esses from the statement of the lemma.) We
he
k that R is a bisimulation. Inall the following
ases, if A ≈ B, the statement is immediate. Thus we assume A ≡ E[P],

B ≡ E[P ′] in ea
h
ase.
• If (A,B) ∈ R and A ↓M then there exists a B′ with B →∗ B′ and B′ ↓M : If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sin
e P doesnot
ontain unprote
ted outputs, we have that the output on M is in E. Hen
e
B ≡ E[P ′] ↓M .

• If (A,B) ∈ R and B ↓M then there exists an A′ with A →∗ A′ and A′ ↓M : If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sin
e P → P ′we have A→ A′ := E[P ′] ≡ B. Sin
e B ↓M , also A′ ↓M .

• If (A,B) ∈ R and A→ A′ then there exists a B′ with B →∗ B′ and (A′, B′) ∈ R: If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sin
e P doesnot
ontain unprote
ted inputs or outputs, A′ ≡ E′[P] for some evaluation
ontext
E or A′ ≡ E[P ′′] for some P ′′ with P → P ′′. In the �rst
ase, B → B′ := E′[P ′] and14

hen
e (A′, B′) ∈ R. In the se
ond
ase, P ′′ ≈ P ′ and thus A′ ≈ E[P ′] ≡ B =: B′.Thus B →∗ B′ and (A′, B′) ∈ R.
• If (A,B) ∈ R and B → B′ then there exists a A′ with A→∗ A′ and (A′, B′) ∈ R: If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sin
e P → P ′,we have A → A′′ := E[P ′] ≡ B. Sin
e B → B′, we have A → A′′ → A′ := B′.Hen
e A→∗ A′ and (A′, B′) ∈ R.

• R is
losed under appli
ation of evaluation
ontexts by
onstru
tion.We show (iv): Let (A,B) ∈ R i� A results from B by repla
ing terms M by terms
M ′ with M =E M

′. It is easy to
he
k that R is a bisimulation. Fix a pro
ess P , terms
M,M ′ with M =E M ′, and σ a substitution mapping variables to ground terms that
loses P{M/x} and P{M ′/x}. Then P{M/x}σ results from P{M ′/x}σ by repla
ingsome o

urren
es of M ′σ by Mσ. Sin
e M =E M ′, we have Mσ =E M ′σ. Thus
(P{M/x}σ, P{M ′/x}σ) ∈ R, hen
e P{M/x}σ ≈ P{M ′/x}σ. Sin
e this holds for any
losing σ, P{M/x} ∼∼∼ P{M ′/x}.We show (v): First, assume that A := (let x = D in P else P ′) is
losed. We havethat if A → A′, then A′ ≡ P{M ′/x} for some M ′ with D ⇓ M ′. By (iv) and using that
M =E M

′ for all M ′ with D ⇓M ′, this implies A′ ≈ P{M/x}. Furthermore A does not
ontain unprote
ted inputs or outputs. Thus by (iii), we have A ≈ P{M/x}. From thisfollows that (let x = D in P else P ′) ∼∼∼ P{M/x} even if (let x = D in P else P ′) is not
losed, analogously to (i).We show (vi): First, assume that A := (let x = D in P else P ′) is
losed. Wehave that if A → A′, then A′ ≡ P ′. Furthermore A does not
ontain unprote
tedinputs or outputs. Thus by (iii), we have A ≈ P ′. From this follows that (let x =
D in P else P ′) ∼∼∼ P ′ even if (let x = D in P else P ′) is not
losed, analogously to (i).We show (vii): First, assume that A := (if D = D′ then P else P ′) is
losed. Weresolve the synta
ti
 sugar for �if� and have A = (let x = equals(D,D′) in P else P ′). If
A→ A′, then A′ ≡ P (x 6∈ fv(P)). Thus by (iii), we have A ≈ P ′. From this follows that
(let x = D in P else P ′) ∼∼∼ P ′ even if (let x = D in P else P ′) is not
losed, analogouslyto (i).We show (viii): If !P → P ′′, then P ′′ ≡ P |!P by de�nition of →. By (iii) this implies
!P ≈ P |!P .We show (ix): Given a set A = {t1, . . . , tk} ⊆ SID , we write ∑x∈A P for
P{t1/x}| . . . |P{tk/x}. Let

R := {
(
E[

∏

x∈SID\A\D

P |
∑

x∈A

P], E[
∏

x∈SID\B\D

P |
∑

x∈B

P]
)
}up to stru
tural equivalen
e where E ranges over evaluation
ontexts and A,B,D rangeover subsets of SID with D disjoint of A∪B. One
an
he
k thatR satis�es all
onditionsfor being a bisimulation. Sin
e (

∏
x∈SID P,

∏
x∈SID\{t1,...,tn}

|P{t1/x}| . . . |P{tn/x}) ∈ R,(ix) follows. �15

Lemma 3.3 Let C be a 0-1-
ontext whose hole is not under a bang and su
h that n doesnot o

ur in C, Q, or t. Assume that C does not bind any of fv(Q) \ {x} or fn(Q) overits hole. Then νn.C[n〈t〉]|n(x).Q ∼∼∼ C[Q{t/x}]Proof. We show the lemma for ≈ instead of ∼∼∼, and assuming that νn.C[n〈t〉]|n(x).Q and
C[Q{t/x}] are
losed and that fn(Q) ⊆ {x}. The general
ase then follows by de�nitionof ∼∼∼. We de�ne the relation R: (A,B) ∈ R i� A ≈ B or there is a name n, a list ofnames ã, a term t, a variable x, an integer k, a 0-1-
ontext C not
ontaining n and nothaving its hole under a bang and not binding fn(Q) over its hole, su
h that the followingholds:

A ≡ νnã.C[n〈t〉]|n(x).Q, B ≡ νnã.C[Q{t/x}] (1)We
he
k the three
onditions for bisimulations (in both dire
tions).
• If (A,B) ∈ R and A ↓M , then B ↓M :The
ase A ≈ B is trivial. We thus assume that A,B are as in (1).If νnã.C[n〈t〉]|n(x).Q ↓M , then the output on M is in C. (n〈t〉
annot be thatoutput, be
ause n is bound.) Hen
e νnã.C[Q{t/x}] ↓M .
• If (A,B) ∈ R and B ↓M , then there exists an A′ with A→∗ A′ and A′ ↓M :The
ase A ≈ B is trivial. We thus assume that A,B are as in (1).If νnã.C[Q{t/x}] ↓M , we distinguish two
ases. If the output on M is in C, then
νnã.C[n〈t〉]|n(x).Q ↓M . Consider the
ase that the output on M is in Q{t/x}.Without loss of generality, we
an assume that no name in t is bound in C (otherwisewe
ould move the
orresponding restri
tions from C into νã sin
e C does not bind
fn(Q) over its hole). Sin
e the output on M is in Q{t/x}, C is an evaluation
ontext and thus νnã.C[n〈t〉]|n(x).Q → νnã.C[0]|Q{t/x} ↓M .

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:The
ase A ≈ B is trivial. We thus assume that A,B are as in (1).We distinguish the following
ases:If the redu
tion A→ A′ involves only C, then A′ ≡ νnã.C̃[n〈t〉σ]|n(x).Q for some0-1-
ontext C̃. Here the substitution σ represents possible variable assignmentsperformed over the hole of C (e.g., if C = a〈T 〉 | a(y).�, then σ = {T/y}).Then B → B′ := νnã.C̃[Q{t/x}σ] = νnã.C̃[Q{tσ/x}] where the last equality usesthat fn(Q) ⊆ x. Also, C̃ does not have more that one hole (in whi
h
ase C̃ wouldnot be a zero-or-one-hole
ontext) be
ause the hole in C does not o

ur under abang.Thus we have (A′, B′) ∈ R.If the redu
tion involves n〈t〉 or n(x).Q, then the hole of C is only under restri
tionsand parallel
ompositions. We assume without loss of generality that the hole in Cis not under any restri
tion (otherwise we
ould move the
orresponding restri
tions16

into νã sin
e C does not bind fn(Q) over its hole). Then A′ ≡ νnã.C[0]|Q{t/x} ≡
νnã.C[Q{t/x}] =: B′ ≡ B. Thus B →∗ B′ and (A′, B′) ∈ R (sin
e A′ ≈ B′).

• If (A,B) ∈ R and B → B′, then there is an A′ with A→∗ A′ and (A′, B′) ∈ R:The
ase A ≈ B is trivial. We thus assume that A,B are as in (1).If the redu
tion B → B′ involves only C, then B′ ≡ νnã.C̃[Q{t/x}σ]
(∗)
=

νnã.C̃[Qσ{t/x}] for some zero-or-one-hole
ontext C̃. Here the substitution σrepresents possible variable assignments performed over the hole of C (e.g., if
C = a〈T 〉 | a(y).�, then σ = {T/y}). And the equality (∗) uses that fn(Q) ⊆ x.Then A → A′ := νnã.C̃[n〈t〉σ]|n(x).Q. Also, C̃ does not have more that one hole(in whi
h
ase C̃ would not be a
ontext) be
ause the hole in C does not o

urunder a bang.Thus we have (A′, B′) ∈ R.If the redu
tion B → B′ involves Q{t/x}, then the hole of C is only under re-stri
tions and parallel
ompositions. We assume without loss of generality thatthe hole in C is not under any restri
tion (otherwise we
ould move the
orre-sponding restri
tions into νã sin
e C does not bind fn(Q) over its hole). Then
A → νnã.C[0]|Q{t/x} ≡ νnã.C[Q{t/x}] ≡ B → B′ =: A′. Thus trivially
(A′, B′) ∈ R (sin
e A′ = B′ and thus A′ ≈ B′), and A→∗ A′.

• If E is an evaluation
ontext, and (A,B) ∈ R, then (E[A], E[B]) ∈ R:The
ase A ≈ B is trivial. We thus assume that A,B are as in (1). Then E[A] ≡
E[νnã.C[n〈t〉]|n(x).Q] ≡ νnã.C[n〈t〉]|P |n(x).Q for some pro
ess P up to renamingof the names n, ã. And E[B] ≡ E[νnã.C[Q{t/x}]] ≡ νnã.C[Q{t/x}]|P . Thus(using the
ontext C|P instead of C), we have (E[A], E[B]) ∈ R.Thus R is a bisimulation. Thus νn.C[n〈t〉]|n(x).Q ≈ νn.C[Q{t/x}] (where n,C, t, xrefer to the values from the statement of the lemma). And sin
e n does not o

ur in C,Q, t,we have νn.C[Q{t/x}] ≈ C[Q{t/x}] by Lemma 3.2 (i). Thus νn.C[n〈t〉]|n(x).Q ≈

C[Q{t/x}]. �Lemma 3.4 Let C,D be
ontexts, Q a pro
ess, n,m names, t, t′ terms, and x a variable.Assume that C,D have no bang over their holes. Assume that n,m /∈ fn(C,D,Q, t, t′).Assume that C,D do not bind n,m, fn(Q). Assume that fv(Q) ⊆ {x}.Then νn.(C[!n〈t〉] | D[n(x).Q]) ≈ νm.(C[m().Q{t/x}] | D[m〈t′〉]).Proof. We de�ne the relation R as follows: We have (A,B) ∈ R i� A ≈ B or there exist0-1-
ontexts C,D without a bang over their holes and not binding n, fn(Q), terms t, t′, aname n /∈ fn(C,D,Q, t, t′), a list of names ã not
ontaining n, and an integer i ≥ 0 su
hthat
A ≡ νnã.(C[n〈t〉i | !n〈t〉] | D[n(x).Q])

B ≡ νnã.(C[n().Q{t/x}] | D[n〈t′〉]) (2)17

Here n〈t〉i denotes n〈t〉| . . . |n〈t〉 (i
opies). Note: Q is the pro
ess from the statementof the lemma. (It is intentional that we use n in the de�nition of B, not m as in thestatement of the lemma. We will rename n into m at the end of the proof.)We show that R is a bisimulation. In all
ases below, the
ase A ≈ B is trivial bythe properties of ≈, so we assume in ea
h
ase that A,B are as in (2).
• If (A,B) ∈ R and A ↓M , then B →∗↓M :Sin
e n is bound, the output onM is not one of the n〈t〉 (here we use that M 6=E nif n /∈ fn(M) by De�nition 2.5 (viii)). Hen
e C ↓M or D ↓M . Thus B ↓M .
• If (A,B) ∈ R and B ↓M , then A→∗↓M :Sin
e n is bound, the output on M is not n〈t′〉. Hen
e C ↓M or D ↓M . Thus A ↓M .
• If (A,B) ∈ R and A→ A′, then there is a B′ su
h that B →∗ B′ and (A′, B′) ∈ R:We distinguish the following
ases:� A → A′ is a redu
tion !n〈t〉 → n〈t〉 | !n〈t〉: Then A′ ≡ νnã.(C[n〈t〉i+1 |

!n〈t〉] | D[n(x).Q]) and hen
e (A′, B′) ∈ R for B′ := B.� A → A′ is a redu
tion within C, within D, or a
ommuni
ation between
C and D (in all
ases not involving the argument of C,D): Then A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]) for suitable
ontexts C ′,D′ (satisfying allthe
onditions required for C,D in the de�nition of R), and B → B′ :=
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]). (Note: This uses impli
itly that Q has nofree variables ex
ept x, otherwise Q might
hange in this redu
tion.)� A→ A′ is a
ommuni
ation between n〈t〉 and n(x).Q:Then C and D are evaluation
ontexts.Without loss of generality, we
an assume that C,D do not bind any namesover their holes: For this, we �rst rename the bound names in C,D su
h thatthey be
ome distin
t from all free names (possibly also renaming the namesin t in the pro
ess, but not in Q sin
e fn(Q) are not bound), and then movethe restri
tions up into νã.Then A′ ≡ νnã.(C[n〈t〉i−1 | !n〈t〉] | D[Q{t/x}]). Furthermore

B′ := B ≡ ν ã.(C[0] | D[νn.(n().Q{t/x} | n〈t′〉)])
(∗)

≈ νã.(C[0] | D[Q{t/x}])
(∗∗)

≈ νã.(C[νn.(n〈t〉i−1 | !n〈t〉)] | D[Q{t/x}]) ≡ A′Here (∗) follows from Lemma 3.3. And (∗∗) uses that νn.(n〈t〉i−1 | !n〈t〉) ≈ 0,whi
h
an be seen by verifying that R′ := {(E[νn.(n〈t〉i−1 | !n〈t〉)], E[0]) :
E evaluation
ontext} is a bisimulation.Thus A′ ≈ B′ and hen
e (A′, B′) ∈ R. And B = B′ implies B →∗ B′.� A → A′ is a
ommuni
ation between C or D and n〈t〉 or n(x).Q: This
ase does not o

ur be
ause n /∈ fn(C,D).18

• If (A,B) ∈ R and B → B′, then there is a A′ su
h that A→∗ A′ and (A′, B′) ∈ R:We distinguish the following
ases:� B → B′ is a redu
tion within C, within D, or a
ommuni
ation between
C and D (in all
ases not involving the argument of C,D): Then B′ =
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]) for suitable
ontexts C ′,D′ (satisfying allthe
onditions required for C,D in the de�nition of R), and A → A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]).� B → B′ is a
ommuni
ation between n().Q{t/x} and n〈t′〉:Then C,D are evaluation
ontexts.Without loss of generality, we
an assume that C,D do not bind any namesover their holes (analogous to the
orresponding sub
ase of A→ A′ above).Then B′ ≡ νnã.(C[Q{t/x}] | D[0]).Furthermore,

A→∗ A′ := νã.(C[νn.(n〈t〉i | !n〈t〉)] | D[Q{t/x}])
(∗)

≈ νã.(C[0] | D[Q{t/x}]) ≡ νã.(C[Q{t/x}] | D[0])
(∗∗)

≈ B′Here (∗) uses that νn.(n〈t〉i | !n〈t〉) ≈ 0 (see the
orresponding sub
ase of
A→ A′ above). And (∗∗) uses Lemma 3.2 (i). So A′ ≈ B′, hen
e (A′, B′) ∈ R.Hen
e A→∗ A′ and (A′, B′) ∈ R.� B → B′ is a
ommuni
ation between C or D and n〈t〉 or n(x).Q: This
ase does not o

ur be
ause n /∈ fn(C,D).

• If (A,B) ∈ R and E is an evaluation
ontext, then (E[A], E[B]) ∈ R:Then E ≡ νb̃.(�|P) for some names b̃ and some pro
ess P .Without loss of generality, n does not o

ur in b̃ or fn(P) (otherwise we rename n).Thus with ã′ := ãb̃ and C ′ := C|P , we have
E[A] ≡ νnã′.(C ′[n〈t〉i | !n〈t〉] | D[n(x).Q])

E[B] ≡ νnã′.(C ′[n().Q{t/x}] | D[n〈t′〉])Hen
e (E[A], E[B]) ∈ R.Under the
onditions of the lemma, we have (νn.C[!n〈t〉] |
D[n(x).Q], νn.C[n().Q{t/x}] | D[n〈t′〉]) ∈ R where C,D,Q, n, t, t′, x are as in thestatement of the lemma. Sin
e R is a bisimulation, this implies
νn.C[!n〈t〉] | D[n(x).Q] ≈ νn.C[n().Q{t/x}] | D[n〈t′〉] ≡ νm.C[m().Q{t/x}] | D[m〈t′〉])

�Lemma 3.5 Let A,B,C be
losed pro
esses. If A ≡E B → C, then there is a
losedpro
ess B′ su
h that A→ B′ ≡E C. 19

Proof. It is easy to see that → is the smallest relation satisfying the following rules:STREQ If P ≡ P ′ → Q′ ≡ Q, then P → QE-REPL E[!P] → E[P | !P]E-COMM E[C 〈T 〉.P | C ′(x).Q] → E[P | Q{T/x}] if C =E C ′E-LET-THEN E[let x = D in P else Q] → E[P{M /x}] if D ⇓ ME-LET-ELSE E[let x = D in P else Q] → E[Q] if ∄M s.t. D ⇓ MHere in all rules E ranges over evaluation
ontexts with the following property: Let
E[R] denote the left hand side of the rule. Then all bound names in E[R] are di�erentfrom ea
h other and from the free names in E[R]. (In a derivation of →, we
an alwaysenfor
e this latter property by �rst using STREQ to alpha-rename the left hand side ofthe redu
tion.) We say E[R] has no name
on�i
ts.For stating the next
laim, we also need to introdu
e an asymmetri
 variantր≡ of thestru
tural equivalen
e ≡. The di�eren
e is that in ≡, we are allowed to apply the ruleNEW-PAR in both dire
tions, while inր≡ we are only allowed to move restri
tions up(P | νu.Qր≡ νu.(P | Q)), but not down (not: νu.(P | Q)ր≡ P | νu.Q). More formally,ր≡is the smallest transitive, re�exive (but not ne
essarily symmetri
) relation
losed under
α-
onversion, and
losed under appli
ation of evaluation
ontexts, and satisfying therules PAR-0, PAR-A, PAR-C, NEW-C, NEW-PAR from Figure 2 as well as the reversedrule PAR-0-rev (but not NEW-PAR-rev). (By reversed rule we mean the rules with lefthand side and right hand side ex
hanged. E.g., PAR-0-rev says P |0 ր≡ P . Note thatPAR-C-rev and NEW-C-rev are not needed sin
e PAR-C and NEW-C are symmetri
.And PAR-A-rev follows from PAR-C and PAR-A via (P |Q)|Rր≡ R|(P |Q)ր≡ (R|P)|Qր≡
Q|(R|P)ր≡ (Q|R)|Pր≡ P |(Q|R).)Also, we de�neր≡E analogously to ≡E: ր≡E
orresponds to a sequen
e of rewritingsusingր≡ and =E, i.e.,ր≡E:= (ր≡ ∪ =E)

∗.Claim 1 For
losed pro
esses A,B,C, if A =E Bր≡ C, then there exists a
losed pro
ess
B′ su
h that Aր≡ B′ =E C.We show this
laim by indu
tion over the derivation of Bր≡ C. We distinguish thefollowing
ases:

• α-
onversion: Then B = C up to α-
onversion. Hen
e A =E B implies A =E Csin
e =E allows α-
onversions. Thus Aր≡ B∗ =E C with B∗ := A.
• Closure under evaluation
ontexts: Then B = E[B̃] and C = E[C̃] for pro
esses
B̃ ր≡ C̃ and an evaluation
ontext E. And the indu
tion hypothesis holds for
B̃ր≡ C̃. Sin
e A =E B = E[B̃], we have that A = E∗[B̃∗σ] for some evaluation
ontext E∗ =E E, some pro
ess B̃∗ =E B̃, and a renaming σ that
orresponds tothe alpha-renaming over the hole of E. Sin
e B̃∗ =E B̃, the indu
tion hypothesisimplies that B̃∗ր≡ B̃′ =E C̃ for some pro
ess B̃′. Hen
e

A = E∗[B̃∗σ]ր≡ E∗[B̃′σ] =E E[B̃′] =E E[C̃] = C.Thus Aր≡ B′ =E C with B′ := E∗[B̃′σ].20

• Re�exivity: Then B = C. Hen
e Aր≡ B∗ =E C with B∗ := A.
• Transitivity: Then Bր≡ Sր≡ C for some pro
ess S. And the indu
tion hypothesisapplies to Bր≡ S and Sր≡ C. Sin
e A =E Bր≡ S, by indu
tion hypothesis, thereis a pro
ess B′ with Aր≡ B′ =E S. Sin
e B′ =E Sր≡ C, by indu
tion hypothesisthere is a pro
ess S∗ with B′ ր≡ S∗ =E C. Thus Aր≡ S∗ =E C, and the
laimfollows with B∗ := S∗.
• PAR-0 : In this
ase, C = B|0 and A =E B. Hen
e Aր≡ B∗ =E C with B∗ := A|0.
• PAR-0-rev : In this
ase, B = C|0 and A =E B. Hen
e A = B∗|0 for some pro
ess
B∗ =E C. Then Aր≡ B∗ =E C.

• PAR-A: In this
ase, B = B1|(B2|B3) and C = (B1|B2)|B3. Sin
e A =E B,
A = A1|(A2|A3) for some pro
esses Ai with Ai =E Bi, i = 1, 2, 3. Then with
B∗ := (A1|A2)|A3, we have Aր≡ B∗ =E C.

• PAR-C, PAR-C : Analogous to PAR-A.
• NEW-C : In this
ase, B = νnm.B̂ and C = νmn.B̂ for some names n,m anda pro
ess B̂. Sin
e A =E B, we have that A = νab.Â for some names a, b anda pro
ess Â. (Not ne
essarily ab = nm, be
ause =E allows α-
onversion.) Thus
νab.Â =E νnm.B̂. This implies νba.Â =E νmn.B̂ (by indu
tion over the derivationof νab.Â =E νnm.B̂). Hen
e with B∗ := νba.Â, we have that Aր≡ B∗ =E C.

• NEW-PAR: Then B = B1|νn.B2 and C = νn.(B1|B2) with n /∈ fn(B1). Sin
e
A =E B, we have A = A1|νa.A2 for some name a and pro
esses A1, A2 with
A1 =E B1 and νa.A2 =E νn.B2. (Not ne
essarily a = n, be
ause =E al-lows α-
onversion.) Let m be a fresh name, i.e., m /∈ fn(A1, A2, B1, B2). Let
B∗ := νm.(A1|A2{m/a}). Sin
e νn.B2 =E νa.A2 and m /∈ fn(A2, B2), we have
νm.B2{m/n} =E νm.A2{m/a}. Hen
e νm.(A1|B2{m/n}) =E νm.(A1|A2{m/a}).And using A1 =E B1, we get νm.(B1|B2{m/n}) =E νm.(A1|A2{m/a}) = B∗. Fur-thermore C = νn.(B1|B2) =E νm.(B1|B2{m/n}) sin
e n,m /∈ fn(B1), m /∈ fn(B2).Thus B∗ =E C. And A = A1|νa.A2 ր≡ A1|νm.A2{m/a} ր≡ νm.(A1|A2{m/a}) =
B∗. Thus B∗ is a pro
ess with Aր≡ B∗ =E C.This shows Claim 1.Claim 2 If Aր≡E B, then there exists an S su
h that Aր≡ S =E B.This follows dire
tly from Claim 1.Claim 3 If B,C are
losed pro
esses and B → C (derived using the rules listed at thebeginning of this proof), then for any
losed A with A ≡E B there exists a
losed B′ with

A→ B′ ≡E C.This
laim will then immediately prove the lemma. We show the
laim by indu
tionover the derivation of B → C. We distinguish the following rule appli
ations:
• STREQ: Then B ≡ B̃ → C̃ ≡ C for some B̃, C̃, and the indu
tion hypothesisholds for B̃ → C̃. Sin
e A ≡E B ≡ B̃, the indu
tion hypothesis implies that
A→ B′ ≡E C̃ for some
losed B′. Sin
e C̃ ≡ C, we have A→ B′ ≡E C.21

• E-REPL: Then B = E[!B̃] and C = E[B̃ | !B̃] where E is an evaluation
ontextand E[!B̃] has no name
on�i
ts. We have A ≡E E[!B̃]. From this it follows that
Aր≡E E′[!B̃] where E′ results from E by moving all unprote
ted restri
tions to thetop (no names in B̃ need to be renamed be
ause E[!B̃] has no name
on�i
ts). ByClaim 2, this implies that Aր≡ S =E E

′[!B̃] for some S. Hen
e S = E′′[!B̃′σ] where
E′′ =E E

′ and B̃′ =E B̃ and where σ is a renaming that
orresponds to the alpha-
onversions between E′ and E′′ over the hole. Thus Aր≡ S → E′′[(B̃|!B̃)σ] =E

E′[B̃ | !B̃] ≡ E[B̃ | !B̃] = C and hen
e A→ B′ ≡E C with B′ := E′′[(B̃|!B̃)σ].
• E-COMM: Then B = E[M 〈T 〉.P | N(x).Q] and C = E[P | Q{T/x}] where E isan evaluation
ontext, M =E N , and B has no name
on�i
ts. As in the E-REPL
ase, we have Aր≡E E′[M〈T 〉.P | N(x).Q] where E′ results from E by movingall unprote
ted restri
tions to the top. By Claim 2, this implies that Aր≡ S =E

E′[M〈T 〉.P | N(x).Q] for some S. Hen
e S = E′′[(M ′〈T ′〉.P ′ | N ′(x).Q′)σ] where
E′′ =E E

′, M ′ =E M , T ′ =E T , P ′ =E P , N ′ =E N , Q′ =E Q, and σ is as in the
ase of E-REPL. Then
Aր≡ S → E′′[P ′ | Q′{T ′/x}σ] =E E

′[P | Q{T ′/x}]
(∗)
=E E

′[P | Q{T/x}] ≡ E[P | Q{T/x}] = C.(Note that (∗) also uses the fa
t that =E may also rewrite terms that are subtermsof destru
tor terms; this is needed if x o

urs in a destru
tor term in Q.)Hen
e A→ B′ ≡E C for B′ := E′′[P ′ | Q′{T ′/x}σ].
• E-LET-THEN: Then B = E[let x = D in P else Q] and C = E[P{M/x}] where Eis an evaluation
ontext, D ⇓M , and B has no name
on�i
ts. As in the E-REPL
ase, we have Aր≡E E′[let x = D in P else Q] where E′ results from E by movingall unrestri
ted restri
tions to the top. By Claim 2, this implies that Aր≡ S =E

E′[let x = D in P else Q] for some S. Hen
e S = E′′[(let x = D′ in P ′ else Q′)σ]where E′′ =E E′, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as in the
ase of E-REPL. Then D′ =E D and DM ⇓ imply D′M ⇓′ for some M ′ =E M . Hen
e
(let x = D′ in P ′ else Q′) → P ′{M ′/x}. Then
Aր≡ S → E′′[P ′{M ′/x}σ] =E E

′[P{M ′/x}]
(∗)
=E E

′[P{M/x}] ≡ E[P{M/x}] = C.(Here (∗) again uses that =E rewrites destru
tor terms, see the
ase E-COMM.)Hen
e A→ B′ ≡E C for B′ := E′′[P ′{M ′/x}σ].
• E-LET-ELSE: Then B = E[let x = D in P else Q] and C = E[Q] where E isan evaluation
ontext, ∀M. D 6⇓ M , and B has no name
on�i
ts. As in theE-REPL
ase, we have A ր≡E E′[let x = D in P else Q] where E′ results from
E by moving all unrestri
ted restri
tions to the top. By Claim 2, this impliesthat Aր≡ S =E E′[let x = D in P else Q] for some S. Hen
e S = E′′[(let x =
D′ in P ′ else Q′)σ] where E′′ =E E′, D′ =E D, P ′ =E P , Q′ =E Q, and σ is asin the
ase of E-REPL. Sin
e D′ =E D and ∀M. D 6⇓ M , we have ∀M. D′ 6⇓ M .Hen
e (let x = D′ in P ′ else Q′) → Q′. Then

Aր≡ S → E′′[Q′σ] =E E
′[Q] ≡ E[Q] = C.22

Hen
e A→ B′ ≡E C for B′ := E′′[Q′σ].This shows Claim 3. And from that
laim the lemma follows. �3.1 Relating events and observational equivalen
eFor stating Lemma 3.7 below, we will need pro
esses
ontaining events. The variantof the applied pi
al
ulus presented in Se
tion 2 (whi
h is used by Proverif for obser-vational equivalen
e proofs) does not support events. When using Proverif for showingtra
e properties de�ned in terms of events, a di�erent variant of the applied pi
al
u-lus is used [Bla09℄. We will
all pro
esses in that
al
ulus event pro
esses. Synta
ti-
ally, event pro
esses di�er from pro
esses as in Figure 1 only by an additional
onstru
t
event f(t1, . . . , tn).P whi
h means that the event f is raised, with arguments t1, . . . , tn(these are normal terms), and then the event pro
ess P is exe
uted.The semanti
s of event pro
esses are formulated in [Bla09℄ in a di�erent way fromthe semanti
s used here. Fortunately, we will be able to en
apsulate everything that weneed to know about that semanti
s in Lemma 3.6 below, so we do not need to repeatthose semanti
s here.Instead, we extend the de�nition of the internal redu
tion relation → to event pro-
esses. → is de�ned as in De�nition 2.3, ex
ept that we add the following rule:EVENT: event f(t1, . . . , tn).P → PThe semanti
s de�ned by → will be related to those from [Bla09℄ by Lemma 3.6 below.Finally, [Bla09℄ de�nes the
on
ept of a tra
e property . We will only need tra
eproperties of a spe
i�
 form, namely

end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tnIntuitively, an event pro
ess P satis�es a tra
e property end(x) ⇒ start(x)∨x = t1∨· · ·∨
x = tn if in any exe
ution P |R → P1 → . . . → Pn, we have that if one of the transitionsraises the event end(t), then t ∈ {t1, . . . , tn} and in the same tra
e, the event start(t) isalso raised (for any adversarial R not
ontaining events).Formally, satisfying a tra
e property is de�ned with respe
t to the semanti
s from[Bla09℄.8 Instead of giving those semanti
s here, we present the following lemma whi
hsummarizes seven fa
t about that de�nition. We will not use any other fa
ts. The fa
ts
an be veri�ed by inspe
ting the semanti
s and de�nitions from [Bla09℄.8Stri
tly speaking, the semanti
s des
ribed in [Bla09℄ does not allow expressions of the form x = ti intra
e properties. Su
h expressions are, however, supported by Proverif. Also, [Bla09, footnote ℄ explainshow to en
ode su
h equality tests in the tra
e properties supported by [Bla09℄. In their notation, ourtra
e property be
omes the somewhat less readable tra
e property: end(x) ⇒ (end(x) start(x)) ∨
(end(t1) true) ∨ · · · ∨ (end(tn) true).Also, the semanti
s des
ribed [Bla09℄ do not support equations (i.e., t =E t′ i� t = t′ in their semanti
s).However, Proverif supports these, so we assume the intended semanti
s of Proverif is that of [Bla09℄ withthe natural extension of equality tests to equality modulo =E.23

Lemma 3.6 Let t1, . . . , tn be terms. Let ℘ stand for the tra
e property start(x) ⇒
end(x) ∨ x = t1 ∨ · · · ∨ x = tn. Let P be an event pro
ess.(i) If P ≡ P ′ and P satis�es ℘, then P ′ satis�es ℘.(ii) Assume P → P ′ and P satis�es ℘ and the redu
tion P → P ′ does not use theEVENT rule. Then P ′ satis�es ℘.(iii) Let t be a
losed term. Assume P = C[event start(t).Q] where C is an event
ontextnot binding fn(t) over its hole. Assume that P satis�es ℘. Then P ′ := C[Q] satis�es

℘ ∨ x = t.(iv) Assume P = C[event end(t).Q] where C is an event
ontext. Assume that Psatis�es ℘. Then P ′ := C[Q] satis�es ℘.(v) Assume P satis�es ℘ and E is an evaluation
ontext (not
ontaining events) and
E does not bind fn(t1, . . . , tn) over its hole. Then E[P] satis�es ℘.(vi) Assume E is an evaluation event
ontext that does not bind any names over itshole. Assume P = E[event end(t).Q]. Assume that P satis�es ℘. Then t =E ti forsome i.(vii) If νa.P satis�es ℘, then P satis�es ℘.We explain the intuitive reason for ea
h fa
t:(i) Stru
turally equivalent pro
esses behave identi
ally and thus raise the same events.(ii) If P → P ′ without raising an event, then for any event tra
e that P ′ may produ
e,
P may produ
e the same by �rst redu
ing to P ′.(iii) P ′ has the same event tra
es as P , ex
ept that some start(t)-events are removed.If P ′ does not satisfy ℘ ∨ x = t, then there must be an event end(t′) with t 6= t′that is not pre
eded by a start(t′)-event. But then also in a tra
e of P , there wouldbe an end(t′)-event not pre
eded by start(t′) (sin
e the tra
es only di�er in their
start(t)-events and start(t) 6= start(t′)).(iv) P ′ has the same event tra
es as P , ex
ept that various end(·)-events are removed.(Sin
e t is not ne
essarily
losed, end(t) may be instantiated to di�erent end(·)-events.) If a tra
e of P ′ does not satisfy ℘, this means there was an end(t′)-eventnot pre
eded by a start(t′) event. Then also in P the
orresponding end(t′)-eventis not pre
eded by a start(t′)-event, as P has the same start(·)-events, and more
end(·)-events.(v) The semanti
s of satisfying tra
e properties are de�ned with respe
t to P running inparallel with an adversary R not
ontaining events. Thus the
ase of an evaluation
ontext running with P is already
overed. (It is important that E does not bind
fn(t1, . . . , tn) be
ause otherwise the terms t1, . . . , tn o

urring in the pro
ess wouldbe
onsidered di�erent from those in ℘.)(vi) There is a tra
e of P that
onsists only of an end(t)-event. That tra
e does notsatisfy end(t) ⇒ start(t). Thus it satis�es ℘ only if ℘
ontains x = t as one of its
lauses. 24

(vii) νa.P has the same tra
es as P , ex
ept that o

urren
es of a in the P -tra
es arerepla
ed by a fresh restri
ted name a′. Thus, if P does not satisfy ℘, then thereis a tra
e
ontaining an end(t)-event without pre
eding start(t)-event su
h that
t /∈ {t1, . . . , tn}. In the
orresponding νa.P -tra
e, we have an end(t{a′/a})-eventwithout pre
eding start(t{a′/a})-event. Sin
e t /∈ {t1, . . . , tn} and a is fresh, also
t{a′/a} /∈ {t1, . . . , tn}. Hen
e the νa.P -tra
e does not satisfy ℘, either.Lemma 3.7 Let s be a name. Let P be a pro
ess
ontaining s only in
onstru
ts of theform (!(s, t)〈t′〉)|P ′ and (s, t)().P ′ (for arbitrary and possibly di�erent t, t′, P ′).Let plains(P) denote the pro
ess resulting from P by repla
ing all o

urren
es

!(s, t)〈t′〉|P ′ and (s, t)().P ′ by P ′.Let ev s(P) denote the pro
ess resulting from P by repla
ing all o

urren
es
!(s, t)〈t′〉|P ′ by event start(t).P ′ and (s, t)().P ′ by event end(t).P ′.Assume that ev s(P) satis�es the tra
e property end(x) ⇒ start(x).Then plains(P) ≈ νs.P .Proof. We
all a pro
ess P s-well-formed if it
ontains s only in
onstru
ts of the form
!(s, t)〈t′〉|P ′ and (s, t)().P ′ (for arbitrary and possibly di�erent t, t′, P ′). Given a multiset
T = {t1 7→ t′1, . . . , tn 7→ t′n} with ti, t

′
i terms, we
all an event-pro
ess P T -good if Psatis�es the tra
e property end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn.For example, the pro
ess P from the statement of the lemma is s-well-formed, and

ev s(P) is ∅-good.We de�ne the following relation R (up to stru
tural equivalen
e):
R :=

{(
νa.plains(P), νas.(P | !(s, t1)〈t

′
1〉 | · · · | !(s, tn)〈t

′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉

)

P s-well-formed, s, a distin
t names, evs(P) is {t1, . . . , tn}-good}Here P, n,m, ti, t′i, ui, u′i, s, a refer to arbitrary values, not only to the values P, s fromthe statement of the lemma.We write short syncout s({t1 7→ t′1, . . . , tn 7→ t′n}; {u1 7→ u′1, . . . , un 7→ u′n}) for
!(s, t1)〈t′1〉 | · · · | !(s, tn)〈t

′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉.We now show that R is a bisimulation:

• If (A,B) ∈ R, and A ↓M , then B ↓M :Then A = νa.plains(P). Hen
e plains(P) ↓M and a /∈ fn(M). Also, s /∈
fn(plains(P)), so s /∈ fn(M). By de�nition of plains(·), plains(P) ↓M implies
P ↓M . Sin
e a, s /∈ fn(M), it follows B = νas.(P | . . .) ↓M .

• If (A,B) ∈ R, and B ↓M , then A ↓M :Then B = νas.(P |syncout s(T ;U)). Thus a, s /∈ fn(M) and P |syncout s(T ;U) ↓M .Sin
e all
hannels in syncouts(T ;U) are of the form (s, ·), we have25

syncout s(T ;U) 6↓M .9 Hen
e P ↓M . By de�nition of plains(P) and sin
e M doesnot
ontain s, this implies plains(P) ↓M . Hen
e A = νa.plains(P) ↓M .
• If (A,B) ∈ R, and A→ A′, then there exists a B′ with B →∗ B′ and (A′, B′) ∈ R:Then A ≡ νa.plains(P) and B ≡ νas.(P |syncout s(T ;U)). We
all an event pro
essname-redu
ed , if it does not
ontain unprote
ted restri
tions.Without loss of generality, assume that P (and hen
e also evs(P)) is name-redu
ed(otherwise we
ould move the super�uous restri
tions into the νa).Let a0 := a and P0 := P and T0 := T . We �rst
onstru
t a sequen
e P1, . . . , Pkof pro
esses and a sequen
e of lists of names a1, . . . , ak, and a sequen
e of sets
T1, . . . , Tk su
h that Pk does not
ontain unprote
ted inputs (s, ·)().Q or unpro-te
ted outputs !(s, ·)〈·〉, and for all i = 0, . . . , k we have:(a) νs.(P |syncout s(T ;U)) →∗ νais.(Pi|syncout s(Ti;U)), and(b) ev s(Pi) is Ti-good, and(
) plains(P) ≡ νai.plain

s(Pi).(d) Pi is s-well-formed.For i = 0, these
onditions are trivially satis�ed. When
onstru
ting Pi for i > 0,we already have a pro
ess Pi−1 satisfying these
onditions. We distinguish three
ases:� If Pi−1 does not
ontain unprote
ted inputs (s, ·)(), we are done (k := i− 1).� If Pi−1 does
ontain an unprote
ted input (s, t)() that is not part of a subtermof the form !(s, ·)〈·〉|Q, then we
an write Pi−1 as Pi−1 = νb.E[(s, t)().P ′] forsome names b and some evaluation
ontext E that has no restri
tions over itshole. Sin
e (s, t)() is not part of a subterm of the form !(s, ·)〈·〉|Q, evs(E) isan evaluation
ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).Without loss of generality, b ∩ fn(Ti−1, U) = ∅.Sin
e evs(Pi−1) ≡ νb.evs(E)[event end(t).evs(P ′)] is Ti−1-goodby (b), Lemma 3.6 (vii) implies that ev s(E)[event end(t).ev s(P ′)]is Ti−1-good. Sin
e E does not bind any names over its hole,Lemma 3.6 (vi) implies that t =E t∗ for some t∗ ∈ Ti−1. Thus
Pi−1|syncout s(Ti−1;U) ≡ (νb.E[(s, t)().P ′])|syncout (Ti−1;U) →∗

(νb.E[P ′])|syncout(Ti−1;U). Sin
e without loss of generality, b∩ fn(Ti−1, U) =
∅, (νb.E[P ′])|syncout (Ti−1;U) ≡ νb.Pi|syncout(Ti−1;U) with Pi := E[P ′].Hen
e νs.P |syncout s(T ;U)

(a)
→∗νai−1s.(Pi−1|syncouts(Ti−1;U)) →∗9Here we impli
itly use the fa
t that (s, ·) 6=E M for any M not
ontaining s. That this fa
t holds
an be seen as follows:If M does not
ontain s, then M = Mσ for σ := (s 7→ s′, s′ 7→ s) and any s′ not o

urring in M .Assume (s, t) =E M for some term t. Then (s′, tσ) = (s, t)σ =E Mσ = M =E (s, t). (Here we usethat =E is
losed under renaming whi
h follows from the fa
t that equations and redu
tion rules in thesymboli
 model do not
ontain names.) By De�nition 2.5 (vi) (natural symboli
 model), this implies

s′ = s. Thus the assumption that (s, t) =E M was wrong.26

νai−1sb.Pi|syncout s(Ti−1;U) ≡ νais.Pi|syncout s(Ti;U) with Ti := Ti−1and ai := ai−1b. Thus (a) is satis�ed by Pi, ai, Ti.Sin
e evs(Pi−1) ≡ νb.ev s(E)[event end(t).ev s(P ′)] is Ti−1-good by (b) andthus Ti-good, we have by Lemma 3.6 (vii) that evs(E)[event end(t).ev s(P ′)]is Ti-good. Sin
e E does not bind names over its hole, neither does evs(E).Thus by Lemma 3.6 (iv), evs(E)[ev s(P ′)] = evs(Pi) is Ti-good. Thus (b) issatis�ed by Pi, ai, Ti.Sin
e Pi−1 = νb.E[(s, t)().P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus(d) is satis�ed by Pi, ai, Ti.Finally, plains(Pi−1) = νb.plains(E)[plain s(P ′)] = νb.plains(Pi). Sin
e by(
) we have that plains(P) ≡ νai−1.plain
s(Pi−1), we have plains(P) ≡

νai.plain
s(Pi). Thus (
) is satis�ed by Pi, ai, Ti.� If Pi−1
ontains an unprote
ted output !(s, t)〈t′〉 that is not part of a subtermof the form !(s, ·)〈·〉|Q, then we
an write Pi−1 as Pi−1 = νb.E[(s, t)〈t′〉|P ′] forsome names b and some evaluation
ontext E that has no restri
tions over itshole. Sin
e (s, t)〈t′〉 is not part of a subterm of the form !(s, ·)〈·〉|Q, ev s(E) isan evaluation
ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).Without loss of generality, b ∩ fn(Ti−1, U) = ∅.We have Pi−1|syncout s(Ti−1;U) ≡ (νb.E[!(s, t)〈t′〉|P ′])|syncout(Ti−1;U)

(∗)

≡
νb.(E[!(s, t)〈t′〉|P ′]|syncout (Ti−1;U)) ≡ νb.(E[P ′]|syncout(Ti;U)) with
Ti := Ti−1 ∪ {t 7→ t′}. Here (∗) uses that b ∩ fn(Ti−1, U) =

∅. Hen
e νs.P |syncouts(T ;U)
(a)
→∗νai−1s.(Pi−1|syncout s(Ti−1;U)) →∗

νai−1sb.(E[P ′]|syncout s(Ti;U)) ≡ νais.(Pi|syncout s(Ti;U)) with Pi := E[P ′]and ai := ai−1b (remember that Ti = Ti−1 ∪ {t 7→ t′}. Thus (a) is satis�ed by
Pi, ai, Ti.Sin
e evs(Pi−1) ≡ νb.evs(E)[event start(t).evs(P ′)] is Ti−1-good by (b),we have by Lemma 3.6 (vii) that evs(E)[event start(t).evs(P ′)] is Ti−1-good.Sin
e E does not bind names over its hole, neither does ev s(E). Thus byLemma 3.6 (iii), ev s(E)[ev s(P ′)] = ev s(Pi) is Ti-good. Thus (b) is satis�edby Pi, ai, Ti.Sin
e Pi−1 = νb.E[(s, t)〈t′〉.P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus(d) is satis�ed by Pi, ai, Ti.That (
) is satis�ed by Pi, ai, Ti is shown as in the previous
ase.Note that in the last two
ases, the size of Pi is smaller than that of Pi−1, sowe eventually rea
h the �rst
ase. Hen
e the
onstru
tion terminates and weget a pro
ess Pk that satis�es (a)�(d) and that does not
ontain unprote
tedinputs (s, ·)() or unprote
ted outputs !(s, ·)〈·〉. We have A ≡ νa.plains(P)

(
)
≡

νaak.plain
s(Pk). Thus A → A′ implies that νaak.plains(Pk) → A′ and andthus plains(Pk) → A′′ where A′′ is A′ with the restri
tions νaak removed. (I.e.

A′ ≡ νaak.A
′′.) Sin
e Pk is s-well-formed by (d) and does not
ontain unprote
tedinputs (s, ·)() or unprote
ted outputs !(s, ·)〈·〉, by inspe
tion of the de�nition of27

plains, ev s, and →, it follows that Pk → P ′ and ev s(Pk) → ev s(P ′) for some
s-well-formed P ′ with plains(P ′) ≡ A′′. The redu
tion evs(Pk) → evs(P ′) doesnot use the EVENT rule. Sin
e evs(Pk) is Tk-good by (b), from Lemma 3.6 (ii)we have that evs(P ′) is Tk-good. Let B′ := νaaks.(P

′|syncout s(Tk;U)). Then
(A′, B′) ≡ (νaak.plain

s(P ′), B′) ∈ R. Finally, B = νas.(P |syncout s(T ;U))
(a)
→∗

νaaks.(Pk|syncout
s(Tk;U)) → νaaks.(P

′|syncout s(Tk;U)) = B′.
• If (A,B) ∈ R, and B → B′, then there exists an A′ with A→∗ A′ and (A′, B′) ∈ R:We have A ≡ νa.plains(P) and B ≡ νas.(P |syncout s(T ;U)) for some s-well-formed
P and T -good ev s(P).We distinguish three
ases for B → B′:� B → B′ is a redu
tion within syncouts(T ;U):In this
ase, the redu
tion of the form E[!(s, t)〈t′〉] → E[(s, t)〈t′〉|!(s, t)〈t′〉] forsome t, t′. Thus B′ ≡ νas.(P |syncout s(T ;U ∪ {t 7→ t′})). Then A = A′ :=

νa.plains(P) and evs(P) is T -good. Hen
e A→∗ A′ and (A′, B′) ∈ R.� B → B′ is a COMM redu
tion between P and syncouts(T ;U):Then for some terms t, t′, some pro
ess Q, and some evaluation
ontext E, wehave P ≡ E[(s, t)().Q] for some t, t′, and B′ ≡ νas.(P ′|syncout s(T ;U ′)) with
P ′ := E[Q] and U ′ with U = U ′ ∪ {t 7→ t′}. Sin
e plains((s, t)().Q) =
plains(Q), we have A ≡ A′ := νa.plains(P ′). Furthermore, evs(P) =
ev s(E)[event end(t).evs(Q)] and evs(P ′) = evs(E)[ev s(Q)]. Thus byLemma 3.6 (iv), the fa
t that evs(P) is T -good implies that evs(P ′) is T -good.Hen
e A→∗ A′ and (A′, B′) ∈ R.� B → B′ is a redu
tion within P .Thus P → P ′ for some P ′, and B′ ≡ νas.(P ′|syncout s(T ;U)). Sin
e P is
s-well-formed, we have P ≡ E[Q] → E[Q′] ≡ P ′ for some evaluation
ontext
E and pro
ess Q, su
h that Q is of the form !(s, t)〈t′〉|Q1, or Q is a redexnot of the form !(s, ·)〈·〉, or Q = M〈N〉.Q1|M ′(x).Q2 with M 6=E (s, ·). (We
annot have a redu
tion on a
hannel (s, ·), sin
e s-well-formed terms haveoutputs on su
h
hannels only below bangs.) Without loss of generality, we
an assume that all unprote
ted o

urren
es of !(s, t)〈t′〉 in E are not belowa restri
tion (otherwise we
ould move these restri
tions from E to νa).Let E∗ be E with all unprote
ted o

urren
es of !(s, t)〈t′〉 removed (for arbi-trary t, t′). Let T ∗ be the multiset of the pairs (t 7→ t′) from these o

urren
es.Then E[Q] ≡ E∗[Q]|syncout s(T ∗;∅). Sin
e evs(P) = ev s(E[Q]) is T -good,and sin
e ev s(E∗[Q]) results from ev s(P) by removing event start(t) for all
(t 7→ ·) ∈ T ∗, by Lemma 3.6 (iii) we have that ev s(E∗[Q]) is T ∪ T ∗-good.We now distinguish on the form of Q:
∗ If Q =!(s, t)〈t′〉|Q1:Then B′ ≡ νas.(E∗[Q1]|syncout s(T ′;U ′)) for T ′ := T ∪ T ∗ ∪ {t 7→
t′} and U ′ := U ∪ {t 7→ t′}, and A′ := νas.plain(E∗[Q1]) =28

νas.plain(E∗[!(s, t)〈t′〉|Q1]) ≡ A. And sin
e ev s(E∗[Q]) =
ev s(E∗)[event start(t).ev s(Q1)] is T∪T ∗-good, we have that ev s(E∗[Q]) ≡
ev s(E∗)[ev s(Q1)] is T ′-good by Lemma 3.6 (iii). Thus A →∗ A′ and
(A′, B′) ∈ R.

∗ If Q is a redex, or Q = M〈N〉.Q1|M ′(x).Q2 with M =E M
′ and M 6=E

(s, ·):Then B′ ≡ νas.(P ′|syncouts(T ′;U)) with P ′ = E∗[Q′] and Q 7→ Q′ and
T ′ := T ∪ T ∗. And A → A′ := νa.plain(P ′). And evs(Q) → evs(Q′).Sin
e E∗ is an evaluation
ontext and does not
ontain unprote
ted
!(s, t)〈t′〉, we have that evs(E∗) is an event evaluation
ontext. Hen
e
ev s(E∗[Q]) = ev s(E∗)[ev s(Q)] → ev s(E∗)[ev s(Q′)] = ev s(P ′), not us-ing the EVENT rule. By Lemma 3.6 (ii) and using that evs(E∗[Q]) is
T ′-good, this implies that ev s(P ′) is T ′-good, too. Thus A →∗ A′ and
(A′, B′) ∈ R.

• If (A,B) ∈ R, and E is an evaluation
ontext, then (E[A], E[B]) ∈ R:We have A ≡ νa.plains(P) for some s-well-formed P . And B ≡ νas.(P |
syncout s(T ;U)) for some sets T,U . And ev s(P) is T -good. Without loss of general-ity, a, s do not o

ur in E (neither bound nor free). Let νb.E′ be E with all restri
-tions over the hole moved up into b. Then E[A] ≡ νb.E′[A] and E[B] ≡ νb.E′[B].Sin
e P is s-well-formed, and E and hen
e E′ does not
ontain s, E′[P] is s-well-formed.Sin
e E does not
ontain a, s, we have that abs are distin
t names.Sin
e ev s(P) is T -good, by Lemma 3.6 (v) we have evs(E′[P])) = E′[evs(P)] is T -good. (We use the fa
t that E′ does not bind the fn(T) as they have been movedinto νb.)Thus (νab.plains(E′[P]), νabs.(E′[P]|syncout s(T ;U))) ∈ R with E′[P] instead of
P and ab instead of a.By de�nition of plains(·), E[A] ≡ νb.E′[A] ≡ νb.E′[νa.plains(P)] =
νab.plains(E′[P]). And E[B] ≡ νb.E′[B] ≡ νb.E[νas.(P |syncout s(T ;U))] ≡
νabs.(E′[P]|syncout s(T ;U)).Sin
e R is
losed under stru
tural equivalen
e, this implies that (E[A], E[B]) ∈ R.Sin
e R is a bisimulation, and (plains(P), νs.P) ∈ R (using P, s as in the statementof the lemma), we have plains(P) ≈ νs.P . �3.2 Unpredi
tability of non
esLemma 3.8 (Unpredi
tability of non
es) Assume that not all terms are equal withrespe
t to the equational theory E.10 Let C be a
ontext not binding the variable x andlet P,Q be pro
esses. Then νr.C[if x = r then P else Q] ∼∼∼ νr.C[Q].10I.e., t1 6=E t2 for some terms t1, t2. Any useful equational theory satis�es this. But in prin
iple it ispossible for an equational theory to
ontain, e.g., the equation x =E y.29

Proof. We �rst show that for any term t and any name r /∈ fn(t), we have t 6=E r: Assume
t =E r. Let u1, u2 be two terms. Let σi := {ui/r} for i = 1, 2. It
an be easily seen thatif u =E v, then uσ =E vσ for arbitrary equational theories. From t =E r we thus have
tσi =E rσi. Sin
e r /∈ fn(t), we have tσi = t. Thus u1 = rσ1 =E t =E rσ2 = u2. Thus
u1 =E u2 for arbitrary terms u1, u2, in
ontradi
tion to the assumption from the lemma.In the following, a multi-hole
ontext is a
ontext C with zero, one, or more holes.
C[P] means C with every o

urren
e of the hole repla
ed by the same pro
ess P .We de�ne the following relation R:

R :=
{
(νr.C[if t = r then P else Q], νr.C[Q])

}up to stru
tural equivalen
e. Here C ranges over multi-hole
ontexts, t over terms,
r /∈ fv(t) over names, and P,Q over pro
esses.We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M , then B →∗↓M :Immediate sin
e �if t = r then P else Q� does not have unprote
ted outputs.
• If (A,B) ∈ R and B ↓M , then A→∗↓M :If the output on M is in C, A ↓M . Otherwise the output is in an unprote
tedinstan
e of Q in νr.C[Q] ≡ B. Sin
e r /∈ fv(t), we have t 6=E r and hen
e
(if t = r then P else Q) → Q. Then A → A′ where A′ results from repla
ing oneinstan
e of �if t = r then P else Q� by Q. Then A′ ↓M .

• If (A,B) ∈ R and A→ A′ then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:Then A ≡ νr.C[if t = r then P else Q] and B ≡ νr.C[Q]. If the redu
tion A→ A′takes pla
e in C, then there is a
orresponding redu
tion B → B′ and (A′, B′) ∈ R.Thus we
an assume that one of the �if t = r then P else Q� is being re-du
ed in A. Sin
e t 6=E r, that subpro
ess redu
es to Q. Thus A′ ≡
νr.C ′[if t = r then P else Q] where C ′ is C with one of the holes repla
ed by Q.Then B′ := B ≡ νr.C[Q] = νr.C ′[Q]. Hen
e B →∗ B′ and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′ then there is an A′ with A→∗ A′ and (A′, B′) ∈ R:Then A ≡ νr.C[if t = r then P else Q] and B ≡ νr.C[Q]. As before, we have
(if t = r then P else Q) → Q. The redu
tion B → B′ may involve C and up to twoinstan
es of Q. We
an thus write B as B ≡ C ′′[Q] where C ′′ results from repla
ingin C the holes
orresponding to these instan
es of Q. These instan
es of Q are notprote
ted, so the holes we have repla
ed by Q are not prote
ted, either. Thus A→∗

C ′′[if t = r then P else Q] =: A′′. Then the redu
tion B ≡ C ′′[Q] → B′ involvesonly C ′′. Hen
e B′ ≡ C ′[Q] for some C ′, and A′′ → C ′[if t = r then P else Q] =: A′.Thus A→∗ A′ and (A′, B′) ∈ R. 30

• If (A,B) ∈ R and E is an evaluation
ontext, then (E[A], E[B]) ∈ R:Then A ≡ νr.C[if t = r then P else Q] and B ≡ νr.C[Q]. Without loss of gen-erality, r /∈ fn(E), bn(E). Hen
e E[A] ≡ νr.E[C[if t = r then P else Q]] and
E[B] ≡ νr.E[C[Q]]. Hen
e (E[A], E[B]) ∈ R (with E[C] instead of C).We
an now show the lemma. Let C,P,Q, r be as in the lemma. Let σ be a sub-stitution
losing νr.C[if x = r then P else Q] and νr.C[Q]. Without loss of generality,

r /∈ fn(σ) (otherwise we rename r and
hange C,P,Q a

ordingly). In parti
ular,
σ(x) will be some
losed term t with r /∈ fn(t). Then C[if x = r then P else Q]σ =
C ′[if t = r then P ′ else Q′] and C[Q]σ = C ′[Q′] where C ′, P ′, Q′ are the result of apply-ing σ to C,P,Q. (In the
ase of P,Q, restri
ted to those variables not bound by C.) And
(C ′[if t = r then P ′ else Q′], C ′[Q′]) ∈ R. Thus C ′[if t = r then P ′ else Q′] ≈ C ′[Q′].Sin
e this holds for any
losing σ, we have C[if x = r then P else Q] ∼∼∼ C[Q]. �4 Symboli
 UCIntuition. We start by presenting the intuition that underlies the original UC frame-work [Can01℄ and thus also our work. The basi
 idea is to de�ne se
urity of a proto
ol πby
omparing it to a so-
alled ideal fun
tionality F . The ideal fun
tionality is a ma
hinethat by de�nition does what the proto
ol should a
hieve. For example, if the task of theproto
ol is to transmit a messagem se
urely from Ali
e to Bob, then the fun
tionality is atrusted ma
hine that expe
ts a message m from Ali
e over a se
ure
hannel, sends to theadversary that su
h a message was re
eived (but does not send the message itself), andthen after the adversary allows delivery, forwards the message to Bob. (In the appliedpi
al
ulus, this fun
tionality would be net scstart().ioA(x).netnotify〈〉.netdeliver ().ioB 〈x〉where the net ...-
hannels belong to the adversary; see De�nition 6.2 below.) In a sense,the fun
tionality is an abstra
t spe
i�
ation of the proto
ol behavior, and the proto
ol issupposed to be a
on
rete instantiation of that spe
i�
ation using
rypto, in a way thatpreserves the se
urity properties of the spe
i�
ation.So how to model that a proto
ol π is as se
ure as a fun
tionality F? The basi
 ideais to ensure that any atta
k on π is also possible on F . Sin
e by assumption F does notallow any atta
ks, this implies that π does not allow any atta
ks either, so π is se
ure. Tomodel that any atta
k on π is possible on F , we require that for any adversary atta
king
π, there is a
orresponding adversary (the �simulator�) atta
king F that performs anequivalent atta
k. And what do we mean by equivalent? Any �environment� that
anobserve the overall proto
ol out
ome (inputs and outputs), and that
an talk to theadversary (i.e., it learns what se
ret information the adversary might have obtained),
annot distinguish between the two atta
ks. In other words, for any adversary A, thereis a simulator S su
h that for all environments Z, we have that π+A+Z (the proto
olrunning with A and Z) and F + S + Z are indistinguishable from Z's point of view.Noti
e that we do not wish to allow Z to observe the internal proto
ol
ommuni
ation �doing so would require that π and F work the same way internally, but we only want thatthe two have the same �observable e�e
ts�, we do not
are about their inner workings.31

Due to this, in a formal de�nition, we need to distinguish between the proto
ol-internal
ommuni
ation
hannels (net-
hannels), and the proto
ol's interfa
e (io-
hannels). Onlythe latter is a

essible to the environment.Formal de�nition. To formalize the above intuition in the applied pi
al
ulus, we�rst formalize the distin
tion between
hannels that make up the proto
ol's input/outputinterfa
e, and those that make up the proto
ol's internal
hannels. We partition the set ofall names into two sets IO and NET (both in�nite). We will then require adversaries andsimulators to only
ommuni
ate on NET
hannels. We do not forbid the environmentto a

ess NET
hannels, the fa
t that the adversary/simulator
an inter
ept the NET
hannels has the e�e
t that the environment
annot use them to distinguish.In order to keep the distin
tion between NET-
hannels and IO-
hannels, we also wantto avoid that NET-
hannels are transmitted to the environment (we use this in a fewpla
es in our proofs):De�nition 4.1 We
all a pro
ess P NET-stable if every name n ∈ NET ∩ fn(P) in Po

urs only in
hannel identi�ers (i.e., in parti
ular, P does not send n to the environ-ment).Note that there is no restri
tions on the bound names. Thus a NET-stable adversaryis free to share arbitrary fresh names with the environment and to use them as
hannels.We now de�ne the
on
ept of an adversary. Essentially, an adversary is just a pro
ess
A that is intended to intera
t with the proto
ol (or fun
tionality). Sin
e the adversary
onne
ts to the proto
ol over some NET-names, the spe
i�
ation of the adversary ad-ditionally in
ludes a list of NET-names n of the proto
ol that will be a

essed by A(and are thus private between A and the proto
ol). Finally, an adversary/simulatorsometimes needs to rename NET-
hannels of the proto
ol/fun
tionality to avoid name
lashes. Sin
e NET-
hannels are proto
ol internal and not part of the externally visibleinterfa
e, it should not matter whether the same name is used in proto
ol and fun
tional-ity or not. This is a
hieved by letting the adversary rename NET-names, we model thisby spe
ifying a renaming ϕ as part of the adversary.De�nition 4.2 An adversary is a triple (A,ϕ,n) where A is a
losed NET-stable pro
esswith IO ∩ fn(A) = ∅, ϕ : NET → NET a bije
tion and n a list of names n ⊆ NET.We
an now state our se
urity de�nition. Both proto
ol and fun
tionality are modeledby pro
esses P and Q , respe
tively. An adversary (A,ϕA, nA)
onne
ting to P is modeledas νnA.(PϕA|A), as we would expe
t from the meaning of ϕ and n explained above.To model that P emulates Q, we would require that νnA.(PϕA|A) and νnS .(QϕS |S)are indistinguishable for any environment for a suitable simulator (S,ϕ, n). We do notneed to spe
ify the environment expli
itly be
ause we have the notion of observationalequivalen
e: νnA.(PϕA|A) ≈ νn.(Qϕ|S) means that no
ontext
an distinguish the leftand right hand side. The following de�nition
aptures this, ex
ept that we make onesimpli�
ation: Instead of quantifying over all adversaries (A,ϕA, nA), we �x A := 0, ϕA32

the identity, and nA the empty list, so that νnA.(PϕA|A) = P . (Su
h an adversary, thatessentially just leaves all NET-
hannels a

essible to the environment, is usually
alleda dummy adversary .) This de�nition is often te
hni
ally mu
h simpler to handle, andLemma 4.4 below guarantees that it is equivalent to the more natural de�nition thatquanti�es over all adversaries.De�nition 4.3 Let P and Q be pro
esses. We say P emulates Q (written P ≤ Q) i�there exists an adversary (S,ϕ, n) su
h that P ∼∼∼ νn.(Qϕ|S). (S,ϕ, n) will often be
alledsimulator.We use the more general full observational equivalen
e ∼∼∼ (see page 11) to allow fornon-
losed P,Q. For
losed P,Q, one
an use ≈ instead and gets an equivalent de�nition.Note that there is no formal distin
tion between proto
ols and fun
tionalities. Indeed,it
an sometimes be
onvenient to
ompare two proto
ols P,Q. Furthermore, note that
≤ is weaker than ∼∼∼: P ∼∼∼ Q entails P ≤ Q (and Q ≤ P) with the simulator (0, id , ∅).As observed in [KDMR08℄ there are several approa
hes to de�ne simulation basedse
urity. The following Lemma shows that our de�nition (resembling strong simulatabilityis equivalent to the two alternatives: bla
k-box simulatability and universally-
omposablesimulatability (the latter being the de�nition that
orresponds dire
tly to the intuitiongiven at the beginning of this se
tion).Lemma 4.4 For pro
esses P , Q we have that the following are equivalent:(i) strong simulatability: P ≤ Q(ii) bla
k-box simulatability: ∃(S,ϕS , nS) ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼

νnA.((νnS.(QϕS |S))ϕA|A)(iii) universally-
omposable simulatability: ∀(A,ϕA, nA) ∃(S,ϕS , nS) νnA.(PϕA|A) ∼∼∼
νnS .(QϕS |S)where all triples are adversaries a

ording to De�nition 4.2.Proof.

• (i) ⇒ (ii):
P ≤ Q⇒ ∃(S,ϕS , nS) P ∼∼∼ νnS .(QϕS |S)

(∗)
⇒ ∀ bije
tions ϕA PϕA

∼∼∼ (νnS .(QϕS |S))ϕA

(∗∗)
⇒ ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼ νnA.((νnS .(QϕS |S))ϕA|A)

(∗) sin
e ∼∼∼ is
losed under renaming and (∗∗) sin
e ∼∼∼ is
losed under the appli
ationof evaluation
ontexts.
• (ii) ⇒ (iii): Let (S,ϕS , nS) be the simulator from (ii), (A,ϕA, nA) be an adversaryand ϕ a bije
tion on names su
h that nS(ϕ◦ϕA)∩ fn(A) = ∅ and ϕ is the identity

33

on the free names of Q(ϕA ◦ ϕS) and SϕA (this ϕ
an be used as α-
onversion instep three below). We observe
νnA.((νnS .(QϕS |S))ϕA|A)

≡ νnA.(νnSϕA.(Q(ϕA ◦ ϕS)|SϕA)|A)

≡ νnA.(νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA))|A)

≡ νnA.νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA)|A)and thus (SA, nSA
, ϕSA

) := (S(ϕ ◦ ϕA)|A,nA ∪ nS(ϕ ◦ ϕA), (ϕ ◦ ϕA ◦ ϕS)) is anadversary su
h that
νnA.(PϕA|A) ∼∼∼ νnSA

.(QϕSA
|SA)

• (iii) ⇒ (i) We
onstru
t the simulator from the last step for the adversary (0,∅, id)and have (i).
�Lemma 4.5 (Re�exivity, transitivity) Let P,Q,R be pro
esses. Then P ≤ P . Andif P ≤ Q and Q ≤ R, then P ≤ R.Proof. P ≤ P follows dire
tly from De�nition 4.3 by setting S := 0, ϕ as the identity,and n := ∅.Assume now that P ≤ Q and Q ≤ R. Then there are pro
esses S1, S2 with IO ∩

fn(S1) = IO ∩ fn(S2) = ∅, bije
tions ϕ1, ϕ2 : NET → NET, and lists of names n1, n2 ⊆
NET su
h that P ∼∼∼ νn1.(Qϕ1|S1) and Q ∼∼∼ νn2.(Rϕ2|S2). Without loss of generality we
an
hoose n2 su
h that n2ϕ1 ∩ fn(S1) = ∅. It follows

P ∼∼∼ νn1.(Qϕ1|S1)
(∗)
∼∼∼ νn1.((νn2.(Rϕ2|S2))ϕ1|S1)]
(∗∗)

≡ νn1.((νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1))|S1)
(∗∗∗)

≡ νn1.νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1|S1)Here (∗) follows sin
e ∼∼∼ is
losed under the appli
ation of evaluation
ontexts and underrenaming of free names.And (∗∗) follows sin
e for any pro
ess R, we have (νn2.R)ϕ1 ≡ νn2ϕ1.(Rϕ1).And (∗∗∗) follows sin
e n2ϕ1 ∩ fn(S1) = ∅.Thus,
hoosing n := n1∪n2ϕ1, ϕ := ϕ1◦ϕ2, and S := S2ϕ1|S1, we get P ∼∼∼ νn.(Rϕ|S).Hen
e P ≤ R. �

34

Corruption. So far, we have not yet modeled the ability of the adversary to
orruptparties. There are two main variants of
orruption: stati
 and adaptive
orruption. Inthe
ase of stati

orruption, it is determined in the beginning of the proto
ol who is
or-rupted. For adaptive
orruption,
orruption may o

ur during the proto
ol and dependon proto
ol messages. Modeling stati

orruption is quite easy in our model: When aparty X is
orrupted, we simply remove the subpro
ess PX
orresponding to that partyfrom the proto
ol P , make all NET-names o

urring in PX publi
, and � in the
ase of afun
tionality � additionally rename all IO-names of PX into NET-names. For example,if P = νnet1net2.(PA|PB |F) where net1 o

urs in PA and PB and net2 only in PB , and
F has IO-names ioFA, ioFB then
orrupting A leads to P ′ = νnet2.(PB |F{netFA/ioFA}).And a fun
tionality G with IO-names ioA, ioB be
omes G{netA/ioA}.So, if we want to verify that a P emulates G for any
orruption, we need to
he
k:

• Un
orrupted: P ≤ G.
• Ali
e
orrupted: νnet2.(PB |F{netFA/ioFA}) ≤ G{netA/ioA}.
• Bob
orrupted: PA|F{netFB/ioFB} ≤ G{netB/ioB}.An example is given in Se
tion 9.1 in the
ase of UC se
ure
ommitments.Modeling adaptive
orruptions is more
omplex. For this one would need to introdu
espe
ial parties that rea
t to a spe
ial signal from the environment and then swit
h intoa
orrupted mode. We do not follow that approa
h here.5 CompositionOne of the salient properties of the UC framework is
omposition. Assume a proto
ol

π UC-emulates a fun
tionality F . And ρ is a proto
ol using F . Then ρπ/F (whi
h is ρwith F repla
ed by π) UC-emulates ρ. And hen
e, by transitivity, if ρ emulates somefun
tionality G, ρπ/F UC-emulates G.In our
ontext, ideally we would like a
omposition theorem su
h as P ≤ Q =⇒
C[P] ≤ C[Q] for arbitrary
ontexts C. Unfortunately, the situation is not as simple.A simple observation is that if C may
ontain NET-names, then
omposition will notwork: For example, assume P ≤ Q, and P is a proto
ol using some NET-
hannel net toimplement an ideal fun
tionality Q (whi
h does not use net). And C = �|R re
eives ona NET-
hannel net and outputs the re
eived messages on an IO-
hannel io. Then C[P]will output proto
ol-internal messages on io (observable to the environment), while C[Q]will not (sin
e the fun
tionality Q will not use the
hannel net). Hen
e C[P] 6≤ C[Q].(We give a formal analysis of the various
ases in whi
h the
omposition theorem doesnot hold in Appendix A.)Thus a �rst
ondition on C is that it may not use the same NET-names. In fa
t,we show below (Theorem 5.37) that if C is an evaluation
ontext binding only IO-namesand not using any of the NET-names of P,Q, then P ≤ Q =⇒ C[P] ≤ C[Q] holds.This already allows for a large range of
omposition operations. (In parti
ular, we
an
onne
t di�erent proto
ols through their interfa
es se
urely by
omposing them in35

parallel, and restri
ting the IO-
hannels through whi
h they are
onne
ted.) But oneimportant operation is missing, namely
on
urrent
omposition. Con
urrent
ompositionmeans that if P ≤ Q, then P ′ ≤ Q′ where P ′
onsists of many instan
es of P and Q′analogously. Su
h a result is important in many
ases, e.g., if P is a single session key-ex
hange, but an embedding proto
ol needs a large number of keys. The most obviousway to model this in our setting would be a theorem stating P ≤ Q =⇒ !P ≤ !Q.Unfortunately, su
h a theorem
annot hold, either. The intuitive reason is as follows:When trying to
onstru
t a simulator for !Q, then this simulator will not be able todistinguish messages from di�erent instan
es of Q. The simulator will then be unable toeven de
ide whether he talks to a single instan
e or several. For example:
P := νnm.

(
io1〈n〉 | io2(x).if x = n then net2〈m〉

| io3(x).if x = n then net3〈m〉
)

Q := νn.
(
io1〈n〉 | io2(x).if x = n then net2〈empty〉

| io3(x).if x = n then net3〈empty〉
)Here we have P ≤ Q be
ause a simulator re
eiving empty on net2 or net3 just has torepla
e it by some fresh name m. However, we do not have !P ≤ !Q. Depending onthe messages the environment sends on io2, !P will output either the same name m on

net2,net3, or di�erent names m,m′. However, a simulator intera
ting with !Q in both
ases gets empty , empty on net2,net3. The simulator then does not know whether heshould
hange this into m,m or m,m′ for fresh m,m′. Thus the simulator fails. (Theformal argument is in Appendix A.)So we
annot have a theorem stating P ≤ Q =⇒ !P ≤ !Q. Does this mean
on-
urrent
omposition is not possible? No, just that ! is not the right operator to modelit. In the
omputational UC framework,
omposition also does not involve a number ofindistinguishable instan
es. Instead, ea
h instan
e of P and Q is given a unique sessionid, and all
ommuni
ation is tagged with that session id so that it
an be routed to theright instan
e. In our setting, one possibility to a
hieve this is to de�ne an operator !!su
h that !!P behaves like an unlimited number of instan
es of P , where ea
h instan
e istagged with a unique session id sid . I.e., ea
h
hannel C in P is repla
ed by (sid , C).11The question is how to de�ne !!P . The applied pi
al
ulus does not have any
onstru
tthat
onveniently allows to perform in�nite bran
hing with di�erent ids. Thus, we haveto work around this restri
tion by introdu
ing a more elaborate
onstru
tion. As a �rststep, we de�ne the tagged version P ((M)) of the pro
ess P :De�nition 5.1 Let P be a pro
ess, and let M be a term. We write P((M)) for P withevery o

urren
e of C (x) repla
ed by (M ,C)(x) and every o

urren
e of C 〈T 〉 repla
edby (M ,C)〈T 〉.11One might instead
onsider tagging the messages sent over the
hannel with sid . This, however, doesnot work as well: One would need a spe
i�
 multiplexer pro
ess that given a message (sid , T) dis
oversthe
orresponding instan
e of P and delivers to it. This might be possible, but is probably
onsiderablymore
ompli
ated than the approa
h we take below.36

Now we have to somehow de�ne !!P as P ((s1))|P ((s2))| . . . where s1, s2, . . . range oversome in�nite set SID of session ids. Using produ
t pro
esses (see Se
tion 2.2) this iseasy: !!P :=
∏

x∈SID P ((x)) does the job. However, produ
t pro
esses are a nonstan-dard extension of the applied pi
al
ulus, but we wish to stay
ompatible with existingvariants (in parti
ular, to be able to use Proverif for veri�
ation). Thus, instead ofusing ∏x∈SID P ((x)), we de�ne a suitable
ontext C su
h that C[P ((x))] behaves like∏
x∈SID P ((x)). Then we
an de�ne !!P := C[P ((x))]. Of
ourse, depending on the parti
-ular set SID we
hoose, a di�erent
ontext C will be needed. Instead of �xing a parti
ularone, we thus give a general de�nition what
ontexts are suitable for a given set SID , andfrom then on, just assume an arbitrary su
h
ontext.De�nition 5.2 (Indexing
ontext) Given a set S of terms, a variable x (will be usedfor tagging), and names n, we
all a
losed
ontext Cx ,n with bn(Cx ,n) = n and fn(Cx ,n) =

∅ (not
ontaining indexed repli
ations) an S-indexing
ontext i� for all pro
esses Pwith
x 6∈ bv(P) 12 and n ∩ fn(P) = ∅ we have

Cx ,n [P((x))] ∼∼∼
∏

x∈S

P((x))In the following, we �x a set SID of terms
ontaining no names or variables. The set
SID will represent the set of all session IDs. We assume that id =E id ′ entails id = id ′for id , id ′ ∈ SID (di�erent IDs are never equivalent by the equational theory).Note that not for every set SID a SID-indexing
ontext exists. For example, if SID isnot semi-de
idable (but the equational theory is), then there is no SID-indexing
ontext.One might be
on
erned that our de�nition of SID -indexing
ontexts
annot be ful�lled.The following de�nition shows that this is not the
ase, at least if we use suitably en
odedbitstrings as SIDs.De�nition 5.3 Assume that a nullary
onstru
tor nil and unary
onstru
tors zero and
one are part of our symboli
 model. Let SIDbits be the set of all terms built from nil , zeroand one. Assume furthermore that for id , id ′ ∈ SIDbits in our symboli
 model id =E id ′entails id = id ′. Let

CSIDbits
x ,a := νa.(a〈nil〉|!a(x).(a〈zero(x)〉|a〈one(x)〉|�))Intuitively, CSIDbits

x ,a is a fa
tory with parameters x and a for tagged instan
es of Pthat realizes the abstra
t
onstru
tion of ∏x∈SIDbits
P ((x)). We now show that CSIDbits

x ,aa
tually is an SIDbits-indexing
ontext. Towards this goal we �rst de�ne an intermediaterepresentation of CSIDbits
x ,a .12P may have x ∈ fv(P) but we forbid x ∈ bv(P) to avoid te
hni
alities in the de�nition of P((x)) dueto the shadowed x .

37

De�nition 5.4 Let P be a pro
ess. We write Pn for n parallel instan
es of P (P | . . . |P).We de�ne the following fun
tions on the set of pro
esses:
Gx ,a(P) :=a(x).(a〈zero(x)〉 | a〈one(x)〉 | P)

Gn
x ,a(P) :=(Gx ,a(P))n | !Gx ,a (P)

C(sID ,gID ,n)
x ,a (P) :=Σx∈sIDP | νa.(Σx∈gIDa〈x 〉 | G

n
x ,a(P))where Σx∈T P for a �nite set of terms T = {T1 , . . . ,Tl} is synta
ti
 sugar for

P{T1/x}| . . . |P{Tl/x} (this is only well-de�ned up to stru
tural equivalen
e), sID ⊆
SID, gID ⊆ SID and n ∈ N.Intuitively, sID (spawned IDs)
ontains the ids for all instan
es of P , that havealready been tagged but are still formally a part of CSIDbits

x ,a (i.e., �are still in the fa
tory�).
gID is the foundation for the ids yet to be generated. These ids are the elements of thespan of gID whi
h we will introdu
e in the following de�nition. The last parameter nexists mainly for te
hni
al reasons and
ounts the number of
urrently a
tive generatorinstan
es Gx ,a(P).De�nition 5.5 (Span) Let S ⊆ SIDbits be a set of IDs. We
all 〈S〉 := S ∪
{cn(. . . c2(c1(s)) . . .) : s ∈ S, ci ∈ {zero, one}} the span of S (note that 〈S〉 ⊆ SIDbits).The following de�nition bridges the gap between C

(sID ,gID,n)
x ,a (P((x))) and∏x∈S P((x)).Have in mind that S denotes the set of ids that are yet to be used by the produ
t pro
essfor tagging and we have S = SIDbits at the beginning.De�nition 5.6 (S-valid) Let sID ⊆ SIDbits , gID ⊆ SIDbits and S ⊆ SIDbits be sets ofids and sID and gID be �nite. We
all C(sID ,gID,n)

x ,a S-valid if sID = ∅ and gID = {nil}or if(i) sID ⊆ S(ii) gID = {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}} where G := (SIDbits \ S) ∪ sID(intuitively, G is the set of ids already generated)(iii) 〈gID〉 = S \ sIDLemma 5.7 Let S ⊆ SIDbits and C
(sID ,gID ,n)
x ,a be S-valid where n ≥ 1. Then for any

id ∈ gID we have that C(sID ′,gID ′,n−1)
x ,a is S-valid where sID ′ := sID ∪ {id} and gID ′ :=

gID \ {id} ∪ {zero(id), one(id)}.Proof. Due to De�nition 5.6 point iii we have that gID ∩ sID = ∅ and gID ⊆ S. We
he
k the three points of De�nition 5.6 for sID ′ and gID ′:(i) id ∈ gID ⊆ S and sID ⊆ S entail sID ′ = (sID ∪ {id}) ⊆ S38

(ii) For a set G ⊆ SIDbits we de�neM(G) := {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}}.By assumption we have gID = {nil} or gID = M(G) for G := (SIDbits \ S) ∪ sID .The �rst
ase leads to sID ′ = {nil} and gID ′ = {zero(nil), one(nil)} for whi
hthis point
an easily be veri�ed. For the se
ond
ase we de�ne G′ := G ∪ {id}.
id 6∈ M(G′) sin
e id ∈ G′. f(id) ∈ M(G′) for f ∈ {zero, one} i� f(id) 6∈ G′. Weassume towards
ontradi
tion that f(id) ∈ G′. Then f(id) ∈ G and by de�nitionof G f(id) ∈ (SIDbits \ S) ∪ sID . However

• f(id) ∈ (SIDbits \ S) entails f(id) 6∈ S and thus f(id) 6∈ 〈gID〉. This
ontra-di
ts f(id) ∈ 〈gID〉 (whi
h holds sin
e id ∈ gID).
• f(id) ∈ sID entails f(id) 6∈ 〈gID〉 and leads to a
ontradi
tion analogously.All together we have f(id) 6∈ G′ and hen
e M(G′) = M(G) \ {id} ∪

{zero(id), one(id)} = gID ′.(iii) 〈gID ′〉 = 〈gID\{id}∪{zero(id), one(id)}〉 = 〈gID〉\{id} = S\sID\{id} = S\gID ′.
�To show that CSIDbits

x ,a is a SIDbits-indexing
ontext (see Lemma 5.10) we �rst show
C
(sID ,gID ,n)
x ,a (P((x))) ∼∼∼ νa.

∏
x∈S P((x)) for every S-valid C

(sID ,gID ,n)
x ,a .Lemma 5.8 Let P be a pro
ess and M be a term. If C(sID ,gID ,n)
x ,a (P((x))) lM there isexa
tly one id ∈ sID su
h that P((id)) lM .Proof. It is easy to see that C(sID ,gID ,n)

x ,a (0) never
ommuni
ates on a
hannel (note that
a is bound). Hen
e for C(sID ,gID ,n)

x ,a (P((x))) lM we need one of the tagged instan
es of Pin C
(sID ,gID ,n)
x ,a (P((x))) to
ommuni
ate on M , i.e., P((id)) lM for some id ∈ sID requiring

M =E (id ,�). Analogously, for any id ′ ∈ sID with P((id ′)) lM we have M =E (id ′,�).Due to De�nition 2.5 (vi) (natural symboli
 model) this entails id =E id ′ whi
h leads to
id = id ′ by de�nition of SIDbits (sID ⊆ SIDbits). Thus, the ID id with P((id)) lM isunique. �Lemma 5.9 Let P be a pro
ess with at most one free variable, whi
h we
all x if existent,and x 6∈ bv(P). Let a 6∈ fn(P) be a name. Then

C(∅,{nil},0)
x ,a (P((x))) ≈

∏

x∈SIDbits

P((x))Proof. We de�ne the relation
R := ≈ ∪ {(E [C(sID ,gID ,n)

x ,a (P((x)))], E [
∏

x∈S

P((x))]) : for any n ≥ 0, S ⊆ SIDbits ,evaluation
ontext E , pro
ess P and C(sID ,gID ,n)
x ,a S-valid}
losed under stru
tural equivalen
e. Then we show that R ⊆ ≈. Towards this goal weshow that R and R−1 are simulations. We start with R:39

• E [C
(sID ,gID,n)
x ,a (P((x)))] ↓M : If E [0] ↓M we obviously have E [

∏
x∈S P((x))] ↓M . Oth-erwise C

(sID ,gID ,n)
x ,a (P((x))) ↓M . In this
ase, a

ording to Lemma 5.8, there isa distin
t id ∈ sID su
h that P((id)) ↓M and, sin
e E [C

(sID ,gID ,n)
x ,a (P((x)))] ↓M ,

E [P((id))] ↓M . On the other hand, due to the S-validity of C(sID ,gID ,n)
x ,a , sID ⊆

S. With id ∈ S we have ∏x∈S P((x)) → P((id))|
∏

x∈S\{id} P((x)) and hen
e
E [
∏

x∈S P((x))] →↓M .
• E [C

(sID ,gID,n)
x ,a (P((x)))] → (E [C

(sID ,gID ,n)
x ,a (P((x)))])′: We distinguish three
ases1. → does only a�e
t C(sID ,gID ,n)

x ,a (P((x))) up to stru
tural equivalen
e. Inthis
ase we have E [0] → E ′[0], E [
∏

x∈S P((x))] → E ′[
∏

x∈S P((x))] and
(E ′[C(sID ,gID ,n)

x ,a (P((x)))], E ′[
∏

x∈S P((x))]) ∈ R.2. → is a COMM redu
tion that interferes with E and C
(sID ,gID,n)
x ,a (P((x))). Dueto Lemma 5.8 we �nd a distin
t id ∈ sID su
h that

E [C(sID ,gID ,n)
x ,a (P((x)))] → E ′[P((id))′|C(sID\{id},gID ,n)

x ,a (P((x)))]Analogously to the
ase for E [C
(sID ,gID ,n)
x ,a (P((x)))] ↓M we spawn a properlytagged instan
e of P from ∏

x∈S P((x)). With Ẽ [�] := E ′[P((id))′|�] we have
(Ẽ [C(sID\{id},gID ,n)

x ,a (P((x)))], Ẽ [
∏

x∈S\{id}

P((x))]) ∈ Rsin
e C(sID\{id},gID ,n)
x ,a is (S \ {id})-valid.3. → does only a�e
t E up to stru
tural equivalen
e. In this
ase we have

C
(sID ,gID ,n)
x ,a (P((x))) → C

(sID ,gID,n)
x ,a (P((x)))′. We distinguish three
ases:� → is a REPL redu
tion and spawns a new instan
e of Gx ,a (seeDe�nition 5.4). In this
ase C

(sID ,gID ,n)
x ,a (P((x))) → C

(sID ,gID ,n+1)
x ,a (P((x)))and (E [C

(sID ,gID ,n+1)
x ,a (P((x)))], E [

∏
x∈S P((x))]) ∈ R.� → is a COMM redu
tion on
hannel a (a〈id〉) (note that this requires

n ≥ 1). In this
ase id ∈ gID ⊆ S and C
(sID ,gID,n)
x ,a (P((x))) →

C
(sID ′,gID ′,n−1)
x ,a (P((x))) where sID ′ := sID ∪{id} and gID ′ := gID \{id}∪

{zero(id), one(id)}. By Lemma 5.7 we see that C(sID ′,gID ′,n−1)
x ,a (P((x))) isstill S-valid. Hen
e (E [C

(sID ′,gID ′,n−1)
x ,a (P((x))))], E [

∏
x∈S P((x))]) ∈ R.� → is a redu
tion of one of the P -instan
es P((id)) (id ∈ sID) (note thatdue to Lemma 5.8 and a 6∈ fn(P) only one instan
e
an be a�e
ted). Inthis
ase we pro
eed analogously to
ase 2.

• Obviously R is
losed under the appli
ation of evaluation
ontexts.We
ontinue by showing the three points of observational equivalen
e for R−1:40

• E [
∏

x∈S P((x))] ↓M i� E [0] ↓M . Therefore E [C
(sID ,gID ,n)
x ,a (P((x)))] ↓M .

• E [
∏

x∈S P((x))] → E [
∏

x∈S P((x))]′: If we have E [∏x∈S P((x))] → E ′[
∏

x∈S P((x))] wehave (E ′[
∏

x∈S P((x))], E ′[C
(sID ,gID ,n)
x ,a (P((x)))]) ∈ R−1. Otherwise → is an IREPLredu
tion: ∏x∈S P((x)) → P((id))|

∏
x∈S\{id} P((x)) with id ∈ S. On the right sideof the relation we have E [C

(sID ,gID ,n)
x ,a (P((x)))]. Sin
e C

(sID ,gID ,n)
x ,a (P((x))) is S-valid,we have that id ∈ sID or id ∈ 〈gID〉.If id 6∈ sID , i.e., id ∈ 〈gID〉, id is of the form id = cl(. . . c1(id0) . . .) for some

id0 ∈ gID , some l ∈ N and ci ∈ {zero, one} for i ∈ {1, . . . , l}. We write idi for
ci(. . . c1(id0) . . .) for i ∈ {1, . . . , l}, ci := zero if ci = one, ci := one otherwise and
idi for ci(ci−1(. . . c1(id0) . . .)). The redu
tion a〈idi 〉

−−−→ denotes a REPL redu
tion thatspawns an instan
e of Gx ,a (see De�nition 5.4) and a following COMM redu
tionon
hannel a with message idi ∈ gID . The appli
ation of the sequen
e a〈id0 〉
−−−−→

. . .
a〈idk 〉
−−−−→ to E [C

(sID ,gID ,n)
x ,a (P((x)))] for some 0 ≤ k ≤ l yields a pro
ess that isstru
turally equivalent to E [C(sIDk ,gIDk,n)

x ,a (P((x)))] with sIDk := sID∪{id0 , . . . , idk}and gIDk := gID \ {id0 } ∪ {id1 , . . . , idk−1} ∪ {zero(idk), one(idk)}. For ea
h step
k k + 1 the S-validity of C(sIDk,gIDk,n)

x ,a is guaranteed by Lemma 5.7. We de�ne
sID ′ := sID l and gID ′ := gID l and have that id ∈ sID ′.Otherwise, if id ∈ sID , we de�ne sID ′ := sID and gID ′ := gID .With id ∈ sID ′ and E ′[�] := E [P((id))|�] we have that

(E ′[
∏

x∈S\{id}

P((x))], E ′[C(sID ′\{id},gID ′,n)
x ,a (P((x)))]) ∈ R−1sin
e C

(sID ′\{id},gID ′,n)
x ,a is (S \ {id})-valid.

• Obviously R−1 is
losed under the appli
ation of evaluation
ontexts.Sin
e C(∅,{nil},0)
x ,a is SIDbits-valid the Lemma holds. �Lemma 5.10 CSIDbits

x ,a is an SIDbits-indexing
ontext.Proof. Let, a

ording to De�nition 5.2, P be a pro
ess and x be a variable with x 6∈ bv(P).We pi
k a name a with a 6∈ fn(P). We
laim
CSIDbits
x ,a

∼∼∼
∏

x∈SIDbits

P((x))We have to show CSIDbits
x ,a [P((x))]σ ≈ (

∏
x∈SIDbits

P((x)))σ for all
losing substitutions σ.W.l.o.g. a 6∈ σ and σ(x) = x and thus it su�
es to show
CSIDbits
x ,a [P((x))σ] ≈

∏

x∈SIDbits

(P((x))σ) (3)41

Note that Pσ is a pro
ess with at most one free variable, denoted x . Furthermore
x 6∈ bv(Pσ), a 6∈ fn(Pσ) and CSIDbits

x ,a [P((x))σ] = C
(∅,{nil},0)
x ,a (P((x))σ) by De�nition 5.4.By Lemma 5.9 we have (3) whi
h
on
ludes our proof. �We stress that CSIDbits

x ,a is just one example of an indexing
ontext. From now on SID isan arbitrary but �xed set of indexes and CSID
x ,n an arbitrary but �xed SID -indexing
ontexta

ording to De�nition 5.2. All our results then hold independently of the parti
ular
hoi
e of SID .We
an now �nally de�ne !!P :De�nition 5.11 (Indexed repli
ation) Let P be a pro
ess. We de�ne !!xP :=

CSID
x ,n [P((x))] where we assume w.l.o.g. x 6∈ bv(P) and n ∩ fn(P) = ∅ (otherwise werename x in P and n in CSID

x ,n). We write !!P for !!xP with x 6∈ (fv(P) ∪ bv(P)).Noti
e that our de�nition is a bit more general, we
an even write !!xP , in this
ase Pwill have a

ess to the sid via the variable x. We need this added �exibility in Se
tion 8.3for the proto
ol KE∗.The following four lemmas state several important properties of !!. We will need theseto prove the
omposition theorem below. Lemmas 5.12, 5.13, and 5.36 also hold for !instead of !!. But Lemma 5.35 is spe
i�
 to !!, and is
ru
ial for enabling the
ompositiontheorem.Lemma 5.12 Let P be a pro
ess and ϕ : N → N be a permutation on names. Then
(!!xP)ϕ ≡ !!x (Pϕ) for all variables x 6∈ bv(P).Proof. Pi
k names n with n ∩ fn(P) = ∅ and ϕ(n) ∩ fn(P) = ∅. Note that (!!xP)ϕ ≡
CSID
x ,n [P((x))]ϕ. Therefore (!!xP)ϕ ≡ CSID

x ,n [P((x))]ϕ = CSID
x ,ϕ(n)[P((x))ϕ] ≡ !!x (Pϕ) sin
e

ϕ(n) ∩ fn(P) = ∅. �Lemma 5.13 Let P , Q be pro
esses. Then P ∼∼∼ Q ⇒ !!xP ∼∼∼ !!xQ for all variables
x 6∈ bv(P) ∪ bv(Q).This lemma was surprisingly hard to prove. Before we pro
eed to the proof (for whi
hwe have to develop a number of auxiliary
on
epts and de�nitions �rst) We very roughlysket
h the proof idea here: The main thing to show is that P ≈ Q =⇒ P ((M)) ≈ Q((M))for arbitrary �xed M . To show this, we de�ne an operation untag that maps P ((M)) to
P , i.e., removes the tag M from all
hannels. Then we wish to prove that the followingrelation is a bisimulation: ∼Ssid

:= {(P ,Q) : untag(P) ≈ untag(Q)}. On
e we have that,we see that P ((M)) ∼Ssid
Q((M)) and hen
e P ((M)) ≈ Q((M)). Unfortunately, ∼Ssid

isnot really a bisimulation. A bisimulation must be
losed under evaluation
ontexts, evenunder
ontexts in whi
h not all
hannels are tagged with M . To solve this problem, wetweak untag in su
h a way that non-tagged
hannels C are mapped to spe
ially marked
hannels (using a spe
ial name nsid)whi
h
an then be mapped ba
k to C when taggingagain. And we need to tweak the notion of a bisimulation slightly, so that ∼Ssid
only42

needs to be
losed under evaluation
ontexts on whi
h our operation untag works properly.These tweaks lead to an unexpe
tedly
omplex proof of Lemma 5.13.Before we prove Lemma 5.13 (on page 55), we will need to develop a number of toolsand lemmas.De�nition 5.14 A set S of
losed pro
esses is n-
omplete for a name n i� for any
losed pro
ess P with n 6∈ fn(P) ∪ bn(P), there is a
losed pro
ess S ∈ S su
h that
P ≈ S.De�nition 5.15 (S-n-observational equivalen
e) Let S be a set of
losed pro
essesand n be a name. An S-n-simulation R is a relation on
losed pro
esses P , Q with
n 6∈ (fn(P) ∪ fn(Q) ∪ bn(P) ∪ bn(Q)) su
h that (P ,Q) ∈ R implies(i) if P ↓M then Q →∗↓M(ii) if P → P ′ with n 6∈ fn(P ′) ∪ bn(P ′) then Q →∗ Q ′ and (P ′,Q ′) ∈ R for some Q ′(iii) (νs.(S|P), νs.(S|Q)) ∈ R for all
losed S ∈ S and names s ⊆ N with n 6∈ (fn(S)∪

bn(S) ∪ s).A relation R is an S-n-bisimulation if both R and R−1 are S-n-simulations. S-n-observational equivalen
e (≈n
S) is the largest S-n-bisimulation.Intuitively ≈n

S is like observational equivalen
e on pro
esses that do not
ontain nwhere the environment is restri
ted to be a pro
ess from S. It is easy to
he
k thatthe transitive hull of ≈n
S satis�es the
onditions (i), (ii) and (iii) from above. Hen
e ≈n

S
ontains its own transitive hull and thus is indeed an equivalen
e relation.Lemma 5.16 If a set of pro
esses S is n-
omplete and n 6∈ (fn(S)∪bn(S)) for all S ∈ S,then P ≈n
S Q ⇔ P ≈ Q for all
losed pro
esses P , Q with n 6∈ (fn(P)∪ fn(Q)∪ bn(P)∪

bn(Q)).Proof.Let P ,Q ∈ {(P ,Q) : P ,Q
losed pro
esses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}.
P ≈ Q ⇒ P ≈n

S QP ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S Q. We show that observational equivalen
e restri
ted to pro
esses thatdo not
ontain n is an S-n-bisimulation. Points (i) and (iii) of De�nition 5.15 followdire
tly from points (i) and (iii) of observational equivalen
e (see De�nition 2.4). Itremains to show that for P → P ′ with n 6∈ fn(P ′) ∪ bn(P ′) we
an �nd a sequen
e of
orresponding internal redu
tions for Q . Sin
e P ≈ Q we �nd a sequen
e Q =: Q1 →

. . .→ Qℓ =: Q ′ with P ′ ≈ Q ′. However, we do not ne
essarily have n 6∈ fn(Q ′) ∪ bn(Q ′)sin
e this is not a requirement for observational equivalen
e. Fortunately, we we will seethat we
an �nd a pro
ess Q̂ ′ with Q →∗ Q̂ ′, P ′ ≈ Q̂ ′ and n 6∈ fn(Q̂ ′) ∪ bn(Q̂ ′). Forthis, we transform the sequen
e Q1 → . . . → Qℓ to a sequen
e Q̂1 → . . . → Q̂ℓ with43

Qi ≡E Q̂i and n 6∈ fn(Q̂i) ∪ bn(Q̂i) for i ∈ {1, . . . , ℓ}: First, we set Q̂1 := Q1 and inparti
ular have Q1 ≡E Q̂1 and n 6∈ fn(Q̂1) ∪ bn(Q̂1). For i ∈ {2, . . . , ℓ} we de�ne Q̂i asfollows: By Lemma 3.5, sin
e Q̂i−1 ≡E Qi−1 → Qi, we �nd Q̃ with Q̂i−1 → Q̃ ≡E Qi.W.l.o.g. we
an assume n 6∈ bn(Q̃) sin
e → and ≡E allow for renaming of bound names.We distinguish two
ases:
• n 6∈ fn(Q̃): Then Q̂i := Q̃ meets our requirements.
• n ∈ fn(Q̃): Sin
e Q̂i−1 → Q̃ and n 6∈ fn(Q̂i−1), the free o

urren
es of n
an onlyby the result of a destru
tor evaluation (LET-THEN, Figure 3). Let D denotethe
orresponding destru
tor term with D ⇓ T . By De�nition 2.5 (vii) (naturalsymboli
 model) and sin
e n 6∈ fn(D) we �nd a term T ′ with n 6∈ fn(T ′) su
h that
D ⇓ T ′ and T =E T ′. Then Q̂i := Q̃{T/T ′} meets our requirements.Finally, Q̂ℓ does not
ontain n and Q = Q̂1 →∗ Q̂ℓ ≡E Qℓ = Q ′ ≈ P ′. Hen
e

(P ′, Q̂ℓ) ∈ ≈ ∩ {(P ,Q) : P ,Q
losed pro
esses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}and thus observational equivalen
e restri
ted to pro
esses that do not
ontain n ful�llsDe�nition 5.15 (ii).
P ≈n

S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ Q. We �rst introdu
e a bisimulation ≈ϕ and then show P ≈n

S Q ⇒
P ≈ϕ Q ⇒ P ≈ Q : Let ϕ : N → N \ {n} be a bije
tion on names. We de�ne

≈ϕ:= {(P ,Q) : Pϕ ≈n
S Qϕ}We
laim that ≈ϕ is a bisimulation: It is easy to verify that ≈ϕ satis�es points (i) and(ii) of De�nition 2.4 (both follow straightforwardly by De�nition 5.15). For point (iii)we have to show C[P] ≈ϕ C[Q], i.e., C[P]ϕ ≈n

S C[Q]ϕ, for all evaluation
ontexts C and
P ≈ϕ Q , i.e., Pϕ ≈n

S Qϕ. For any evaluation
ontext C we have C[�] ≡ νn.(C|�) forsome pro
ess C and names n ⊆ N . Due to the
ompleteness of S we �nd an evaluation
ontext C̃[�] := νnϕ.(C̃ |�) su
h that Cϕ ≈ C̃ with C̃ ∈ S. Sin
e n is not in therange of ϕ and n 6∈ (fn(C̃) ∪ bn(C̃)) for C̃ ∈ S we have C̃[Pϕ] ≈n
S C̃[Qϕ]. Furthermore

C̃[Pϕ] ≈ C[P]ϕ and hen
e (both sides do not
ontain n) C̃[Pϕ] ≈n
S C[P]ϕ (analogously for

Q). Altogether we have C[P]ϕ ≈n
S C̃[Pϕ] ≈n

S C̃[Qϕ] ≈n
S C[Q]ϕ. Sin
e ≈ϕ is symmetri
by de�nition this
loses the proof of our
laim that ≈ϕ is a bisimulation.We have that P ≈n

S Q entails P ≈ϕ Q by de�nition of ≈ϕ. Furthermore P ≈ϕ Qentails P ≈ Q sin
e ≈ is the largest bisimulation. Hen
e P ≈n
S Q entails P ≈ Q . This
loses the se
ond part of our proof. �In the following we �x a name nsid and
losed term Msid with nsid 6∈ fn(Msid).De�nition 5.17 (Sid-sensitive pro
esses) Ssid , the set of sid-sensitive pro
esses, isthe set of pro
esses following the grammar from Figure 4.De�nition 5.18 (Ssid -transformation) We de�ne the fun
tion Φ : P 7→ Φ(P) = S,whi
h maps a
losed pro
ess P with nsid 6∈ P to a sid-sensitive pro
ess S ∈ Ssid , asfollows: 44

P ,Q ::= 0

(Msid ,C)(x).P

(Msid ,C)〈T 〉.P

C ∗(x).P

C ∗〈T 〉.Pif Msid = fst(C) then P else C (x).Qif Msid = fst(C) then P else C 〈T 〉.Q

P | Q

!P

νa.Plet x = D in P else QFigure 4: Syntax of sid-sensitive pro
esses. Msid is the �xed term. C , T range over allterms with nsid 6∈ fn(C) and nsid 6∈ fn(T), C ∗ over all terms with nsid 6∈ fn(C ∗) su
hthat there is no substitution σ with C ∗σ =E (Msid ,�) for some term �. D is a destru
torterm with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-
onstru
tions botho

urren
es of C stand for the same term.1. For ea
h prote
ted o

urren
e of an input C (x).P ′ in P we repla
e C (x).P ′ byif Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P
′) else C (x).P ′2. For ea
h o

urren
e of an output in P we pro
eed analogously.Lemma 5.19 Ssid is nsid -
omplete.Proof.

• Claim 1: For all pro
esses P we haveif Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P) else C (x).P ∼∼∼ C (x).P(4)(analogously for outputs). Proof: Let σ be a
losing substitution for Equation 4.We remember thatif Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P) else C (x).Pis just synta
ti
 sugar forlet z = equals(Msid , fst(C)) in (let y = snd(C) in (Msid , y)(x).P) else C (x).PBy de�nition of equals we have equals(Msid , fst(C))σ ⇓ Msid i� fst(C)σ ⇓ Msid .We distinguish two
ases: 45

� If fst(Cσ) ⇓ Msid , then by De�nition 2.5 (v) (natural symboli
 model) we havethat (Msid ,C2) =E Cσ for all C2 with snd(Cσ) ⇓ C2. Hen
eif Msid = fst(Cσ) then (let y = snd(Cσ) in (Msid , y)(x).Pσ) else Cσ(x).Pσ
(∗)

≈ if Msid = fst((Msid ,C2)) thenlet y = snd((Msid ,C2)) in (Msid , y)(x).Pσelse
(Msid ,C2)(x).Pσ

(∗∗)

≈ let y = snd((Msid ,C2)) in (Msid , y)(x).Pσ
(∗∗)

≈ (Msid ,C2)(x).Pσ
(∗)

≈ C (x).P

(∗) by Lemma 3.2 (iv) and (∗∗) by Lemma 3.2 (vii).� If fst(C)σ 6⇓ Msid , then the
laim follows by Lemma 3.2 (vi).
• Claim 2: P ∼∼∼ Φ(P). We prove this by stru
tural indu
tion on P . Sin
e Φ doesonly a�e
t in- and outputs we
an fo
us on those: If P = C (x).P ′ then

P = C (x).P ′

(∗)
∼∼∼ C (x).Φ(P ′)
(∗∗)
∼∼∼ if Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P

′) else C (x).P ′

= Φ(P)where (∗) holds by the indu
tion hypothesis and (∗∗) by Claim 1.For any
losed P we have P ∼∼∼ Φ(P) by Claim 2. Φ(P) is
losed sin
e P is
losed andhen
e P ≈ Φ(P). For P with nsid 6∈ (fn(P) ∪ bn(P)) we have Φ(P) ∈ Ssid . Thus Ssid is
nsid -
omplete. �Lemma 5.20 For
losed S ∈ Ssid and S → S′ with nsid 6∈ fn(S′) ∪ bn(S′) we have
S′ ∈ Ssid .Proof. First, we observe that all pro
esses not
ontaining nsid and being stru
turallyequivalent to a sid-sensitive pro
ess are sid-sensitive as well. Furthermore C[P], where Cis an evaluation
ontext and P a pro
ess, is sid-sensitive i� C[0] and P are sid-sensitive.In all
ases w.l.o.g. nsid 6∈ fn(C) ∪ bn(C) be
ause ≡ does not introdu
e free names andbound names are w.l.o.g. not nsid . We have the following
ases:

• REPL: S ≡ C[!P] → C[P |!P] ≡ S′. !P is sid-sensitive, hen
e P and P |!P are.
• COMM: S ≡ C[C 〈T 〉.P |C̃ (x).Q] → C[P |Q{T/x}] ≡ S′. Q is sid-sensitive and

nsid 6∈ fn(T) sin
e nsid 6∈ fn(S) ∪ bn(C). We
an easily
he
k the grammar of sid-sensitive pro
esses from Figure 4 to see that a substitution {T/x} with nsid 6∈ Tapplied to a sid-sensitive pro
ess yields a sid-sensitive pro
ess. Therefore Q{T/x}and P |Q{T/x} are sid-sensitive. 46

P ,Q ::= 0

C (x).P

C 〈T 〉.P

(nsid ,C
∗)(x).P

(nsid ,C ∗)〈T 〉.Pif Msid = fst(C) then P else (nsid ,C)(x).Qif Msid = fst(C) then P else (nsid ,C)〈T 〉.Q

P | Q

!P

νa.Plet x = D in P else QFigure 5: Syntax of nsid -good pro
esses. Msid is the �xed term. C , T range over allterms with nsid 6∈ fn(C), nsid 6∈ fn(T). C ∗ ranges over all terms with nsid 6∈ fn(C ∗) su
hthat there is no substitution σ with C ∗σ =E (Msid ,T) for some term T . D is a destru
torterm with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-
onstru
tions botho

urren
es of C stand for the same term.
• LET-THEN: S ≡ C[let x = D in P else Q] → C[P{T/x}] ≡ S′ for some term Twith D ⇓ T and nsid 6∈ fn(T) sin
e nsid 6∈ fn(S′) ∪ bn(C). Analogously to theargument in the COMM
ase, P{T/x} is sid-sensitive.
• LET-ELSE: Here, a

ording to the grammar of sid-sensitive pro
esses fromFigure 4, we distinguish three
ases:� S ≡ C[if Msid = fst(C) then P else C (x).Q] → C[C (x).Q] ≡ S′. C is
losedsin
e S is
losed. Msid = fst(C) is false, i.e., there is no term M su
hthat equals(Msid , fst(C)) ⇓ M . Therefore fst(C) 6⇓=E Msid . This implies

C 6=E (Msid ,X) for all terms X by De�nition 2.5 (v) (natural symboli
 model).Hen
e C (x).Q is sid-sensitive (mat
hing the C ∗(x).P rule).� S ≡ C[if Msid = fst(C) then P else C 〈T 〉.Q] → C[C 〈T 〉.Q] ≡ S′. Analo-gously to the previous
ase.� S ≡ C[let x = D in P else Q] → C[Q] ≡ S′. Q is sid-sensitive by de�nition.This
on
ludes our proof. �De�nition 5.21 (nsid -good) A pro
ess P is nsid -good if it follows the grammar fromFigure 5.
47

De�nition 5.22 (tag) We de�ne the fun
tion tag on terms:
tag((nsid ,C)) :=C

tag(C) :=(Msid ,C) otherwiseLet P be an nsid -good pro
ess. Then we write tag(P) for the pro
ess that results fromrepla
ing any
hannel identi�er C by tag(C) in P .The fun
tion tag adds a tag Msid to all
hannel identi�ers in a pro
ess. We will seethat tag returns a sid-sensitive pro
ess. We will need that tag is a bije
tive mappingbetween nsid -good pro
esses and sid-sensitive pro
esses. The spe
ial name nsid is neededto
over the
orner
ases when
onstru
ting that bije
tion.Lemma 5.23 Let P be an nsid -good pro
ess. Then tag(P) ∈ Ssid .Proof. We do a stru
tural indu
tion over the grammar of nsid -good pro
esses fromFigure 5. Assume that tag(P ′) and tag(Q ′) are in Ssid .
• For the
ommuni
ation on a
hannel C with nsid 6∈ fn(C) we have tag(C (x).P ′) =
(Msid ,C)(x).tag(P ′) whi
h is obviously in Ssid . tag(C 〈T 〉.P ′) analogous.

• For the
ommuni
ation on a
hannel C = (nsid ,C
∗) we have

tag((nsid ,C
∗)(x).P ′) = C ∗(x).tag(P ′). C ∗(x).tag(P ′) is in Ssid sin
e, byde�nition of nsid -good, there is no substitution σ with C ∗σ =E (Msid ,T) for someterm T . (nsid ,C ∗)〈T 〉.P ′ analogous.

• For the �rst pair of if statements we have that
tag(if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′)

= (if Msid = fst(C) then tag(P ′) else C (x).tag(Q ′))is in Ssid sin
e nsid 6∈ fn(C). Analogous for (nsid ,C)〈T 〉.Q ′ in the ELSE bran
h.Che
king the remaining rules from Figure 5 is a straightforward task. �De�nition 5.24 (untag) We de�ne the fun
tion untag on terms:
untag((Msid ,C)) :=C

untag(C) :=(nsid ,C) otherwiseLet P be a sid-sensitive pro
ess. Then we write untag(P) for the pro
ess that results fromrepla
ing any
hannel identi�er C by untag(C).Lemma 5.25 Let P ∈ Ssid be a sid-sensitive pro
ess. Then untag(P) is nsid -good.Proof. Analogous to the proof of Lemma 5.23 a straightforward stru
tural indu
tionshows this Lemma. We qui
kly sket
h the interesting
ases:48

• untag((Msid ,C)(x).P ′) = C (x).untag(P ′) mat
hes rule C (x).P from Figure 5(note that nsid 6∈ fn(C)). (Msid ,C)〈T 〉.P ′ analogous.
• untag(C ∗(x).P ′) = (nsid ,C

∗)(x).untag(P ′): untag(C ∗) = (nsid ,C
∗) sin
e there isno substitution σ with C ∗σ =E (Msid ,�) for some term �. The expression mat
hesrule (nsid ,C

∗)(x).P from Figure 5. C ∗〈T 〉.P analogous.
• For the �rst if-rule we distinguish two
ases:� C 6= (Msid ,�). Then

untag(if Msid = fst(C) then P ′ else C (x).Q ′)

= (if Msid = fst(C) then untag(P ′) else (nsid ,C)(x).untag(Q ′))mat
hes rule (if Msid = fst(C) then P else (nsid ,C)(x).Q) from Figure 5.� C = (Msid ,C
′). Then

untag(if Msid = fst(C) then P ′ else C (x).Q ′)

= (if Msid = fst((Msid ,C
′)) then untag(P ′) else C ′(x).untag(Q ′))

= (let y = equals(Msid , fst((Msid ,C
′))) in untag(P ′) else C ′(x).untag(Q ′))

nsid 6∈ fn(C ′) sin
e nsid 6∈ fn(C). Hen
e
C ′(x).untag(Q ′) is nsid -good. The pro
ess (let y =
equals(Msid , fst((Msid ,C

′))) in untag(P ′) else C ′(x).untag(Q ′)) mat
hes rule
(let x = D in P else Q) from Figure 5 with D = equals(Msid , fst((Msid ,C

′))).Analogous for C 〈T 〉.Q ′ in the ELSE bran
h.
�Lemma 5.26 Let P be an nsid -good pro
ess. Then untag(tag(P)) ∼∼∼ P .Proof. We prove this lemma by stru
tural indu
tion over P a

ording to the grammarfrom Figure 5.

• P = C (x).P ′ where C is a
hannel identi�er with nsid 6∈ C : Then C 6= (nsid ,C
′)for some term C ′ and thus tag(C) = (Msid ,C). Hen
e untag(tag(C)) = C and

untag(tag(P)) = untag(tag(C (x).P ′)) = C (x).untag(tag(P ′)) ∼∼∼ C (x).P ′ = P bythe indu
tion hypothesis and sin
e ∼∼∼ is
losed under the appli
ation of
ontexts(Lemma 2.7). P = C 〈T 〉.P ′ analogously.
• P = (nsid ,C

∗)(x).P ′ for some term C ∗ with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃
∗)for all substitutions σ and terms C̃ ∗. Certainly tag((nsid ,C

∗)) = C ∗. By assump-tion C ∗ 6= (Msid , C̃
∗) and thus untag(tag((nsid ,C

∗))) = untag(C ∗) = (nsid ,C
∗).The rest of this
ase, as well as the
ase for P = (nsid ,C ∗)〈T 〉.P ′, is analogous tothe previous
ase.

• P = if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′ where nsid 6∈ fn(C): Clearly
tag((nsid ,C)) = C . We now distinguish two
ases for C :49

� C = (Msid ,C
′) for some term C ′. Then untag(C) = untag((Msid ,C

′)) =
C ′ 6= C . This is the reason why we
annot have untag(tag(P)) = P ingeneral. However,

untag(tag(P))

= untag(tag(if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′))

= if Msid = fst((Msid ,C
′)) then untag(tag(P ′)) else untag(tag((nsid ,C)(x).Q ′))

(∗)
∼∼∼ untag(tag(P ′))

(∗∗)
∼∼∼ P ′

(∗)
∼∼∼ if Msid = fst((Msid ,C

′)) then P ′ else (nsid ,C)(x).Q ′

= if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′ = PIn both
ases (∗) holds by Lemma 3.2 (vii) and De�nition 2.5 (iv) (naturalsymboli
 model). (∗∗) holds by the indu
tion hypothesis.� Otherwise untag(C) = (nsid ,C) and it is easy to see that untag(tag(P)) = P .
P = if Msid = fst(C) then P ′ else (nsid ,C)〈T 〉.Q ′ analogously.The missing
ases for parallel
omposition, bang, name restri
tion and let-statement allwork straightforwardly. �Lemma 5.27 Let P be a sid-sensitive pro
ess. Then tag(untag(P)) = P .Proof. Sin
e tag and untag do only modify
hannel identi�ers we show tag(untag(C)) =

C for the di�erent kinds of
hannel identi�ers that are allowed in an sid-sensitive pro
essby Figure 4:
• C is a
hannel identi�er with C = (Msid ,C

′) for some term C ′ with nsid 6∈ fn(C ′):Then untag(C) = C ′ and tag(C ′) = (Msid ,C
′) = C sin
e nsid 6∈ fn(C). Hen
e

untag(tag(C)) = C .
• C is a
hannel identi�er C ∗ with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃

∗) for allsubstitutions σ and terms C̃ ∗. Then tag(untag(C)) = tag((nsid ,C
∗)) = C ∗ = C .

• C is a
hannel identi�er with nsid 6∈ fn(C) in the ELSE-bran
h of (if tag = fst(C)).We distinguish two
ases:� C = (Msid ,C
′) for some term C ′. Then untag(C) = C ′ and tag(C ′) =

(Msid ,C
′) sin
e nsid 6∈ fn(C ′) ⊆ fn(C).� Otherwise untag(C) = (nsid ,C) and tag((nsid ,C)) = C .In both
ases we have untag(tag(C)) = C .

�50

De�nition 5.28 We de�ne a relation ∼Ssid
:= {(P ,Q) : P ,Q ∈ Ssid , untag(P) ≈

untag(Q)}.Lemma 5.29 Assume that ∼Ssid
is an Ssid -bisimulation and P ≈ Q for
losed nsid -goodpro
esses P and Q . Then tag(P) ≈ tag(Q).Proof. Note that tag(P) and tag(Q) are sid-sensitive pro
esses by Lemma 5.23 and thusdo not
ontain nsid . We have

P ≈ Q ⇒untag(tag(P)) ≈ P ≈ Q ≈ untag(tag(Q)) (by Lemma 5.26)
⇒tag(P) ∼Ssid

tag(Q)

⇒tag(P) ≈nsid

Ssid
tag(Q) (sin
e ≈nsid

Ssid
is the largest Ssid -bisimulation by De�nition 5.15)

⇒tag(P) ≈ tag(Q) (by Lemmas 5.16, 5.19)
�Lemma 5.30 Let P be a
losed nsid -good pro
ess with P ≡E Q → Q ′ for some
losedpro
esses Q , Q ′. Then there is a
losed nsid -good pro
ess P ′ su
h that P → P ′ ≡E Q ′and tag(P) → tag(P ′).Proof. A

ording to Lemma 3.5 we �nd a
losed pro
ess P̃ ′ su
h that P → P̃ ′ ≡E Q ′ (thisholds for any P , not just for nsid -good ones). Now we show that if P is additionally nsid -good, there is a
losed nsid -good pro
ess P ′ with P → P ′ ≡E P̃ ′ and tag(P) → tag(P ′)whi
h proves the Lemma.First, we make some general observations: For P → P̃ ′ we �nd an evaluation
ontext

C and pro
esses R,R′ su
h that P ≡ C[R] → C[R′] ≡ P̃ ′ and R → R′ is a dire
tappli
ation of one of the rules for internal redu
tions from Figure 3. Furthermore, it iseasy to verify that any pro
ess A with P ≡ A and nsid 6∈ bn(A) is also nsid -good and
tag(P) ≡ tag(A). Additionally, C[R] is nsid -good i� C[0] and R are nsid -good. Hen
e,w.l.o.g. (sin
e ≡ allows for renaming of bound names), we
an assume C[0] and R to be
nsid -good. Sin
e tag(C[R]) = tag(C)[tag(R)], it remains to show that R′ is nsid -good andthat tag(R) → tag(R′). We will be able to show this for the REPL, the COMM and theTHEN-ELSE rules and have that P ′ := C[R′] ≡ P̃ ′ ≡ Q ′ in these
ases. In the LET-THEN
ase however, the destru
tor evaluation might introdu
e a term T
ontaining afree o

urren
e of nsid . Fortunately, repla
ing T with an equivalent term T ′ will solvethe problem and we have that P ′ := C[R′{T/T ′}] ≡E P̃ ′ ≡ Q ′ for R′{T/T ′} being
nsid -good. In detail:

• REPL: !R → C[R|!R] ≡ P̃ ′ where w.l.o.g. C[!R] and therefore C[R|!R] are nsid -good. We set P ′ := C[R|!R] and have tag(P) ≡ tag(C[!R]) = tag(C)[!tag(R)]
(∗)
→

tag(C)[tag(R)|!tag(R)] = tag(C[R|!R]) = tag(P ′). (∗) by the REPL rule.
• COMM: Analogously to REPL P ≡ C[C 〈T 〉.R|C̃ (x).R̃] → C[R|R̃{T/x}] ≡ P̃ ′where C =E C̃ and w.l.o.g. C[C 〈T 〉.R|C̃ (x).R̃] and C[R|R̃{T/x}] are nsid -good.We observe

tag(C 〈T 〉.R) = tag(C)〈T 〉.tag(R) and tag(C̃ (x).R̃) = tag(C̃)(x).tag(R̃)51

by De�nition 5.22. Analogously to REPL we have to show
tag(C)[tag(C)〈T 〉.tag(R)|tag(C̃)(x).tag(R̃)] → tag(C)[tag(R)|tag(R̃){T/x}]Note that tag(R̃){T/x} = tag(R̃{T/x}) sin
e nsid 6∈ fn(T). Hen
e it is ne
essaryand su�
ient to show tag(C) =E tag(C̃). Before we prove this dire
tly we makethe following observation: For all terms C with nsid 6∈ fn(C) we observe C 6=E

(nsid ,C
′) for all terms C ′. We assume C =E (nsid ,C

′) towards
ontradi
tion. Then,for some renaming α whi
h is the identity on fn(C) and α(nsid) 6= nsid , we have
C =E (α(nsid),C

′α) and transitivity of =E yields (nsid ,C ′) =E (α(nsid),C
′α). ByDe�nition 2.5 (vi) and (viii) (natural symboli
 model) we have α(nsid) = nsid whi
h
ontradi
ts our assumption. Now we distinguish two
ases to show tag(C) =E

tag(C̃):� C = (nsid ,C
′) for some term C ′. By assumption we have C =E C̃ and hen
e

C̃ =E (nsid ,C
′). By the grammar of nsid -good pro
esses (Figure 5) we have

nsid 6∈ fn(C̃) or C̃ = (nsid ,C
∗) for some C ∗. Our observation above ex
ludesthe �rst
ase and leaves us with C̃ = (nsid ,C

∗). By De�nition 2.5 (vi) (naturalsymboli
 model) we have C ′ =E C ∗ and hen
e tag(C̃) = C ∗ =E C ′ = tag(C).� C 6= (nsid ,C
′) for any term C ′. By the grammar of nsid -good pro
esses(Figure 5) we then have nsid 6∈ fn(C). C̃ = (nsid ,C

′) for some term C ′leads to C =E (nsid ,C
′) whi
h
ontradi
ts our observation above. Hen
e(again by the grammar of nsid -good pro
esses) nsid 6∈ fn(C̃). Thus tag(C) =

(Msid ,C) =E (Msid , C̃) = tag(C̃).
• LET-THEN: P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P̃ ′ with D ⇓ T . ByDe�nition 2.5 (vii) (natural symboli
 model) we �nd T ′ with nsid 6∈ T ′, D ⇓ T ′and T ′ =E T . Hen
e we have

P ≡ C[let x = D in R else R̃] → C[R{T ′/x}] =: P ′and P ′ ≡E P̃ ′ ≡ Q ′. Altogether
tag(P) ≡ tag(C[let x = D in R else R̃])

= tag(C)[let x = D in tag(R) else tag(R̃)]

→ tag(C)[tag(R){T ′/x}]
(∗)
= tag(C)[tag(R{T ′/x})]

≡ tag(P ′)

(∗) sin
e nsid 6∈ fn(T ′).
• LET-ELSE is not a�e
ted by tag and the proof is analogous to that for the REPLrule.

�Lemma 5.31 Let P be a
losed sid-sensitive pro
ess and P ′ be a
losed pro
ess with
nsid 6∈ fn(P ′). Then there is a pro
ess P∗ with untag(P) → P∗ and P∗ ≈ untag(P ′).52

Proof. The rest of this proof is partially analogous to that of Lemma 5.30. Similarly, we
an fo
us on the rules from Figure 3 dire
tly. The main di�eren
e is that, for some sid-sensitive pro
ess R and term T with nsid 6∈ fn(T), untag(R){T/x} 6= untag(R{T/x}).Instead, we only have untag(R){T/x} ∼∼∼ untag(R{T/x}) (we are going to prove that�rst). Therefore the COMM rule and the LET-THEN rule, where substitutions o

ur,have to be handled di�erently. The arguments for the REPL rule and the LET-ELSErule are analogous.Claim: If R is a sid-sensitive pro
ess, untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x}) for all
TTT with nsid 6∈ fn(T)nsid 6∈ fn(T)nsid 6∈ fn(T). For all
hannel identi�ers C = (Msid ,C

′) and C = C ∗ a

ord-ing Figure 4 we obviously have untag(C){T/x} = untag(C{T/x}) for all substitutions
{T/x}. However, in the ELSE-bran
h of (if Msid = fst(C)), C
an be an arbitraryterm with nsid 6∈ fn(C). If C = (Msid ,C

′) for some term C ′, untag(C){T/x} =
untag(C{T/x}) holds. Otherwise, for a substitution {T/x}, we distinguish two
ases:

• C{T/x} 6= (Msid ,C
′) for all terms C ′. Then untag(C){T/x} = (nsid ,C{T/x}) =

untag(C{T/x}).
• Otherwise C{T/x} = (Msid ,C

′) for some term C ′. Then untag(C){T/x} =
(nsid ,C{T/x}) 6= C ′ = untag(C{T/x}). Sin
e fst(C{T/x}) ⇓ Msid the ELSE-bran
h of R will never be exe
uted and we, analogously to the proof of Lemma 5.26,repla
e (nsid ,C{T/x}) by C ′ to have untag(R){T/x} ∼∼∼ untag(R{T/x}).Note that P ′ is sid-sensitive by Lemma 5.20.We now handle the COMM rule and the LET-THEN rule:

• COMM: Analogously to Lemma 5.30 we have to prove untag(C) =E untag(C̃)where C and C̃ are the
hannel identi�ers used for
ommuni
ation. By the gram-mar of sid-sensitive pro
esses from Figure 4 all
hannel identi�ers whi
h o

urunrestri
ted are either of the form (a) (Msid ,C
′) for some term C ′ or (b) C ∗ su
hthat C ∗σ 6=E (Msid ,C

′) for all substitutions σ and all terms C ′. We distinguishtwo
ases� C = (Msid ,C
′). C̃
annot be of form (b) sin
e C =E C̃ . Hen
e C̃ = (Msid , C̃

′)and C ′ =E C̃ by De�nition 2.5 (vi) (natural symboli
 model). Therefore
untag(C) = C ′ =E C̃ ′ = untag(C̃).� Otherwise, C is of form (b). Then C̃
annot be of form (a) sin
e C =E C̃ .We thus have untag(C) = (nsid ,C) =E (nsid , C̃) = untag(C̃).We �nd

P ≡ C[C 〈T 〉.R|C̃ (x).R̃] → C[R|R̃{T/x}] ≡ P ′

⇒untag(P) ≡ untag(C)[untag(C)〈T 〉.untag(R)|untag(C̃)(x).untag(R̃)]
(∗)
→ untag(C)[untag(R)|untag(R̃){T/x}] =: P∗

(∗) sin
e untag(C) =E untag(C̃). Due to the
laim above P∗ ≈ untag(P ′) whi
hproves the COMM
ase. 53

• LET-THEN: We have P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P ′. In
ontrast to Lemma 5.30 the evaluation of the destru
tor may not lead to a term
T with nsid ∈ fn(T) here if x ∈ fv(R) sin
e we required P ′ to be sid-sensitive.(Otherwise, if x 6∈ fv(R), we obviously have untag(R){T/x} = untag(R{T/x}).)Thus
untag(P) ≡ untag(C)[let x = D in untag(R) else untag(R̃)]

→ untag(C)[untag(R){T/x}] =: P ∗ (∗)

≈ untag(C[R{T/x}]) = untag(P ′)(*) due to the
laim above. This proves the LET-THEN
ase.Sin
e untag dos not a�e
t the REPL and LET-ELSE
ases these
an be handled exa
tlylike the REPL
ase in the proof of Lemma 5.30. �Lemma 5.32 ∼Ssid
is an Ssid -nsid -bisimulationProof.Let (P ,Q) ∈ ∼Ssid
. We show the three points of an Ssid -nsid -simulation.

• P ↓C : We have P ↓C i� P ↓
Ĉ

for a
hannel identi�er Ĉ =E C whi
h o

urs in
P and thus follows the grammar from Figure 4. Sin
e P ∼Ssid

Q : untag(P) ≈
untag(Q) holds by de�nition. Sin
e P ↓

Ĉ
we have untag(P) ↓

untag(Ĉ) and thus
untag(Q) =: Q̂1 → . . . → Q̂n ↓

untag(Ĉ) for some n ∈ N and pro
esses Qi, i ∈

{1, . . . , n}. By Lemma 5.25 Q̂1 = untag(Q) is nsid -good. By Lemma 5.30 we geta sequen
e of nsid -good pro
esses Q̂ ′
1 → . . . → Q̂ ′

n with Q̂ ′
1 = Q̂1, Q̂ ′

i ≡E Q̂iand tag(Q̂ ′
1) → . . . → tag(Q̂ ′

n). Sin
e Q̂ ′
1 = Q̂1 = untag(Q) we have tag(Q̂ ′

1) =
Q by Lemma 5.27. Furthermore, Q̂ ′

n ≡E Q̂n ↓
untag(Ĉ) implies Q̂ ′

n ↓
untag(Ĉ) (seeFootnote 6) and tag(Q̂ ′

n) ↓
tag(untag(Ĉ)). Sin
e Ĉ is a term a

ording to Figure 4we have tag(untag(Ĉ)) = Ĉ (=E C) (see Lemma 5.27). Hen
e Q = tag(Q̂ ′

1) →
∗

tag(Q̂ ′
n) ↓C .

• P → P ′ with nsid 6∈ fn(P ′)∪bn(P ′): A

ording to Lemma 5.31 we �nd P∗ su
h that
untag(P) → P∗ ≈ untag(P ′). Sin
e P ∼Ssid

Q we also have untag(Q) =: Q̂1 →
. . . → Q̂n ≈ P∗. Analogously to the previous part we �nd some nsid -good Q̂ ′

n su
hthat Q →∗ tag(Q̂ ′
n) and Q̂ ′

n ≡E Q̂n. By Lemma 5.26 we have untag(tag(Q̂ ′
n)) ≈ Q̂ ′

n(Q̂ ′
n is
losed). Thus untag(tag(Q̂ ′

n)) ≈ Q̂ ′
n ≡E Q̂n ≈ P∗ ≈ untag(P ′) whi
himplies untag(tag(Q̂ ′

n)) ≈ untag(P ′) sin
e ≡E entails ≈ by Lemma 3.2 (iv). Hen
e
Q →∗ tag(Q̂ ′

n) and P ′ ∼Ssid
tag(Q̂ ′

n).
• Assume P ∼Ssid

Q and let R ∈ Ssid be a pro
ess and a names. We have
untag(P) ≈ untag(Q) by de�nition of ∼Ssid

and ≈ is
losed under the appli
ationof evaluation
ontexts. Hen
e untag(νa.(P | R)) = νa.(untag(P)|untag(R)) ≈
νa.(untag(Q)|untag(R)) = untag(νa.(Q |R)). Thus, by de�nition of ∼Ssid

,
νa.(P |R) ∼Ssid

νa.(Q |R). 54

Sin
e ∼Ssid
is symmetri
 it is an Ssid -nsid -bisimulation.

�Lemma 5.33 Let P and Q be
losed pro
esses and M be an arbitrary
losed term. Then
P ≈ Q ⇒ P((M)) ≈ Q((M)).Proof. Fix a name nsid 6∈ (fn(M)∪ fn(P)∪ bn(P)∪ fn(Q)∪ bn(Q))and Msid := M . Re-member that all lemmas in this se
tion were proven for an arbitrary �xedMsid with nsid 6∈
fn(Msid). Now P , Q are nsid -good and P((Msid)) = tag(P) and Q((Msid)) = tag(Q). ByLemmas 5.29,5.32: tag(P) ≈ tag(Q). Hen
e P((M)) = P((Msid)) ≈ Q((Msid)) = Q((M)).
�Lemma 5.34 Let P and Q be pro
esses and M be a term with fv(M)∩(bv(P)∪bv(Q)) =
∅. Then P ∼∼∼ Q ⇒ P((M)) ∼∼∼ Q((M)).Proof. For all
losing substitutions σ we have P ∼∼∼ Q ⇒ Pσ ≈ Qσ. By Lemma 5.33 wehave Pσ((Mσ)) ≈ Qσ((Mσ)) for the
losed pro
esses Pσ and Qσ and the
losed term
Mσ. This entails P((M))σ ≈ Q((M))σ sin
e fv(M) ∩ (bv(P) ∪ bv(Q)) = ∅. Therefore
P((M)) ∼∼∼ Q((M)). �Proof of Lemma 5.13. By Lemma 5.34 P((x)) ∼∼∼ Q((x)). A

ording to De�nition 5.11
!!xP = C

x ,np

SID [P((x))] for some names np ∩ fn(P) = ∅ and !!xQ = C
x ,nq

SID [Q((x))] forsome names nq ∩ fn(Q) = ∅. Let n be names su
h that n ∩ (fn(P) ∪ fn(Q)) = ∅ and
|n| ≥ max(|np|, |nq |). We have

C
x ,np

SID [P((x))] ≡ C
x ,n
SID [P((x))]

(∗)
∼∼∼ C

x ,n
SID [Q((x))] ≡ C

x ,nq

SID [Q((x))](*) sin
e P((x)) ∼∼∼ Q((x)) and ∼∼∼ is
losed under the appli
ation of
ontexts (Lemma 2.7).Therefore !!xP ∼∼∼ !!xQ . �Note that Lemma 5.13 also implies P ∼∼∼ Q ⇒ !!P ∼∼∼ !!Q .Lemma 5.35 Let P be a pro
ess and n be a name that o

urs only in
hannel identi�ersin P . Then νn.!!xP ∼∼∼ !!xνn.P for all variables x 6∈ bv(P).Proof. First, we observe that instan
es of P with distin
t tags
annot
ommuni
ate withea
h other. This
an be formalized by the followingClaim. Let id , id ′ ∈ SID be distin
t IDs and P , Q arbitrary pro
esses. Then
P((id)) →∗lC and Q((id ′)) →∗lC ′ for terms C ,C ′ implies C 6=E C ′. Proof: ByDe�nition 5.1 every
hannel identi�er in P((id)) is of the form (id ,X) for some term
X . Analogously, every
hannel identi�er in Q((id ′)) is of the form (id ′,Y). Towards
ontradi
tion we assume C = (id ,X) =E (id ′,Y) = C ′. Then, by De�nition 2.5 (vi)(natural symboli
 model), we have id =E id ′. However, id 6=E id ′ is required for all pairsof distin
t IDs id , id ′ ∈ SID . This proves the
laim.55

It is now easy to
he
k that
R := {(C[νn.(P1((id1))| . . . |Pℓ((idℓ))|

∏

x∈S

P((x)))], C[νn.P1((id1))| . . . |νn.Pℓ((idℓ))|
∏

x∈S

νn.P ((x))]) :

P1, . . . ,Pℓ pro
esses where n o

urs only in
hannel identi�ers,
id1 , . . . , idl ⊆ SID \ S are distin
t, S ⊆ SID and C evaluation
ontext}is a bisimulation and thereby prove the lemma. Although the Pi in R are formallyarbitrary pro
esses that
ontain n only in
hannel identi�ers, they intuitively allow torepresent the running instan
es of P . Note that the
laim above holds for any pair

Pi((idi)), Pj((idj)) with i 6= j. Intuitively, sin
e n o

urs only in
hannel identi�ers andthus is never transmitted, no
ontext
an tell the di�eren
e between a private n that isshared among all instan
es and an n individual n for ea
h instan
e. �Lemma 5.36 Let P and Q be pro
esses. Then !!x(P |Q) ∼∼∼ !!xP |!!xQ for all variables
x 6∈ bv(P) ∪ bv(Q).Proof. We use the semanti
s of produ
t pro
esses (see De�nition 2.9) for this proof. ByDe�nition 5.2 and De�nition 5.11 we have !!xR ∼∼∼

∏
x∈SID R((x)) for any pro
ess R. Let

σ be a
losing substitution for !!xP and !!xQ (i.e., fv(P((x))σ), fv (Q((x))σ) ⊆ {x}). Weset ΠP (X) :=
∏

x∈X P((x))σ for arbitrary X ⊆ SID and ∑P (X) :=
∑

x∈X P((x))σ =
P((x1))σ| . . . |P((xℓ))σ for �nite X = {x1, . . . , xℓ} ⊆ SID . Analogously ΠQ(X), ∑Q(X)and ΠPQ(X) :=

∏
x∈X (P((x))σ|Q((x))σ). We then de�ne the relation R:

R := {(C[
∑

P

(SP) |
∑

Q

(SQ) | ΠPQ (SPQ)], C[ΠP (SPQ ∪ SP) | ΠQ(SPQ ∪ SQ)]) :

C evaluation
ontext, SP , SQ, SPQ ⊆ SID , SP ∩ SPQ = ∅, SQ ∩ SPQ = ∅}
losed under stru
tural equivalen
e. Note that
(
∏

x∈SID

(P((x))σ|Q((x))σ),
∏

x∈SID

P((x))σ |
∏

x∈SID

Q((x))σ

)
∈ Rfor SP := ∅, SQ := ∅ and SPQ := SID whi
h proves this lemma if R ⊆≈. Therefore, weshow the three points of a simulation for R and R−1 respe
tively. First, we show that

R is a simulation. For (A,B) ∈ R:1. A ↓C : Produ
t pro
esses do not emit on
hannels. Three
ases remain:(a) If C[0] ↓C , then B ↓C .(b) If P((id))σ ↓C for some id ∈ SP , then B
an spawn the instan
e P((id))σ from
ΠP (SPQ ∪ SP) and then emit on C . Hen
e B →↓C .(
) Analogously for Q((id))σ ↓C for some id ∈ SQ.Hen
e A ↓C entails B →∗↓C .2. A→ A′: We distinguish two
ases: 56

(a) → follows the IREPL rule: Then → spawns a new instan
e with id id from
ΠPQ (SPQ): We set C′[�] := C[P((id))σ | Q((id))σ | �] and S′

PQ := SPQ \{id}.Hen
e we have A→ C′[
∑

P (SP) |
∑

Q(SQ) | ΠPQ (S′
PQ)]. Additionally, we ob-serve B ≡ C[ΠP (SPQ∪SP) | ΠQ(SPQ∪SQ)] →→ C′[ΠP (S

′
PQ∪SP) | ΠQ(S

′
PQ∪

SQ)] by spawning P((id))σ from ΠP (SPQ ∪ SP) and Q((id))σ from
ΠQ(SPQ ∪ SQ). We have (C′[

∑
P (SP) |

∑
Q(SQ) | ΠPQ(S

′
PQ)], C

′[ΠP (S
′
PQ ∪

SP) | ΠQ(S
′
PQ ∪ SQ)]) ∈ R.(b) → follows a rule from Figure 3: Then we distinguish two
ases:i. If we have C[0] → C′[0], → translates
anoni
ally to C in B → B′ su
hthat (A′, B′) ∈ R.ii. Otherwise, → a�e
ts instan
es from ∑

P (SP) |
∑

Q(SQ). We re-move the ids of the a�e
ted instan
es from SP and SQ yieldingsets S′
P and S′

Q and de�ne a
ontext C′ (in
luding the a�e
ted in-stan
es) su
h that A → C′[
∑

P (S
′
P) |

∑
Q(S

′
Q) | ΠPQ(SPQ)]. We nowspawn the
orresponding instan
es in B �rst and then mimi
 → ex-a
tly yielding B →∗ C′[ΠP (SPQ ∪ S′

P) | ΠQ(SPQ ∪ S′
Q)]. We have

(C′[
∑

P (S
′
P) |

∑
Q(S

′
Q) | ΠPQ (SPQ)], C′[ΠP (SPQ∪S′

P) | ΠQ(SPQ∪S′
Q)]) ∈

R.3. By de�nition R is
losed under the appli
ation of evaluation
ontexts.Now we show that R−1 is a simulation. For (A,B) ∈ R−1 :1. A ↓C : Sin
e produ
t pro
esses do not emit on
hannels we have C[0] ↓C and thus
B ↓C .2. A→ A′: We distinguish two
ases:(a) → follows the IREPL rule: We distinguish four
ases:i. A new instan
e P((id))σ is spawned from ΠP (SPQ ∪ SP) with id ∈

SP : We de�ne the
ontext C′[�] := C[P((id))σ | �], S′
P := SP \

{id} and have A → C′[ΠP (SPQ ∪ S′
P) | ΠQ(SPQ ∪ SQ)] and B ≡

C′[
∑

P (S
′
P) |

∑
Q(SQ) | ΠPQ(SPQ)]. Hen
e (C′[ΠP (SPQ∪S′

P) | ΠQ(SPQ∪

SQ)], C′[
∑

P (S
′
P) |

∑
Q(SQ) | ΠPQ(SPQ)] ∈ R−1.ii. A new instan
e Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SQ:Analogous to the previous
ase.iii. A new instan
e P((id))σ is spawned from ΠP (SPQ ∪ SP) with id ∈ SPQ:We de�ne the
ontext C′[�] := C[P((id))σ | �], S′

PQ := SPQ \{id}, S′
Q :=

SQ ∪ {id} and have A → C′[ΠP (S
′
PQ ∪ SP) | ΠQ(S

′
PQ ∪ S′

Q)]. Notethat SPQ ∪ SQ = S′
PQ ∪ S′

Q. In B we spawn P((id))σ | Q((id))σ from
ΠPQ (SPQ) and have B → C′[

∑
P (SP) |

∑
Q(S

′
Q) | ΠPQ (S′

PQ)]. Hen
e
(C′[ΠP (S

′
PQ∪SP) | ΠQ(S

′
PQ∪S′

Q)], C
′[
∑

P (SP) |
∑

Q(S
′
Q) | ΠPQ (S′

PQ)] ∈

R−1.iv. A new instan
e Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SPQ:Analogous to the previous
ase.(b) → follows a rule from Figure 3: Then we basi
ally have C[0] → C′[0] whi
htranslates
anoni
ally to C in B → B′ su
h that (A′, B′) ∈ R.3. By de�nition R is
losed under the appli
ation of evaluation
ontexts.57

This shows that R is a bisimulation and hen
e R ⊆≈. �We
an now state and prove the
omposition theorem. It says that if P ≤ Q, we
an restri
t the IO-names,
ompose in parallel with pro
esses that have disjoint NET-names, rename names (as long as NET- and IO-names are not inter
hanged), and perform
on
urrent
omposition.Theorem 5.37 (Composition Theorem) Let P , Q be pro
esses with P ≤ Q . Then(i) For any list of names io ⊆ IO we have νio.P ≤ νio.Q .(ii) For any pro
ess R with (fn(R) ∩ (fn(P) ∪ fn(Q))) ⊆ IO we have P |R ≤ Q |R.(iii) For any permutation ψ : NET → NET we have Pψ ≤ Q and P ≤ Qψ.(iv) For any permutation ψ : IO → IO we have Pψ ≤ Qψ.(v) If Q is a NET-stable pro
ess, !!xP ≤ !!xQ for all variables x 6∈ bv(P) ∪ bv(Q).Proof. In the following, let (S,ϕ,n) be as in De�nition 4.3. (They exist be
ause P ≤ Q .)(i) P ∼∼∼ νn.(Qϕ|S)
(∗)
⇒ νio.P ∼∼∼ νio.νn.(Qϕ|S)

(∗∗)
∼∼∼ νn.((νio.Q)ϕ|S)

(∗) sin
e ∼∼∼ is
losed under the appli
ation of evaluation
ontexts.
(∗∗) sin
e neither S nor ϕ
ontain names from IO(ii) W.l.o.g. we
an assume fn(R) ∩ n = ∅ and that ϕ is the identity on (fn(R) ∪
bn(R)) ∩NET. These assumptions guarantee (∗) in the up
oming equations. P ∼∼∼

νn.(Qϕ|S) ⇒ P |R ∼∼∼ νn.(Qϕ|S)|R
(∗)
∼∼∼ νn.((Q|R)ϕ|S)(iii) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νnψ.(Q(ψ ◦ ϕ)|Sψ). Therefore, with

(Sψ,ψ ◦ ϕ,nψ) as simulator, we have Pψ ≤ Q . With (S,ϕ ◦ ψ−1,n) we have
P ≤ Qψ.(iv) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νn.(Q(ϕ ◦ ψ)|S) sin
e S,ϕ and n donot
ontain IO names and thus are not a�e
ted by ψ : IO → IO.(v) Note that Qϕ is NET-stable sin
e Q is NET-stable. Then P ∼∼∼ νn.(Qϕ|S) entails

!!xP ∼∼∼ !!xνn.(Qϕ|S) (by Lemma 5.13)
∼∼∼ νn.!!x (Qϕ|S) (by Lemma 5.35 sin
e Qϕ|S NET-stable)
∼∼∼ νn.(!!x (Qϕ)|!!xS) (by Lemma 5.36)
≡ νn.((!!xQ)ϕ|!!xS) (by Lemma 5.12)Thus (!!xS,ϕ,n) is a proper simulator for !!xP ≤ !!xQ . �6 Property preservationBesides se
ure
omposition, the se
ond salient property of the UC framework is the fa
tthat se
urity properties of the ideal fun
tionality F automati
ally
arry over to anyproto
ol emulating F . For example, a se
ure
hannel fun
tionality that takes a message58

m from Ali
e and gives it dire
tly to Bob will obviously have the property that m staysse
ret. Then, if π UC-emulates F , any message given to π will also stay se
ret. A similarproperty preservation law holds in our
ase, the following theorem formalizes it:Theorem 6.1 (Property preservation) Let P,Q be pro
esses with P ≤ Q. Let E1and E2 be
ontexts whose holes are prote
ted only by parallel
ompositions (|), restri
-tions (ν), and indexed repli
ations (!!x). Assume that E1, E2 do not
ontain NET-names(neither bound nor free). Assume that the number of !!x (possibly with di�erent x) overthe hole is the same in E1 and E2.If E1[Q] ∼∼∼ E2[Q], then E1[P] ∼∼∼ E2[P].Proof. Let b denote the number of !!x over the hole of E1, E2. We write !!bS for b ≥ 0appli
ations of !! to S.Sin
e P ≤ Q, there are S,ϕ, n with P ∼∼∼ νn.(Qϕ|S) and S
losed and NET-stable,and IO ∩ fn(A) = ∅, ϕ : NET → NET a bije
tion and n a list of names n ⊆ NET.Without loss of generality, we
an assume that n∩ fn(E1, E2) = n∩ bn(E1, E2) = ∅. For
i = 1, 2, we have

Ei[P]
(i)
∼∼∼ Ei[νn.(Qϕ|S)](ii)
∼∼∼ νn.Ei[(Qϕ|S)](iii)
∼∼∼ νn.(Ei[Qϕ]|!!

bS)(iv)
= νn.(Ei[Q]ϕ|!!bS).Here (i) uses Lemma 2.7.And (ii) uses that the names n do not o

ur in Ei, the rules NEW-C and NEW-PARfrom Figure 2, and Lemma 5.35 for swapping !!x in Ei and the names n (the pre
onditionsof Lemma 5.35 are ful�lled be
ause n are NET-names and thus do not o

ur in Ei).And (iii) uses that the names in Ei (IO-names only) and the names in S (NET-namesonly) are disjoint, as well as Lemma 5.36 for moving S over a !! in Ei. (Lemma 5.36guarantees !!x(R|S) ≈ !!xR|!!xS, this is why S a

umulates on !!x for ea
h !!x over thehole of Ei. Sin
e S is
losed, we
an drop the x from !!x.)And (iv) uses that Ei does not
ontain NET-names (bound or free) while ϕ is asubstitution on NET-names.Furthermore, sin
e ∼∼∼ is
losed under renaming of free names, and under appli
a-tion of
ontexts (Lemma 2.7), from E1[Q] ∼∼∼ E2[Q] it follows that νn.(E1[Q]ϕ|!!bS) ∼∼∼

νn.(E2[Q]ϕ|!!bS) and hen
e E1[P] ∼∼∼ E2[P]. �Thus, any se
urity property that
an be expressed by an indistinguishability gameof the form �E1[P] ∼∼∼ E2[P]� with E1, E2 as in the theorem will
arry over from theideal fun
tionality Q to the proto
ol P , given P ≤ Q. Note that even many tra
e basedproperties
an be expressed in su
h a way. E.g., if we want to say that E1[P] does notraise an event bad (modeled by emitting on a spe
ial
hannel), we just de�ne E2 to be59

free nets
start, netnotify, netdeliver, n1, n2.fun empty/0.let FSC = in(netstart,y); in(ioA,x); out(netnotify,empty); in(netdeliver,z); out(ioB,x).pro
ess new ioA; new ioB; out(ioA,
hoi
e[n1,n2℄) | in(ioB,z) | FSCFigure 6: Proverif
ode for showing E1[FSC] ≈ E2[FSC] in Lemma 6.3 (prop-pres.pv).like E1, but without the event. Then E1[P] ∼∼∼ E2[P] implies that E1[P] does not raisethe event.We illustrate the use of this theorem with an example. Consider the se
ure
hannelfun
tionality:De�nition 6.2 (Se
ure
hannel) FSC := net scstart().ioA(x).netnotify〈〉.netdeliver ().ioB 〈x〉.We want to show:Lemma 6.3 If P ≤ FSC , then P has strong se
re
y in the following sense: We have
P1 ≈ P2 where Pi := νioAioB .ioA〈ni〉|ioB ()|P .Proof. Let Ei := νioAioB .ioA〈ni〉|ioB ()|�. We use Proverif to show that E1[FSC] ≈
E2[FSC]. The Proverif
ode is given in Figure 6. By Theorem 6.1 (and using that ≈and ∼∼∼
oin
ide for
losed pro
esses), we have P1 = E1[FSC] ≈ E2[FSC] = P2. �In Appendix A we show that the various restri
tions in Theorem 6.1 are ne
essary.In parti
ular, property preservation for
ontexts E1, E2 having a ! over their hole (insteadof a !!) does not hold. The reasons are similar to those that forbid ! in the
ompositiontheorem (
f. Se
tion 5). This is another indi
ate that an operator like !! is more naturalin this
ontext.7 Relation to Delaune-Kremer-PereiraDKP-se
urity. As mentioned in the introdu
tion, Delaune, Kremer, and Pereira[DKP09℄ have already presented a variant of the UC model in the applied pi
al
ulus.In this se
tion, we des
ribe the di�eren
es between their and our model, and why thesedi�eren
es are ne
essary to a
hieve stronger se
urity results.In [DKP09℄, se
urity is de�ned as follows:De�nition 7.1 (DKP-se
urity) Let � (observational preorder) be the largest simula-tion (not bisimulation).Let P,Q be pro
esses. Then P ≤SS Q i� there exists a simulator S (a
ontext) su
hthat P � S[Q].Here a simulator S is an evaluation
ontext subje
t to
ertain
onditions, see [DKP09℄,notably that it only binds NET-names. 60

Noti
e that in this de�nition, the main di�eren
e to our de�nition is that P and S[Q]do not have to be observationally equivalent, but only observationally preordered. (Also,the notion of the simulator S is somewhat di�erent from ours, but not in essen
e.) Thee�e
t of this is that the simulator may introdu
e additional non-determinism. For exam-ple, in our model, if the proto
ol P
an take one out of two a
tions, the simulator needsto simulate the appropriate a
tion, he thus needs to �gure out whi
h of the two a
tionsis taken. With respe
t to DKP-se
urity, the simulator
an just non-deterministi
ally
hoose whi
h a
tion to take; the observational preorder takes
are that the right a
tionis taken in the right situation. This makes simulators for DKP-se
urity mu
h easier to
onstru
t and DKP-se
urity into a
onsiderably weaker notion.DKP-se
urity satis�es similar laws as our notion. In parti
ular, ≤SS is re�exive andtransitive and it satis�es a
omposition theorem (whi
h di�ers from ours mainly in that
P ≤SS Q =⇒ !P ≤SS !Q holds, no need to introdu
e !!). They do not state a propertypreservation theorem. We believe, though, that their DPK-se
urity supports propertypreservation for
ertain kinds of tra
e properties.13The problem with observational preorder. We explain why we believe that ade�nition based on observational preorder instead of equivalen
e does not give su�
ientse
urity guarantees. We illustrate this by the following example. Consider a simplefun
tionality that is supposed to model an inse
ure but anonymous
hannel:

Fanon := ioA(x).net〈x〉|ioB (x).net〈x〉Obviously, this fun
tionality preserves anonymity about whether Ali
e or Bobsends a message (i.e., whether an input on ioA or ioB o

urs). Formally:
νioAioB .(ioA〈T 〉|Fanon) ≈ νioAioB .(ioB 〈T 〉|Fanon). (In fa
t, we even have ≡.) Now
onsider a naive proto
ol in whi
h Ali
e and Bob send their message over distin
t
han-nels netA,netB . Formally:

P := ioA(x).netA〈x〉|ioB (x).netB 〈x〉Obviously, P does not provide anonymity, it is easy to see that νioAioB .(ioA〈T 〉|P) 6≈
νioAioB .(ioB 〈T 〉|P). Consequently (Theorem 6.1), we have P 6≤ Fanon as we wouldexpe
t sin
e P gives less se
urity than Fanon .On the other hand, with respe
t to DKP-se
urity, P is
onsidered as se
ure as Fanon ,i.e., P ≤SS Fanon . We use the following simulator: S := net(x).netA〈x〉 | net(x).netB 〈x〉 |
�. Then P � S[Fanon] be
ause S relays messages sent on net onto netA or netB , andthe de�nition of � makes sure that the message is non-deterministi
ally delivered on theright
hannel netA or netB . Hen
e P ≤SS Fanon .Lemma 7.2 (with non-rigorous proof) P ≤SS Fanon .13Probably a law of the following kind holds: Assume P ≤SS Q. Let c /∈ fv(P,Q), and E be a
ontextsatisfying
ertain properties. Then E[Q] 6 ↓c =⇒ E[P] 6 ↓c. Compare with Theorem 6.1 whi
h
an dealwith indistinguishability properties. 61

Proof. In this proof, we assume that Lemma 3.3 also holds for the
al
ulus from [DKP09℄.Sin
e that
al
ulus is somewhat di�erent from ours, this makes the present proof non-rigorous. (However, probably the proof of Lemma 3.3
an be easily adapted to the
al
ulus of [DKP09℄.)Then we have
P

(∗)

≈ νnet .(ioA(x).net〈x〉|net(x).netA〈x〉)

| νnet .(ioB (x).net〈x〉|net(x).netB 〈x〉)
(∗∗)

� ioA(x).net〈x〉|net(x).netA〈x〉

| ioB (x).net〈x〉|net(x).netB 〈x〉

≡ S[Fanon] with S := net(x).netA〈x〉 | net(x).netB 〈x〉 | �.Here (∗) uses two appli
ations of Lemma 3.3 (in the reverse dire
tion), the �rst with
n := net , t := x, x := x, and Q := netA〈x〉, and the se
ond with n := net , t := x, x := x,and Q := netB 〈x〉. And (∗∗) uses that νc.P � P ([DKP, Lemma 8℄).Sin
e ≈ implies � and � is transitive, we have P � S[Fanon]. Furthermore, S is avalid simulator for DKP-se
urity. Thus P ≤SS Fanon . �Thus, the se
urity of a proto
ol in the sense of [DKP09℄ does not imply that theproto
ol has the same anonymity properties as the ideal fun
tionality. The same probablyholds for other equivalen
e properties su
h as strong se
re
y et
. We
onsider this a strongrestri
tion of the notion and thus believe that a symboli
 analogue to UC se
urity shoulduse observational equivalen
e or a similar notion of equivalen
e.Why observational preorder? The reader may wonder why [DKP09℄ use observa-tional preorder instead of observational equivalen
e, in parti
ular sin
e observationalequivalen
e is the more dire
t analogue to the indistinguishability in the
omputationalUC framework [Can01℄. We explain the reasons as we understand them (this is basedboth on explanations in [DKP09℄ and on our own insights while working on the
urrentresult), and due to what de�nitional de
isions we managed to get around those reasons:

• It is not possible to model �relays�. That is, if we have a pro
ess P that outputson a
hannel c, then as a te
hni
al tool we might wish to
onstru
t a pro
ess
R (a relay) that forwards all message on c to another
hannel c′, i.e., we want
νc.(P |R) ≈ P{c′/c}. Unfortunately, su
h a relay does not seem to exist in theapplied pi
al
ulus. R :=!c(x).c′〈x〉 does not work. Consider, e.g., P := c〈n〉.a〈n〉.Then νc.(P |R) ↓a but P{c′/c} 6 ↓a. With respe
t to �, however, we
an have relays(P{c′/c} � νc.(P |R)).Why are relays important? One reason is whether a dummy adversary exists. Su
ha dummy adversary is an adversary that forwards all messages on NET-
hannelsfrom the proto
ol to the environment and vi
e versa. (So, essentially, a relay.) Theexisten
e of the dummy adversary is used impli
itly or expli
itly in most stru
-tural theorems (re�exivity, transitivity,
on
urrent
omposition). In fa
t, it seems62

that when using observational equivalen
e in [DKP09℄, one would not even havere�exivity.We get around this problem by using a slightly di�erent de�nition of adver-saries/simulators (De�nition 4.2). In our setting, a dummy
an be trivially
on-stru
ted as (0, ϕ,∅) where ϕ just renames the proto
ol's NET-
hannels to theNET-
hannels that the environment expe
ts the messages on. This simple tri
kobviates the need for using relays in the
onstru
tion of the dummy adversary.
• The se
ond problem is that one does not get a
omposition theorem that guaran-tees P ≤SS Q =⇒ !P ≤SS !Q when using observational equivalen
e. However, webelieve that this is a natural limitation be
ause we
an show that property preser-vation does not even hold for equivalen
e-based se
urity properties that repli
atethe proto
ol. Thus we
annot expe
t to get su
h a
omposition theorem and simul-taneously have property preservation for equivalen
e properties. We get aroundthis problem by de�ning a di�erent notion of
on
urrent
omposition, using the !!operator (see Se
tion 5).
• Finally, the non-existen
e of relays is a problem when proving the se
urity of
on-
rete proto
ols P ≤ F : A typi
al thing a simulator has to do is to take a message
m on a NET-
hannel and somehow rewrite it (e.g., to enc(k,m)) before sendingit on to the environment. This, of
ourse, is a generalization of the
on
ept of arelay. Thus, if relays are impossible, we
an hardly expe
t to
onstru
t sensiblesimulators. This, however, is not true if we pay some attention in the de�nition ofthe fun
tionality and obey the following guideline:Guideline: When designing a fun
tionality, use di�erent names for allNET-
hannels and, whenever sending something on a NET-
hannel C,use C〈T 〉|P ′ instead of C〈T 〉.R.In these
ases, R :=!c(x).c′〈x〉 will usually work as a relay (e.g., νc.(P |R) ≈ P{c′/c}for P := c〈n〉|a〈n〉).8 Example: Se
ure
hannelsIn this se
tion we apply symboli
 UC hands on. We illustrate how our results fromSe
tion 5
an be usefully applied in pra
ti
e to
onstru
t a se
ure
hannel from thewidely known NSL proto
ol and a PKI. Furthermore, when extending the se
ure
hannelto multiple sessions, we present an example for a joint state, i.e., multiple instan
es ofone proto
ol that jointly use one instan
e of another fun
tionality. While the original UCmodel of Canetti [Can01℄ requires an additional theorem to handle joint states [CR03℄,we
an dire
tly use !! in our
ase. We used Proverif14 for our proofs as mu
h as possibleto show how it helps with the veri�
ation of various properties in the
ontext of symboli
UC.14Version 1.86pl4 63

fun sen
/3. (* sen
(key,msg,rand) *)redu
 sde
(k,sen
(k,m,r)) = m.fun empty/0.fun hash/1.fun pk/1.fun sk/1.fun pen
/3. (* pen
(pk,msg,rand) *)redu
 pde
(sk(k),pen
(pk(k),m,r)) = m.redu
 pkofsk(sk(k)) = pk(k).redu
 pkofen
(pen
(p,m,r)) = p.Figure 7: Key-ex
hange example: Proverif
ode for the symboli
 model(se

han-model.pv)We �rst de�ne the symboli
 model used in this se
tion. The
onstru
tors are:
penc/3, pk/1, sk/1, senc/3, (·, ·), hash/1, and empty/0, representing publi
-key en
ryp-tion, publi
 and se
ret keys, symmetri
 en
ryption, pairs, hashing, and empty messages,respe
tively. En
ryption has a third argument modeling randomness used for en
rypt-ing. More spe
i�
ally, penc(pk(k),m, r) models a publi
 key en
ryption using key pk(k),plaintext m, and randomness r, and senc(k,m, r) a symmetri
 en
ryption using key k,plaintext m, and randomness r. We believe that senc without the additional random-ness argument r would also work in our setting. However, we introdu
e this additionalnon
e to help Proverif, whi
h
an then better distinguish
iphertexts (e.g., the proofof se

han-s
2.pv fails without r due to Proverif's overapproximation te
hnique). Wehave no equations in our theory.Furthermore we have the destru
tors pdec/2, sdec/2, pkofsk/1, and pkofenc/1, mod-eling publi
-key de
ryption, symmetri
 de
ryption, extra
tion of a publi
 key from ase
ret key, and extra
tion of a publi
 key from a
iphertext. (The latter two are notneeded in our proto
ols, but we provide them to make the adversary more realisti
.) Thebehavior of the destru
tors is spe
i�ed by the following rewrite rules:

pdec(sk(x), penc(pk(x), y, z)) → y

sdec(x, senc(x, y, z)) → y

pkofsk (sk(x)) → pk(x)

pkofenc(penc(x, y, z)) → xThe Proverif
ode for this symboli
 model is given in Figure 7.8.1 Key ex
hange using NSLWith the symboli
 model set up we next show how to tailor a UC-se
ure key ex
hangefrom NSL using a PKI fun
tionality FPKI . Towards this goal we model the ideal key64

ex
hange fun
tionality FKE , the PKI FPKI and the NSL proto
ol based on FPKI asfollows:De�nition 8.1 (Key ex
hange fun
tionality) FKE := νk.netdelA().ioka〈k〉 |
netdelB ().iokb〈k〉.De�nition 8.2 (Publi
 key infrastru
ture fun
tionality)

FPKI := νkakb.iopkeA〈(sk (ka), pk (ka), pk (kb))〉

| iopkeB 〈(sk (kb), pk (ka), pk (kb))〉

| netpke〈(pk (ka), pk (kb))〉De�nition 8.3 (Needham-S
hroeder-Lowe)
NSLA := iopkeA((xsk ,_, xpkB

)).νna.νr1.

netnslA〈penc(xpkB
, na, r1)〉.netnslA(xc).let (=na, xnb

,=B) = pdec(xsk , xc) in
νr2.netnslA〈penc(xpkB

, xnb
, r2)〉.

ioka〈hash((na, xnb
))〉

NSLB := iopkeB ((xsk , xpkA
,_)).netnslB (xc).let xna

= pdec(xsk , xc) in
νnb.νr.netnslB 〈penc(xpkA

, (xna
, nb, B), r)〉.

netnslB (x
′
c).if nb = pdec(xsk , x

′
c) then

iokb〈hash((xna
, nb))〉

NSL := νiopkeAiopkeB .(NSLA | NSLB | FPKI)We
an now state the �rst result of this se
tion, namely that the NSL is a UC-se
urerealization of FKE .Lemma 8.4 NSL ≤ FKE .Proof. Let NSL
′
A be NSLA without the initial iopkeA((xsk ,_, xpkB

)). NSL
′
B anal-ogously. And NSL

′′
A := NSL

′
A{netdelA/ioka , sk (ka)/xsk , pk(kb)/xpkB } and NSL

′′
B :=

NSL
′
B{netdelB/iokb , sk(kb)/xsk , pk (ka)/xpkA}.

65

We have
NSL ≡ νiopkeAiopkeBkakb.

(
iopkeA((xsk ,_, xpkB)).NSL′A | iopkeA((xsk , xpkA ,_)).NSL′B

| iopkeA〈(sk(ka), pk (ka), pk (kb))〉 | iopkeB 〈(sk(kb), pk (ka), pk (kb))〉 | netpke〈(pk (ka), pk (kb))〉
)(v)

≈ νkakb.
(let (xsk ,_, xpkB) = (sk(ka), pk (ka), pk (kb)) in NSL

′
A

| let (xsk , xpkA ,_) = (sk(kb), pk (ka), pk(kb)) in NSL
′
B | netpke〈(pk (ka), pk (kb))〉

)(vi)
≈ νkakb.

(
NSL

′
A{sk(ka)/xsk , pk (kb)/xpkB } | NSL′B{sk(kb)/xsk , pk (ka)/xpkA}

| netpke〈(pk(ka), pk (kb))〉
)(vii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉
)(viii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| νk.(netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉)
)
=: NSL1Here (v) uses two
onse
utive appli
ations of Lemma 3.3, the �rst with n := iopkeAand C := � and t := (sk (ka), pk (ka), pk (kb)), and the se
ond with n := iopkeB and

C := � and t := (sk(kb), pk (ka), pk (kb)). Remember also that iopkeA((xsk ,_, xpkB)) issynta
ti
 sugar for iopkeA(x).let (xsk ,_, xpkB) = x.And (vi) uses two
onse
utive appli
ations of Lemma 3.2 (v) and the fa
t that ≈ is
losed under evaluation
ontexts.And (vii) uses two appli
ations of Lemma 3.3 (both in the opposite dire
tion), the �rstwith n := netdelA, Q := ioka〈x〉, and t := H((na, xnb
)), and the se
ond with n := netdelB ,

Q := iokb〈x〉, and t := H((xna
, nb)).And (viii) uses Lemma 3.2 (i) to add νk.Using Proverif, we
an show the following observational equivalen
e:

NSL1
(∗)

≈ νnetdelAnetdelBkakb.(NSL
′′
A | NSL′′B | netpke〈(pk (ka), pk (kb))〉 | FKE)

≡ νnetdelAnetdelB .(FKE |S)for S := νkakb.(NSL
′′
A|NSL

′′
B |netpke〈(pk (ka), pk (kb))〉). The Proverif
ode for
he
king (∗)is given in Figure 8.Hen
e NSL ≤ FKE . �8.2 Se
ure
hannel from key ex
hange.Next, we realize a se
ure
hannel. Sin
e we already have a realization of a se
ure keyex
hange at hand, we realize the se
ure
hannel SC from the idealized key ex
hange FKE .Later we repla
e FKE by NSL. We model FSC and SC based on FKE as follows:De�nition 8.5 (Se
ure
hannel) 15 FSC := netscstart ().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)15This de�nition was already given in Se
tion 6 (De�nition 6.2) and is repeated here for
onvenien
e.66

free B, netnsla, netnslb, netpke.free ioka, iokb.let A =new na;new r1;out(netnsla,pen
(pk(kb),na,r1));in(netnsla,x
);let (=na,xnb,=B) = pde
(sk(ka),x
) innew r2;out(netnsla,pen
(pk(kb),xnb,r2));out(netdela,hash((na,xnb))).let B =in(netnslb,x
);let xna = pde
(sk(kb),x
) innew nb;new r;out(netnslb,pen
(pk(ka),(xna,nb,B),r));in(netnslb,x
2);if nb = pde
(sk(kb),x
2) thenout(netdelb,hash((xna,nb))).let KE =new k;(in(netdela,x);out(ioka,
hoi
e[x,k℄)) |(in(netdelb,x);out(iokb,
hoi
e[x,k℄)).pro
essnew netdela; new netdelb;new ka; new kb; (A | B | out(netpke,(pk(ka),pk(kb))) | KE)Figure 8: Key-ex
hange example: Proverif
ode for analyzing NSL (se

han-nsl.pv).(Has to be pre�xed with the
ode from Figure 7.)
67

De�nition 8.6 (Se
ure
hannel proto
ol)
SCA := ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉

SCB := iokb(xk).netB (xc).let xm = sdec(xk, xc) in ioB 〈xm〉

SC := νioka iokb .(SCA|SCB |FKE)Lemma 8.7 SC ≤ FSC .Proof. We have:
SC ≡ νioka iokbk.

(
ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉 | iokb(xk).netB (xc).let xm = sdec(xk, xc) in ioB

netdelA().ioka〈k〉 | netdelB ().iokb〈k〉
)

(∗)

≈ νk.
(
netdelA().ioA(xm).νr.netA〈senc(k, xm, r)〉 | netdelB ().netB (xc).let xm = sdec(k, xc) in ioB 〈xm〉

)
=:Here (∗) uses two
onse
utive appli
ations of Lemma 3.3, the �rst with n := ioka and

C := netdelA().� and t := k, and the se
ond with n := iokb and C := netdelB ().� and
t := k. (And it uses Lemma 2.7, so that we
an apply Lemma 3.3 to a subpro
ess insteadof the whole pro
ess.)We show next:

SC1 ≈ νs k.
(
netdelA().ioA(xm).νr.(!(s, senc(k, xm, r))〈xm〉 | netA〈senc(k, xm, r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈xm〉

)
=: SC2By Lemma 3.7, to show the above it is su�
ient to show that the tra
e property end() ⇒

start() holds in the following event pro
ess:
νk.
(
netdelA().ioA(xm).νr.event start(senc(k, xm, r)).netA〈senc(k, xm, r)〉 |

netdelB ().netB (xc).let xm = sdec(k, xc) in event end(xc).ioB 〈xm〉
)
.We show this tra
e property using Proverif, the required
ode is given in Figure 9.Note: We
ould also have shown an analogous observational equivalen
e with s insteadof (s, senc(k, xm, r)). Then, however, Proverif fails on the
ode given in Figure 10 be
auseit does not see there is only one message xm sent over the
hannel. Thus, it believes thatdi�erent xm
ould be
onfused. Adding xc to the
hannel name helps Proverif to see that

xm is unique (sin
e xc already determines xm).Sin
e we send the message xm dire
tly to Bob via the
hannel (s, ·) (who re
eivesit as x′m), we
an let Bob output the message x′m re
eived over that
hannel instead ofusing the de
rypted value xm. Sin
e then the plaintext of the
iphertext xc is then notused any more, we
an en
rypt empty instead of xm (as the adversary
annot tell thedi�eren
e). Formally, we show the following observational equivalen
e:
SC2 ≈ νs k.(netdelA().ioA(xm).νr.(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉) =: SC3.68

free ioa. (* A-input of F_SC *)free iob. (* B-output of F_SC *)free neta. (* A-end of inse
ure
hannel in P_SC *)free netb. (* B-end of inse
ure
hannel in P_SC *)free netdela, netdelb.query ev:end(x) ==> ev:start(x).let PA =in(netdela,x);in(ioa,xm);new r;event start(sen
(k,xm,r));out(neta,sen
(k,xm,r)).let PB =in(netdelb,x);in(netb,x
);let xm=sde
(k,x
) inevent end(x
);out(iob,xm).pro
essnew k;PA | PBFigure 9: Key-ex
hange example: Proverif
ode for analyzing the tra
e property of SC(se

han-s
1.pv). (Has to be pre�xed with the
ode from Figure 7.)
69

free ioa. (* A-input of F_SC *)free iob. (* B-output of F_SC *)free neta. (* A-end of inse
ure
hannel in P_SC *)free netb. (* B-end of inse
ure
hannel in P_SC *)free netdela, netdelb.let PA =in(netdela,x);in(ioa,xm);new r;(!out((s,sen
(k,
hoi
e[xm,empty℄,r)),xm)) |out(neta,sen
(k,
hoi
e[xm,empty℄,r)).let PB =in(netdelb,x);in(netb,x
);let xm=sde
(k,x
) inin((s,x
),xm2);out(iob,
hoi
e[xm,xm2℄).pro
essnew s;new k;PA | PBFigure 10: Key-ex
hange example: Proverif
ode for analyzing the observation equiva-len
e in SC (se

han-s
2.pv). (Has to be pre�xed with the
ode from Figure 7.)
70

free ioa. (* A-input of F_SC *)free iob. (* B-output of F_SC *)free neta. (* A-end of inse
ure
hannel in P_SC *)free netb. (* B-end of inse
ure
hannel in P_SC *)free netdela, netdelb.let PA =in(netdela,x);in(ioa,xm);(!out(
hoi
e[(s,sen
(k,empty,r)),s℄,xm)) |out(neta,sen
(k,empty,r)).let PB =in(netdelb,x);in(netb,x
);let xm=sde
(k,x
) inin(
hoi
e[(s,x
),s℄,xm2);out(iob,xm2).pro
essnew s;new k;new r;PA | PBFigure 11: Key-ex
hange example: Proverif
ode for analyzing the se
ond observationequivalen
e in SC (se

han-s
3.pv). (Has to be pre�xed with the
ode from Figure 7.)We show this observational equivalen
e using Proverif, the required
ode is given inFigure 10.Then we move the restri
tion νr to the top and repla
e the
hannel
(s, senc(k, empty , r)) by s:
SC3

(∗)

≈ νs k r.(netdelA().ioA(xm).(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉)

(∗∗)

≈ νs k r.(netdelA().ioA(xm).(!s〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in s(x′m).ioB 〈x
′
m〉) =: SC4Here (∗) follows from Lemma 3.2 (ii), and (∗∗) is proven using Proverif. The required
ode is given in Figure 11. 71

We
ontinue:
SC4

(∗)

≈ νnetdeliver k r.(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉)
(∗∗)

≈ νnetdeliver k r netnotify .(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netnotify〈〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉 | netnotify().netA〈senc(k, empty , r)〉)

≡ νnetdeliver netnotify .(FSC {netdelA/net scstart}|S)with S := νkr.netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉

| netnotify().netA〈senc(k, empty , r)〉Here (∗) uses Lemma 3.4 with Q := ioB 〈x′m〉, x := x′m, n := s, and m := netdeliver .And (∗∗) uses Lemma 3.3 with Q := netA〈senc(k, empty , r)〉, n := netnotify , t :=
empty .So SC ≈ νn.(FSCσ|S) for σ := {netdelA/net scstart} and n := netdeliver netnotify .Hen
e SC ≤ FSC . �With NSL ≤ FKE (Lemma 8.4) and SC ≤ FSC (Lemma 8.7) at hand we
an nowuse the
ompositional
apabilities of UC: We de�ne an evaluation
ontext C[�] :=
νioka iokb .(SCA|SCB|�) where SCA and SCB are the pro
esses from De�nition 8.6. Sin
e
C meets the requirements of Theorem 5.37 NSL ≤ FKE implies C[NSL] ≤ C[FKE]. Sin
e
C[FKE] = SC and SC ≤ FSC we have, by transitivity of ≤ (Lemma 4.5), C[NSL] ≤ FSC .We did
onstru
t a se
ure
hannel from a PKI using the NSL proto
ol. More interest-ing than this result is the way we a
hieved it: We did not have to analyze the
ompletesystem C[NSL] in one pie
e but
ould repla
e the NSL proto
ol with an idealized fun
-tionality. This illustrates two striking advantages of the UC approa
h:

• The fa
t that NSL realizes an ideal key ex
hange
an be re-used for se
urity proofsof further systems.
• We
annot only plug NSL into C but any proto
ol that realizes a se
ure key ex
hange(e.g., if no PKI is available and thus NSL is not an option).Instead of one monolithi
 se
urity proof for C[NSL] we end up with smaller proofs andresults whi
h
an be used �exibly. Furthermore, to split the se
urity analysis of a
omplexsystem into smaller parts might be the only feasible option to ta
kle it at all.8.3 Generating many keys from oneWhile the example until now illustrates
omposition and the power of UC, C[NSL] onlyrealizes a single-use se
ure
hannel. To transfer multiple messages, we
ould just use
on
urrent
omposition to have !!C[NSL] ≤ !!FSC . However, the resulting proto
ol usesone instan
e of NSL per message, and � sin
e NSL
ontains FPKI , another PKI for ea
hmessage that is sent. This is
learly unrealisti
. To get rid of this overhead we want tohave all the instan
es of SC to jointly use just one key ex
hange FKE , i.e., we want touse the previously mentions joined state te
hnique here. Towards this goal we model awrapper proto
ol KE∗ whi
h uses one key ex
hange to emulate multiple key ex
hanges72

(from a key k it derives session keys hash((sid , k)) where sid is the session id). Formally,we de�ne KE
∗ as follows and then show KE

∗ ≤ !!FKE .De�nition 8.8
KE

∗
A := io′ka(xk).!!xsid

ioka〈hash((xsid , xk))〉

KE
∗
B := io′kb(xk).!!xsid

iokb〈hash((xsid , xk))〉

KE
∗ := νio′ka io

′
kb .(KE

∗
A | KE∗

B | F ′
KE)where F ′

KE := FKE{io
′
ka/ioka , io

′
kb/iokb}.Lemma 8.9 KE

∗ ≤ !!FKE .Proof. Let S := netdelA().!!net
′
delA〈〉 | netdelB ().!!net ′delB 〈〉. Here we use the shorthand

t〈〉 for t〈empty〉. Let n := net ′delAnet
′
delB . Let σ := {net ′delA/netdelA,net

′
delB/netdelB}.We have

KE
∗ (i)
≈ νk.netdelA().!!xsid

ioka〈hash((xsid , k))〉 | netdelB ().!!xsid
iokb〈hash((xsid , k))〉(ii)

≈ νk.netdelA().!!xsid
νnet ′delA.(net

′
delA〈〉 | net

′
delA().ioka〈hash((xsid , k))〉)

| netdelB ().!!xsid
νnet ′delB .(net

′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉)(iii)

≈ νk.νnet ′delA.netdelA().(!!xsid
net ′delA〈〉 | !!xsid

net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .netdelB ().(!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)(iv)
≈ νk.νnet ′delA.(netdelA().!!xsid

net ′delA〈〉 | !!xsid
net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .(netdelB ().!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)(v)
≈ νn.

(
νk.!!xsid

(
net ′delA().ioka〈hash((xsid , k))〉 | net

′
delB ().iokb〈hash((xsid , k))〉

)
| S
)(vi)

≈ νn.(!!xsid
νk.(net ′delA().ioka〈k〉 | net

′
delB ().iokb〈k〉) | S)

= νn.(!!FKE σ | S)Here (i) uses two appli
ation of Lemma 3.3, the �rst with C := netdelA().�, n := io′ka ,and t := k, the se
ond with C := netdelB ().�, n := io′kb , and t := k. (And it usesLemma 2.7, so that we
an apply Lemma 3.3 to a subpro
ess instead of the whole pro-
ess.)And (ii) uses Lemma 3.3 with C := � to show ioka〈hash((xsid , k))〉 ∼∼∼
νnet ′delA.(net

′
delA〈〉 | net ′delA().ioka〈hash((xsid , k))〉 and iokb〈hash((xsid , k))〉 ∼∼∼

νnet ′delB .(net
′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉.And (iii) uses Lemma 3.2 (ii) and Lemma 5.36 and Lemma 5.35.And (iv) uses the following
laim (proven below) twi
e. First with n := net ′delA,

m := netdelA, Q := ioka〈hash((xsid , k))〉. Then with n := net ′delB , m := netdelB , Q :=
iokb〈hash((xsid , k))〉. 73

Claim 4 For names n,m, and for any pro
ess Q, we have νn.m().(!!xn〈〉 | !!xn().Q) ≈
νn.((m().!!xn〈〉) | !!xn().Q).(Intuitively, this
laim holds be
ause !!xn().Q
annot perform any observable a
tionsuntil !!xn〈〉 is exe
uted. So it makes no di�eren
e whether both !!xn().Q and !!xn〈〉 waitfor the input on m to o

ur, or whether only !!xn().Q waits for it.)And (v) follows from the de�nition of ≡ and Lemma 5.36.Finally, (vi) follows from the following
laim (proven below):Claim 5 For any pro
ess P , we have νk.!!xP{hash((x, k))/k} ≈ !!xνk.P .Thus we have derived KE

∗ ≈ νn.(!!FKE σ | S). This shows KE∗ ≤ !!FKE . It remainsto show the two
laims.To show Claim 4,
onsider the following relation:
R :=

{
E[νn.m().(

∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x)))],

E[νn.(m().
∏

x∈SID

n〈〉 |
∏

x∈SID\S

n().Q((x)) |
∑

x∈S

n().Q((x)))]
}
∪ ≈up to stru
tural equivalen
e. Here E ranges over evaluation
ontexts, and S over �nitesubsets of SID . n,m,Q are from the statement of the lemma. ∑x∈S P stands short for

P{s1/x}| . . . |P{sk/x} with S =: {s1, . . . , sk}. I.e., ∑x∈S is almost the same as ∏x∈S ,ex
ept that ∑x∈S is synta
ti
 sugar (and only makes sense for �nite S) while ∏x∈S is aproper
onstru
t in the syntax of produ
t pro
esses.We show that R is a bisimulation:
• If (A,B) ∈ R and A ↓M , then B ↓M :In the
ase A ≈ B, the statement is immediate. We
an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].In the argument to E, there are no unprote
ted outputs. Thus the output on Mis in E and thus B ↓M trivially follows.
• If (A,B) ∈ R and B ↓M , then A ↓M : Analogous to the previous
ase.
• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:In the
ase A ≈ B, the statement is immediate. We
an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].If A→ A′ is a redu
tion within E, then let B → B′ be the
orresponding redu
tion,and then (A′, B′) ∈ R. 74

Otherwise, A → A′ is a
ommuni
ation on m between E and the input m() in itsargument, hen
e A′ ≡ E′[νn.(
∏

x∈SID n〈〉 |
∏

x∈SID n().Q((x)))]. And B → B′ :=
E′[νn.(

∏
x∈SID n〈〉 |

∏
x∈SID\S n().Q((x)) |

∑
x∈S n().Q((x)))].From Lemma 3.2 (ix), we have A′ ≈ B′, hen
e (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′, then there is a A′ with A→∗ A′ and (A′, B′) ∈ R:In the
ase A ≈ B, the statement is immediate. We
an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].If B → B′ is a redu
tion within E, or if B → B′ is a
ommuni
ation on m between
E and m() in its argument, then the reasoning is as in the previous
ase.Otherwise, we have that B → B′ is a redu
tion of the se
ond produ
t, i.e. B′ ≡
E[νn.(m().

∏
x∈SID n〈〉 |

∏
x∈SID\S′ n().Q((x)) |

∑
x∈S′ n().Q((x)))] with S′ := S \

{t} for some t ∈ SID \ S. Then (A′, B′) ∈ R with A′ := A.
• If (A,B) ∈ R, then (E[A], E[B]) ∈ R:Immediate from the de�nition of R.The statement of the
laim is equivalent to

P1 := νn.m().(
∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x))) ≈ νn.((m().
∏

x∈SID

n〈〉) |
∏

x∈SID

n().Q((x)) =: P2.And this follows from the fa
t that R is a bisimulation sin
e (P1, P2) ∈ R. Thus Claim 4is shown.To show Claim 5,
onsider the following relation:
R :=

{(
νnk.Qσ |

∏

x∈S

P{hash((x, k))/k}, νn kσ.Q |
∏

x∈S

νk.P
)}up to stru
tural equivalen
e. Here k /∈ fn(S) is an arbitrary name, S ⊆ SID is a set ofterms, σ is a (�nite) substitution mapping names to distin
t (with respe
t to =E) terms

hash((t, k)) with t ∈ SID \ S, kσ = domσ, kσ ∩ fn(P, S) = ∅, n is a list of names, and
Q is an arbitrary pro
ess with k /∈ fn(Q).We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M then B ↓M :Sin
e k and kσ are bound names, we have that M does not
ontain either of them.But only terms
ontaining k or kS are di�erent in A and B. Thus B ↓M .
• If (A,B) ∈ R and B ↓M then A ↓M :Analogous. 75

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:If the redu
tion is ∏
x∈S P{hash((x, k))/k} → P{hash((t, k))/k, t/x} |∏

x∈S′ P{hash((x, k))/k} with S′ := S \ {t}, then we have B →∗ B′ and (A′, B′) ∈
R with B′ := νnkσ′ .Q | P{kt/k, t/x} |

∏
x∈S′ νk.P and σ′ := σ ∪ {kt 7→ H((t, k))}for some fresh name kt. Noti
e that the terms in the range of σ′ are still distin
tbe
ause S ⊆ SID
ontains only distin
t terms, and t ∈ SID \ S.If the redu
tion is a redu
tion of Qσ → Q′, then it is easy to see (by
he
king,in parti
ular, for all destru
tors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Q →

Q′σ−1. From this it follows that B →∗ B′ and (A,B) ∈ R with B′ := νnkσ.Q
′σ−1 |∏

x∈S νk.P .
• If (A,B) ∈ R and B → B′, then there is a A′ with A→∗ A′ and (A′, B′) ∈ R:If the redu
tion is ∏x∈S νk.P → νk.P{t/x} |

∏
x∈S′ νP with S′ := S \{t}, then wehave (A′, B′) ∈ R with A′ := νnk.(Q | P{H((t, k))/k})σ |

∏
x∈S′ P{H((x, k))/k}and B′ ≡ νnkσ′ .Q | P{kt/k} |

∏
x∈S′ νk.P and σ′ := σ∪{kt 7→ H((t, k))} and somefresh name kt. Noti
e that the terms in the range of σ′ are still distin
t be
ause

S ⊆ SID
ontains only distin
t terms, and t ∈ SID \ S.If the redu
tion is a redu
tion of Q → Q′, then it is easy to see (by
he
king, inparti
ular, for all destru
tors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Qσ → Q′σ.From this it follows that (A,B) ∈ R with A′ := νnk.Q′σ |
∏

x∈S P{hash((x, k))/k}.
• If (A,B) ∈ R and E is an evaluation
ontext, then (E[A], E[B]) ∈ R:Then A = νnk.Qσ |

∏
x∈S P{hash((x, k))/k} and B = νnkσ.Q |

∏
x∈S νk.P .Without loss of generality, k, kσ /∈ fn(E) ∪ fn(E). (Otherwise we
ould repla
e

k, kσ by other names in A,B.) There is a pro
ess Q′ and a list of names n′ su
hthat E[P] ≡ νn′.(P |Q′) for all P . Then
(E[A], E[B]) ≡

(
νn′ nk.(Q|Q′)σ |

∏

x∈S

P{hash((x, k))/k}, νn′ nkσ.(Q|Q′) |
∏

x∈S

νk.P
)
∈ R.Sin
e (νk.

∏
x∈SID P{hash((x, k))/k},

∏
x∈SID νk.P) ∈ R, we have

νk.!!xP{hash((x, k))/k} ≈ νk.
∏

x∈SID P ((x)){hash((x, k))/k} ≈
∏

x∈SID νk.P ((x)) ≈
!!νk.P . This shows Claim 5. �Analogously to the single session
ase we de�ne a suitable
ontext C∗ by repla
ing
F ′
KE in KE

∗ with � and have
C∗[NSL] ≤ C∗[F ′

KE] = KE
∗ ≤ !!FKEFurthermore, !!SC ≈ νioka iokb .(!!SCA|!!SCB|!!FKE) (by Lemmas 5.35,5.36). Hen
e

νioka iokb .(!!SCA|!!SCB |C
∗[NSL])

≤ νioka iokb .(!!SCA|!!SCB |!!FKE)

≤ !!SC ≤ !!FSC .Finally, we have a proto
ol whi
h realizes multiple se
ure
hannels while invoking the
NSL proto
ol and using only one PKI. 76

9 Virtual primitivesIn this se
tion, we present a te
hnique for deriving se
urity of proto
ols in the symboli
UC model that is spe
i�
 to the symboli
 model. No analogue in the
omputationalworld seems to exist. The idea is the following: When
onstru
ting UC se
ure pro-to
ols, it is often ne
essary to in
lude spe
i�
 �trapdoors� that allow the simulator toextra
t or modify
ertain information. For example, when
onstru
ting a simulator fora
ommitment s
heme, we need to in
lude in the proto
ol some way for the simulatorto extra
t the value of the
ommitment when given a
ommitment by the environment(extra
tability), or to
hange the
ontent of a
ommitment when produ
ing a
ommit-ment for the environment (equivo
ality), see [CF01℄. These additional trapdoors oftenmake the proto
ols more
omplex, and they often also need more
omplex
ryptographi
primitives. A simple
ommitment proto
ol in whi
h the
ommitter just sends hash(m, r)for message m and randomness r is not UC se
ure be
ause the simulator
annot extra
tor equivoke. Instead, one would need to assume a spe
ial hash fun
tion that takes anadditional parameter crs (the
ommon referen
e string) hash(crs ,m, r) in su
h a waythat given a suitably
hosen �fake� crs , one
an �nd
ollisions in hash or extra
t m from
hash(crs ,m, r). With su
h a hash fun
tion, one
an
onstru
t a UC se
ure
ommitmentrelatively easily (see De�nition 9.3 below). However, now our proto
ol uses a
onsider-ably more
omplex primitive than a simple hash fun
tion. And
ertainly
ommon hashfun
tions su
h as SHA-3 do not have these properties.This leads to a strange situation: We have a proto
ol that we
an only prove se
ureusing a hash fun
tion that has additional weaknesses (namely that given a �bad�
rs, one
an
heat). One might be tempted to state that if the proto
ol is se
ure for su
h weakhash fun
tions, it should in parti
ular be se
ure for good hash fun
tions. Unfortunately,su
h reasoning does not work in the
omputational setting: We
annot just remove theexisten
e of trapdoors from the hash fun
tion � if we do so, we have a
ompletely di�erenthash fun
tion and our se
urity proof makes not
laims about that fun
tion.In the symboli
 world, things are di�erent. Here it turns out that we
an indeed�rst analyze a proto
ol using a hash fun
tion with trapdoors, and then remove thesetrapdoors in a later step, still preserving se
urity. We
all this approa
h the �virtualprimitives� approa
h, be
ause we use primitives (in this example a hash fun
tion withtrapdoors) that do not need to a
tually exist, and that are removed in the �nal proto
ol.In a nutshell, the virtual primitives approa
h when trying to realize a fun
tionality
F (e.g., a
ommitment) works as follows:

• First, identify a symboli
 model Mreal
ontaining
ryptographi
 primitives (e.g. ahash fun
tion) that should be used in the �nal proto
ol.
• Extend Mreal by additional
onstru
tors, destru
tors, or equality rules,
all theresulting model Mvirt . The extension Mvirt should be �safe� in the sense that in

Mvirt an adversary will have at least as mu
h power as in Mreal (this will be madeformal in Se
tion 9.2).
• Design a proto
ol P . Show that P emulates F with respe
t to Mvirt .
• Compose P with other proto
ols, leading to a
omplex proto
ol C[P] ≤ C[F] ≤ G77

(with respe
t to Mvirt) where G is some desired �nal goal, e.g., some
rypto-heavyvoting proto
ol.
• Property preservation guarantees that any property ℘ that holds for G also holdsfor C[P] (with respe
t to Mvirt). Sin
e Mvirt only makes adversaries stronger, ℘also holds for C[P] with respe
t to Mreal .
• Summarizing, we have
onstru
ted a proto
ol C[P] in a modular way su
h that C[P]uses the symboli
 model Mreal (without any trapdoors) and has all the se
urityproperties of the fun
tionality G.The virtual primitive approa
h is not limited to
ommitments. But in the followingse
tions, we illustrate it in the
ase of a
ommitment proto
ol. Note however, that themain theorem that allows us to
on
lude that Mvirt -se
urity implies Mreal -se
urity isformulated for general safe extensions.A few words are in order why the virtual primitives approa
h works in the symboli
setting. What is the spe
i�
 property of the symboli
 model � in
ontrast to the
om-putational one � that makes it possible? In our interpretation, this is due to the fa
tthat a primitive (like hashes) in the symboli
 world is a
on
rete obje
t (i.e., a parti
ular
onstru
tor with
ertain redu
tion rules and equalities) while in the
omputational worldit is a
lass of obje
ts (hash fun
tions) that are des
ribed by some negative properties(�fun
tions su
h that the adversary
annot. . . �). Therefore in the symboli
 world, it ispossible to formally
ompare exe
utions using di�erent kinds of a primitive (e.g., hasheswith and without trapdoors); exe
utions in one setting
an be mapped into exe
utions inthe other setting by rewriting the terms sent around. In
ontrast, in the
omputationalsetting, this is not possible: a se
urity result for hash fun
tions with trapdoors has noimpli
ations for hash fun
tions without trapdoors � these two are
ompletely di�erentmathemati
al fun
tions on bitstrings, and it is not possible to rewrite an exe
ution thatuses one hash fun
tion into an exe
ution using another (in parti
ular if the adversarymakes his a
tions depend on individual bits of the hashes). This di�eren
e between thesymboli
 and the
omputational setting seems to be the reason why virtual primitiveswork in the symboli
 setting.9.1 Realizing
ommitmentsFor simpli
ity, we formulate a
ommitment fun
tionality where the adversary is notinformed that a
ommitment takes pla
e (when both Ali
e and Bob are honest). Of
ourse, su
h a fun
tionality
an only be realized if we assume perfe
tly se
ure
hannelsbetween Ali
e and Bob that do not even allow the adversary to noti
e or blo
k messages.If our proto
ols were to use se
ure
hannels where the adversary
an noti
e and blo
k
ommuni
ation, we would instead realize a somewhat weaker fun
tionality whi
h noti�esthe adversary16 (the resulting
hanges in the proof are orthogonal to the issues of this
hapter).De�nition 9.1 (Commitment) FCOM := iocoma (xm).(iocomb〈〉|ioopena ().ioopenb〈xm〉).16Namely, FCOM := iocoma(xm).(netcoma〈〉|netcomb().iocomb〈〉|ioopena().(netopena 〈〉|netopenb().

ioopenb〈xm〉)) 78

fun hash/2.fun empty/0.fun fake/3.fun fakeH/2.fun
rseqv/1.fun
rsext/1.equation hash(
rseqv(n),(m,fake(n,m,r))) = fakeH(n,r).redu
 extra
t(n,hash(
rsext(n),(m,r))) = m.Figure 12: Virtual primitives example: Proverif
ode for the symboli
 model(virtprim-model.pv)Symboli
 model. The symboli
 model Mreal has
onstru
tors hash/2, empty/0, and
(·, ·) (pairs) � f/n means f has arity n �, has destru
tors fst , snd , has no equalities, andhas the rewrite rules for fst , snd , equals pres
ribed by De�nition 2.5. This model Mreal isquite standard and does not use any
ryptography ex
ept hash fun
tions (hash is binaryfor
onvenien
e only).As explained above, to
onstru
t UC-se
ure
ommitments, we need additional �trap-doors� in our equational theory. Let Mvirt be the symboli
 model Mreal with the follow-ing additions: Constru
tors fake/3, fakeH /2, crseqv/1, crsext/1, destru
tor extract/2,equation hash(crseqv(xn), (xm, fake(xn, xm, xr))) =E fakeH (xn, xr), and rewrite rule
extract(xn, hash(crsext(xn, (xm, xr)))) → xm.The Proverif
ode for this symboli
 model is given in Figure 12.Noti
e that if we have a CRS crseqv(n) and know n, we
an open fakeH (n, r) toarbitrary values. Similarly, if the CRS is crsext(n) and we know n, we
an extra
t mfrom hash(crsext(n), (m, r)). These two fa
ts allow us to
onstru
t a simulator that doesequivo
ation and extra
tion.Note that we introdu
ed two di�erent CRS-
onstru
tors for faking, crsextand crseqv . It would be tempting to use only one of them, i.e., use theequation hash(crs(x), (y, fake(x, y, z))) =E fakeH (x, z) and the redu
tion rule
extract(x, hash(crs(x), (y, z))) → y. But then we would have for any terms k,m, rthat extract(k, fakeH (k, r)) =E extract(k, hash(crs(k), (m, r))) → m, so by
omputing
extract(k, fake(k, r)) the adversary
an derive any term m, thus the adversary will knowall se
rets. This is
learly not a sensible symboli
 model.The
ommitment proto
ol. The proto
ol we
onstru
t uses a
rs, so we �rst need tode�ne the
rs fun
tionality FCRS that gives a random non-se
ret value k to Ali
e, Bob,and the adversary.De�nition 9.2 (Common referen
e string) FCRS := νk.iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉.Our proto
ol is then as expe
ted. To
ommit to a message xm, Ali
e fet
hes the
rs
xcrs , pi
ks a random r, and sends h := hash(xcrs , (xm, r)) to Bob. To unveil, Ali
e sends79

(xm, r), so that Bob
an
he
k whether h indeed
ontained these values. We
all Ali
e'spart of the proto
ol COMA and Bob's part COMB .De�nition 9.3 (Commitment proto
ol)
COMA := iocrsa(xcrs).iocoma (xm).

νr.
(
net1〈hash(xcrs , (xm, r))〉

|ioopena ().net2〈(xm, r)〉
)

COMB := iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((xm, xr)).if xh = hash(xcrs , (xm, xr)) then ioopenb〈xm〉

)

COM := νiocrsa iocrsbnet1net2.(COMA|COMB |FCRS)To show that COM is a se
ure
ommitment proto
ol, we need to show the followinglemma (
f. also the dis
ussion on how to model
orruptions in Se
tion 4):Lemma 9.4 With respe
t to Mvirt , we have(i) Un
orrupted
ase: COM ≤ FCOM .(ii) Ali
e
orrupted: νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}(iii) Bob
orrupted: νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.In the proof, we show the various observational equivalen
es by a sequen
e of rewritingsteps on the proto
ol, interspersed with automated Proverif proofs for the steps thata
tually involve the symboli
 model (i.e., we do not have to manually deal with the
omplex symboli
 model Mvirt).We split this lemma into the following three lemmas:Lemma 9.5 (Commitment � un
orrupted
ase) COM ≤ FCOM .

80

Proof. Then
COM ≡ νiocrsa iocrsbnet1net2 k r. iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉

| iocrsa(xcrs).iocoma (xm).
(
net1〈hash(xcrs , (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).if xh = hash(xcrs , (x

′
m, xr)) then ioopenb〈x

′
m〉
)(i)

≈ ν net1net2 k r. netcrs〈k〉

| iocoma(xm).
(
net1〈hash(k, (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).if xh = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉
)(ii)

≈ ν net2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2((x

′
m, xr)).if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉

| ioopena ().net2〈(xm, r)〉
)(iii)

= νnet2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2(xtmp).let (x′m, xr) = z inif hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉

| ioopena ().net2〈(xm, r)〉
)(iv)

≈ ν k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | ioopena (). let (x′m, xr) = (xm, r) inif hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉

)(v)
≈ νk r. netcrs〈k〉 | iocoma (xm).

(
iocomb〈〉 | ioopena (). ioopenb〈xm〉

)

≡ FCOM | S with S := νk r.netcrs〈k〉Here (i) uses two invo
ations of Lemma 3.3, one with n := iocrsa , t := k, and x := xcrs ,and one with n := iocrsb , t := k, and x := xcrs .And (ii) uses one invo
ation of Lemma 3.3 with n := net1, x := xh, and t :=
hash(k, (xm, r)).And (iii) uses the fa
t that t(p).P is synta
ti
 sugar for t(z).let p = z in P for apattern p and a fresh variable z.And (iv) uses one invo
ation of Lemma 3.3 with n := net2, x := xtmp , and t :=
(xm, r). (And it uses Lemma 2.7, so that we
an apply Lemma 3.3 to a subpro
essinstead of the whole pro
ess.)And (v) uses several invo
ations of Lemma 3.2 (v) to evaluate the let- and the if-statement.So COM ≈ FCOM | S for some S with IO ∩ fn(S) = ∅. Hen
e COM ≤ FCOM . �Lemma 9.6 (Commitment � Ali
e
orrupted)
νiocrsb .(COMB |FCRS{

netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}81

free net
rs,net
rsa,net1,net2,io
omb,ioopenb.pro
essnew k;out(net
rsa,
hoi
e[k,
rsext(k)℄) |out(net
rs,
hoi
e[k,
rsext(k)℄) |in(net1,xh);out(io
omb,empty) |in(net2,(xm,xr));if xh = hash(
hoi
e[k,
rsext(k)℄,(xm,xr)) thenout(ioopenb,
hoi
e[xm,extra
t(k,xh)℄)Figure 13: Virtual primitives example: Proverif
ode for
orrupted Ali
e(virtprim-a
orr.pv). (Has to be pre�xed with the
ode from Figure 12.)Proof. We have
νiocrsb .(COMB |FCRS{

netcrsa
iocrsa

})(i)
≈ νk.netcrsa〈k〉 | netcrs〈k〉 | net1(xh).

(
iocomb〈〉|

net2((xm, xr)).if xh = hash(k, (xm, xr)) then ioopenb〈xm〉
)(ii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then ioopenb〈extract(k, xh)〉
)(iii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).νnetopena .
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)(iv)

≈ νnetopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)(v)

≈ νnetcomanetopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
netcoma 〈extract (k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)
|

netcoma (x
′
m).
(
iocomb〈〉|netopena ().ioopenb〈x

′
m〉
)

≡ νnetcomanetopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S) for some S with IO ∩ fn(S) = ∅.Here (i) uses Lemma 3.3 with n := iocrsb , C := νk.netcrsa〈k〉 | netcrs〈k〉 | �, x := xcrs ,and t := k.And (ii) is shown using Proverif, the required
ode is given in Figure 13. Note that inthe rhs of (ii), we have repla
ed all o

urren
es of the CRS k by crsext(k), and insteadof outputting xm in the end, we output extract(k, xh).And (iii) uses Lemma 3.3 (in the opposite dire
tion) with n :=
netopena , Q := ioopenb〈extract (k, xh)〉, and C := iocomb〈〉|net2((xm, xr)).82

if xh = hash(crsext(k), (xm, xr)) then �. (And it uses Lemma 2.7, so that we
anapply Lemma 3.3 to a subpro
ess instead of the whole pro
ess.)And (iv) uses Lemma 3.2 (ii) to swap νnetopena and net1(xh). (And Lemma 2.7 toapply Lemma 3.2 (ii) to a subpro
ess.)And (v) uses Lemma 3.3 (in the opposite dire
tion) with n := netcoma , x := x′m,
t := extract(k, xh), and Q := iocomb〈〉|netopena ().ioopenb〈x

′
m〉
).So we have νiocrsb .(COMB |FCRS{

netcrsa
iocrsa

}) ≈ νnetcomanetopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S)for some S with IO ∩ fn(S) = ∅. Hen
e νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤

FCOM {netcoma

iocoma
,
netopena
ioopena

}. �Lemma 9.7 (Commitment � Bob
orrupted)
νiocrsa .(COMA|FCRS{

netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.Proof. We have
νiocrsa .(COMA|FCRS{

netcrsb
iocrsb

})(i)
≈ νk.netcrsb〈k〉 | netcrs〈k〉 | iocoma (xm).νr.

(
net1〈hash(k, (xm, r))〉|ioopena ().net2〈(xm, r)〉

)(ii)
≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.

(
net1〈fakeH (k, r)〉|ioopena ().net2〈(xm, fake(k, x(iii)

≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.

νnetopenb .
(
net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)(iv)
≈ νnetopenbkr.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).(

net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x
′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)(v)
≈ νnetcombnetopenbkr.netcrsb〈crseqv (k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).(

ioopena ().netopenb〈xm〉|netcomb〈〉
)
|

netcomb().
(
net1〈fakeH (k, r)〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

≡ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S) for some S with IO ∩ fn(S) = ∅.Here (i) uses Lemma 3.3 with n := iocrsa , C := νk.netcrsb〈k〉 | netcrs〈k〉 | �, x := xcrs ,and t := k.And (ii) is shown using Proverif, the required
ode is given in Figure 14. Note that inthe rhs of (ii), we have repla
ed all o

urren
es of the CRS k by crseqv(k), and insteadof sending the hash value hash(k, (xm, r)) we send fakeH (k, r) whi
h does not dependon xm, and in the end, instead of sending the randomness r, we send fake(k, xm, r).Intuitively, this repla
ement is indistinguishable be
ause our symboli
 model
ontainsthe equation hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r).And (iii) uses Lemma 3.3 (in the opposite dire
tion) with n := netopenb , x := x′m,
t := xm, Q := net2〈(x′m, fake(k, x

′
m, r))〉, and C := net1〈fakeH (k, r)〉 | ioopena ().�. (Andit uses Lemma 2.7, so that we
an apply Lemma 3.3 to a subpro
ess instead of the wholepro
ess.) 83

free net
rs,net
rsb,net1,net2,io
oma,ioopena.pro
essnew k;out(net
rs,
hoi
e[k,
rseqv(k)℄) |out(net
rsb,
hoi
e[k,
rseqv(k)℄) |in(io
oma,xm);new r;out(net1,
hoi
e[hash(k,(xm,r)),fakeH(k,r)℄) |in(ioopena,x);out(net2,(xm,
hoi
e[r,fake(k,xm,r)℄))Figure 14: Virtual primitives example: Proverif
ode for
orrupted Bob(virtprim-b
orr.pv). (Has to be pre�xed with the
ode from Figure 12.)And (iv) uses Lemma 3.2 (ii) to swap νr and νnetopenb with iocoma (xm). (AndLemma 2.7 to apply Lemma 3.2 (ii) to a subpro
ess.)And (v) uses Lemma 3.3 (in the opposite dire
tion) with n := netcomb , t := empty ,and Q := net1〈fakeH (k, r)〉 | netopenb(x
′
m).net2〈(x′m, fake(k, x

′
m, r))〉.So we have νiocrsa .(COMA|FCRS{

netcrsb
iocrsb

}) ≈ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S)for some S with IO ∩ fn(S) = ∅. Hen
e νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤

FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. �9.2 Removing the virtual primitivesIn this se
tion, we will
onsider di�erent symboli
 models. Sin
e the relation symbols
→,⇓,≈, ↓,=E et
. do not expli
itly spe
ify the symboli
 model, we use the following
onvention: When referring to a symboli
 model Mi, we write →i,⇓i,≈i, ↓i,=Ei

et
. Wesay a term (or destru
tor term) is an M-term (or M-destru
tor term) if it
ontains only
onstru
tors (and destru
tors) from M. We
all a pro
ess an M-pro
ess if it
ontainsonly M-terms and M-destru
tor terms.We have now shown that COM is a se
ure
ommitment proto
ol with respe
t toMvirt .However, we would like to dedu
e se
urity of proto
ols using COM with respe
t to Mreal .For this, we �rst need to formalize what it means that Mvirt is a safe extension of Mreal :De�nition 9.8 (Safe extension) We
all a symboli
 model M1 = (Σ1,E1,R1) a safeextension of a symboli
 model M2 = (Σ2,E2,R2) i� the following holds:(i) Σ1 ⊇ Σ2.(ii) If D is an M2-destru
tor term, and M is an M1-term, and D ⇓1 M , then thereexists an M2-term M ′ =E1 M with D ⇓2 M
′.(iii) For all M2-destru
tor terms D and M2-terms M , we have D ⇓2 M ⇒ D ⇓1 M .(iv) For all M2-terms M,M ′ we have M =E1 M
′ ⇔M =E2 M

′.84

The following lemma is relatively easy to show:Lemma 9.9 Mvirt is a safe extension of Mreal .Proof. Obviously, Σvirt ⊇ Σreal . So De�nition 9.8 (i) is satis�ed.We show that De�nition 9.8 (ii) is satis�ed: Let D be an Mreal -destru
tor term and
M be an Mvirt -term. Sin
e Mreal
ontains no destru
tors, D is an Mreal -term. Thus
D ⇓virt M implies D =M . This implies that M ′ :=M is an Mreal -term and D ⇓real M

′.We show that De�nition 9.8 (iii) is satis�ed: Let D be an Mreal -destru
tor term and
M be an Mreal -term. Sin
e Mreal
ontains no destru
tors, D is an Mreal -term. Thus
D ⇓virt M implies D =M whi
h implies D ⇓real M .We show that De�nition 9.8 (iv) is satis�ed: For Mreal -terms M,M ′, obviously
M =Ereal

M ′ implies M =Evirt
M ′. We show the opposite dire
tion: The only equa-tion in Evirt (namely hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r)) only allows usto rewrite terms
ontaining crseqv or fakeH . Sin
e M,M ′ are Mreal -terms, they do not
ontain these
onstru
tors. Hen
e M =Evirt

M ′ only ifM =M ′. SoM =Evirt
M ′ implies

M =Ereal
M ′. �The following theorem justi�es the above de�nition of safe extensions:Theorem 9.10 Assume that M1 is a safe extension of M2. Then for all M2-pro
esses

P,P ′ we have P ≈1 P
′ ⇒ P ≈2 P

′.Proof. We �rst show some auxiliary
laims:Claim 1 For all M2-pro
esses P,P ′, we have P →2 P
′ ⇒ P →1 P

′.We show this
laim by indu
tion over the derivation of P →2 P
′. We distinguish thefollowing
ases:

• Closure under stru
tural equivalen
e: In this
ase P →2 P
′ has been derived from

P ≡ P̂ →2 P̂
′ ≡ P ′ for M2-pro
esses P̂ , P̂ ′, and the indu
tion hypothesis implies

P̂ →1 P̂
′. Thus P ≡ P̂ →1 P̂

′ ≡ P ′ whi
h implies P →1 P
′. The
laim follows.

• Closure under evaluation
ontexts: In this
ase P →2 P
′ has been derived from

P = E[P̂], P ′ = E[P̂ ′], and P̂ →2 P̂ ′ for some M2-pro
esses P̂ , P̂ ′ and some
M2-evaluation
ontext E. The indu
tion hypothesis implies P̂ →1 P̂ ′. Hen
e
P = E[P̂] →1 E[P̂ ′] = P ′.

• REPL: In this
ase P = !P̂ and P ′ = P̂ |!P̂ . Hen
e P →1 P
′.

• COMM: In this
ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′ = P̂ | Q{T/x} and C =E2 C
′.Sin
e P is an M2-pro
ess, C,C ′ are M2-terms. Sin
e M1 is a safe extension of

M2, C =E2 C
′ implies C =E1 C

′. Thus P →1 P
′. The
laim follows.

• LET-THEN: In this
ase P = (let x = D in P̂ else Q̂) and P ′ = P̂{M/x} forsome M2-pro
esses P̂ , Q̂, and some M2-destru
tor term D and M2-term M with
D ⇓2 M . Sin
e P is an M2-pro
ess, D is an M2-destru
tor term. Sin
e M1 is asafe extension of M2, D ⇓2 M implies that D ⇓1 M . Thus P →1 P

′. The
laimfollows. 85

• LET-ELSE: In this
ase P = (let x = D in P̂ else Q̂) and P ′ = Q̂ and for all
M2-terms M we have D 6⇓2 M . Sin
e P is an M2-pro
ess, D is an M2-destru
torterm. If we had D ⇓1 M for some M1-term M , we would have D ⇓2 M

′ for some
M2-term M ′ sin
e M1 is a safe extension of M2. This
ontradi
ts D 6⇓2 M for all
M2-terms M . Thus D 6⇓1 M for all M1-terms M . Hen
e P →1 P

′. The
laimfollows.Claim 2 For all M2-pro
esses P , and all M1-pro
esses P ′′ with P →1 P
′′, there existsan M2-pro
ess P ′ su
h that P →2 P

′ ≡E1 P
′′.We show this
laim by indu
tion over the derivation of P →1 P

′′. We distinguish thefollowing
ases:
• Closure under stru
tural equivalen
e: In this
ase P →1 P ′′ has been derivedfrom P ≡ P̂ →1 P̂

′′ ≡ P ′′ for M1-pro
esses P̂ , P̂ ′′, and the indu
tion hypothesis(Claim 2) holds for P̂ →1 P̂
′′. Sin
e stru
tural equivalen
e does not rewrite terms,the fa
t that P is an M2-pro
ess implies that P̂ is an M2-pro
ess. Thus P̂ →1 P̂

′′implies together with the indu
tion hypothesis that P̂ →2 P
′ ≡E1 P̂

′′ for some
M2-pro
ess P ′. Thus P ≡ P̂ →2 P

′ whi
h implies P →2 P
′ and we have P ′ ≡E1

P̂ ′′ ≡ P ′′ whi
h implies P ′ ≡E1 P
′′. The
laim follows.

• Closure under evaluation
ontexts: In this
ase P →1 P
′′ has been derived from

P = E[P̂], P ′′ = E[P̂ ′′], and P̂ →1 P̂
′′ for some M1-pro
esses P̂ , P̂ ′′ and some

M1-evaluation
ontext E. And the indu
tion hypothesis holds for P̂ →1 P̂
′′. Sin
e

P is an M2-pro
ess and P = E[P̂], we have that P̂ is an M2-pro
ess and E and
M2-evaluation
ontext. Thus by indu
tion hypothesis, there exists an M2-pro
ess
P̂ ′ su
h that P̂ →2 P̂

′ ≡E1 P̂
′′. Let P ′ := E[P̂ ′]. Obviously P ′ is an M2-pro
ess.And P = E[P̂] →2 E[P̂ ′] = P ′ and P ′′ = E[P̂ ′′] ≡E1 E[P̂ ′] = P ′. The
laimfollows.

• REPL: In this
ase P = !P̂ and P ′′ = P̂ |!P̂ . Sin
e P is an M2-pro
ess, so is P̂ ,and hen
e also P ′ := P ′′ is an M2-pro
ess. Then P →2 P
′ and P ′′ ≡E1 P

′ and the
laim follows.
• COMM: In this
ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′′ = P̂ | Q̂{T/x} and C =E1 C

′.Sin
e P is an M2-pro
ess, C,C ′ are M2-terms and P̂ , Q̂ are M2-pro
esses. Sin
e
M1 is a safe extension of M2, C =E1 C

′ implies C =E2 C
′. Thus P →2 P

′′. With
P ′ := P ′′, the
laim follows.

• LET-THEN: In this
ase P = (let x = D in P̂ else Q̂) and P ′′ = P̂{M/x} forsome M1-pro
esses P̂ , Q̂, and some M1-destru
tor term D and M1-term M with
D ⇓1 M . Sin
e P is an M2-pro
ess, P̂ , Q̂ are M2-pro
esses and D is an M2-destru
tor term. Sin
eM1 is a safe extension ofM2, D ⇓1 M implies thatD ⇓2 M

′for some M2-term M ′ =E1 M . Let P ′ := P̂{M/x}. Then P ′′ = P̂{M/x} ≡E1

P̂{M ′/x} = P ′ and P →2 P
′. The
laim follows.

• LET-ELSE: In this
ase P = (let x = D in P̂ else Q̂) and P ′′ = Q̂ and for all M1-terms M we have D 6⇓1 M . Sin
e P is an M2-pro
ess, P̂ , Q̂ are M2-pro
esses and
D is an M2-destru
tor term. Sin
e M1 is a safe extension of M2, for all M2-terms86

M , D 6⇓1 M implies that D 6⇓2 M . With P ′ := Q̂ = P ′′, we thus have P ′′ ≡E1 P
′and P →2 P

′. The
laim follows.Claim 3 For all M2-pro
esses P , and all M1-pro
esses P ′′ with P →∗
1 P

′′, there existsan M2-pro
ess P ′ su
h that P →∗
2 P

′ ≡E1 P
′′.Proof. To show this
laim, we show that for all n ≥ 0, all M2-pro
esses P , and all M1-pro
esses P ′′ with P →n

1 P
′′, there exists an M2-pro
ess P ′ su
h that P →∗

2 P
′ ≡E1 P

′′.Here→n
1 means exa
tly n appli
ations of→. We show this by indu
tion over n. For n = 0,the statement is trivial. Assume the statement holds for n, we show it for n+1: We have

P →n+1
1 P ′′ hen
e P →n

1 P̂
′′ →1 P

′′ for some M1-pro
ess P̂ ′′. By indu
tion hypothesisthere exists an M2-pro
ess P̂ ′ with P →∗
2 P̂

′ ≡E1 P̂
′′. Sin
e P̂ ′ ≡E1 P̂

′′ →1 P
′′, byLemma 3.5, we have P̂ ′ →1 P2 ≡E1 P

′′ for some M1-pro
ess P2. Sin
e P̂ ′ is an M2-pro
ess and P̂ ′ →1 P2, by Claim 2, there is anM2-pro
ess P ′ su
h that P̂ ′ →2 P
′ ≡E1 P2.Combining all this, we have

P →∗
2 P̂

′ →2 P
′ ≡E1 P2 ≡E1 P

′′.Thus P →∗
2 P

′ ≡E1 P
′′. �We are now ready to show Theorem 9.10. Let R := {(P,Q) :

P,Q M2-pro
esses, P ≈1 Q}. We show that R is an M2-simulation (and due to itssymmetry also an M2-bisimulation):
• If (P,Q) ∈ R and P ↓2M for some M2-term M , then Q →∗

2 Q′ ↓2M for some
M2-pro
ess Q′.
P ↓2M implies (see Footnote 6) P ≡E2 E[M 〈T 〉.P ′] for some evaluation
ontext Enot binding fn(M). This implies P ≡E1 E[M 〈T 〉.P ′] (sin
e M1 =E2 M2 implies
M1 =E1 M2 for M2-terms M1,M2). Thus P ↓1M . Sin
e (P,Q) ∈ R, we have that
P ≈1 Q and thus Q→∗

1 Q
′′ ↓1M for some M1-pro
ess Q′′. By Claim 3, this impliesthat Q →∗

2 Q
′ ≡E1 Q

′′ for some M2-pro
ess Q′. Sin
e Q′′ ≡E1 Q
′′ ↓1M , we have

Q′ ↓1M (this follows immediately using the
hara
terization from Footnote 6). Sin
e
Q′ ↓1M , by de�nition of ↓, we have Q′ ≡ E[M ′〈T ′〉.Q̃] for some M1-terms M ′, T ′with M ′ =E1 M and M1-pro
ess Q̃, and some evaluation
ontext not binding
fn(M). Sin
e Q′ is an M2-pro
ess, E[M ′〈T ′〉.Q̃] is an M2-pro
ess, hen
e M ′ isan M2-term. Thus M,M ′ are M2-terms, and M ′ =E1 M . Sin
e M1 is a safeextension of M2, this implies M ′ =E2 M . Thus Q′ ≡ E[M ′〈T ′〉.Q̃] implies Q′ ↓2M .So we have Q →∗

2 Q
′ ↓2M and Q′ is an M2-pro
ess.

• If (P,Q) ∈ R and P →2 P
′ for an M2-pro
ess P ′, then there exists an M2-pro
ess

Q′ with (P ′, Q′) ∈ R and Q→∗
2 Q

′:Sin
e P,P ′ are M2-pro
esses, and P →2 P
′, by Claim 1 we have P →1 P

′. Sin
e
(P,Q) ∈ R, we have P ≈1 Q and thus Q →∗

1 Q
′′ for some M1-pro
ess Q′′ ≈1

P ′. By Claim 3, there is an M2-pro
ess Q′ su
h that Q′′ ≡E1 Q
′ and Q →∗

2 Q
′.87

Furthermore, by Lemma 3.2 (iv), we have =E1⊆ ≈1 and trivially ≡⊆≈1, hen
e
≡E1⊆ ≈1. Thus Q′′ ≡E1 Q

′ implies Q′′ ≈1 Q
′. Together with Q′′ ≈1 P

′, we have
P ′ ≈1 Q

′ and thus (P ′, Q′) ∈ R.
• If (P,Q) ∈ R and E is an M2-evaluation
ontext, then (E[P], E[Q]) ∈ R.Sin
e (P,Q) ∈ R, we have P ≈1 Q. Furthermore, sin
e E is an M2-evaluation
ontext, E is also an M1-evaluation
ontext. Hen
e E[P] ≈1 E[Q] and thus
(E[P], E[Q]) ∈ R.Sin
e R is a M2-bisimulation, R ⊆ ≈2. Thus for M2-terms P,P ′ we have P ≈1 P

′ ⇒
(P,P ′) ∈ R ⇒ P ≈2 P

′. Theorem 9.10 follows. �Now we
an �nally state the following result that derives se
urity of COM with respe
tto Mreal in any
ontext (we state it generally, though):Lemma 9.11 Let P,F be Mreal -pro
esses (representing a proto
ol and an ideal fun
tion-ality, e.g., P = COM and F = FCOM). Let Mvirt be a safe extension of Mreal . Assumethat P ≤virt F .Let C be an Mreal -
ontext whose hole is prote
ted only by νio for IO-names io, byparallel
ompositions, and by !, and that does not
ontain any NET-names in fn(P,F).Assume that C[F] ≤virt G for some Mreal -pro
ess G.Let E1, E2 be Mreal -
ontexts satisfying the
onditions of Theorem 6.1 (propertypreservation).If E1[G] ≈virt E2[G] then E1[C[P]] ≈real E2[C[P]].Proof. By the
omposition theorem (Theorem 5.37), P ≤virt F implies C[P] ≤virt C[F].With transitivity and C[F] ≤virt G, this implies C[P] ≤virt G. Then by the propertypreservation theorem (Theorem 6.1), E1[G] ≈virt E2[G] implies E1[C[P]] ≈virt E2[C[P]].Sin
e Mvirt is a safe extension of Mreal , this implies E1[C[P]] ≈real E2[C[P]] byTheorem 9.10. �9.3 On removing the CRSUsing virtual primitives, we have managed to get rid of the need for trapdoors in our
ommitment proto
ol. However, we still use a
ommon referen
e string. This leads tothe question whether the CRS
an also be removed from the proto
ol. We do not answerthat question here, but we give some indi
ations as to how it might be possible to removethe CRS, also.First, the question is whether we
an
onstru
t a UC se
ure
ommitment proto
olwithout using a CRS in the �rst pla
e (i.e., instead of the proto
ol from Se
tion 9.1). Weknow that this is impossible in the
omputational UC setting (no matter what primitiveswe use) [CF01℄. Unfortunately, their impossibility result
arries over to the symboli
setting:Lemma 9.12 There are no
losed pro
esses A,B and NET-names net with the followingthree properties: 88

(i) νnet .(A|B) ≤ FCOM . (Un
orrupted
ase.)(ii) A ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. (Bob
orrupted.)(iii) B ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}. (Ali
e
orrupted.)Thus, a UC se
ure
ommitment proto
ol has to be of the form νnet .(A|B|F) for somefun
tionality F , e.g., FCRS .Proof. Assume that there are su
h pro
esses A,B and NET-names net .Then there are simulators (S0, ϕ0, n0), (SA, ϕA, nA), and (SB, ϕB , nB) su
h that
νnet .(A|B) ≈ νn0.(FCOMϕ0|S0) = νn0.(FCOM |S0) (5)

A ≈ νnA.(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}ϕA|SA) = νnA.(FCOM {
net ′

comb

iocomb
,
net′

openb

ioopenb
}|SA)(6)

B ≈ νnB.(FCOM {netcoma

iocoma
,
netopena
ioopena

}ϕB |SB) = νnB.(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB)(7)for suitable names net ′coma ,net
′
opena ,net

′
comb ,net

′
openb . The equalities use the fa
t that

FCOM does not
ontain any NET-names.Let
E := νiocoma iocomb ioopena ioopenb .((

νr.
(
iocoma 〈r〉|iocomb().(ioopena 〈〉|ioopenb(x).if x = r then c〈〉)))|�)where c is a fresh name. Intuitively, this
ontext
ommits to a fresh non
e r, waits untilthe
ommit su

eeds, then opens the
ommitment and
he
ks whether the unveiled valueis indeed r. For a �good�
ommitment s
heme, this should always be the
ase. Indeed:By de�nition of FCOM (and using that n0 does not
ontain IO-names), we have that

E[νn0.(FCOM |S0)] →∗↓c. By (5) we have E[νnet .(A|B)] ≈ E[νn0.(FCOM |S0)] and thus
E[νnet .(A|B)] →∗↓c.We now use (6) and (7) to transform E[νnet .(A|B)] into a pro
ess that does not usethe
ommitment proto
ol A|B any more, but instead uses two instan
es of FCOM :
E[νnet .(A|B)]

(6,7)
≈ E[νnet .(νnA.(FCOM {

net ′
comb

iocomb
,
net ′

openb

ioopenb
}|SA)|νnB .(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB))]By moving all restri
tions up (and potentially renaming names to avoid
lashes of boundvariables), we get:
E[νnet .(A|B)] ≈ νnet ′.E[FCOM {

net ′′
comb

iocomb
,
net ′′

openb

ioopenb
}|FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

}|SAB] =: PHere net ′ is the list of all names that were moved up. net ′′coma et
 are potentially renamednames, and SAB := SA|SB potentially up to renamings. Note that SAB does not
ontainIO-names. 89

We now use several appli
ation of Lemma 3.3 to simplify P . Ea
h of the followingobservational equivalen
es
orresponds to one appli
ation of Lemma 3.3.
P ≡ νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)
| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | FCOM {
net ′′

comb

iocomb
,
net ′′

openb

ioopenb
} | SAB

= νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)
| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | iocoma(xm).(net ′′comb〈〉 | ioopena ().net ′′openb〈xm〉) | SAB(i)
≈ νnet iocomb ioopena ioopenbr.

net ′′comb〈〉 | ioopena ().net
′′
openb〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB(ii)
≈ νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB

= νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| net ′′coma (xm).(iocomb〈〉 | net
′′
opena ().ioopenb〈xm〉) | SAB(iii)

≈ νnet ioopenbr. net
′′
comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉 | net ′′opena ().ioopenb〈xm〉) | SAB(iv)
≈ νnet r. net ′′comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | net ′′opena ().if xm = r then c〈〉) | SABHere (i) uses Lemma 3.3 with n := iocoma , t := r, and x := xm.And (ii) uses Lemma 3.3 with n := ioopena .And (iii) uses Lemma 3.3 with n := iocomb .And (iv) uses Lemma 3.3 with n := ioopenb , t := xm, and x := x (and Lemma 3.2 (ii)to move the νioopenb below the net ′′coma (xm) �rst, and Lemma 2.7, so that we
an applyLemma 3.3 to a subpro
ess instead of the whole pro
ess.)Thus we have
E[νnet .(A|B)] ≈ P ≈

νnet r. net ′′comb〈〉 | net
′′
coma (xm).(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB =: P2Note that in P2, xm is re
eived before the fresh non
e r is revealed. Thus we expe
t90

that the
omparison xm = r will always fail. Indeed:
P2

(∗)

≡ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB

(∗∗)

≈ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().0) | SAB =: P3Here (∗) uses Lemma 3.2 (ii) with x := xm to move the restri
tion νr down, and (∗∗)uses Lemma 3.8 to repla
e the if-statement by its else-bran
h (whi
h is 0).Thus we have that E[νnet .(A|B)] ≈ P2 ≈ P3. Furthermore, we showed above that

E[νnet .(A|B)] →∗↓c. But sin
e c does not o

ur in P3 (we
hose it as a fresh name, thusit also does not o

ur in SAB), we have that P3 →∗↓c
annot hold. This is a
ontradi
tionto the observational equivalen
e E[νnet .(A|B)] ≈ P3. Thus our assumption was wrongthat pro
esses A,B and NET-names net as in the statement of the lemma exist. �However, Lemma 9.12 does not ex
lude that an approa
h similar to the virtual primi-tives approa
h might work: We �rst
onstru
t a UC se
ure
ommitment proto
ol (again,
ommitments are just one example), build a
omplex proto
ol from it using the
ompo-sition theorem, and then show that se
urity of the
omplex proto
ol implies (non-UC)se
urity of a modi�
ation that does not use the CRS. It is likely that this works as theCRS returned by the CRS fun
tionality is just a fresh publi
 name, so instead of theCRS we should be able to just use some fresh (non-restri
ted) name a.There is one subtlety, though: When
omposing the
ommitment proto
ol P , we endup with a
omplex proto
ol C[P] that may use multiple instan
es of FCRS . In parti
ular,if C[P]
ontains !!P , then C[P] will
ontain an unbounded number of FCRS -instan
es. Sowe
annot repla
e FCRS just by a single name, we will need a way to generate an arbitrarynumber of fresh values. The obvious way for this is to use something like hash(a, sid)instead of the CRS that we get from the FCRS -instan
e with session-id sid (here a is afresh name).A lemma roughly like the following
onje
ture should therefore lead to a method forremoving the CRS from a proto
ol that was produ
ed by UC
omposition:Conje
ture 9.13 Let hash be a free
onstru
tor (i.e., not o

urring in any equations orrewrite rules in the symboli
 models). Let P be a pro
ess. Let E1, E2 be
ontexts. Assumethat hash does not o

ur in E1, E2, P . Let a /∈ fn(E1, E2, P) ∪ bn(E1, E2, P).(i) Let P ′ result from P by repla
ing all subterms �netcrsa(x).Q� by �let x = a in Q�.Then E1[νnetcrsa .(P |FCRS)] ∼∼∼ E2[νnetcrsa .(P |FCRS)] implies E1[νnetcrsa .(P
′)] ∼∼∼

E2[νnetcrsa .(P
′)].(ii) Let P ′ result from P by repla
ing all subterms �(Msid ,netcrsa)(x).Q� by �let x =

hash(a,Msid) in Q�. Then E1[νnetcrsa .(P |!!FCRS)] ∼∼∼ E2[νnetcrsa .(P |!!FCRS)] im-plies E1[νnetcrsa .(P
′)] ∼∼∼ E2[νnetcrsa .(P

′)].Proving (i) is probably
onsiderably simpler than proving (ii). An alternative toproving (ii)
ould be to make sure that C[P] does not
ontain FCRS under a !!. This
ould be a
hieved if we design a
ommitment proto
ol P that does not implement FCOM ,but !!FCOM (
ompare with Se
tion 8.3). Then a single
opy of P would be su�
ient in
C[P].We leave further exploration of approa
hes to get rid of the CRS to future resear
h.91

fun empty/0.free net2, net3.let Q = new n; out(io1,n) |(in(io2,x); if x=n then out(net2,empty)) | (in(io3,x); if x=n then out(net3,empty)).pro
ess new io1; new io2; new io3; in(io1,x1); in(io1,x2);out(io2,x1) | out(io3,
hoi
e[x1,x2℄) | !QFigure 15: Proverif
ode for showing E1[Q] ≈ E2[Q] in Lemma A.1(prop-pres-bang1.pv).A Limits for
omposition and property preservationIn this se
tion, we show that the restri
tions of the
omposition theorem are ne
essary.More pre
isely, we show that if P ≤ Q, then not ne
essarily !P ≤ !Q or io(x).P ≤ io(x).Qor io〈t〉.P ≤ io〈t〉.Q or νnet .P ≤ νnet .Q or P |R ≤ Q|R (for R that has NET-namesin
ommon with P,Q). We show that this is not just a limitation of the
ompositiontheorem, we show that similar limitations also apply to property preservation. Morepre
isely, property preservation P ≤ Q,E1[Q] ≈ E2[Q] =⇒ E1[P] ≈ E2[P] does notne
essarily hold if E1, E2
ontain a bang (!) over their hole, or an input/output overtheir hole, or an if/let over their hole, or a di�erent number of !!'s over their respe
tiveholes, or restri
t NET-names over their holes, or use NET-names.Example A.1
P := νnm. io1〈n〉 | io2(x).if x = n then net2〈m〉 | io3(x).if x = n then net3〈m〉

Q := νn . io1〈n〉 | io2(x).if x = n then net2〈empty〉 | io3(x).if x = n then net3〈empty〉

E1 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x1〉) | !�

E2 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x2〉) | !�Lemma A.1 Using the notation from Example A.1, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Proof. We show P ≤ Q: We have P ≈ νnet ′2net
′
3.(Q{

net ′2
net2

,
net ′3
net3

}|S) for S :=

νm.(net ′2(x).net2〈m〉|net ′3(x).net3〈m〉) by two invo
ations of Lemma 3.3 (�rst with
n := net ′2, x := x, and t := empty , se
ond with n := net ′3, x := x, and t := empty).Hen
e P ≤ Q.The
laim E1[Q] ≈ E2[Q] is shown using Proverif. The Proverif
ode is given inFigure 15We now show E1[P] 6≈ E2[P]. Let D := net2(y1).net3(y2).if y1 = y2 then c〈empty〉.Then D | E1[P] →∗ D | · · · | νm.(net2〈m〉 | net3〈m〉) →∗ νm.(· · · |92

fun empty/0.free net2, net3.private free
.query mess:
,
.let P = new n; new m; out(io1,n) |(in(io2,x); if x=n then out(net2,m)) | (in(io3,x); if x=n then out(net3,m)).let E2P = new io1; new io2; new io3; in(io1,x1); in(io1,x2);out(io2,x1) | out(io3,x2) | !P.let D = in(net2,y1); in(net3,y2); if y1=y2 then out(
,empty).pro
ess D | E2PFigure 16: Proverif
ode for showing that D|E2[P] →∗↓c does not hold in the proof ofLemma A.1 (prop-pres-bang2.pv).if m = m then c〈〉) →∗↓c. Using Proverif, we show that D | E2[P] →∗↓c does nothold (for any
ontext D not
ontaining c). The Proverif
ode is given in Figure 16.
E1[P] ≈ E2[P] would imply D | E1[P] ≈ D | E2[P] whi
h together with D | E1[P] →∗↓cwould imply the wrong fa
t D | E2[P] →∗↓c. Thus E1[P] 6≈ E2[P].

�Lemma A.2 Using the notation from Example A.1, we have P ≤ Q but not !P ≤!Q.Proof. From Lemma A.1 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume !P ≤ !Q. We
an write E1 = E′
1[!�] and E2 = E′

2[!�] for NET-free evaluation
ontexts E1, E2. Then
E′

1[!Q] = E1[Q] ≈ E2[Q] = E′
2[!Q] and thus by Theorem 6.1, we have E1[P] = E′

1[!P] ≈
E′

2[!P] = E2[P]. This is a
ontradi
tion to Lemma A.1. Thus the assumption !P ≤ !Qwas wrong. �Example A.2
P := net〈empty〉

Q := 0

E1 := νio. (io().� | io〈empty〉)

E2 := νio. (io().�)Lemma A.3 Using the notation from Example A.2, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P]. 93

Proof. Obviously, P ≈ Q|S with S := net〈empty〉. Hen
e P ≤ S.We show E1[Q] ≈ E2[Q]: We have E1[Q] = νio. (io().0 | io〈empty〉) ≈ 0 byLemma 3.3 with n := io and C := �. And E2[Q] = νio.io().0 ≈ 0 by Lemma 3.3with n := io and C := 0. Hen
e E1[Q] ≈ E2[Q].We show E1[P] 6≈ E2[P]: We have E1[P] →∗ νio.net〈empty〉 ↓net . But E2[P] 6↓net ,and E2[P] does not redu
e. Thus there is no su

essor of E2[P] that emits on net . This
ontradi
ts E1[P] ≈ E2[P] by de�nition of observational equivalen
e. �Lemma A.4 Using the notation from Example A.2, we have P ≤ Q but not io().P ≤
io().Q.Proof. From Lemma A.3 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume io().P ≤ io().Q.We
an write E1 = E′

1[io().�] and E2 = E′
2[io().�] for NET-free evaluation
ontexts

E1, E2. Then E′
1[io().Q] = E1[Q] ≈ E2[Q] = E′

2[io().Q] and thus by Theorem 6.1, wehave E1[P] = E′
1[io().P] ≈ E′

2[io().P] = E2[P]. This is a
ontradi
tion to Lemma A.3.Thus the assumption io().P ≤ io().Q was wrong. �Example A.3 Let P,Q be as in Example A.2.
E1 := νio. (io〈empty〉.� | io())

E2 := νio. (io〈empty〉.�)Lemma A.5 Using the notation from Example A.3, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Lemma A.6 Using the notation from Example A.3, we have P ≤ Q but not
io〈empty〉.P ≤ io〈empty〉.Q.The proofs of Lemmas A.5 and A.6 are identi
al to those of Lemmas A.5 and A.6,ex
ept that io() and io〈empty〉 are ex
hanged.Example A.4 Let P,Q be as in Example A.2.

E1 := if true then �
E2 := if false then �Here true is an equality t = t for an arbitrary
losed t (e.g., empty = empty), and falseis an equality t = t′ for arbitrary
losed t, t′ with t 6=E t

′ (e.g., empty = (empty , empty)).Remember that if x = y is synta
ti
 sugar for let z = equals(x, y). So this exampleis a
ounterexample for let-statements.Lemma A.7 Using the notation from Example A.4, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P]. 94

Proof. P ≤ Q was already shown in Lemma A.3. By Lemma 3.2 (v) we have that
E1[P] ≈ P and E1[Q] ≈ Q = 0 and by Lemma 3.2 (v) we have that E1[P] ≈ 0 and
E2[Q] ≈ 0. Obviously, P 6≈ 0. E1[P] 6≈ E2[P], but E1[Q] ≈ E2[Q]. �Example A.5 Let P,Q be as in Example A.2.

E1 := !!�

E2 := �Lemma A.8 Using the notation from Example A.5, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Proof. P ≤ Q was already shown in Lemma A.3. Let t ∈ SID be arbitrary. We have
E1[P] ≈

∏
x∈SID (x,net)〈empty〉 →∗↓(t,net). But no su

essor of E2[P] = net〈empty〉emits on (t,net) 6=E net . Thus E1[P] 6≈ E2[P].It is easy to see that 0 ≈

∏
x∈SID 0 (by showing that R := {(R,R|

∏
x∈SID\S 0)} upto stru
tural equivalen
e is a bisimulation). Thus

E1[Q] = !!0 ≈
∏

x∈SID

0 ≈ 0 = E2[Q].

�Example A.6
P := net().io().io ′〈〉

Q := net ′().io().io ′〈〉

E1 := νio.(io〈〉 | νnet ′.�)

E2 := νio.(νnet ′.�)Lemma A.9 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.It is easy to see that νnet ′.Q ≈ 0. Hen
e E1[Q] ≈ νio.io〈〉 and E2[Q] ≈ νio.0. Thus
E1[Q] ≈ E2[Q].But E1[P] →∗↓io′ and E2[P] 6→∗↓io′ . Hen
e E1[P] 6≈ E2[P]. �Lemma A.10 Using the notation from Example A.1, we have P ≤ Q but not νnet ′.P ≤
νnet ′.Q.Proof. From Lemma A.9 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume νnet ′.P ≤ νnet ′.Q.We
an write E1 = E′

1[νnet
′.�] and E2 = E′

2[νnet
′.�] for NET-free evaluation
ontexts

E1, E2. Then E′
1[νnet

′.Q] = E1[Q] ≈ E2[Q] = E′
2[νnet

′.Q] and thus by Theorem 6.1, wehave E1[P] = E′
1[νnet

′.P] ≈ E′
2[νnet

′.P] = E2[P]. This is a
ontradi
tion to Lemma A.9.Thus the assumption νnet ′.P ≤ νnet ′.Q was wrong. �95

Example A.7
P := io().net〈〉

Q := io().net ′〈〉

E1 := νio.(io〈〉 | � |!net ′〈〉)

E2 := (νio.� |!net ′〈〉)Lemma A.11 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.By Lemma 3.3, we have E1[Q] ≈ net ′〈〉 |!net ′〈〉. And by Lemma 3.2 (viii), net ′〈〉 |
!net ′〈〉 ≈!net ′〈〉. Finally E2[Q] ≈ 0 |!net ′〈〉. Hen
e E1[Q] ≈ E2[Q].But E1[P] →∗↓net and E2[P] 6→∗↓net . Hen
e E1[P] 6≈ E2[P]. �Lemma A.12 Using the notation from Example A.1, we have P ≤ Q but not P |
!net ′〈〉 ≤ Q | !net ′〈〉.Proof. From Lemma A.11 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume P | !net ′〈〉 ≤
Q | !net ′〈〉. We
an write E1 = E′

1[� | !net ′〈〉] and E2 = E′
2[� | !net ′〈〉] for NET-freeevaluation
ontexts E1, E2. Then E′

1[Q | !net ′〈〉] = E1[Q] ≈ E2[Q] = E′
2[Q | !net ′〈〉] andthus by Theorem 6.1, we have E1[P] = E′

1[P | !net ′〈〉] ≈ E′
2[P | !net ′〈〉] = E2[P]. Thisis a
ontradi
tion to Lemma A.11. Thus the assumption P | !net ′〈〉 ≤ Q | !net ′〈〉 waswrong. �Referen
es[AF01℄ Martin Abadi and Cedri
 Fournet. Mobile values, new names, and se
ure
ommuni
ation. In Pro
eedings of the 28th ACM SIGPLAN-SIGACT sym-posium on Prin
iples of programming languages, pages 104�115. ACM NewYork, NY, USA, 2001.[BAF08℄ Bruno Blan
het, Martín Abadi, and Cédri
 Fournet. Automated veri�
ationof sele
ted equivalen
es for se
urity proto
ols. Journal of Logi
 and Algebrai
Programming, 75:3�51, 2008. Online available at http://www.di.ens.fr/~blan
het/publi
ations/Blan
hetAbadiFournetJLAP07.pdf.[BBF+11℄ Jesper Bengtson, Karthikeyan Bhargavan, Cédri
 Fournet, Andrew D. Gor-don, and Sergio Ma�eis. Re�nement types for se
ure implementations. ACMTransa
tions on Programming Languages and Systems (TOPLAS), 33:8:1�8:45, 2011. 96

http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf

[BCC04℄ Ernest F. Bri
kell, Jan Camenis
h, and Liqun Chen. Dire
t anonymous at-testation. In Pro
. 11th ACM Conferen
e on Computer and Communi
ationsSe
urity, pages 132�145. ACM Press, 2004.[Bla04℄ Bruno Blan
het. Automati
 Proof of Strong Se
re
y for Se
urity Proto-
ols. Te
hni
al Report MPI-I-2004-NWG1-001, Max-Plan
k-Institut für In-formatik, Saarbrü
ken, Germany, July 2004.[Bla09℄ Bruno Blan
het. Automati
 veri�
ation of
orresponden
es for se
urity pro-to
ols. Journal of Computer Se
urity, 17(4):363�434, 2009. Preprint avail-able as arXiv:0802.3444v1 [
s.CR℄.[Bla12a℄ Bruno Blan
het. Personal
ommuni
ation, August 2012.[Bla12b℄ Bruno Blan
het. Proverif 1.86pl4: Automati

ryptographi
 proto
ol veri�er- user manual and tutorial. http://prose

o.gforge.inria.fr/personal/bblan
he/proverif/manual.pdf, 2012.[BPW03℄ Mi
hael Ba
kes, Birgit P�tzmann, and Mi
hael Waidner. A
omposable
ryptographi
 library with nested operations. In Pro
. 10th ACM CCS,pages 220�230, 2003.[BPW07℄ Mi
hael Ba
kes, Birgit P�tzmann, and Mi
hael Waidner. The rea
tive sim-ulatability (RSIM) framework for asyn
hronous systems. Information andComputation, 205(12):1685�1720, 2007.[Can01℄ Ran Canetti. Universally
omposable se
urity: A new paradigm for
ryp-tographi
 proto
ols. In Pro
. 42nd IEEE Symposium on Foundations ofComputer S
ien
e (FOCS), pages 136�145, 2001. Extended version in Cryp-tology ePrint Ar
hive, Report 2000/67, http://eprint.ia
r.org/.[CCK+06a℄ Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nan
y Lyn
h,Olivier Pereira, and Roberto Segala. Task-stru
tured probabilisti
 I/O au-tomata. Te
hni
al Report MIT-CSAIL-TR-2006-060, MIT CSAIL, Septem-ber 2006. Online available at http://dspa
e.mit.edu/handle/1721.1/33964.[CCK+06b℄ Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nan
y A.Lyn
h, Olivier Pereira, and Roberto Segala. Time-bounded task-PIOAs: Aframework for analyzing se
urity proto
ols. In DISC, pages 238�253, 2006.[CDPW07℄ Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. Universally
omposable se
urity with global setup. In Pro
. 4th Theory of CryptographyConferen
e (TCC), pages 61�85, 2007.[CF01℄ Ran Canetti and Mar
 Fis
hlin. Universally
omposable
ommitments. InJoe Kilian, editor, Advan
es in Cryptology, Pro
eedings of CRYPTO 2001,97

http://arxiv.org/abs/0802.3444v1
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://eprint.iacr.org/
http://dspace.mit.edu/handle/1721.1/33964

number 2139 in Le
ture Notes in Computer S
ien
e, pages 19�40. Springer-Verlag, 2001. Full version online available at http://eprint.ia
r.org/2001/055.ps.[CH11℄ Ran Canetti and Jonathan Herzog. Universally
omposable symboli
 se
u-rity analysis. J Cryptology, 24(1):83�147, January 2011.[CR03℄ Ran Canetti and Tal Rabin. Universal
omposition with joint state. In Pro
.CRYPTO 2003, volume 2729 of LNCS, pages 265�281. Springer, 2003.[CV12℄ Ran Canetti and Margarita Vald. Universally
omposable se
urity withlo
al adversaries. In Ivan Vis
onti and Roberto De Pris
o, editors, SCN2012, volume 7485 of Le
ture Notes in Computer S
ien
e, pages 281�301.Springer, 2012.[DKMR05℄ Anupam Datta, Ralf Küsters, John C. Mit
hell, and Ajith Ramanathan. Onthe relationships between notions of simulation-based se
urity. In Joe Kilian,editor, Theory of Cryptography, Pro
eedings of TCC 2005, Le
ture Notes inComputer S
ien
e, pages 476�494. Springer-Verlag, 2005. Online availableat http://www.ti.informatik.uni-kiel.de/~kuesters/publi
ations_html/DattaKuestersMit
hellRamanathan-TCC-2005.ps.gz.[DKP℄ Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation basedse
urity in the applied pi
al
ulus. IACR ePrint 2009/267, version 5 June2009. full version of [DKP09℄.[DKP09℄ Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation basedse
urity in the applied pi
al
ulus. In Ravi Kannan and K. Narayan Kumar,editors, FSTTCS, volume 4 of LIPI
s, pages 169�180. S
hloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2009.[DY81℄ Danny Dolev and Andrew Chi-Chih Yao. On the se
urity of publi
 keyproto
ols (extended abstra
t). In FOCS, pages 350�357. IEEE, 1981.[HS11℄ Dennis Hofheinz and Vi
tor Shoup. GNUC: A new universal
omposabilityframework. IACR ePrint 2011/303, 2011.[KDMR08℄ Ralf Küsters, Anupam Datta, John C. Mit
hell, and Ajith Ra-manathan. On the relationships between notions of simulation-based se-
urity. Journal of Cryptology, 2008. To appear. Ele
troni
 publi
ationhttp://dx.doi.org/10.1007/s00145-008-9019-9.[Küs06℄ Ralf Küsters. Simulation-based se
urity with inexhaustible intera
tive Tur-ing ma
hines. In CSFW 2006, Computer Se
urity Foundations Workshop,pages 309�320. IEEE Computer So
iety, 2006. Long version available asIACR eprint 2006/151. 98

http://eprint.iacr.org/2001/055.ps
http://www.ti.informatik.uni-kiel.de/~kuesters/publications_html/DattaKuestersMitchellRamanathan-TCC-2005.ps.gz

[Low95℄ Gavin Lowe. An atta
k on the needham-s
hroeder publi
-key authenti
ationproto
ol. Information Pro
essing Letters, 56:131�133, November 1995.[MQU07℄ Jörn Müller-Quade and Dominique Unruh. Long-term se
urity and universal
omposability. In Theory of Cryptography, Pro
eedings of TCC 2007, volume4392 of Le
ture Notes in Computer S
ien
e, pages 41�60. Springer-Verlag,Mar
h 2007. Preprint on IACR ePrint 2006/422, superseeded by [MQU07℄.[UMQ10℄ Dominique Unruh and Jörn Müller-Quade. Universally
omposable in
o-er
ibility. In Crypto 2010, volume 6223 of LNCS, pages 411�428. Springer,August 2010. Preprint on IACR ePrint 2009/520.[Unr10℄ Dominique Unruh. Universally
omposable quantum multi-party
omputa-tion. In Euro
rypt 2010, LNCS, pages 486�505. Springer, 2010. Preprint onarXiv:0910.2912 [quant-ph℄.[Unr11℄ Dominique Unruh. Con
urrent
omposition in the bounded quantum storagemodel. In Euro
rypt 2011, volume 6632 of LNCS, pages 467�486. Springer,May 2011. Preprint on IACR ePrint 2010/229.Symbol index
N The set of names 5
V The set of variables 5
Σ The Signature � a set of fun
tion symbols (ap-plied pi
al
ulus) 5
T The set of terms 5
E The �nite set of equations that are to hold in theequational theory (applied pi
al
ulus) 6
M =E N Terms M and N are equal with respe
t to theequational theory E

6
D(M1 , . . . ,Mn) → M Redu
tion rule for destru
tor D 6
R Finite set of rewrite rules for destru
tors 6
DM ⇓ Term D evaluates to M 6
M Symboli
 model M 6
0 Empty pro
ess (applied pi
al
ulus) 7
!P Con
urrent exe
utions of instan
es of P (appliedpi
al
ulus 7
νa Restri
tion of the name a (applied pi
al
ulus) 7
M(x) Re
eiving x on
hannel N 7
M〈N〉 Sending N on
hannel N 7let x = D in P else Q Let it be 7
fn(P) Free names in P 7
fv(P) Free variables in P 799

bn(P) Bound names in P 7
bv(P) Bound variables in P 7
P ≡ Q Stru
tural equivalen
e of P and Q 7
P → Q Pro
ess P redu
es to Q 8
P ↓M The pro
ess P emits on a
hannel M 8
P ↑M The pro
ess P reads on a
hannel M 8
P lM The pro
ess P
ommuni
ates on a
hannel M 8
P ≈ Q Observational equivalen
e of the
losed pro
esses

P and Q 9if M = N then P else Q Synta
ti
 sugar for let x =
equals(M ,N) in P else Q

9
C().P Synta
ti
 sugar for C(x).P with fresh variable x 9
C〈〉.P Synta
ti
 sugar for C(empty).P 9
equals Destru
tor equals 10
fst Destru
tor: Extra
ts the �rst
omponent of a tag 10
snd Destru
tor: Extra
ts the se
ond
omponent of atag 10
≡E Stru
tural equivalen
e modulo equational theory

E
10

P ∼∼∼ Q Full observational equivalen
e of the non-
losedpro
esses P and Q 11
∏

x∈S P Indexed repli
ation of the pro
ess P 13
{a/b} Substitution repla
ing b with a 13
ր≡ Asymmetri
 variant of stru
tural equivalen
e 20
ր≡E ր≡ modulo equational theory 20
event f(t) Raise event f(t) 23
plains(P) P with syn
hronization
hannel s removed 25
evs(P) P with syn
hronization
hannel s repla
ed byevents 25
syncout s(t1 7→ t′1, . . . ;u1 7→ u′1, . . .) Outputs on syn
hronization
hannel s 25
IO Set of all I/O names 32
NET Set of all network names 32
P ≤ Q P emulates Q 33
P ((M)) Pro
ess P with session-id M 36
SID Set of all session IDs 37
CSID
x ,n An arbitrary but �xed SID -indexing
ontext 37

nil Constru
tor denoting the empty bitstring 37
zero Constru
tor pre�xing a bitstring with 0 37
one Constru
tor pre�xing a bitstring with 1 37
SIDbits Con
rete set of session IDs built from bitstrings 37
CSIDbits
x ,a A
on
rete �xed SIDbits-indexing
ontext 37

Gn
x ,a Auxiliary de�nition in analysis of CSIDbits

x ,a 37
C
(sID ,gID ,n)
x ,a Auxiliary de�nition in analysis of CSIDbits

x ,a 38100

sID Auxiliary de�nition in analysis of CSIDbits
x ,a � set ofspawned IDs 38

gID Auxiliary de�nition in analysis of CSIDbits
x ,a � set ofgenerator IDs 38

Σx∈SP Short for P{s1/x}|P{s2/x}| . . . for S =
{s1, s2, . . . }

38
〈�〉 Span of a set of IDs 38
!!P Con
urrent
omposition of P with session ids 42
≈n

S Observational equivalen
e restri
ted to pro
essesthat do not
ontain n and
ontexts build from S
43

nsid Fixed name for sid-sensitive pro
esses 44
Msid Fixed term for sid-sensitive pro
esses 44
Ssid The set of sid-sensitive pro
esses 44
Φ Transformation of a generi
 plain pro
ess into asid-sensitive pro
ess 44
tag Tag
hannel identi�ers 47
untag Untag
hannel identi�ers 48
∼Ssid

An Ssid -observational equivalen
e relation 51
FSC Se
ure
hannel fun
tionality 60
� Observational preorder 60
P ≤SS Q P emulates Q in the sense of Delaune et al.[DKP09℄. 60
Fanon Inse
ure but anonymous
hannel fun
tionality 61
penc Constru
tor: publi
 key en
ryption 64
pk Constru
tor: publi
 key 64
sk Constru
tor: se
ret key 64
senc Constru
tor: symmetri
 en
ryption 64
hash Constru
tor: hash fun
tion 64
empty Constru
tor: empty message 64
pdec Destru
tor: publi
 key de
ryption 64
sdec Destru
tor: symmetri
 de
ryption 64
pkofsk Destru
tor extra
ting se
ret from publi
 key 64
pkofenc Destru
tor extra
ting publi
 key from
iphertext 64
FKE Key ex
hange fun
tionality 65
FPKI Publi
 key infrastru
ture fun
tionality 65
NSL Needham-S
hroeder-Lowe proto
ol 65
SC Se
ure
hannel proto
ol 68
KE

∗ Proto
ol for generating many keys 73
FCOM Commitment fun
tionality 78
Mvirt Symboli
 model with virtual primitives 79
Mreal Symboli
 model without virtual primitives 79
crsext Constru
tor: CRS for extra
tion 79
crseqv Constru
tor: CRS for equivo
ation 79101

fakeH Constru
tor: Fake (equivo
al) hash 79
fake Constru
tor: Randomness for fake hash 79
extract Destru
tor: Extra
ting from a hash 79
FCRS Common referen
e string fun
tionality 79
COM Commitment proto
ol 80Index

S-n-bisimulation, 43
S-n-observational equivalen
e, 43
S-n-simulation, 430-1-
ontext, 9adversary, 32dummy, 33
α-
onversion, 8bisimulation, 9bla
k-box simulatability, 33
hannel identi�ers, 10
ommuni
ate, 8
omplete (set of pro
esses), 43
omposition
on
urrent, 36
on
urrent
omposition, 36
ontext, 70-1-, 9evaluation, 7indexing, 37multi-hole, 30destru
tor term, 6

M-, 84DKP-se
urity, 60dummy adversary, 33emit, 8empty, 10emulate, 33equals, 10equivalen
efull observational, 11observational, 9

stru
tural, 7event pro
ess, 23EVENT rule, 23extensionsafe, 84free, 7full observational equivalen
e, 11if-statement, 9indexed repli
ation, 13indexing
ontext, 37internal redu
tion, 8IREPL, 13
M-destru
tor term, 84
M-pro
ess, 84
M-term, 84modelsymboli
, 6multi-hole
ontext, 30name, 5bound, 7name-redu
ed, 26natural symboli
 model, 10
NET-stable, 32observational equivalen
e, 9full, 11observational preorder, 60preorderobservational, 60pro
ess

M-, 84102

losed, 7event, 23produ
t, 13produ
t pro
ess, 13prote
ted, see unprote
tedread, 8relay, 62repli
ationindexed, 13safe extension, 84satisfytra
e property, 23signature, 5simulatabilitybla
k-box, 33strong, 33universally-
omposable, 33simulation, 8

simulator, 33strong simulatability, 33stru
tural equivalen
e, 7substitution, 6
losing, 11symboli
 model, 6natural, 10term
M-, 84tra
e property, 23satisfy, 23universally-
omposable simulatability,33unprote
ted, 7variable, 5bound, 7virtual primitives, 77

103

	Introduction
	Review of the applied pi calculus
	Syntactic sugar
	Additional concepts used in this work

	Useful properties of the pi calculus
	Relating events and observational equivalence
	Unpredictability of nonces

	Symbolic UC
	Composition
	Property preservation
	Relation to Delaune-Kremer-Pereira
	Example: Secure channels
	Key exchange using NSL
	Secure channel from key exchange.
	Generating many keys from one

	Virtual primitives
	Realizing commitments
	Removing the virtual primitives
	On removing the CRS

	Limits for composition and property preservation
	Symbol index
	Index

