
Symboli Universal ComposabilityFlorian BöhlKIT Dominique UnruhUniversity of TartuAbstratWe introdue a variant of the Universal Composability framework (UC; Canetti,FOCS 2001) that uses symboli ryptography. Two salient properties of the UCframework are seure omposition and the possibility of easily de�ning seurity bygiving an ideal funtionality as spei�ation. These advantages are now also availablein a symboli modeling of ryptography, allowing for a modular analysis of omplexprotools.We furthermore introdue a new tehnique for modular design of protools thatuses UC but avoids the need for powerful ryptographi primitives that often omeswith UC protools; this �virtual primitives� approah is unique to the symbolisetting and has no ounterpart in the original omputational UC framework.Contents1 Introdution 22 Review of the applied pi alulus 52.1 Syntati sugar . 92.2 Additional onepts used in this work . 93 Useful properties of the pi alulus 133.1 Relating events and observational equivalene 233.2 Unpreditability of nones . 294 Symboli UC 315 Composition 356 Property preservation 587 Relation to Delaune-Kremer-Pereira 608 Example: Seure hannels 638.1 Key exhange using NSL . 648.2 Seure hannel from key exhange. 668.3 Generating many keys from one . 721

9 Virtual primitives 779.1 Realizing ommitments . 789.2 Removing the virtual primitives . 849.3 On removing the CRS . 88A Limits for omposition and property preservation 92Symbol index 99Index 1021 IntrodutionIn the analysis of ryptographi protools, symboli analysis tehniques (going bak toDolev and Yao [DY81℄) have shown to be very fruitful. Symboli tehniques allow formuh better automation than tehniques working in the omputational model (whereinmessages are bitstrings and adversaries are runtime-limited omputations). In a symbolimodel of ryptography, messages are typially modeled as terms in a ertain algebra, andthe apaities of the adversary are desribed by, e.g., ertain dedution rules over theseterms.In this work, we show how to apply the idea of Universal Composability (UC) [Can01℄to the setting of symboli ryptography. (The independently developed Reative Simu-latability [BPW07℄ has the same idea. For simpliity, we only refer to UC in the following.)The Universal Composability framework is a framework for speifying seurity propertiesof ryptographi protools that has the following two salient properties:
• Speifying seurity properties via funtionalities. In the UC framework, the seuritygoals of a protool are spei�ed by desribing a so-alled ideal funtionality whihis a hypothetial entity whih, by onstrution, ahieves all the desired seuritygoals. For example, if we wish to ask whether a protool is a seure ommuniationprotool, we simply speify the seure hannel funtionality. This very simplefuntionality just takes a message from Alie, informs the adversary that Alie senta message, and gives that message to Bob. From the desription of the funtionality,it is then obvious what properties we ahieve: The adversary learns nothing exeptthat a message is delivered (serey). The message Bob reeives is the same as theone that Alie sent (integrity).Given the desription of an ideal funtionality, we then all a protool seure if it�UC-emulates� that funtionality. UC-emulation essentially means that the proto-ol is as seure as the funtionality, i.e., that any seurity property satis�ed by thefuntionality (serey and integrity in our example) is also satis�ed by the protool.Using ideal funtionalities to desribe what seurity a protool ahieves is oftensimpler than expliitly desribing all required properties one by one. For example,the seurity of the Diret Anonymous Attestation protool [BCC04℄ is only spei�edby an ideal funtionality. 2

Another view on this de�nition is one of seurity preserving re�nement. The fun-tionality is an abstrat spei�ation, and the protool is a re�nement that preservesseurity.1Note that the fat that UC-emulation preserves seurity an be formalized: For aertain lass of seurity properties we have that if the funtionality has this property,so has any protool that UC-emulates that funtionality. (See Setion 6).
• Composition and modular design and analysis. Seurity in the UC framework im-plies seure omposition. That is, assume a seure protool ρ that uses an idealfuntionality F as a building blok (e.g., ρ uses a seure hannel F). Then, ifanother protool π UC emulates F (i.e., π is a message transmission protool), wean replae F by π in ρ and again get a seure protool.This omposition operation enables the modular design and analysis of a protool.For example, in Setion 8, we show that a variant of the Needham-Shroeder-Loweprotool NSL [Low95℄ UC-emulates the key exhange funtionality FKE whih givesa seure key to two parties. Another protool SC UC-emulates the seure hannelfuntionality FSC . And �nally, assume we had some omplex protool X imple-menting some omplex funtionality FX (think, e.g., of some large e-ommereappliation), and that X uses seure hannels. Then we an plug X, NSL, and

SC together, and get a protool X∗ that still UC-emulates FX . (And due to theomposition theorem, we do not need to verify the omposed protool anew.) Inontrast, without the omposition theorem, we would have had to analyze X∗ inone go; that analysis being muh more omplex beause the implementation of theseure hannel would be intermixed with the omplex protool X.The omposition theorem also has the impliation that a protool will keep its seu-rity when run in other, as yet unknown, ontexts. This is a very important property,beause on the Internet, a protool will hardly run alone. (Cryptographers oftenall seurity de�nitions that do not have this property �stand-alone models�.)The UC framework has been de�ned in the ontext of omputational ryptography.However, its two salient properties, seurity spei�ation via funtionalities and seureomposition, are as useful in a ontext where ryptography is modeled symbolially.In partiular, even though omputer veri�ation in the symboli setting sales muhbetter than the usually manual veri�ation in the omputational setting, most analysistehniques still annot deal with arbitrarily omplex protools.2 So being able to designand verify a protool modularly will allow us to analyze more omplex protools.1Many other re�nement notions do not preserve, e.g., anonymity. For example, imagine a protoolwhere user Alie sends A or B over the network (hosen non-deterministially). And Bob sends A or B.Then the adversary annot distinguish Alie and Bob. A re�nement might be that Alie sends A andBob sends B. Obviously, the anonymity of Alie and Bob is now violated.2Veri�ation by type heking (e.g., [BBF+11℄) being a notable exeption; this approah usually salesvery well. But annotating a protool with types suitable for veri�ation an be daunting.3

Our ontribution. In this work, we show that the ideas of the UC framework arryover to the symboli setting. We show that the omposition theorem and the fat thatseurity properties arry over still hold in the symboli UC framework. (Conurrent om-position turns out to be non-trivial beause we need to enode a speial variant of proessrepliation in the applied pi alulus that provides session ids to repliated proesses.)We present an example analysis of a key exhange using the Needham-Shroeder-Loweprotool, and how to use it in a seure hannel protool via omposition.We show that impossibilities from the omputational UC framework unfortunatelystill apply in the symboli setting; in partiular, implementing a ommitment funtion-ality without any trusted setup is impossible. On the positive side, we show that thisimpossibility an be irumvented to a large part by a trik that we all �virtual primi-tives�; here we perform the proof of seurity under the assumption that the ryptographiprimitive have some exoti features, but in the end onlude seurity for the original ryp-tographi primitives without these exoti features. This �virtual primitives�-approah isunique to the symboli setting, to the best of our knowledge no orresponding tehniqueexists in the omputational world.We also show how to use Proverif as a helping tool for performing the observationalequivalene proofs when showing seurity in our framework. For this we develop a set oflemmas that help in rewriting proesses and allows us to use Proverif as a tool even forobservational equivalene proofs that do not involve so-alled biproesses and are thusout of the sope of Proverif. (See Setion 8.) We believe that this set of lemmas is usefulalso in other settings than that of our work.Prior work. The problem of transporting the ideas of the UC framework into thesymboli setting has already been takled by Delaune, Kremer, and Pereira [DKP09℄.They do, however, di�er from the original UC framework (and from our work) in oneruial point: In the original framework, the existene of a so-alled simulator is requiredthat makes two di�erent protool exeutions � the �real and ideal exeution� � indis-tinguishable (this will beome learer later). Instead of indistinguishability, [DKP09℄use an observational preorder. That is, everything that an happen in the real worldan non-deterministially be mathed by the ideal world, but not neessarily vie-versa.This was due to ertain problems in onstruting simulators when using observationalequivalene instead. However, we show that using an observational preorder limits thestrength of the seurity de�nition onsiderably. For example, if a funtionality guaranteesanonymity (e.g., an anonymous broadast), a protool that emulates that funtionalitywill not neessarily satisfy anonymity. On the other hand, we show that using observa-tional equivalene instead of an observational preorder gives a stronger de�nition thatdoes, e.g., preserve anonymity properties. Furthermore, we show that, when designingthe funtionality aording to a simple guideline, the problems with observational equiv-alene that [DKP09℄ observed vanish. (However, there are hallenges when dealing withonurrent omposition that apply only in our setting, and not when using the weakerde�nition based on observational preorders.) We explain the issues related to [DKP09℄in more detail in Setion 7. 4

On the omputational side, relevant prior work is of ourse the UC framework[Can01℄ itself. Other models based on the same ideas are Reative Simulatability(RSIM) [BPW07℄, SPPC [DKMR05℄, IITM [Küs06℄, Task-PIOA [CCK+06a, CCK+06b℄,and GNUC [HS11℄. Some of our results are adaptations of existing omputational sound-ness results: the impossibility of ommitments [CF01℄ in Setion 9.3 and the joint statetehnique [CR03℄ in Setion 8. Finally, the symboli setting is not the �rst example ofthe fat that the UC framework an easily adapted to other settings to get di�erentor stronger seurity guarantees, e.g., GUC (UC with shared funtionalities) [CDPW07℄,quantum-UC [Unr10, Unr11℄, UC with loal adversaries [CV12℄, UC/ (inoeribility)[UMQ10℄, UC with everlasting seurity [MQU07℄. Furthermore, links between UC andsymboli models ourred where UC-like models were used to establish omputationalsoundness results [BPW03, CH11℄.Outlook. Further researh might takle the following points:
• Using our framework for analyzing the seurity of existing protools. A partiu-lar interesting andidate is the Diret Anonymous Attestation protool [BCC04℄beause its seurity is already formulated in a UC model.
• Although we partially used Proverif for some of the proof steps, the analysis of ourexample protools still used a lot of manual work. Can the veri�ation of symboliUC seurity be automated?
• There are extensions of the UC framework. For example [UMQ10℄ provides an ex-tension that aptures inoeribility. That model ould be translated to the symbolisetting and used for the analysis of voting protools.
• In ombination with omputational soundness results (these are results that showthat symboli seurity in ertain ases implies omputational seurity), the virtualprimitives approah ould be a viable new tehnique for showing omputationalseurity: Design the protool symbolially modularly using virtual primitives, andthen arry the seurity over to the omputational setting.2 Review of the applied pi alulusIn this setion we review the variant of the applied pi alulus from [BAF08℄ that we usein our paper. Below (Setion 2.2) we list some non-standard de�nitions that we will use,readers familiar with the applied pi alulus an diretly skip to that setion.The proess alulus presented in [BAF08℄ is a ombination of the original applied pialulus [AF01℄ and one of its dialets [Bla04℄.We have a set of terms that is built upon three basi sets. The in�nite set of names N ,the in�nite set of variables V and the set of funtion symbols (alled the signature Σ).Names desribe all kinds of atomi data, i.e. are used as nones or to represent messages.5

We distinguish two ategories of funtion symbols: onstrutors, whih are used to on-strut terms of higher order, and destrutors. Let T (Σ) be the set of terms built fromnames in N , variables in V and onstrutors in Σ.A substitution is a funtion from variables to terms σ : V → T (Σ). For a term T Tσdenotes the substitution of every variable x in T by σ(x) (all variables are replaed atone). We write {M1/x1 , . . . ,Mn/xn} for a substitution σ s. t. σ(xi) = Mi and σ(x) = xfor all x ∈ V \ {x1 , . . . , xn}.Sometimes it is desirable to onsider two terms, that were onstruted di�erently,equivalent. Therefore we have a �nite set E of equations (M ,N) (for M = N) where
M and N are terms that ontain only variables and onstrutors. E is alled equationaltheory.The equivalene relation =E on terms is de�ned as the re�exive, transitive and sym-metri losure of E losed under the appliation of substitutions3 and ontexts (i.e. forall terms M , N and T M =E N ⇒ T{M /x} =E T{N /x}).To de�ne the semantis of a destrutor d we introdue a �nite set R of rewrite rules
d(M1 , . . . ,Mn) → M where M and Mi , i ∈ {1, . . . , n} are terms that ontain onlyvariables and onstrutors and the variables in M must be a subset of the variables usedin M1 , . . . ,Mn . The redution of a term d(N1 , . . . ,Nn) where d is a destrutor is de�nedi� there is a rewrite rule d(M1 , . . . ,Mn) → M and a substitution σ s.t. Ni =E Miσ forall i ∈ {1, . . . , n}. We have d(N1 , . . . ,Nn) → Mσ in this ase. Analogous to [BAF08℄ weintrodue the rewrite rule f(M1 , . . . ,Mn) → f(M1 , . . . ,Mn) for eah onstrutor f ∈ Σ.

D ⇓ M denotes the evaluation of D to M where D is a destrutor term, i.e., a termor the appliation of a funtion to destrutor terms. For all terms M we de�ne M ⇓ M(i.e. when evaluating a term we obtain the term itself). If we have D = g(D1 , . . . ,Dn) fora funtion g whereDi are destrutor terms we de�ne g(D1 , . . . ,Dn) ⇓ Mσ for substitution
σ i� there is a rewrite rule g(M1 , . . . ,Mn) → M and terms N1 , . . . ,Ni s.t. Di ⇓ Ni ,
Ni =E Miσ.De�nition 2.1 (Symboli model) By symboli model, denoted M = (Σ,E,R), werefer to the entity of a signature Σ, a �nite set of equations E and a �nite set of rewriterules R.Note that the in�nite set of names and in�nite set of variables are not expliitly partof the symboli model sine they are not spei� for any onrete model in our setting.We refer to them globally as N and V respetively.Exept for Setion 9, it will be lear from the ontext whih symboli model we use.In Setion 9 we fous on the relation between di�erent symboli models. Only then wewill introdue a notation that expliitly states the symboli model underlying a property,e.g., observational equivalene of two proesses.We an desribe proesses in our proess alulus using the indutively de�ned gram-mar from Figure 1. For a better understanding of the syntax we antiipate the following3I.e., for every substitution σ and M =E N we have Mσ =E Nσ.6

P ::= 0

P |Q

!P

M (x).P

M 〈N 〉.Plet x = D in P else Q
νa.PFigure 1: Syntax of proesses in the applied pi alulussetion about its semantis and give a quik overview of the intuition onneted to thesyntax. The 0-proess simply does nothing and terminates (and is therefore often omit-ted). Two proesses, P and Q, an be exeuted in parallel (denoted P |Q) They mayinterat with eah other or with the environment independently of eah other. A repli-ation (!P) behaves as an in�nite number of opies (instanes) of P running in parallel.The sope of a name n may be restrited to a proess P (νn.P). M (x).P allows P toreeive a message (a term) T on a hannel identi�ed by the term M . The variable x isused in P as a referene to the input. The ounterpart of M (x) is M 〈T 〉.P whih sendsa message (a term) T on M and then behaves like P .The sequential exeution operator does have a higher preedene than parallel exeu-tion operator.In let x = D in P else Q the symbol D stands for a term or a destrutor term. If wehave D ⇓ M for a term M the proess behaves like P{M /x} otherwise it behaves like Q.Exept for the let-statement and parallel exeution, proesses do have the struture

statement.P and we say for P (or any part of P) that it is under the statement (e.g. wesay that �P is under a bang� in !P or that P is under an input in c(x).νn.P). We saythat P is under a let if P ours in one of the two branhes of a let.An ourrene of a name n in a proess is bound if it is under a νn. An ourrene ofa variable x is bound if it is under a M (x) or in the P -branh of a let x = D in P else Q.
bn(P) resp. bv(P) denotes the set of names resp. variables with bound ourrenes in P .If an ourrene is not bound, it is alled free and fn(P), fv(P) denote the orrespondingsets for names resp. variables. A proess is losed if it has no free variables.A ontext C is a proess where exatly one ourrene of 0 is replaed with �. C[P]denotes the proess resulting from the replaement of � with P in C. An evaluationontext is a losed ontext C built from �, C|P , P |C, and νa.C. We all an ourrene ofa term or proess within a proess unproteted if it is only below parallel ompositions(|) and restritions (ν).De�nition 2.2 (Strutural equivalene (≡)) Strutural equivalene, denoted ≡, is7

PAR-0 P ≡ P | 0PAR-A P | (Q | R) ≡ (P | Q) | RPAR-C P | Q ≡ Q | PNEW-C νu.νv .P ≡ νv .νu.PNEW-PAR u 6∈ fn(P) ⇒
P | νu.Q ≡ νu.(P | Q)Figure 2: Rules for strutural equivaleneREPL !P → P |!PCOMM C 〈T 〉.P | C ′(x).Q

→ P | Q{T/x} if C =E C ′LET-THEN let x = D in P else Q
→ P{M /x} if D ⇓ MLET-ELSE let x = D in P else Q
→ Q if ∄M s.t. D ⇓ MFigure 3: Rules for internal redutionthe smallest equivalene relation on proesses that is losed under α-onversion4 on namesand variables, appliation of evaluation ontexts and the rules from Figure 2.5De�nition 2.3 (Internal redution (→)) Internal redution, denoted →, is thesmallest relation on losed proesses losed under strutural equivalene and appliationof evaluation ontexts suh that the rules from Figure 3 hold for any losed proesses Pand Q. →∗ denotes the re�exive, transitive losure of →.A losed proess P emits on M (denoted P ↓M) if P ≡ C[M ′〈N 〉.Q] for some eval-uation ontext C that does not bind fn(M) and M =E M ′.6 Analogously it reads on

M (denoted P ↑M) if P ≡ C[M ′(N).Q]. We say that P ommuniates on M (denoted
P lM) if P ↓M or P ↑M .De�nition 2.4 A simulation R is a relation on losed proesses suh that (P,Q) ∈ Rimplies4An α-onversion is a renaming proess that doesn't hange the meaning of a term. E.g. renam-ing b to c in νa.νb.net〈a〉.net〈b〉 is a valid α-onversion (and thus we have that νa.νb.net〈a〉.net〈b〉 ≡
νa.νc.net〈a〉.net〈c〉), renaming b to a is not.5We di�er from [BAF08℄ by de�ning ≡ also for non-losed proesses. But on losed proesses, ourde�nition oinides with that from [BAF08℄.6It is indeed intentional that the de�nition requires C not to bind fn(M) (as opposed to fn(M ′)) eventhough we onsider the proess C[M ′〈N 〉.Q]. This way the de�nition is equivalent to the following: P ↓Mi� P ≡E C[M〈N〉.Q] for some evaluation ontext C not binding fn(M), and some proess Q [Bla12a℄.Here ≡E is strutural equivalene modulo replaing terms by equivalent ones, see De�nition 2.6.8

(i) if P ↓M then for some Q′ we have that Q→∗ Q′ and Q′ ↓M(ii) if P → P ′ then for some Q′ we have that Q→∗ Q′ and (P ′, Q′) ∈ R(iii) (C[P], C[Q]) ∈ R for all evaluation ontexts C.A relation R is a bisimulation if both R and R−1 are a simulation.Observational equivalene (≈) is the largest bisimulation.It is easy to hek that the transitive hull of ≈ satis�es the onditions (i), (ii) and (iii)from above. Hene ≈ ontains its own transitive hull and thus is indeed an equivalenerelation.Substitutions on proesses work like substitutions on terms but must additionallyrespet the sopes of names and variables (bound or free). Sine renaming of boundnames and variables doesn't hange the strutural equivalene lass of a proess weassume w.l.o.g. from now on that for Pσ we have σ(x) = x for all x ∈ bv(P) and σ(x)does not ontain names n ∈ bn(P) for all x ∈ fv(P).2.1 Syntati sugarWe introdue if D = D ′ then P else Q as syntati sugar forlet x = equals(D ,D ′) in P else Q where x must not our in P or Q and D ,D ′are destrutor terms. Note that we assume the existene of an equals destrutorwith the rewrite rule equals(x , x) → x throughout this paper (see De�nition 2.5 (iii)).Furthermore, we write C().P for C(x).P where x is a fresh variable, and C〈〉.P for
C〈empty〉 assuming a nullary onstrutor empty (see De�nition 2.5 (i)).Later, when dealing with Proverif proesses, e.g., in De�nition 8.3, we use the Proverifsyntax for pattern mathing in inputs and lets: E.g., (let (=n, x) = D in P else Q)exeutes P{T/x} if D ⇓ (n,T) (i.e., D has to evaluate to a pair with n beeing the �rstvalue while x is used as a referene for the arbitrary seond value T) and Q otherwise.Inputs of type C ((x,_)) expet a pair as input where the �rst value is referened by xwhile the seond value is dropped (i.e., when reeiving an input (T ,T ′) on C , C ((x ,_)).Pontinues to run as P{T/x}. For more details see the Proverif manual [Bla12b℄ We stressthat these onstrutions are just syntati sugar and an be replaed by statementsaoding to the grammar of the pi alulus we desribed above.2.2 Additional onepts used in this workIn this setion, we desribe several nonstandard onepts related to the applied pi alulusthat we use in this work.Misellaneous. A ontext always ontains a single ourrene of the hole. Sometimeswe need a ontext whih may or may not ontain a hole: A 0-1-ontext is de�ned like aontext, exept that there may be zero or one ourrenes of the hole.9

We refer to ourrenes of terms that identify hannels in a proess as hannel iden-ti�ers. E.g., in M 〈T 〉 M is a hannel identi�er and T is not � even if we had M = T .Natural symboli models. A number of lemmas in this paper only hold when thesymboli model we use satis�es ertain natural onditions. Instead of stating theseexpliitly eah time, we ollet all these onditions in the following de�nition:De�nition 2.5 (Natural symboli model) We say a symboli model is natural if itsatis�es the following onditions:(i) there is a onstrutor empty/0 ∈ Σ,(ii) a onstrutor for pairings, denoted (�,�), is part of the signature Σ,(iii) there is a destrutor equals/2 ∈ Σ with rewrite rule equals(x , x) → x and no furtherrewrite rules that ontain equals ,(iv) there are destrutors fst/1, snd/1 ∈ Σ with rewrite rules fst((x , y)) → x and
snd((x , y)) → y,(v) for all terms T , T1 with fst(T) ⇓ T1 there exists a term T2 with snd(T) ⇓ T2 andfurthermore (T1,T2) =E T for all suh T2 and vie versa,(vi) for arbitrary terms T1,T2,T

′
1,T

′
2 we require that (T1,T2) =E (T ′

1,T
′
2) entails

T1 =E T ′
1 and T2 =E T ′

2(vii) for any destrutor term D and any name n 6∈ fn(D) we require that D ⇓ T for aterm T entails the existene of a term T ′ with D ⇓ T ′, n 6∈ fn(T ′) and T =E T ′(viii) for all names n and all terms T T =E n entails n ∈ fn(T)7.In the following, we will always assume that the symboli model is natural in thesense of De�nition 2.5.Equivalene of proesses modulo rewriting. Strutural equivalene ≡ does notallow us to replae a term M by another term M ′ =E M . In some plaes, we willtherefore need to apply =E to proesses, and we will also use an extension ≡E of ≡ thatallows us to replae terms:De�nition 2.6 We extend =E to destrutor terms and proesses as follows:Given two destrutor terms D,D′, we have D =E D
′ i� D an be rewritten into D′ byreplaing subterms by =E-equivalent subterms. (But replaing destrutors is not allowed.E.g., if d is a destrutor and f, g are onstrutors, and g(x) =E g(y) is in the equationaltheory, we have d(f(a)) =E d(g(a)) but not f(d(a)) =E g(d(a)). Formally, =E is thesmallest equivalene relation on destrutor terms suh that D{M/x} =E D{M ′/x} fordestrutor terms D and terms M =E M

′.Given two proesses P,P ′, we have P =E P ′ i� P an be rewritten into P ′ by α-onversion and by replaing terms and destrutor terms by =E-equivalent ones. Formally,
=E is the smallest equivalene relation losed under α-renaming suh that P{M/x} =E

P{M ′/x} for proesses P and terms M =E M
′.7All names would be equivalent otherwise. An example of a symboli model not satisfying (viii) isone with an equation x =E y. 10

Given two proesses P,P ′, we have P ≡E P
′ i� P an be rewritten into P ′ by =E and

≡. Formally, ≡E := (=E ∪ ≡)∗.Full observational equivalene. A substitution σ is a losing substitution if Pσ islosed. We all two (not neessarily losed) proesses P and Q fully observationallyequivalent (denoted P ∼∼∼ Q) i� Pσ ≈ Qσ for all losing substitutions σ (where weimpliitly assume that the bound names in P,Q are renamed so that they are distintfrom the free names of σ). Sine ≈ is losed under ≡ it follows in a straightforward waythat ∼∼∼ is losed under ≡.The motivation behind the de�nition of ∼∼∼ is the following lemma whih allows us toreplae fully observationally equivalent subproesses by eah other.Lemma 2.7 Let P and Q be proesses and P ∼∼∼ Q. Then C[P] ∼∼∼ C[Q] for every on-text C.To show this lemma, we �rst prove the following lemma:Lemma 2.8 Let P and Q be losed proesses. We have P ≈ Q ⇒ !P ≈ !Q .Proof. We de�ne a relationR := ≈ ∪ {(νn.(IP |!P), νn .(IQ |!Q)) : IP , IQ losed proesseswith IP ≈ IQ and n a vetor of names } losed under strutural equivalene. Intuitively,
IP and IQ represent the running instanes of P resp. Q. For (A,B) ∈ R we show thethree points of observational equivalene.If (A,B) ∈ ≈ there is nothing to show. Otherwise (A,B) = (νn.(IP |!P), νn .(IQ |!Q)).

• If νn.(IP |!P) ↓M we have νn.IP ↓M and, sine IQ ≈ IQ , νn.IQ ↓M . Therefore
νn.(IQ |!Q) ↓M .

• For internal redutions → in νn.(IP |!P) we distinguish two ases:� A new instane of P spawns, i.e., νn.(IP |!P) → νn.(IP |P |!P). We de�ne
IP ′ := IP |P and IQ ′ analogously. Then there is a orresponding internalredution (following the REPL rule) for the Q-side νn.(IQ |!Q) → νn.(IQ ′|!Q)and therefore (νn.(IP ′|!P), νn .(IQ ′|!Q) ∈ R (note that IP ′ ≈ IQ ′ sine IP ≈
IQ and P ≈ Q).� The redution → only a�ets !P struturally. That is, we basially have
νn.(IP |!P) → νn.(IP ′|!P). Sine IP ≈ IQ we �nd →∗ s.t. IQ →∗ IQ ′ and
IP ′ ≈ IQ ′. (νn.(IP ′|!P), νn .(IQ ′|!Q) ∈ R.

• For any evaluation ontext C we have C[νn.(IP |!P)] ≡ νn ′.(C′[IP]|!P) where C′is C with all restritions moved into n ′. Analogously we have C[νn.(IQ |!Q)] ≡
νn ′.(C′[IQ]|!Q) with the same C′, n ′. Sine C′ is an evaluation ontext, C′[IP] ≈
C′[IQ]. Altogether we have (νn ′.(C′[IP]|!P), νn ′.(C′[IQ]|!Q)) ∈ R.11

This onludes our proof sine the de�nition of R is symmetri. �We an now show Lemma 2.7:Proof of Lemma 2.7. First onsider the ase that C is an evaluation ontext whih isallowed to have free variables here. For all losing substitutions σ we have Pσ ≈ Qσ andhene Cσ[Pσ] ≈ Cσ[Qσ]. Therefore C[P]σ ≈ C[Q]σ whih entails C[P] ∼∼∼ C[Q].To expand the proof from evaluation ontexts to general ontexts C we show thefollowing properties for ∼∼∼ from whih the Lemma immediately follows by indution:1. If P ∼∼∼ Q then M〈T 〉.P ∼∼∼M〈T 〉.Q for arbitrary terms M and T :Let σ be a losing substitution for M〈T 〉.P and M〈T 〉.Q . We de�ne the relation
R := ≈ ∪ {(C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) : C losed evaluation ontext} losedunder strutural equivalene. We show that R satis�es the three points of obser-vational equivalene. Let (A,B) ∈ R. For (A,B) ∈ ≈ there is nothing to do.Otherwise (A,B) = (C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) for some losed evaluationontext C.

• A ↓N : If C[0] ↓N obviously B ↓N as well. Otherwise (M 〈T 〉.P)σ ↓N wherethe free names of N are not bound by C whih requires N =E M and heneleads to (M 〈T 〉.Q)σ ↓N⇒ B ↓N .
• For internal redutions in A we distinguish two ases:� → is the COMM redution C[(M 〈T 〉.P)σ] → C′[Pσ] (up to struturalequivalene). In the same way we an redue C[(M 〈T 〉.Q)σ] → C′[Qσ].Sine Pσ ≈ Qσ and C′ is losed we have (C′[Pσ], C′[Qσ]) ∈≈⊆ R .� The redution → a�ets (M 〈T 〉.P)σ only struturally. That is, we basi-ally have C[0] → C′[0]. In this ase we apply the same redution in e�etto B and have (C′[(M 〈T 〉.P)σ], C′[(M 〈T 〉.Q)σ]) ∈ R.
• Obviously, R is losed under the appliation of losed evaluation ontexts.This onludes our proof sine the de�nition of R is symmetri.2. If P ∼∼∼ Q then M (x).P ∼∼∼ M (x).Q for an arbitrary term M :We prove this statement analogously to the previous one: It only di�ers in thediretion of message �ow on M . In the orresponding branh of the proof an inputof N on M results in P{N /x} resp. Q{N /x} (note that C is losed and hene Nis losed). Sine we have Pσ ≈ Qσ in partiular for every losing σ with σ(x) = Nwe have that P{N /x} ∼∼∼ Q{N /x} holds.3. If P ∼∼∼ Q then !P ∼∼∼ !Q:A losing substitution σ with Pσ ≈ Qσ but !Pσ 6≈ !Qσ ontradits Lemma 2.8.4. If P1

∼∼∼ Q1 and P2
∼∼∼ Q2 then (let x = D in P1 else P2) ∼∼∼ (let x =

D in Q1 else Q2) for an arbitrary destrutor term D:Again, the omplete proof is analogous to the one in ase 2. Hene we onlydisuss the redution of the let-statement here: For all losing substitutions σ12

for let x = D in P1 else P2 and let x = D in Q1 else Q2 we have that Dσ islosed. If we have Dσ ⇓ M for a (losed!) term M the let-statement reduesto P1{M /x}σ ≈ Q1{M /x}σ (note that σ(x) = x sine x is a bound variable)whih holds sine P1
∼∼∼ Q1. Otherwise it redues to P2σ ≈ Q2σ whih holds sine

P2
∼∼∼ Q2. �Produt proesses. In order to argue about onurrent omposition, as a tehnialtool, we will need an extension of the applied pi alulus that supports in�nite parallelompositions of proesses whih are tagged with distint terms.Intuitively, the indexed repliation ∏x∈S P stands for P{s1/x}|P{s2/x}| . . . when

S = {s1, s2, . . . }. (Like !P stands for P |P |) We all proesses from this extendedalulus produt proesses. Note that our main de�nitions and results are still statedwith respet to the original alulus from [BAF08℄; we only use produt proesses insome spei� situations.De�nition 2.9 (Produt proesses) Produt proesses are de�ned by the grammarin Figure 1 with the additional onstrut ∏x∈S P where x is a variable, S a (possiblyin�nite) set of terms, and P a produt proess. (We all ∏x∈S P an indexed repliation.)(Note that we onsider ∏x∈S to be a binder. I.e., in ∏x∈S P , we onsider x a boundvariable.)Strutural equivalene (≡) on produt proesses is de�ned using the same rules as onproesses (see Figure 2).The redution relation → on produt proesses is de�ned using the same rules as onproesses (see Figure 3), with the following additional rule (IREPL): If M ∈ S, then∏
x∈S P →

(∏
x∈S′ P

)
| P{M/x} with S′ := S \ {M ′ : M =E M ′}. (Essentially S istreated as a set of session ids whih ontains eah sid at most one modulo =E.)Observational equivalene (≈) on produt proesses is de�ned like observational equiv-alene on proesses (De�nition 2.4). In partiular, as in De�nition 2.4, in rule (iii) wequantify over evaluation ontexts that do not ontain indexed repliations.Notie that proesses are also produt proesses, and that on proesses, the newde�nitions of ≡, →, and ≈ from De�nition 2.9 oinide with the original de�nitions.3 Useful properties of the pi alulusIn this setion, we introdue a number of useful lemmas for the applied pi alulus.These lemmas are useful to derive observational equivalenes of proesses by step by steprewriting (and for using Proverif as a tool in deriving equivalenes that Proverif annothandle). We believe that they may be useful in other similar situations, too.Lemma 3.1 If n /∈ fv(M), then n 6=E n.Proof. �13

Lemma 3.2 Let P,P ′ be proesses. Let D,D′ be destrutor terms. Let M,M ′ be terms.(i) If a /∈ fn(P), then P ∼∼∼ νa.P .(ii) If a /∈ fn(M), then νa.M(x).P ∼∼∼M(x).νa.P .(iii) Assume P is losed and that P does not ontain unproteted inputs or outputs.Assume P → P ′, and that for all P ′′ with P → P ′′ we have P ′ ≈ P ′′. Then
P ≈ P ′.(iv) If M,M ′ are terms with M =E M

′, then P{M/x} ∼∼∼ P{M ′/x}.(v) If for all substitutions σ that lose D,M we have Dσ ⇓ Mσ, and for all M ′ with
Dσ ⇓M ′σ we have Mσ =E M

′σ, then (let x = D in P else P ′) ∼∼∼ P{M/x}.(vi) If D is losed and there is no M with D ⇓M , then (let x = D in P else P ′) ∼∼∼ P ′.(vii) If for all substitution σ that lose D,D′ there exist M,M ′ with Dσ ⇓ Mσ, D′σ ⇓
M ′σ and Mσ =E M

′σ then (if D = D′ then P else P ′) ∼∼∼ P(viii) We have !P ≈ P |!P .(ix) ∏x∈SID P ≈
∏

x∈SID\{t1,...,tn}
P |P{ t1

x }| . . . |P{
tn
x } for t1, . . . , tn ∈ SID .Proof. We show (i): Let R := {(Q, νa.Q) : Q a losed proess, a /∈ fn(Q) a name} up tostrutural equivalene. It is easy to see that R is a bisimulation. Thus Q ≈ νa.Q forany losed proess. This implies that Pσ ≈ νa.(Pσ) ≡ (νa.P)σ for any losing σ. Hene

P ∼∼∼ νa.P .We show (ii): Let R := {(E[νa.M(x).Q], E[M(x).νa.Q])}∪≈ up to strutural equiv-alene where E ranges over all evaluation ontexts, Q over losed proesses, a over names,and M over terms with a /∈ fn(M). One an hek that R satis�es the onditions fora bisimulation. To show νa.M(x).P ∼∼∼ M(x).νa.P , �x a losing substitution σ. Then(
(νa.M(x).P)σ, (M(x).νa.P)σ

)
∈ R, thus (νa.M(x).P)σ ≈ (M(x).νa.P)σ. Sine thisholds for any losing σ, we have νa.M(x).P ∼∼∼M(x).νa.P and (ii) follows.We show (iii): Let R := {(E[P], E[P ′]) : E evaluation ontext}∪≈. (Here P,P ′ referto the proesses from the statement of the lemma.) We hek that R is a bisimulation. Inall the following ases, if A ≈ B, the statement is immediate. Thus we assume A ≡ E[P],

B ≡ E[P ′] in eah ase.
• If (A,B) ∈ R and A ↓M then there exists a B′ with B →∗ B′ and B′ ↓M : If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sine P doesnot ontain unproteted outputs, we have that the output on M is in E. Hene
B ≡ E[P ′] ↓M .

• If (A,B) ∈ R and B ↓M then there exists an A′ with A →∗ A′ and A′ ↓M : If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sine P → P ′we have A→ A′ := E[P ′] ≡ B. Sine B ↓M , also A′ ↓M .

• If (A,B) ∈ R and A→ A′ then there exists a B′ with B →∗ B′ and (A′, B′) ∈ R: If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sine P doesnot ontain unproteted inputs or outputs, A′ ≡ E′[P] for some evaluation ontext
E or A′ ≡ E[P ′′] for some P ′′ with P → P ′′. In the �rst ase, B → B′ := E′[P ′] and14

hene (A′, B′) ∈ R. In the seond ase, P ′′ ≈ P ′ and thus A′ ≈ E[P ′] ≡ B =: B′.Thus B →∗ B′ and (A′, B′) ∈ R.
• If (A,B) ∈ R and B → B′ then there exists a A′ with A→∗ A′ and (A′, B′) ∈ R: If
A ≈ B, then this is immediate. Thus assume A ≡ E[P], B ≡ E[P ′]. Sine P → P ′,we have A → A′′ := E[P ′] ≡ B. Sine B → B′, we have A → A′′ → A′ := B′.Hene A→∗ A′ and (A′, B′) ∈ R.

• R is losed under appliation of evaluation ontexts by onstrution.We show (iv): Let (A,B) ∈ R i� A results from B by replaing terms M by terms
M ′ with M =E M

′. It is easy to hek that R is a bisimulation. Fix a proess P , terms
M,M ′ with M =E M ′, and σ a substitution mapping variables to ground terms thatloses P{M/x} and P{M ′/x}. Then P{M/x}σ results from P{M ′/x}σ by replaingsome ourrenes of M ′σ by Mσ. Sine M =E M ′, we have Mσ =E M ′σ. Thus
(P{M/x}σ, P{M ′/x}σ) ∈ R, hene P{M/x}σ ≈ P{M ′/x}σ. Sine this holds for anylosing σ, P{M/x} ∼∼∼ P{M ′/x}.We show (v): First, assume that A := (let x = D in P else P ′) is losed. We havethat if A → A′, then A′ ≡ P{M ′/x} for some M ′ with D ⇓ M ′. By (iv) and using that
M =E M

′ for all M ′ with D ⇓M ′, this implies A′ ≈ P{M/x}. Furthermore A does notontain unproteted inputs or outputs. Thus by (iii), we have A ≈ P{M/x}. From thisfollows that (let x = D in P else P ′) ∼∼∼ P{M/x} even if (let x = D in P else P ′) is notlosed, analogously to (i).We show (vi): First, assume that A := (let x = D in P else P ′) is losed. Wehave that if A → A′, then A′ ≡ P ′. Furthermore A does not ontain unprotetedinputs or outputs. Thus by (iii), we have A ≈ P ′. From this follows that (let x =
D in P else P ′) ∼∼∼ P ′ even if (let x = D in P else P ′) is not losed, analogously to (i).We show (vii): First, assume that A := (if D = D′ then P else P ′) is losed. Weresolve the syntati sugar for �if� and have A = (let x = equals(D,D′) in P else P ′). If
A→ A′, then A′ ≡ P (x 6∈ fv(P)). Thus by (iii), we have A ≈ P ′. From this follows that
(let x = D in P else P ′) ∼∼∼ P ′ even if (let x = D in P else P ′) is not losed, analogouslyto (i).We show (viii): If !P → P ′′, then P ′′ ≡ P |!P by de�nition of →. By (iii) this implies
!P ≈ P |!P .We show (ix): Given a set A = {t1, . . . , tk} ⊆ SID , we write ∑x∈A P for
P{t1/x}| . . . |P{tk/x}. Let

R := {
(
E[

∏

x∈SID\A\D

P |
∑

x∈A

P], E[
∏

x∈SID\B\D

P |
∑

x∈B

P]
)
}up to strutural equivalene where E ranges over evaluation ontexts and A,B,D rangeover subsets of SID with D disjoint of A∪B. One an hek thatR satis�es all onditionsfor being a bisimulation. Sine (

∏
x∈SID P,

∏
x∈SID\{t1,...,tn}

|P{t1/x}| . . . |P{tn/x}) ∈ R,(ix) follows. �15

Lemma 3.3 Let C be a 0-1-ontext whose hole is not under a bang and suh that n doesnot our in C, Q, or t. Assume that C does not bind any of fv(Q) \ {x} or fn(Q) overits hole. Then νn.C[n〈t〉]|n(x).Q ∼∼∼ C[Q{t/x}]Proof. We show the lemma for ≈ instead of ∼∼∼, and assuming that νn.C[n〈t〉]|n(x).Q and
C[Q{t/x}] are losed and that fn(Q) ⊆ {x}. The general ase then follows by de�nitionof ∼∼∼. We de�ne the relation R: (A,B) ∈ R i� A ≈ B or there is a name n, a list ofnames ã, a term t, a variable x, an integer k, a 0-1-ontext C not ontaining n and nothaving its hole under a bang and not binding fn(Q) over its hole, suh that the followingholds:

A ≡ νnã.C[n〈t〉]|n(x).Q, B ≡ νnã.C[Q{t/x}] (1)We hek the three onditions for bisimulations (in both diretions).
• If (A,B) ∈ R and A ↓M , then B ↓M :The ase A ≈ B is trivial. We thus assume that A,B are as in (1).If νnã.C[n〈t〉]|n(x).Q ↓M , then the output on M is in C. (n〈t〉 annot be thatoutput, beause n is bound.) Hene νnã.C[Q{t/x}] ↓M .
• If (A,B) ∈ R and B ↓M , then there exists an A′ with A→∗ A′ and A′ ↓M :The ase A ≈ B is trivial. We thus assume that A,B are as in (1).If νnã.C[Q{t/x}] ↓M , we distinguish two ases. If the output on M is in C, then
νnã.C[n〈t〉]|n(x).Q ↓M . Consider the ase that the output on M is in Q{t/x}.Without loss of generality, we an assume that no name in t is bound in C (otherwisewe ould move the orresponding restritions from C into νã sine C does not bind
fn(Q) over its hole). Sine the output on M is in Q{t/x}, C is an evaluationontext and thus νnã.C[n〈t〉]|n(x).Q → νnã.C[0]|Q{t/x} ↓M .

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:The ase A ≈ B is trivial. We thus assume that A,B are as in (1).We distinguish the following ases:If the redution A→ A′ involves only C, then A′ ≡ νnã.C̃[n〈t〉σ]|n(x).Q for some0-1-ontext C̃. Here the substitution σ represents possible variable assignmentsperformed over the hole of C (e.g., if C = a〈T 〉 | a(y).�, then σ = {T/y}).Then B → B′ := νnã.C̃[Q{t/x}σ] = νnã.C̃[Q{tσ/x}] where the last equality usesthat fn(Q) ⊆ x. Also, C̃ does not have more that one hole (in whih ase C̃ wouldnot be a zero-or-one-hole ontext) beause the hole in C does not our under abang.Thus we have (A′, B′) ∈ R.If the redution involves n〈t〉 or n(x).Q, then the hole of C is only under restritionsand parallel ompositions. We assume without loss of generality that the hole in Cis not under any restrition (otherwise we ould move the orresponding restritions16

into νã sine C does not bind fn(Q) over its hole). Then A′ ≡ νnã.C[0]|Q{t/x} ≡
νnã.C[Q{t/x}] =: B′ ≡ B. Thus B →∗ B′ and (A′, B′) ∈ R (sine A′ ≈ B′).

• If (A,B) ∈ R and B → B′, then there is an A′ with A→∗ A′ and (A′, B′) ∈ R:The ase A ≈ B is trivial. We thus assume that A,B are as in (1).If the redution B → B′ involves only C, then B′ ≡ νnã.C̃[Q{t/x}σ]
(∗)
=

νnã.C̃[Qσ{t/x}] for some zero-or-one-hole ontext C̃. Here the substitution σrepresents possible variable assignments performed over the hole of C (e.g., if
C = a〈T 〉 | a(y).�, then σ = {T/y}). And the equality (∗) uses that fn(Q) ⊆ x.Then A → A′ := νnã.C̃[n〈t〉σ]|n(x).Q. Also, C̃ does not have more that one hole(in whih ase C̃ would not be a ontext) beause the hole in C does not ourunder a bang.Thus we have (A′, B′) ∈ R.If the redution B → B′ involves Q{t/x}, then the hole of C is only under re-stritions and parallel ompositions. We assume without loss of generality thatthe hole in C is not under any restrition (otherwise we ould move the orre-sponding restritions into νã sine C does not bind fn(Q) over its hole). Then
A → νnã.C[0]|Q{t/x} ≡ νnã.C[Q{t/x}] ≡ B → B′ =: A′. Thus trivially
(A′, B′) ∈ R (sine A′ = B′ and thus A′ ≈ B′), and A→∗ A′.

• If E is an evaluation ontext, and (A,B) ∈ R, then (E[A], E[B]) ∈ R:The ase A ≈ B is trivial. We thus assume that A,B are as in (1). Then E[A] ≡
E[νnã.C[n〈t〉]|n(x).Q] ≡ νnã.C[n〈t〉]|P |n(x).Q for some proess P up to renamingof the names n, ã. And E[B] ≡ E[νnã.C[Q{t/x}]] ≡ νnã.C[Q{t/x}]|P . Thus(using the ontext C|P instead of C), we have (E[A], E[B]) ∈ R.Thus R is a bisimulation. Thus νn.C[n〈t〉]|n(x).Q ≈ νn.C[Q{t/x}] (where n,C, t, xrefer to the values from the statement of the lemma). And sine n does not our in C,Q, t,we have νn.C[Q{t/x}] ≈ C[Q{t/x}] by Lemma 3.2 (i). Thus νn.C[n〈t〉]|n(x).Q ≈

C[Q{t/x}]. �Lemma 3.4 Let C,D be ontexts, Q a proess, n,m names, t, t′ terms, and x a variable.Assume that C,D have no bang over their holes. Assume that n,m /∈ fn(C,D,Q, t, t′).Assume that C,D do not bind n,m, fn(Q). Assume that fv(Q) ⊆ {x}.Then νn.(C[!n〈t〉] | D[n(x).Q]) ≈ νm.(C[m().Q{t/x}] | D[m〈t′〉]).Proof. We de�ne the relation R as follows: We have (A,B) ∈ R i� A ≈ B or there exist0-1-ontexts C,D without a bang over their holes and not binding n, fn(Q), terms t, t′, aname n /∈ fn(C,D,Q, t, t′), a list of names ã not ontaining n, and an integer i ≥ 0 suhthat
A ≡ νnã.(C[n〈t〉i | !n〈t〉] | D[n(x).Q])

B ≡ νnã.(C[n().Q{t/x}] | D[n〈t′〉]) (2)17

Here n〈t〉i denotes n〈t〉| . . . |n〈t〉 (i opies). Note: Q is the proess from the statementof the lemma. (It is intentional that we use n in the de�nition of B, not m as in thestatement of the lemma. We will rename n into m at the end of the proof.)We show that R is a bisimulation. In all ases below, the ase A ≈ B is trivial bythe properties of ≈, so we assume in eah ase that A,B are as in (2).
• If (A,B) ∈ R and A ↓M , then B →∗↓M :Sine n is bound, the output onM is not one of the n〈t〉 (here we use that M 6=E nif n /∈ fn(M) by De�nition 2.5 (viii)). Hene C ↓M or D ↓M . Thus B ↓M .
• If (A,B) ∈ R and B ↓M , then A→∗↓M :Sine n is bound, the output on M is not n〈t′〉. Hene C ↓M or D ↓M . Thus A ↓M .
• If (A,B) ∈ R and A→ A′, then there is a B′ suh that B →∗ B′ and (A′, B′) ∈ R:We distinguish the following ases:� A → A′ is a redution !n〈t〉 → n〈t〉 | !n〈t〉: Then A′ ≡ νnã.(C[n〈t〉i+1 |

!n〈t〉] | D[n(x).Q]) and hene (A′, B′) ∈ R for B′ := B.� A → A′ is a redution within C, within D, or a ommuniation between
C and D (in all ases not involving the argument of C,D): Then A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]) for suitable ontexts C ′,D′ (satisfying allthe onditions required for C,D in the de�nition of R), and B → B′ :=
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]). (Note: This uses impliitly that Q has nofree variables exept x, otherwise Q might hange in this redution.)� A→ A′ is a ommuniation between n〈t〉 and n(x).Q:Then C and D are evaluation ontexts.Without loss of generality, we an assume that C,D do not bind any namesover their holes: For this, we �rst rename the bound names in C,D suh thatthey beome distint from all free names (possibly also renaming the namesin t in the proess, but not in Q sine fn(Q) are not bound), and then movethe restritions up into νã.Then A′ ≡ νnã.(C[n〈t〉i−1 | !n〈t〉] | D[Q{t/x}]). Furthermore

B′ := B ≡ ν ã.(C[0] | D[νn.(n().Q{t/x} | n〈t′〉)])
(∗)

≈ νã.(C[0] | D[Q{t/x}])
(∗∗)

≈ νã.(C[νn.(n〈t〉i−1 | !n〈t〉)] | D[Q{t/x}]) ≡ A′Here (∗) follows from Lemma 3.3. And (∗∗) uses that νn.(n〈t〉i−1 | !n〈t〉) ≈ 0,whih an be seen by verifying that R′ := {(E[νn.(n〈t〉i−1 | !n〈t〉)], E[0]) :
E evaluation ontext} is a bisimulation.Thus A′ ≈ B′ and hene (A′, B′) ∈ R. And B = B′ implies B →∗ B′.� A → A′ is a ommuniation between C or D and n〈t〉 or n(x).Q: Thisase does not our beause n /∈ fn(C,D).18

• If (A,B) ∈ R and B → B′, then there is a A′ suh that A→∗ A′ and (A′, B′) ∈ R:We distinguish the following ases:� B → B′ is a redution within C, within D, or a ommuniation between
C and D (in all ases not involving the argument of C,D): Then B′ =
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]) for suitable ontexts C ′,D′ (satisfying allthe onditions required for C,D in the de�nition of R), and A → A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]).� B → B′ is a ommuniation between n().Q{t/x} and n〈t′〉:Then C,D are evaluation ontexts.Without loss of generality, we an assume that C,D do not bind any namesover their holes (analogous to the orresponding subase of A→ A′ above).Then B′ ≡ νnã.(C[Q{t/x}] | D[0]).Furthermore,

A→∗ A′ := νã.(C[νn.(n〈t〉i | !n〈t〉)] | D[Q{t/x}])
(∗)

≈ νã.(C[0] | D[Q{t/x}]) ≡ νã.(C[Q{t/x}] | D[0])
(∗∗)

≈ B′Here (∗) uses that νn.(n〈t〉i | !n〈t〉) ≈ 0 (see the orresponding subase of
A→ A′ above). And (∗∗) uses Lemma 3.2 (i). So A′ ≈ B′, hene (A′, B′) ∈ R.Hene A→∗ A′ and (A′, B′) ∈ R.� B → B′ is a ommuniation between C or D and n〈t〉 or n(x).Q: Thisase does not our beause n /∈ fn(C,D).

• If (A,B) ∈ R and E is an evaluation ontext, then (E[A], E[B]) ∈ R:Then E ≡ νb̃.(�|P) for some names b̃ and some proess P .Without loss of generality, n does not our in b̃ or fn(P) (otherwise we rename n).Thus with ã′ := ãb̃ and C ′ := C|P , we have
E[A] ≡ νnã′.(C ′[n〈t〉i | !n〈t〉] | D[n(x).Q])

E[B] ≡ νnã′.(C ′[n().Q{t/x}] | D[n〈t′〉])Hene (E[A], E[B]) ∈ R.Under the onditions of the lemma, we have (νn.C[!n〈t〉] |
D[n(x).Q], νn.C[n().Q{t/x}] | D[n〈t′〉]) ∈ R where C,D,Q, n, t, t′, x are as in thestatement of the lemma. Sine R is a bisimulation, this implies
νn.C[!n〈t〉] | D[n(x).Q] ≈ νn.C[n().Q{t/x}] | D[n〈t′〉] ≡ νm.C[m().Q{t/x}] | D[m〈t′〉])

�Lemma 3.5 Let A,B,C be losed proesses. If A ≡E B → C, then there is a losedproess B′ suh that A→ B′ ≡E C. 19

Proof. It is easy to see that → is the smallest relation satisfying the following rules:STREQ If P ≡ P ′ → Q′ ≡ Q, then P → QE-REPL E[!P] → E[P | !P]E-COMM E[C 〈T 〉.P | C ′(x).Q] → E[P | Q{T/x}] if C =E C ′E-LET-THEN E[let x = D in P else Q] → E[P{M /x}] if D ⇓ ME-LET-ELSE E[let x = D in P else Q] → E[Q] if ∄M s.t. D ⇓ MHere in all rules E ranges over evaluation ontexts with the following property: Let
E[R] denote the left hand side of the rule. Then all bound names in E[R] are di�erentfrom eah other and from the free names in E[R]. (In a derivation of →, we an alwaysenfore this latter property by �rst using STREQ to alpha-rename the left hand side ofthe redution.) We say E[R] has no name on�its.For stating the next laim, we also need to introdue an asymmetri variantր≡ of thestrutural equivalene ≡. The di�erene is that in ≡, we are allowed to apply the ruleNEW-PAR in both diretions, while inր≡ we are only allowed to move restritions up(P | νu.Qր≡ νu.(P | Q)), but not down (not: νu.(P | Q)ր≡ P | νu.Q). More formally,ր≡is the smallest transitive, re�exive (but not neessarily symmetri) relation losed under
α-onversion, and losed under appliation of evaluation ontexts, and satisfying therules PAR-0, PAR-A, PAR-C, NEW-C, NEW-PAR from Figure 2 as well as the reversedrule PAR-0-rev (but not NEW-PAR-rev). (By reversed rule we mean the rules with lefthand side and right hand side exhanged. E.g., PAR-0-rev says P |0 ր≡ P . Note thatPAR-C-rev and NEW-C-rev are not needed sine PAR-C and NEW-C are symmetri.And PAR-A-rev follows from PAR-C and PAR-A via (P |Q)|Rր≡ R|(P |Q)ր≡ (R|P)|Qր≡
Q|(R|P)ր≡ (Q|R)|Pր≡ P |(Q|R).)Also, we de�neր≡E analogously to ≡E: ր≡E orresponds to a sequene of rewritingsusingր≡ and =E, i.e.,ր≡E:= (ր≡ ∪ =E)

∗.Claim 1 For losed proesses A,B,C, if A =E Bր≡ C, then there exists a losed proess
B′ suh that Aր≡ B′ =E C.We show this laim by indution over the derivation of Bր≡ C. We distinguish thefollowing ases:

• α-onversion: Then B = C up to α-onversion. Hene A =E B implies A =E Csine =E allows α-onversions. Thus Aր≡ B∗ =E C with B∗ := A.
• Closure under evaluation ontexts: Then B = E[B̃] and C = E[C̃] for proesses
B̃ ր≡ C̃ and an evaluation ontext E. And the indution hypothesis holds for
B̃ր≡ C̃. Sine A =E B = E[B̃], we have that A = E∗[B̃∗σ] for some evaluationontext E∗ =E E, some proess B̃∗ =E B̃, and a renaming σ that orresponds tothe alpha-renaming over the hole of E. Sine B̃∗ =E B̃, the indution hypothesisimplies that B̃∗ր≡ B̃′ =E C̃ for some proess B̃′. Hene

A = E∗[B̃∗σ]ր≡ E∗[B̃′σ] =E E[B̃′] =E E[C̃] = C.Thus Aր≡ B′ =E C with B′ := E∗[B̃′σ].20

• Re�exivity: Then B = C. Hene Aր≡ B∗ =E C with B∗ := A.
• Transitivity: Then Bր≡ Sր≡ C for some proess S. And the indution hypothesisapplies to Bր≡ S and Sր≡ C. Sine A =E Bր≡ S, by indution hypothesis, thereis a proess B′ with Aր≡ B′ =E S. Sine B′ =E Sր≡ C, by indution hypothesisthere is a proess S∗ with B′ ր≡ S∗ =E C. Thus Aր≡ S∗ =E C, and the laimfollows with B∗ := S∗.
• PAR-0 : In this ase, C = B|0 and A =E B. Hene Aր≡ B∗ =E C with B∗ := A|0.
• PAR-0-rev : In this ase, B = C|0 and A =E B. Hene A = B∗|0 for some proess
B∗ =E C. Then Aր≡ B∗ =E C.

• PAR-A: In this ase, B = B1|(B2|B3) and C = (B1|B2)|B3. Sine A =E B,
A = A1|(A2|A3) for some proesses Ai with Ai =E Bi, i = 1, 2, 3. Then with
B∗ := (A1|A2)|A3, we have Aր≡ B∗ =E C.

• PAR-C, PAR-C : Analogous to PAR-A.
• NEW-C : In this ase, B = νnm.B̂ and C = νmn.B̂ for some names n,m anda proess B̂. Sine A =E B, we have that A = νab.Â for some names a, b anda proess Â. (Not neessarily ab = nm, beause =E allows α-onversion.) Thus
νab.Â =E νnm.B̂. This implies νba.Â =E νmn.B̂ (by indution over the derivationof νab.Â =E νnm.B̂). Hene with B∗ := νba.Â, we have that Aր≡ B∗ =E C.

• NEW-PAR: Then B = B1|νn.B2 and C = νn.(B1|B2) with n /∈ fn(B1). Sine
A =E B, we have A = A1|νa.A2 for some name a and proesses A1, A2 with
A1 =E B1 and νa.A2 =E νn.B2. (Not neessarily a = n, beause =E al-lows α-onversion.) Let m be a fresh name, i.e., m /∈ fn(A1, A2, B1, B2). Let
B∗ := νm.(A1|A2{m/a}). Sine νn.B2 =E νa.A2 and m /∈ fn(A2, B2), we have
νm.B2{m/n} =E νm.A2{m/a}. Hene νm.(A1|B2{m/n}) =E νm.(A1|A2{m/a}).And using A1 =E B1, we get νm.(B1|B2{m/n}) =E νm.(A1|A2{m/a}) = B∗. Fur-thermore C = νn.(B1|B2) =E νm.(B1|B2{m/n}) sine n,m /∈ fn(B1), m /∈ fn(B2).Thus B∗ =E C. And A = A1|νa.A2 ր≡ A1|νm.A2{m/a} ր≡ νm.(A1|A2{m/a}) =
B∗. Thus B∗ is a proess with Aր≡ B∗ =E C.This shows Claim 1.Claim 2 If Aր≡E B, then there exists an S suh that Aր≡ S =E B.This follows diretly from Claim 1.Claim 3 If B,C are losed proesses and B → C (derived using the rules listed at thebeginning of this proof), then for any losed A with A ≡E B there exists a losed B′ with

A→ B′ ≡E C.This laim will then immediately prove the lemma. We show the laim by indutionover the derivation of B → C. We distinguish the following rule appliations:
• STREQ: Then B ≡ B̃ → C̃ ≡ C for some B̃, C̃, and the indution hypothesisholds for B̃ → C̃. Sine A ≡E B ≡ B̃, the indution hypothesis implies that
A→ B′ ≡E C̃ for some losed B′. Sine C̃ ≡ C, we have A→ B′ ≡E C.21

• E-REPL: Then B = E[!B̃] and C = E[B̃ | !B̃] where E is an evaluation ontextand E[!B̃] has no name on�its. We have A ≡E E[!B̃]. From this it follows that
Aր≡E E′[!B̃] where E′ results from E by moving all unproteted restritions to thetop (no names in B̃ need to be renamed beause E[!B̃] has no name on�its). ByClaim 2, this implies that Aր≡ S =E E

′[!B̃] for some S. Hene S = E′′[!B̃′σ] where
E′′ =E E

′ and B̃′ =E B̃ and where σ is a renaming that orresponds to the alpha-onversions between E′ and E′′ over the hole. Thus Aր≡ S → E′′[(B̃|!B̃)σ] =E

E′[B̃ | !B̃] ≡ E[B̃ | !B̃] = C and hene A→ B′ ≡E C with B′ := E′′[(B̃|!B̃)σ].
• E-COMM: Then B = E[M 〈T 〉.P | N(x).Q] and C = E[P | Q{T/x}] where E isan evaluation ontext, M =E N , and B has no name on�its. As in the E-REPLase, we have Aր≡E E′[M〈T 〉.P | N(x).Q] where E′ results from E by movingall unproteted restritions to the top. By Claim 2, this implies that Aր≡ S =E

E′[M〈T 〉.P | N(x).Q] for some S. Hene S = E′′[(M ′〈T ′〉.P ′ | N ′(x).Q′)σ] where
E′′ =E E

′, M ′ =E M , T ′ =E T , P ′ =E P , N ′ =E N , Q′ =E Q, and σ is as in thease of E-REPL. Then
Aր≡ S → E′′[P ′ | Q′{T ′/x}σ] =E E

′[P | Q{T ′/x}]
(∗)
=E E

′[P | Q{T/x}] ≡ E[P | Q{T/x}] = C.(Note that (∗) also uses the fat that =E may also rewrite terms that are subtermsof destrutor terms; this is needed if x ours in a destrutor term in Q.)Hene A→ B′ ≡E C for B′ := E′′[P ′ | Q′{T ′/x}σ].
• E-LET-THEN: Then B = E[let x = D in P else Q] and C = E[P{M/x}] where Eis an evaluation ontext, D ⇓M , and B has no name on�its. As in the E-REPLase, we have Aր≡E E′[let x = D in P else Q] where E′ results from E by movingall unrestrited restritions to the top. By Claim 2, this implies that Aր≡ S =E

E′[let x = D in P else Q] for some S. Hene S = E′′[(let x = D′ in P ′ else Q′)σ]where E′′ =E E′, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as in the ase of E-REPL. Then D′ =E D and DM ⇓ imply D′M ⇓′ for some M ′ =E M . Hene
(let x = D′ in P ′ else Q′) → P ′{M ′/x}. Then
Aր≡ S → E′′[P ′{M ′/x}σ] =E E

′[P{M ′/x}]
(∗)
=E E

′[P{M/x}] ≡ E[P{M/x}] = C.(Here (∗) again uses that =E rewrites destrutor terms, see the ase E-COMM.)Hene A→ B′ ≡E C for B′ := E′′[P ′{M ′/x}σ].
• E-LET-ELSE: Then B = E[let x = D in P else Q] and C = E[Q] where E isan evaluation ontext, ∀M. D 6⇓ M , and B has no name on�its. As in theE-REPL ase, we have A ր≡E E′[let x = D in P else Q] where E′ results from
E by moving all unrestrited restritions to the top. By Claim 2, this impliesthat Aր≡ S =E E′[let x = D in P else Q] for some S. Hene S = E′′[(let x =
D′ in P ′ else Q′)σ] where E′′ =E E′, D′ =E D, P ′ =E P , Q′ =E Q, and σ is asin the ase of E-REPL. Sine D′ =E D and ∀M. D 6⇓ M , we have ∀M. D′ 6⇓ M .Hene (let x = D′ in P ′ else Q′) → Q′. Then

Aր≡ S → E′′[Q′σ] =E E
′[Q] ≡ E[Q] = C.22

Hene A→ B′ ≡E C for B′ := E′′[Q′σ].This shows Claim 3. And from that laim the lemma follows. �3.1 Relating events and observational equivaleneFor stating Lemma 3.7 below, we will need proesses ontaining events. The variantof the applied pi alulus presented in Setion 2 (whih is used by Proverif for obser-vational equivalene proofs) does not support events. When using Proverif for showingtrae properties de�ned in terms of events, a di�erent variant of the applied pi alu-lus is used [Bla09℄. We will all proesses in that alulus event proesses. Syntati-ally, event proesses di�er from proesses as in Figure 1 only by an additional onstrut
event f(t1, . . . , tn).P whih means that the event f is raised, with arguments t1, . . . , tn(these are normal terms), and then the event proess P is exeuted.The semantis of event proesses are formulated in [Bla09℄ in a di�erent way fromthe semantis used here. Fortunately, we will be able to enapsulate everything that weneed to know about that semantis in Lemma 3.6 below, so we do not need to repeatthose semantis here.Instead, we extend the de�nition of the internal redution relation → to event pro-esses. → is de�ned as in De�nition 2.3, exept that we add the following rule:EVENT: event f(t1, . . . , tn).P → PThe semantis de�ned by → will be related to those from [Bla09℄ by Lemma 3.6 below.Finally, [Bla09℄ de�nes the onept of a trae property . We will only need traeproperties of a spei� form, namely

end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tnIntuitively, an event proess P satis�es a trae property end(x) ⇒ start(x)∨x = t1∨· · ·∨
x = tn if in any exeution P |R → P1 → . . . → Pn, we have that if one of the transitionsraises the event end(t), then t ∈ {t1, . . . , tn} and in the same trae, the event start(t) isalso raised (for any adversarial R not ontaining events).Formally, satisfying a trae property is de�ned with respet to the semantis from[Bla09℄.8 Instead of giving those semantis here, we present the following lemma whihsummarizes seven fat about that de�nition. We will not use any other fats. The fatsan be veri�ed by inspeting the semantis and de�nitions from [Bla09℄.8Stritly speaking, the semantis desribed in [Bla09℄ does not allow expressions of the form x = ti intrae properties. Suh expressions are, however, supported by Proverif. Also, [Bla09, footnote ℄ explainshow to enode suh equality tests in the trae properties supported by [Bla09℄. In their notation, ourtrae property beomes the somewhat less readable trae property: end(x) ⇒ (end(x) start(x)) ∨
(end(t1) true) ∨ · · · ∨ (end(tn) true).Also, the semantis desribed [Bla09℄ do not support equations (i.e., t =E t′ i� t = t′ in their semantis).However, Proverif supports these, so we assume the intended semantis of Proverif is that of [Bla09℄ withthe natural extension of equality tests to equality modulo =E.23

Lemma 3.6 Let t1, . . . , tn be terms. Let ℘ stand for the trae property start(x) ⇒
end(x) ∨ x = t1 ∨ · · · ∨ x = tn. Let P be an event proess.(i) If P ≡ P ′ and P satis�es ℘, then P ′ satis�es ℘.(ii) Assume P → P ′ and P satis�es ℘ and the redution P → P ′ does not use theEVENT rule. Then P ′ satis�es ℘.(iii) Let t be a losed term. Assume P = C[event start(t).Q] where C is an event ontextnot binding fn(t) over its hole. Assume that P satis�es ℘. Then P ′ := C[Q] satis�es

℘ ∨ x = t.(iv) Assume P = C[event end(t).Q] where C is an event ontext. Assume that Psatis�es ℘. Then P ′ := C[Q] satis�es ℘.(v) Assume P satis�es ℘ and E is an evaluation ontext (not ontaining events) and
E does not bind fn(t1, . . . , tn) over its hole. Then E[P] satis�es ℘.(vi) Assume E is an evaluation event ontext that does not bind any names over itshole. Assume P = E[event end(t).Q]. Assume that P satis�es ℘. Then t =E ti forsome i.(vii) If νa.P satis�es ℘, then P satis�es ℘.We explain the intuitive reason for eah fat:(i) Struturally equivalent proesses behave identially and thus raise the same events.(ii) If P → P ′ without raising an event, then for any event trae that P ′ may produe,
P may produe the same by �rst reduing to P ′.(iii) P ′ has the same event traes as P , exept that some start(t)-events are removed.If P ′ does not satisfy ℘ ∨ x = t, then there must be an event end(t′) with t 6= t′that is not preeded by a start(t′)-event. But then also in a trae of P , there wouldbe an end(t′)-event not preeded by start(t′) (sine the traes only di�er in their
start(t)-events and start(t) 6= start(t′)).(iv) P ′ has the same event traes as P , exept that various end(·)-events are removed.(Sine t is not neessarily losed, end(t) may be instantiated to di�erent end(·)-events.) If a trae of P ′ does not satisfy ℘, this means there was an end(t′)-eventnot preeded by a start(t′) event. Then also in P the orresponding end(t′)-eventis not preeded by a start(t′)-event, as P has the same start(·)-events, and more
end(·)-events.(v) The semantis of satisfying trae properties are de�ned with respet to P running inparallel with an adversary R not ontaining events. Thus the ase of an evaluationontext running with P is already overed. (It is important that E does not bind
fn(t1, . . . , tn) beause otherwise the terms t1, . . . , tn ourring in the proess wouldbe onsidered di�erent from those in ℘.)(vi) There is a trae of P that onsists only of an end(t)-event. That trae does notsatisfy end(t) ⇒ start(t). Thus it satis�es ℘ only if ℘ ontains x = t as one of itslauses. 24

(vii) νa.P has the same traes as P , exept that ourrenes of a in the P -traes arereplaed by a fresh restrited name a′. Thus, if P does not satisfy ℘, then thereis a trae ontaining an end(t)-event without preeding start(t)-event suh that
t /∈ {t1, . . . , tn}. In the orresponding νa.P -trae, we have an end(t{a′/a})-eventwithout preeding start(t{a′/a})-event. Sine t /∈ {t1, . . . , tn} and a is fresh, also
t{a′/a} /∈ {t1, . . . , tn}. Hene the νa.P -trae does not satisfy ℘, either.Lemma 3.7 Let s be a name. Let P be a proess ontaining s only in onstruts of theform (!(s, t)〈t′〉)|P ′ and (s, t)().P ′ (for arbitrary and possibly di�erent t, t′, P ′).Let plains(P) denote the proess resulting from P by replaing all ourrenes

!(s, t)〈t′〉|P ′ and (s, t)().P ′ by P ′.Let ev s(P) denote the proess resulting from P by replaing all ourrenes
!(s, t)〈t′〉|P ′ by event start(t).P ′ and (s, t)().P ′ by event end(t).P ′.Assume that ev s(P) satis�es the trae property end(x) ⇒ start(x).Then plains(P) ≈ νs.P .Proof. We all a proess P s-well-formed if it ontains s only in onstruts of the form
!(s, t)〈t′〉|P ′ and (s, t)().P ′ (for arbitrary and possibly di�erent t, t′, P ′). Given a multiset
T = {t1 7→ t′1, . . . , tn 7→ t′n} with ti, t

′
i terms, we all an event-proess P T -good if Psatis�es the trae property end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn.For example, the proess P from the statement of the lemma is s-well-formed, and

ev s(P) is ∅-good.We de�ne the following relation R (up to strutural equivalene):
R :=

{(
νa.plains(P), νas.(P | !(s, t1)〈t

′
1〉 | · · · | !(s, tn)〈t

′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉

)

P s-well-formed, s, a distint names, evs(P) is {t1, . . . , tn}-good}Here P, n,m, ti, t′i, ui, u′i, s, a refer to arbitrary values, not only to the values P, s fromthe statement of the lemma.We write short syncout s({t1 7→ t′1, . . . , tn 7→ t′n}; {u1 7→ u′1, . . . , un 7→ u′n}) for
!(s, t1)〈t′1〉 | · · · | !(s, tn)〈t

′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉.We now show that R is a bisimulation:

• If (A,B) ∈ R, and A ↓M , then B ↓M :Then A = νa.plains(P). Hene plains(P) ↓M and a /∈ fn(M). Also, s /∈
fn(plains(P)), so s /∈ fn(M). By de�nition of plains(·), plains(P) ↓M implies
P ↓M . Sine a, s /∈ fn(M), it follows B = νas.(P | . . .) ↓M .

• If (A,B) ∈ R, and B ↓M , then A ↓M :Then B = νas.(P |syncout s(T ;U)). Thus a, s /∈ fn(M) and P |syncout s(T ;U) ↓M .Sine all hannels in syncouts(T ;U) are of the form (s, ·), we have25

syncout s(T ;U) 6↓M .9 Hene P ↓M . By de�nition of plains(P) and sine M doesnot ontain s, this implies plains(P) ↓M . Hene A = νa.plains(P) ↓M .
• If (A,B) ∈ R, and A→ A′, then there exists a B′ with B →∗ B′ and (A′, B′) ∈ R:Then A ≡ νa.plains(P) and B ≡ νas.(P |syncout s(T ;U)). We all an event proessname-redued , if it does not ontain unproteted restritions.Without loss of generality, assume that P (and hene also evs(P)) is name-redued(otherwise we ould move the super�uous restritions into the νa).Let a0 := a and P0 := P and T0 := T . We �rst onstrut a sequene P1, . . . , Pkof proesses and a sequene of lists of names a1, . . . , ak, and a sequene of sets
T1, . . . , Tk suh that Pk does not ontain unproteted inputs (s, ·)().Q or unpro-teted outputs !(s, ·)〈·〉, and for all i = 0, . . . , k we have:(a) νs.(P |syncout s(T ;U)) →∗ νais.(Pi|syncout s(Ti;U)), and(b) ev s(Pi) is Ti-good, and() plains(P) ≡ νai.plain

s(Pi).(d) Pi is s-well-formed.For i = 0, these onditions are trivially satis�ed. When onstruting Pi for i > 0,we already have a proess Pi−1 satisfying these onditions. We distinguish threeases:� If Pi−1 does not ontain unproteted inputs (s, ·)(), we are done (k := i− 1).� If Pi−1 does ontain an unproteted input (s, t)() that is not part of a subtermof the form !(s, ·)〈·〉|Q, then we an write Pi−1 as Pi−1 = νb.E[(s, t)().P ′] forsome names b and some evaluation ontext E that has no restritions over itshole. Sine (s, t)() is not part of a subterm of the form !(s, ·)〈·〉|Q, evs(E) isan evaluation ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).Without loss of generality, b ∩ fn(Ti−1, U) = ∅.Sine evs(Pi−1) ≡ νb.evs(E)[event end(t).evs(P ′)] is Ti−1-goodby (b), Lemma 3.6 (vii) implies that ev s(E)[event end(t).ev s(P ′)]is Ti−1-good. Sine E does not bind any names over its hole,Lemma 3.6 (vi) implies that t =E t∗ for some t∗ ∈ Ti−1. Thus
Pi−1|syncout s(Ti−1;U) ≡ (νb.E[(s, t)().P ′])|syncout (Ti−1;U) →∗

(νb.E[P ′])|syncout(Ti−1;U). Sine without loss of generality, b∩ fn(Ti−1, U) =
∅, (νb.E[P ′])|syncout (Ti−1;U) ≡ νb.Pi|syncout(Ti−1;U) with Pi := E[P ′].Hene νs.P |syncout s(T ;U)

(a)
→∗νai−1s.(Pi−1|syncouts(Ti−1;U)) →∗9Here we impliitly use the fat that (s, ·) 6=E M for any M not ontaining s. That this fat holdsan be seen as follows:If M does not ontain s, then M = Mσ for σ := (s 7→ s′, s′ 7→ s) and any s′ not ourring in M .Assume (s, t) =E M for some term t. Then (s′, tσ) = (s, t)σ =E Mσ = M =E (s, t). (Here we usethat =E is losed under renaming whih follows from the fat that equations and redution rules in thesymboli model do not ontain names.) By De�nition 2.5 (vi) (natural symboli model), this implies

s′ = s. Thus the assumption that (s, t) =E M was wrong.26

νai−1sb.Pi|syncout s(Ti−1;U) ≡ νais.Pi|syncout s(Ti;U) with Ti := Ti−1and ai := ai−1b. Thus (a) is satis�ed by Pi, ai, Ti.Sine evs(Pi−1) ≡ νb.ev s(E)[event end(t).ev s(P ′)] is Ti−1-good by (b) andthus Ti-good, we have by Lemma 3.6 (vii) that evs(E)[event end(t).ev s(P ′)]is Ti-good. Sine E does not bind names over its hole, neither does evs(E).Thus by Lemma 3.6 (iv), evs(E)[ev s(P ′)] = evs(Pi) is Ti-good. Thus (b) issatis�ed by Pi, ai, Ti.Sine Pi−1 = νb.E[(s, t)().P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus(d) is satis�ed by Pi, ai, Ti.Finally, plains(Pi−1) = νb.plains(E)[plain s(P ′)] = νb.plains(Pi). Sine by() we have that plains(P) ≡ νai−1.plain
s(Pi−1), we have plains(P) ≡

νai.plain
s(Pi). Thus () is satis�ed by Pi, ai, Ti.� If Pi−1 ontains an unproteted output !(s, t)〈t′〉 that is not part of a subtermof the form !(s, ·)〈·〉|Q, then we an write Pi−1 as Pi−1 = νb.E[(s, t)〈t′〉|P ′] forsome names b and some evaluation ontext E that has no restritions over itshole. Sine (s, t)〈t′〉 is not part of a subterm of the form !(s, ·)〈·〉|Q, ev s(E) isan evaluation ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).Without loss of generality, b ∩ fn(Ti−1, U) = ∅.We have Pi−1|syncout s(Ti−1;U) ≡ (νb.E[!(s, t)〈t′〉|P ′])|syncout(Ti−1;U)

(∗)

≡
νb.(E[!(s, t)〈t′〉|P ′]|syncout (Ti−1;U)) ≡ νb.(E[P ′]|syncout(Ti;U)) with
Ti := Ti−1 ∪ {t 7→ t′}. Here (∗) uses that b ∩ fn(Ti−1, U) =

∅. Hene νs.P |syncouts(T ;U)
(a)
→∗νai−1s.(Pi−1|syncout s(Ti−1;U)) →∗

νai−1sb.(E[P ′]|syncout s(Ti;U)) ≡ νais.(Pi|syncout s(Ti;U)) with Pi := E[P ′]and ai := ai−1b (remember that Ti = Ti−1 ∪ {t 7→ t′}. Thus (a) is satis�ed by
Pi, ai, Ti.Sine evs(Pi−1) ≡ νb.evs(E)[event start(t).evs(P ′)] is Ti−1-good by (b),we have by Lemma 3.6 (vii) that evs(E)[event start(t).evs(P ′)] is Ti−1-good.Sine E does not bind names over its hole, neither does ev s(E). Thus byLemma 3.6 (iii), ev s(E)[ev s(P ′)] = ev s(Pi) is Ti-good. Thus (b) is satis�edby Pi, ai, Ti.Sine Pi−1 = νb.E[(s, t)〈t′〉.P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus(d) is satis�ed by Pi, ai, Ti.That () is satis�ed by Pi, ai, Ti is shown as in the previous ase.Note that in the last two ases, the size of Pi is smaller than that of Pi−1, sowe eventually reah the �rst ase. Hene the onstrution terminates and weget a proess Pk that satis�es (a)�(d) and that does not ontain unprotetedinputs (s, ·)() or unproteted outputs !(s, ·)〈·〉. We have A ≡ νa.plains(P)

()
≡

νaak.plain
s(Pk). Thus A → A′ implies that νaak.plains(Pk) → A′ and andthus plains(Pk) → A′′ where A′′ is A′ with the restritions νaak removed. (I.e.

A′ ≡ νaak.A
′′.) Sine Pk is s-well-formed by (d) and does not ontain unprotetedinputs (s, ·)() or unproteted outputs !(s, ·)〈·〉, by inspetion of the de�nition of27

plains, ev s, and →, it follows that Pk → P ′ and ev s(Pk) → ev s(P ′) for some
s-well-formed P ′ with plains(P ′) ≡ A′′. The redution evs(Pk) → evs(P ′) doesnot use the EVENT rule. Sine evs(Pk) is Tk-good by (b), from Lemma 3.6 (ii)we have that evs(P ′) is Tk-good. Let B′ := νaaks.(P

′|syncout s(Tk;U)). Then
(A′, B′) ≡ (νaak.plain

s(P ′), B′) ∈ R. Finally, B = νas.(P |syncout s(T ;U))
(a)
→∗

νaaks.(Pk|syncout
s(Tk;U)) → νaaks.(P

′|syncout s(Tk;U)) = B′.
• If (A,B) ∈ R, and B → B′, then there exists an A′ with A→∗ A′ and (A′, B′) ∈ R:We have A ≡ νa.plains(P) and B ≡ νas.(P |syncout s(T ;U)) for some s-well-formed
P and T -good ev s(P).We distinguish three ases for B → B′:� B → B′ is a redution within syncouts(T ;U):In this ase, the redution of the form E[!(s, t)〈t′〉] → E[(s, t)〈t′〉|!(s, t)〈t′〉] forsome t, t′. Thus B′ ≡ νas.(P |syncout s(T ;U ∪ {t 7→ t′})). Then A = A′ :=

νa.plains(P) and evs(P) is T -good. Hene A→∗ A′ and (A′, B′) ∈ R.� B → B′ is a COMM redution between P and syncouts(T ;U):Then for some terms t, t′, some proess Q, and some evaluation ontext E, wehave P ≡ E[(s, t)().Q] for some t, t′, and B′ ≡ νas.(P ′|syncout s(T ;U ′)) with
P ′ := E[Q] and U ′ with U = U ′ ∪ {t 7→ t′}. Sine plains((s, t)().Q) =
plains(Q), we have A ≡ A′ := νa.plains(P ′). Furthermore, evs(P) =
ev s(E)[event end(t).evs(Q)] and evs(P ′) = evs(E)[ev s(Q)]. Thus byLemma 3.6 (iv), the fat that evs(P) is T -good implies that evs(P ′) is T -good.Hene A→∗ A′ and (A′, B′) ∈ R.� B → B′ is a redution within P .Thus P → P ′ for some P ′, and B′ ≡ νas.(P ′|syncout s(T ;U)). Sine P is
s-well-formed, we have P ≡ E[Q] → E[Q′] ≡ P ′ for some evaluation ontext
E and proess Q, suh that Q is of the form !(s, t)〈t′〉|Q1, or Q is a redexnot of the form !(s, ·)〈·〉, or Q = M〈N〉.Q1|M ′(x).Q2 with M 6=E (s, ·). (Weannot have a redution on a hannel (s, ·), sine s-well-formed terms haveoutputs on suh hannels only below bangs.) Without loss of generality, wean assume that all unproteted ourrenes of !(s, t)〈t′〉 in E are not belowa restrition (otherwise we ould move these restritions from E to νa).Let E∗ be E with all unproteted ourrenes of !(s, t)〈t′〉 removed (for arbi-trary t, t′). Let T ∗ be the multiset of the pairs (t 7→ t′) from these ourrenes.Then E[Q] ≡ E∗[Q]|syncout s(T ∗;∅). Sine evs(P) = ev s(E[Q]) is T -good,and sine ev s(E∗[Q]) results from ev s(P) by removing event start(t) for all
(t 7→ ·) ∈ T ∗, by Lemma 3.6 (iii) we have that ev s(E∗[Q]) is T ∪ T ∗-good.We now distinguish on the form of Q:
∗ If Q =!(s, t)〈t′〉|Q1:Then B′ ≡ νas.(E∗[Q1]|syncout s(T ′;U ′)) for T ′ := T ∪ T ∗ ∪ {t 7→
t′} and U ′ := U ∪ {t 7→ t′}, and A′ := νas.plain(E∗[Q1]) =28

νas.plain(E∗[!(s, t)〈t′〉|Q1]) ≡ A. And sine ev s(E∗[Q]) =
ev s(E∗)[event start(t).ev s(Q1)] is T∪T ∗-good, we have that ev s(E∗[Q]) ≡
ev s(E∗)[ev s(Q1)] is T ′-good by Lemma 3.6 (iii). Thus A →∗ A′ and
(A′, B′) ∈ R.

∗ If Q is a redex, or Q = M〈N〉.Q1|M ′(x).Q2 with M =E M
′ and M 6=E

(s, ·):Then B′ ≡ νas.(P ′|syncouts(T ′;U)) with P ′ = E∗[Q′] and Q 7→ Q′ and
T ′ := T ∪ T ∗. And A → A′ := νa.plain(P ′). And evs(Q) → evs(Q′).Sine E∗ is an evaluation ontext and does not ontain unproteted
!(s, t)〈t′〉, we have that evs(E∗) is an event evaluation ontext. Hene
ev s(E∗[Q]) = ev s(E∗)[ev s(Q)] → ev s(E∗)[ev s(Q′)] = ev s(P ′), not us-ing the EVENT rule. By Lemma 3.6 (ii) and using that evs(E∗[Q]) is
T ′-good, this implies that ev s(P ′) is T ′-good, too. Thus A →∗ A′ and
(A′, B′) ∈ R.

• If (A,B) ∈ R, and E is an evaluation ontext, then (E[A], E[B]) ∈ R:We have A ≡ νa.plains(P) for some s-well-formed P . And B ≡ νas.(P |
syncout s(T ;U)) for some sets T,U . And ev s(P) is T -good. Without loss of general-ity, a, s do not our in E (neither bound nor free). Let νb.E′ be E with all restri-tions over the hole moved up into b. Then E[A] ≡ νb.E′[A] and E[B] ≡ νb.E′[B].Sine P is s-well-formed, and E and hene E′ does not ontain s, E′[P] is s-well-formed.Sine E does not ontain a, s, we have that abs are distint names.Sine ev s(P) is T -good, by Lemma 3.6 (v) we have evs(E′[P])) = E′[evs(P)] is T -good. (We use the fat that E′ does not bind the fn(T) as they have been movedinto νb.)Thus (νab.plains(E′[P]), νabs.(E′[P]|syncout s(T ;U))) ∈ R with E′[P] instead of
P and ab instead of a.By de�nition of plains(·), E[A] ≡ νb.E′[A] ≡ νb.E′[νa.plains(P)] =
νab.plains(E′[P]). And E[B] ≡ νb.E′[B] ≡ νb.E[νas.(P |syncout s(T ;U))] ≡
νabs.(E′[P]|syncout s(T ;U)).Sine R is losed under strutural equivalene, this implies that (E[A], E[B]) ∈ R.Sine R is a bisimulation, and (plains(P), νs.P) ∈ R (using P, s as in the statementof the lemma), we have plains(P) ≈ νs.P . �3.2 Unpreditability of nonesLemma 3.8 (Unpreditability of nones) Assume that not all terms are equal withrespet to the equational theory E.10 Let C be a ontext not binding the variable x andlet P,Q be proesses. Then νr.C[if x = r then P else Q] ∼∼∼ νr.C[Q].10I.e., t1 6=E t2 for some terms t1, t2. Any useful equational theory satis�es this. But in priniple it ispossible for an equational theory to ontain, e.g., the equation x =E y.29

Proof. We �rst show that for any term t and any name r /∈ fn(t), we have t 6=E r: Assume
t =E r. Let u1, u2 be two terms. Let σi := {ui/r} for i = 1, 2. It an be easily seen thatif u =E v, then uσ =E vσ for arbitrary equational theories. From t =E r we thus have
tσi =E rσi. Sine r /∈ fn(t), we have tσi = t. Thus u1 = rσ1 =E t =E rσ2 = u2. Thus
u1 =E u2 for arbitrary terms u1, u2, in ontradition to the assumption from the lemma.In the following, a multi-hole ontext is a ontext C with zero, one, or more holes.
C[P] means C with every ourrene of the hole replaed by the same proess P .We de�ne the following relation R:

R :=
{
(νr.C[if t = r then P else Q], νr.C[Q])

}up to strutural equivalene. Here C ranges over multi-hole ontexts, t over terms,
r /∈ fv(t) over names, and P,Q over proesses.We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M , then B →∗↓M :Immediate sine �if t = r then P else Q� does not have unproteted outputs.
• If (A,B) ∈ R and B ↓M , then A→∗↓M :If the output on M is in C, A ↓M . Otherwise the output is in an unprotetedinstane of Q in νr.C[Q] ≡ B. Sine r /∈ fv(t), we have t 6=E r and hene
(if t = r then P else Q) → Q. Then A → A′ where A′ results from replaing oneinstane of �if t = r then P else Q� by Q. Then A′ ↓M .

• If (A,B) ∈ R and A→ A′ then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:Then A ≡ νr.C[if t = r then P else Q] and B ≡ νr.C[Q]. If the redution A→ A′takes plae in C, then there is a orresponding redution B → B′ and (A′, B′) ∈ R.Thus we an assume that one of the �if t = r then P else Q� is being re-dued in A. Sine t 6=E r, that subproess redues to Q. Thus A′ ≡
νr.C ′[if t = r then P else Q] where C ′ is C with one of the holes replaed by Q.Then B′ := B ≡ νr.C[Q] = νr.C ′[Q]. Hene B →∗ B′ and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′ then there is an A′ with A→∗ A′ and (A′, B′) ∈ R:Then A ≡ νr.C[if t = r then P else Q] and B ≡ νr.C[Q]. As before, we have
(if t = r then P else Q) → Q. The redution B → B′ may involve C and up to twoinstanes of Q. We an thus write B as B ≡ C ′′[Q] where C ′′ results from replaingin C the holes orresponding to these instanes of Q. These instanes of Q are notproteted, so the holes we have replaed by Q are not proteted, either. Thus A→∗

C ′′[if t = r then P else Q] =: A′′. Then the redution B ≡ C ′′[Q] → B′ involvesonly C ′′. Hene B′ ≡ C ′[Q] for some C ′, and A′′ → C ′[if t = r then P else Q] =: A′.Thus A→∗ A′ and (A′, B′) ∈ R. 30

• If (A,B) ∈ R and E is an evaluation ontext, then (E[A], E[B]) ∈ R:Then A ≡ νr.C[if t = r then P else Q] and B ≡ νr.C[Q]. Without loss of gen-erality, r /∈ fn(E), bn(E). Hene E[A] ≡ νr.E[C[if t = r then P else Q]] and
E[B] ≡ νr.E[C[Q]]. Hene (E[A], E[B]) ∈ R (with E[C] instead of C).We an now show the lemma. Let C,P,Q, r be as in the lemma. Let σ be a sub-stitution losing νr.C[if x = r then P else Q] and νr.C[Q]. Without loss of generality,

r /∈ fn(σ) (otherwise we rename r and hange C,P,Q aordingly). In partiular,
σ(x) will be some losed term t with r /∈ fn(t). Then C[if x = r then P else Q]σ =
C ′[if t = r then P ′ else Q′] and C[Q]σ = C ′[Q′] where C ′, P ′, Q′ are the result of apply-ing σ to C,P,Q. (In the ase of P,Q, restrited to those variables not bound by C.) And
(C ′[if t = r then P ′ else Q′], C ′[Q′]) ∈ R. Thus C ′[if t = r then P ′ else Q′] ≈ C ′[Q′].Sine this holds for any losing σ, we have C[if x = r then P else Q] ∼∼∼ C[Q]. �4 Symboli UCIntuition. We start by presenting the intuition that underlies the original UC frame-work [Can01℄ and thus also our work. The basi idea is to de�ne seurity of a protool πby omparing it to a so-alled ideal funtionality F . The ideal funtionality is a mahinethat by de�nition does what the protool should ahieve. For example, if the task of theprotool is to transmit a messagem seurely from Alie to Bob, then the funtionality is atrusted mahine that expets a message m from Alie over a seure hannel, sends to theadversary that suh a message was reeived (but does not send the message itself), andthen after the adversary allows delivery, forwards the message to Bob. (In the appliedpi alulus, this funtionality would be net scstart().ioA(x).netnotify〈〉.netdeliver ().ioB 〈x〉where the net ...-hannels belong to the adversary; see De�nition 6.2 below.) In a sense,the funtionality is an abstrat spei�ation of the protool behavior, and the protool issupposed to be a onrete instantiation of that spei�ation using rypto, in a way thatpreserves the seurity properties of the spei�ation.So how to model that a protool π is as seure as a funtionality F? The basi ideais to ensure that any attak on π is also possible on F . Sine by assumption F does notallow any attaks, this implies that π does not allow any attaks either, so π is seure. Tomodel that any attak on π is possible on F , we require that for any adversary attaking
π, there is a orresponding adversary (the �simulator�) attaking F that performs anequivalent attak. And what do we mean by equivalent? Any �environment� that anobserve the overall protool outome (inputs and outputs), and that an talk to theadversary (i.e., it learns what seret information the adversary might have obtained),annot distinguish between the two attaks. In other words, for any adversary A, thereis a simulator S suh that for all environments Z, we have that π+A+Z (the protoolrunning with A and Z) and F + S + Z are indistinguishable from Z's point of view.Notie that we do not wish to allow Z to observe the internal protool ommuniation �doing so would require that π and F work the same way internally, but we only want thatthe two have the same �observable e�ets�, we do not are about their inner workings.31

Due to this, in a formal de�nition, we need to distinguish between the protool-internalommuniation hannels (net-hannels), and the protool's interfae (io-hannels). Onlythe latter is aessible to the environment.Formal de�nition. To formalize the above intuition in the applied pi alulus, we�rst formalize the distintion between hannels that make up the protool's input/outputinterfae, and those that make up the protool's internal hannels. We partition the set ofall names into two sets IO and NET (both in�nite). We will then require adversaries andsimulators to only ommuniate on NET hannels. We do not forbid the environmentto aess NET hannels, the fat that the adversary/simulator an interept the NEThannels has the e�et that the environment annot use them to distinguish.In order to keep the distintion between NET-hannels and IO-hannels, we also wantto avoid that NET-hannels are transmitted to the environment (we use this in a fewplaes in our proofs):De�nition 4.1 We all a proess P NET-stable if every name n ∈ NET ∩ fn(P) in Pours only in hannel identi�ers (i.e., in partiular, P does not send n to the environ-ment).Note that there is no restritions on the bound names. Thus a NET-stable adversaryis free to share arbitrary fresh names with the environment and to use them as hannels.We now de�ne the onept of an adversary. Essentially, an adversary is just a proess
A that is intended to interat with the protool (or funtionality). Sine the adversaryonnets to the protool over some NET-names, the spei�ation of the adversary ad-ditionally inludes a list of NET-names n of the protool that will be aessed by A(and are thus private between A and the protool). Finally, an adversary/simulatorsometimes needs to rename NET-hannels of the protool/funtionality to avoid namelashes. Sine NET-hannels are protool internal and not part of the externally visibleinterfae, it should not matter whether the same name is used in protool and funtional-ity or not. This is ahieved by letting the adversary rename NET-names, we model thisby speifying a renaming ϕ as part of the adversary.De�nition 4.2 An adversary is a triple (A,ϕ,n) where A is a losed NET-stable proesswith IO ∩ fn(A) = ∅, ϕ : NET → NET a bijetion and n a list of names n ⊆ NET.We an now state our seurity de�nition. Both protool and funtionality are modeledby proesses P and Q , respetively. An adversary (A,ϕA, nA) onneting to P is modeledas νnA.(PϕA|A), as we would expet from the meaning of ϕ and n explained above.To model that P emulates Q, we would require that νnA.(PϕA|A) and νnS .(QϕS |S)are indistinguishable for any environment for a suitable simulator (S,ϕ, n). We do notneed to speify the environment expliitly beause we have the notion of observationalequivalene: νnA.(PϕA|A) ≈ νn.(Qϕ|S) means that no ontext an distinguish the leftand right hand side. The following de�nition aptures this, exept that we make onesimpli�ation: Instead of quantifying over all adversaries (A,ϕA, nA), we �x A := 0, ϕA32

the identity, and nA the empty list, so that νnA.(PϕA|A) = P . (Suh an adversary, thatessentially just leaves all NET-hannels aessible to the environment, is usually alleda dummy adversary .) This de�nition is often tehnially muh simpler to handle, andLemma 4.4 below guarantees that it is equivalent to the more natural de�nition thatquanti�es over all adversaries.De�nition 4.3 Let P and Q be proesses. We say P emulates Q (written P ≤ Q) i�there exists an adversary (S,ϕ, n) suh that P ∼∼∼ νn.(Qϕ|S). (S,ϕ, n) will often be alledsimulator.We use the more general full observational equivalene ∼∼∼ (see page 11) to allow fornon-losed P,Q. For losed P,Q, one an use ≈ instead and gets an equivalent de�nition.Note that there is no formal distintion between protools and funtionalities. Indeed,it an sometimes be onvenient to ompare two protools P,Q. Furthermore, note that
≤ is weaker than ∼∼∼: P ∼∼∼ Q entails P ≤ Q (and Q ≤ P) with the simulator (0, id , ∅).As observed in [KDMR08℄ there are several approahes to de�ne simulation basedseurity. The following Lemma shows that our de�nition (resembling strong simulatabilityis equivalent to the two alternatives: blak-box simulatability and universally-omposablesimulatability (the latter being the de�nition that orresponds diretly to the intuitiongiven at the beginning of this setion).Lemma 4.4 For proesses P , Q we have that the following are equivalent:(i) strong simulatability: P ≤ Q(ii) blak-box simulatability: ∃(S,ϕS , nS) ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼

νnA.((νnS.(QϕS |S))ϕA|A)(iii) universally-omposable simulatability: ∀(A,ϕA, nA) ∃(S,ϕS , nS) νnA.(PϕA|A) ∼∼∼
νnS .(QϕS |S)where all triples are adversaries aording to De�nition 4.2.Proof.

• (i) ⇒ (ii):
P ≤ Q⇒ ∃(S,ϕS , nS) P ∼∼∼ νnS .(QϕS |S)

(∗)
⇒ ∀ bijetions ϕA PϕA

∼∼∼ (νnS .(QϕS |S))ϕA

(∗∗)
⇒ ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼ νnA.((νnS .(QϕS |S))ϕA|A)

(∗) sine ∼∼∼ is losed under renaming and (∗∗) sine ∼∼∼ is losed under the appliationof evaluation ontexts.
• (ii) ⇒ (iii): Let (S,ϕS , nS) be the simulator from (ii), (A,ϕA, nA) be an adversaryand ϕ a bijetion on names suh that nS(ϕ◦ϕA)∩ fn(A) = ∅ and ϕ is the identity

33

on the free names of Q(ϕA ◦ ϕS) and SϕA (this ϕ an be used as α-onversion instep three below). We observe
νnA.((νnS .(QϕS |S))ϕA|A)

≡ νnA.(νnSϕA.(Q(ϕA ◦ ϕS)|SϕA)|A)

≡ νnA.(νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA))|A)

≡ νnA.νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA)|A)and thus (SA, nSA
, ϕSA

) := (S(ϕ ◦ ϕA)|A,nA ∪ nS(ϕ ◦ ϕA), (ϕ ◦ ϕA ◦ ϕS)) is anadversary suh that
νnA.(PϕA|A) ∼∼∼ νnSA

.(QϕSA
|SA)

• (iii) ⇒ (i) We onstrut the simulator from the last step for the adversary (0,∅, id)and have (i).
�Lemma 4.5 (Re�exivity, transitivity) Let P,Q,R be proesses. Then P ≤ P . Andif P ≤ Q and Q ≤ R, then P ≤ R.Proof. P ≤ P follows diretly from De�nition 4.3 by setting S := 0, ϕ as the identity,and n := ∅.Assume now that P ≤ Q and Q ≤ R. Then there are proesses S1, S2 with IO ∩

fn(S1) = IO ∩ fn(S2) = ∅, bijetions ϕ1, ϕ2 : NET → NET, and lists of names n1, n2 ⊆
NET suh that P ∼∼∼ νn1.(Qϕ1|S1) and Q ∼∼∼ νn2.(Rϕ2|S2). Without loss of generality wean hoose n2 suh that n2ϕ1 ∩ fn(S1) = ∅. It follows

P ∼∼∼ νn1.(Qϕ1|S1)
(∗)
∼∼∼ νn1.((νn2.(Rϕ2|S2))ϕ1|S1)]
(∗∗)

≡ νn1.((νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1))|S1)
(∗∗∗)

≡ νn1.νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1|S1)Here (∗) follows sine ∼∼∼ is losed under the appliation of evaluation ontexts and underrenaming of free names.And (∗∗) follows sine for any proess R, we have (νn2.R)ϕ1 ≡ νn2ϕ1.(Rϕ1).And (∗∗∗) follows sine n2ϕ1 ∩ fn(S1) = ∅.Thus, hoosing n := n1∪n2ϕ1, ϕ := ϕ1◦ϕ2, and S := S2ϕ1|S1, we get P ∼∼∼ νn.(Rϕ|S).Hene P ≤ R. �

34

Corruption. So far, we have not yet modeled the ability of the adversary to orruptparties. There are two main variants of orruption: stati and adaptive orruption. Inthe ase of stati orruption, it is determined in the beginning of the protool who is or-rupted. For adaptive orruption, orruption may our during the protool and dependon protool messages. Modeling stati orruption is quite easy in our model: When aparty X is orrupted, we simply remove the subproess PX orresponding to that partyfrom the protool P , make all NET-names ourring in PX publi, and � in the ase of afuntionality � additionally rename all IO-names of PX into NET-names. For example,if P = νnet1net2.(PA|PB |F) where net1 ours in PA and PB and net2 only in PB , and
F has IO-names ioFA, ioFB then orrupting A leads to P ′ = νnet2.(PB |F{netFA/ioFA}).And a funtionality G with IO-names ioA, ioB beomes G{netA/ioA}.So, if we want to verify that a P emulates G for any orruption, we need to hek:

• Unorrupted: P ≤ G.
• Alie orrupted: νnet2.(PB |F{netFA/ioFA}) ≤ G{netA/ioA}.
• Bob orrupted: PA|F{netFB/ioFB} ≤ G{netB/ioB}.An example is given in Setion 9.1 in the ase of UC seure ommitments.Modeling adaptive orruptions is more omplex. For this one would need to introduespeial parties that reat to a speial signal from the environment and then swith intoa orrupted mode. We do not follow that approah here.5 CompositionOne of the salient properties of the UC framework is omposition. Assume a protool

π UC-emulates a funtionality F . And ρ is a protool using F . Then ρπ/F (whih is ρwith F replaed by π) UC-emulates ρ. And hene, by transitivity, if ρ emulates somefuntionality G, ρπ/F UC-emulates G.In our ontext, ideally we would like a omposition theorem suh as P ≤ Q =⇒
C[P] ≤ C[Q] for arbitrary ontexts C. Unfortunately, the situation is not as simple.A simple observation is that if C may ontain NET-names, then omposition will notwork: For example, assume P ≤ Q, and P is a protool using some NET-hannel net toimplement an ideal funtionality Q (whih does not use net). And C = �|R reeives ona NET-hannel net and outputs the reeived messages on an IO-hannel io. Then C[P]will output protool-internal messages on io (observable to the environment), while C[Q]will not (sine the funtionality Q will not use the hannel net). Hene C[P] 6≤ C[Q].(We give a formal analysis of the various ases in whih the omposition theorem doesnot hold in Appendix A.)Thus a �rst ondition on C is that it may not use the same NET-names. In fat,we show below (Theorem 5.37) that if C is an evaluation ontext binding only IO-namesand not using any of the NET-names of P,Q, then P ≤ Q =⇒ C[P] ≤ C[Q] holds.This already allows for a large range of omposition operations. (In partiular, wean onnet di�erent protools through their interfaes seurely by omposing them in35

parallel, and restriting the IO-hannels through whih they are onneted.) But oneimportant operation is missing, namely onurrent omposition. Conurrent ompositionmeans that if P ≤ Q, then P ′ ≤ Q′ where P ′ onsists of many instanes of P and Q′analogously. Suh a result is important in many ases, e.g., if P is a single session key-exhange, but an embedding protool needs a large number of keys. The most obviousway to model this in our setting would be a theorem stating P ≤ Q =⇒ !P ≤ !Q.Unfortunately, suh a theorem annot hold, either. The intuitive reason is as follows:When trying to onstrut a simulator for !Q, then this simulator will not be able todistinguish messages from di�erent instanes of Q. The simulator will then be unable toeven deide whether he talks to a single instane or several. For example:
P := νnm.

(
io1〈n〉 | io2(x).if x = n then net2〈m〉

| io3(x).if x = n then net3〈m〉
)

Q := νn.
(
io1〈n〉 | io2(x).if x = n then net2〈empty〉

| io3(x).if x = n then net3〈empty〉
)Here we have P ≤ Q beause a simulator reeiving empty on net2 or net3 just has toreplae it by some fresh name m. However, we do not have !P ≤ !Q. Depending onthe messages the environment sends on io2, !P will output either the same name m on

net2,net3, or di�erent names m,m′. However, a simulator interating with !Q in bothases gets empty , empty on net2,net3. The simulator then does not know whether heshould hange this into m,m or m,m′ for fresh m,m′. Thus the simulator fails. (Theformal argument is in Appendix A.)So we annot have a theorem stating P ≤ Q =⇒ !P ≤ !Q. Does this mean on-urrent omposition is not possible? No, just that ! is not the right operator to modelit. In the omputational UC framework, omposition also does not involve a number ofindistinguishable instanes. Instead, eah instane of P and Q is given a unique sessionid, and all ommuniation is tagged with that session id so that it an be routed to theright instane. In our setting, one possibility to ahieve this is to de�ne an operator !!suh that !!P behaves like an unlimited number of instanes of P , where eah instane istagged with a unique session id sid . I.e., eah hannel C in P is replaed by (sid , C).11The question is how to de�ne !!P . The applied pi alulus does not have any onstrutthat onveniently allows to perform in�nite branhing with di�erent ids. Thus, we haveto work around this restrition by introduing a more elaborate onstrution. As a �rststep, we de�ne the tagged version P ((M)) of the proess P :De�nition 5.1 Let P be a proess, and let M be a term. We write P((M)) for P withevery ourrene of C (x) replaed by (M ,C)(x) and every ourrene of C 〈T 〉 replaedby (M ,C)〈T 〉.11One might instead onsider tagging the messages sent over the hannel with sid . This, however, doesnot work as well: One would need a spei� multiplexer proess that given a message (sid , T) disoversthe orresponding instane of P and delivers to it. This might be possible, but is probably onsiderablymore ompliated than the approah we take below.36

Now we have to somehow de�ne !!P as P ((s1))|P ((s2))| . . . where s1, s2, . . . range oversome in�nite set SID of session ids. Using produt proesses (see Setion 2.2) this iseasy: !!P :=
∏

x∈SID P ((x)) does the job. However, produt proesses are a nonstan-dard extension of the applied pi alulus, but we wish to stay ompatible with existingvariants (in partiular, to be able to use Proverif for veri�ation). Thus, instead ofusing ∏x∈SID P ((x)), we de�ne a suitable ontext C suh that C[P ((x))] behaves like∏
x∈SID P ((x)). Then we an de�ne !!P := C[P ((x))]. Of ourse, depending on the parti-ular set SID we hoose, a di�erent ontext C will be needed. Instead of �xing a partiularone, we thus give a general de�nition what ontexts are suitable for a given set SID , andfrom then on, just assume an arbitrary suh ontext.De�nition 5.2 (Indexing ontext) Given a set S of terms, a variable x (will be usedfor tagging), and names n, we all a losed ontext Cx ,n with bn(Cx ,n) = n and fn(Cx ,n) =

∅ (not ontaining indexed repliations) an S-indexing ontext i� for all proesses Pwith
x 6∈ bv(P) 12 and n ∩ fn(P) = ∅ we have

Cx ,n [P((x))] ∼∼∼
∏

x∈S

P((x))In the following, we �x a set SID of terms ontaining no names or variables. The set
SID will represent the set of all session IDs. We assume that id =E id ′ entails id = id ′for id , id ′ ∈ SID (di�erent IDs are never equivalent by the equational theory).Note that not for every set SID a SID-indexing ontext exists. For example, if SID isnot semi-deidable (but the equational theory is), then there is no SID-indexing ontext.One might be onerned that our de�nition of SID -indexing ontexts annot be ful�lled.The following de�nition shows that this is not the ase, at least if we use suitably enodedbitstrings as SIDs.De�nition 5.3 Assume that a nullary onstrutor nil and unary onstrutors zero and
one are part of our symboli model. Let SIDbits be the set of all terms built from nil , zeroand one. Assume furthermore that for id , id ′ ∈ SIDbits in our symboli model id =E id ′entails id = id ′. Let

CSIDbits
x ,a := νa.(a〈nil〉|!a(x).(a〈zero(x)〉|a〈one(x)〉|�))Intuitively, CSIDbits

x ,a is a fatory with parameters x and a for tagged instanes of Pthat realizes the abstrat onstrution of ∏x∈SIDbits
P ((x)). We now show that CSIDbits

x ,aatually is an SIDbits-indexing ontext. Towards this goal we �rst de�ne an intermediaterepresentation of CSIDbits
x ,a .12P may have x ∈ fv(P) but we forbid x ∈ bv(P) to avoid tehnialities in the de�nition of P((x)) dueto the shadowed x .

37

De�nition 5.4 Let P be a proess. We write Pn for n parallel instanes of P (P | . . . |P).We de�ne the following funtions on the set of proesses:
Gx ,a(P) :=a(x).(a〈zero(x)〉 | a〈one(x)〉 | P)

Gn
x ,a(P) :=(Gx ,a(P))n | !Gx ,a (P)

C(sID ,gID ,n)
x ,a (P) :=Σx∈sIDP | νa.(Σx∈gIDa〈x 〉 | G

n
x ,a(P))where Σx∈T P for a �nite set of terms T = {T1 , . . . ,Tl} is syntati sugar for

P{T1/x}| . . . |P{Tl/x} (this is only well-de�ned up to strutural equivalene), sID ⊆
SID, gID ⊆ SID and n ∈ N.Intuitively, sID (spawned IDs) ontains the ids for all instanes of P , that havealready been tagged but are still formally a part of CSIDbits

x ,a (i.e., �are still in the fatory�).
gID is the foundation for the ids yet to be generated. These ids are the elements of thespan of gID whih we will introdue in the following de�nition. The last parameter nexists mainly for tehnial reasons and ounts the number of urrently ative generatorinstanes Gx ,a(P).De�nition 5.5 (Span) Let S ⊆ SIDbits be a set of IDs. We all 〈S〉 := S ∪
{cn(. . . c2(c1(s)) . . .) : s ∈ S, ci ∈ {zero, one}} the span of S (note that 〈S〉 ⊆ SIDbits).The following de�nition bridges the gap between C

(sID ,gID,n)
x ,a (P((x))) and∏x∈S P((x)).Have in mind that S denotes the set of ids that are yet to be used by the produt proessfor tagging and we have S = SIDbits at the beginning.De�nition 5.6 (S-valid) Let sID ⊆ SIDbits , gID ⊆ SIDbits and S ⊆ SIDbits be sets ofids and sID and gID be �nite. We all C(sID ,gID,n)

x ,a S-valid if sID = ∅ and gID = {nil}or if(i) sID ⊆ S(ii) gID = {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}} where G := (SIDbits \ S) ∪ sID(intuitively, G is the set of ids already generated)(iii) 〈gID〉 = S \ sIDLemma 5.7 Let S ⊆ SIDbits and C
(sID ,gID ,n)
x ,a be S-valid where n ≥ 1. Then for any

id ∈ gID we have that C(sID ′,gID ′,n−1)
x ,a is S-valid where sID ′ := sID ∪ {id} and gID ′ :=

gID \ {id} ∪ {zero(id), one(id)}.Proof. Due to De�nition 5.6 point iii we have that gID ∩ sID = ∅ and gID ⊆ S. Wehek the three points of De�nition 5.6 for sID ′ and gID ′:(i) id ∈ gID ⊆ S and sID ⊆ S entail sID ′ = (sID ∪ {id}) ⊆ S38

(ii) For a set G ⊆ SIDbits we de�neM(G) := {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}}.By assumption we have gID = {nil} or gID = M(G) for G := (SIDbits \ S) ∪ sID .The �rst ase leads to sID ′ = {nil} and gID ′ = {zero(nil), one(nil)} for whihthis point an easily be veri�ed. For the seond ase we de�ne G′ := G ∪ {id}.
id 6∈ M(G′) sine id ∈ G′. f(id) ∈ M(G′) for f ∈ {zero, one} i� f(id) 6∈ G′. Weassume towards ontradition that f(id) ∈ G′. Then f(id) ∈ G and by de�nitionof G f(id) ∈ (SIDbits \ S) ∪ sID . However

• f(id) ∈ (SIDbits \ S) entails f(id) 6∈ S and thus f(id) 6∈ 〈gID〉. This ontra-dits f(id) ∈ 〈gID〉 (whih holds sine id ∈ gID).
• f(id) ∈ sID entails f(id) 6∈ 〈gID〉 and leads to a ontradition analogously.All together we have f(id) 6∈ G′ and hene M(G′) = M(G) \ {id} ∪

{zero(id), one(id)} = gID ′.(iii) 〈gID ′〉 = 〈gID\{id}∪{zero(id), one(id)}〉 = 〈gID〉\{id} = S\sID\{id} = S\gID ′.
�To show that CSIDbits

x ,a is a SIDbits-indexing ontext (see Lemma 5.10) we �rst show
C
(sID ,gID ,n)
x ,a (P((x))) ∼∼∼ νa.

∏
x∈S P((x)) for every S-valid C

(sID ,gID ,n)
x ,a .Lemma 5.8 Let P be a proess and M be a term. If C(sID ,gID ,n)
x ,a (P((x))) lM there isexatly one id ∈ sID suh that P((id)) lM .Proof. It is easy to see that C(sID ,gID ,n)

x ,a (0) never ommuniates on a hannel (note that
a is bound). Hene for C(sID ,gID ,n)

x ,a (P((x))) lM we need one of the tagged instanes of Pin C
(sID ,gID ,n)
x ,a (P((x))) to ommuniate on M , i.e., P((id)) lM for some id ∈ sID requiring

M =E (id ,�). Analogously, for any id ′ ∈ sID with P((id ′)) lM we have M =E (id ′,�).Due to De�nition 2.5 (vi) (natural symboli model) this entails id =E id ′ whih leads to
id = id ′ by de�nition of SIDbits (sID ⊆ SIDbits). Thus, the ID id with P((id)) lM isunique. �Lemma 5.9 Let P be a proess with at most one free variable, whih we all x if existent,and x 6∈ bv(P). Let a 6∈ fn(P) be a name. Then

C(∅,{nil},0)
x ,a (P((x))) ≈

∏

x∈SIDbits

P((x))Proof. We de�ne the relation
R := ≈ ∪ {(E [C(sID ,gID ,n)

x ,a (P((x)))], E [
∏

x∈S

P((x))]) : for any n ≥ 0, S ⊆ SIDbits ,evaluation ontext E , proess P and C(sID ,gID ,n)
x ,a S-valid}losed under strutural equivalene. Then we show that R ⊆ ≈. Towards this goal weshow that R and R−1 are simulations. We start with R:39

• E [C
(sID ,gID,n)
x ,a (P((x)))] ↓M : If E [0] ↓M we obviously have E [

∏
x∈S P((x))] ↓M . Oth-erwise C

(sID ,gID ,n)
x ,a (P((x))) ↓M . In this ase, aording to Lemma 5.8, there isa distint id ∈ sID suh that P((id)) ↓M and, sine E [C

(sID ,gID ,n)
x ,a (P((x)))] ↓M ,

E [P((id))] ↓M . On the other hand, due to the S-validity of C(sID ,gID ,n)
x ,a , sID ⊆

S. With id ∈ S we have ∏x∈S P((x)) → P((id))|
∏

x∈S\{id} P((x)) and hene
E [
∏

x∈S P((x))] →↓M .
• E [C

(sID ,gID,n)
x ,a (P((x)))] → (E [C

(sID ,gID ,n)
x ,a (P((x)))])′: We distinguish three ases1. → does only a�et C(sID ,gID ,n)

x ,a (P((x))) up to strutural equivalene. Inthis ase we have E [0] → E ′[0], E [
∏

x∈S P((x))] → E ′[
∏

x∈S P((x))] and
(E ′[C(sID ,gID ,n)

x ,a (P((x)))], E ′[
∏

x∈S P((x))]) ∈ R.2. → is a COMM redution that interferes with E and C
(sID ,gID,n)
x ,a (P((x))). Dueto Lemma 5.8 we �nd a distint id ∈ sID suh that

E [C(sID ,gID ,n)
x ,a (P((x)))] → E ′[P((id))′|C(sID\{id},gID ,n)

x ,a (P((x)))]Analogously to the ase for E [C
(sID ,gID ,n)
x ,a (P((x)))] ↓M we spawn a properlytagged instane of P from ∏

x∈S P((x)). With Ẽ [�] := E ′[P((id))′|�] we have
(Ẽ [C(sID\{id},gID ,n)

x ,a (P((x)))], Ẽ [
∏

x∈S\{id}

P((x))]) ∈ Rsine C(sID\{id},gID ,n)
x ,a is (S \ {id})-valid.3. → does only a�et E up to strutural equivalene. In this ase we have

C
(sID ,gID ,n)
x ,a (P((x))) → C

(sID ,gID,n)
x ,a (P((x)))′. We distinguish three ases:� → is a REPL redution and spawns a new instane of Gx ,a (seeDe�nition 5.4). In this ase C

(sID ,gID ,n)
x ,a (P((x))) → C

(sID ,gID ,n+1)
x ,a (P((x)))and (E [C

(sID ,gID ,n+1)
x ,a (P((x)))], E [

∏
x∈S P((x))]) ∈ R.� → is a COMM redution on hannel a (a〈id〉) (note that this requires

n ≥ 1). In this ase id ∈ gID ⊆ S and C
(sID ,gID,n)
x ,a (P((x))) →

C
(sID ′,gID ′,n−1)
x ,a (P((x))) where sID ′ := sID ∪{id} and gID ′ := gID \{id}∪

{zero(id), one(id)}. By Lemma 5.7 we see that C(sID ′,gID ′,n−1)
x ,a (P((x))) isstill S-valid. Hene (E [C

(sID ′,gID ′,n−1)
x ,a (P((x))))], E [

∏
x∈S P((x))]) ∈ R.� → is a redution of one of the P -instanes P((id)) (id ∈ sID) (note thatdue to Lemma 5.8 and a 6∈ fn(P) only one instane an be a�eted). Inthis ase we proeed analogously to ase 2.

• Obviously R is losed under the appliation of evaluation ontexts.We ontinue by showing the three points of observational equivalene for R−1:40

• E [
∏

x∈S P((x))] ↓M i� E [0] ↓M . Therefore E [C
(sID ,gID ,n)
x ,a (P((x)))] ↓M .

• E [
∏

x∈S P((x))] → E [
∏

x∈S P((x))]′: If we have E [∏x∈S P((x))] → E ′[
∏

x∈S P((x))] wehave (E ′[
∏

x∈S P((x))], E ′[C
(sID ,gID ,n)
x ,a (P((x)))]) ∈ R−1. Otherwise → is an IREPLredution: ∏x∈S P((x)) → P((id))|

∏
x∈S\{id} P((x)) with id ∈ S. On the right sideof the relation we have E [C

(sID ,gID ,n)
x ,a (P((x)))]. Sine C

(sID ,gID ,n)
x ,a (P((x))) is S-valid,we have that id ∈ sID or id ∈ 〈gID〉.If id 6∈ sID , i.e., id ∈ 〈gID〉, id is of the form id = cl(. . . c1(id0) . . .) for some

id0 ∈ gID , some l ∈ N and ci ∈ {zero, one} for i ∈ {1, . . . , l}. We write idi for
ci(. . . c1(id0) . . .) for i ∈ {1, . . . , l}, ci := zero if ci = one, ci := one otherwise and
idi for ci(ci−1(. . . c1(id0) . . .)). The redution a〈idi 〉

−−−→ denotes a REPL redution thatspawns an instane of Gx ,a (see De�nition 5.4) and a following COMM redutionon hannel a with message idi ∈ gID . The appliation of the sequene a〈id0 〉
−−−−→

. . .
a〈idk 〉
−−−−→ to E [C

(sID ,gID ,n)
x ,a (P((x)))] for some 0 ≤ k ≤ l yields a proess that isstruturally equivalent to E [C(sIDk ,gIDk,n)

x ,a (P((x)))] with sIDk := sID∪{id0 , . . . , idk}and gIDk := gID \ {id0 } ∪ {id1 , . . . , idk−1} ∪ {zero(idk), one(idk)}. For eah step
k k + 1 the S-validity of C(sIDk,gIDk,n)

x ,a is guaranteed by Lemma 5.7. We de�ne
sID ′ := sID l and gID ′ := gID l and have that id ∈ sID ′.Otherwise, if id ∈ sID , we de�ne sID ′ := sID and gID ′ := gID .With id ∈ sID ′ and E ′[�] := E [P((id))|�] we have that

(E ′[
∏

x∈S\{id}

P((x))], E ′[C(sID ′\{id},gID ′,n)
x ,a (P((x)))]) ∈ R−1sine C

(sID ′\{id},gID ′,n)
x ,a is (S \ {id})-valid.

• Obviously R−1 is losed under the appliation of evaluation ontexts.Sine C(∅,{nil},0)
x ,a is SIDbits-valid the Lemma holds. �Lemma 5.10 CSIDbits

x ,a is an SIDbits-indexing ontext.Proof. Let, aording to De�nition 5.2, P be a proess and x be a variable with x 6∈ bv(P).We pik a name a with a 6∈ fn(P). We laim
CSIDbits
x ,a

∼∼∼
∏

x∈SIDbits

P((x))We have to show CSIDbits
x ,a [P((x))]σ ≈ (

∏
x∈SIDbits

P((x)))σ for all losing substitutions σ.W.l.o.g. a 6∈ σ and σ(x) = x and thus it su�es to show
CSIDbits
x ,a [P((x))σ] ≈

∏

x∈SIDbits

(P((x))σ) (3)41

Note that Pσ is a proess with at most one free variable, denoted x . Furthermore
x 6∈ bv(Pσ), a 6∈ fn(Pσ) and CSIDbits

x ,a [P((x))σ] = C
(∅,{nil},0)
x ,a (P((x))σ) by De�nition 5.4.By Lemma 5.9 we have (3) whih onludes our proof. �We stress that CSIDbits

x ,a is just one example of an indexing ontext. From now on SID isan arbitrary but �xed set of indexes and CSID
x ,n an arbitrary but �xed SID -indexing ontextaording to De�nition 5.2. All our results then hold independently of the partiularhoie of SID .We an now �nally de�ne !!P :De�nition 5.11 (Indexed repliation) Let P be a proess. We de�ne !!xP :=

CSID
x ,n [P((x))] where we assume w.l.o.g. x 6∈ bv(P) and n ∩ fn(P) = ∅ (otherwise werename x in P and n in CSID

x ,n). We write !!P for !!xP with x 6∈ (fv(P) ∪ bv(P)).Notie that our de�nition is a bit more general, we an even write !!xP , in this ase Pwill have aess to the sid via the variable x. We need this added �exibility in Setion 8.3for the protool KE∗.The following four lemmas state several important properties of !!. We will need theseto prove the omposition theorem below. Lemmas 5.12, 5.13, and 5.36 also hold for !instead of !!. But Lemma 5.35 is spei� to !!, and is ruial for enabling the ompositiontheorem.Lemma 5.12 Let P be a proess and ϕ : N → N be a permutation on names. Then
(!!xP)ϕ ≡ !!x (Pϕ) for all variables x 6∈ bv(P).Proof. Pik names n with n ∩ fn(P) = ∅ and ϕ(n) ∩ fn(P) = ∅. Note that (!!xP)ϕ ≡
CSID
x ,n [P((x))]ϕ. Therefore (!!xP)ϕ ≡ CSID

x ,n [P((x))]ϕ = CSID
x ,ϕ(n)[P((x))ϕ] ≡ !!x (Pϕ) sine

ϕ(n) ∩ fn(P) = ∅. �Lemma 5.13 Let P , Q be proesses. Then P ∼∼∼ Q ⇒ !!xP ∼∼∼ !!xQ for all variables
x 6∈ bv(P) ∪ bv(Q).This lemma was surprisingly hard to prove. Before we proeed to the proof (for whihwe have to develop a number of auxiliary onepts and de�nitions �rst) We very roughlysketh the proof idea here: The main thing to show is that P ≈ Q =⇒ P ((M)) ≈ Q((M))for arbitrary �xed M . To show this, we de�ne an operation untag that maps P ((M)) to
P , i.e., removes the tag M from all hannels. Then we wish to prove that the followingrelation is a bisimulation: ∼Ssid

:= {(P ,Q) : untag(P) ≈ untag(Q)}. One we have that,we see that P ((M)) ∼Ssid
Q((M)) and hene P ((M)) ≈ Q((M)). Unfortunately, ∼Ssid

isnot really a bisimulation. A bisimulation must be losed under evaluation ontexts, evenunder ontexts in whih not all hannels are tagged with M . To solve this problem, wetweak untag in suh a way that non-tagged hannels C are mapped to speially markedhannels (using a speial name nsid)whih an then be mapped bak to C when taggingagain. And we need to tweak the notion of a bisimulation slightly, so that ∼Ssid
only42

needs to be losed under evaluation ontexts on whih our operation untag works properly.These tweaks lead to an unexpetedly omplex proof of Lemma 5.13.Before we prove Lemma 5.13 (on page 55), we will need to develop a number of toolsand lemmas.De�nition 5.14 A set S of losed proesses is n-omplete for a name n i� for anylosed proess P with n 6∈ fn(P) ∪ bn(P), there is a losed proess S ∈ S suh that
P ≈ S.De�nition 5.15 (S-n-observational equivalene) Let S be a set of losed proessesand n be a name. An S-n-simulation R is a relation on losed proesses P , Q with
n 6∈ (fn(P) ∪ fn(Q) ∪ bn(P) ∪ bn(Q)) suh that (P ,Q) ∈ R implies(i) if P ↓M then Q →∗↓M(ii) if P → P ′ with n 6∈ fn(P ′) ∪ bn(P ′) then Q →∗ Q ′ and (P ′,Q ′) ∈ R for some Q ′(iii) (νs.(S|P), νs.(S|Q)) ∈ R for all losed S ∈ S and names s ⊆ N with n 6∈ (fn(S)∪

bn(S) ∪ s).A relation R is an S-n-bisimulation if both R and R−1 are S-n-simulations. S-n-observational equivalene (≈n
S) is the largest S-n-bisimulation.Intuitively ≈n

S is like observational equivalene on proesses that do not ontain nwhere the environment is restrited to be a proess from S. It is easy to hek thatthe transitive hull of ≈n
S satis�es the onditions (i), (ii) and (iii) from above. Hene ≈n

Sontains its own transitive hull and thus is indeed an equivalene relation.Lemma 5.16 If a set of proesses S is n-omplete and n 6∈ (fn(S)∪bn(S)) for all S ∈ S,then P ≈n
S Q ⇔ P ≈ Q for all losed proesses P , Q with n 6∈ (fn(P)∪ fn(Q)∪ bn(P)∪

bn(Q)).Proof.Let P ,Q ∈ {(P ,Q) : P ,Q losed proesses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}.
P ≈ Q ⇒ P ≈n

S QP ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S Q. We show that observational equivalene restrited to proesses thatdo not ontain n is an S-n-bisimulation. Points (i) and (iii) of De�nition 5.15 followdiretly from points (i) and (iii) of observational equivalene (see De�nition 2.4). Itremains to show that for P → P ′ with n 6∈ fn(P ′) ∪ bn(P ′) we an �nd a sequene oforresponding internal redutions for Q . Sine P ≈ Q we �nd a sequene Q =: Q1 →

. . .→ Qℓ =: Q ′ with P ′ ≈ Q ′. However, we do not neessarily have n 6∈ fn(Q ′) ∪ bn(Q ′)sine this is not a requirement for observational equivalene. Fortunately, we we will seethat we an �nd a proess Q̂ ′ with Q →∗ Q̂ ′, P ′ ≈ Q̂ ′ and n 6∈ fn(Q̂ ′) ∪ bn(Q̂ ′). Forthis, we transform the sequene Q1 → . . . → Qℓ to a sequene Q̂1 → . . . → Q̂ℓ with43

Qi ≡E Q̂i and n 6∈ fn(Q̂i) ∪ bn(Q̂i) for i ∈ {1, . . . , ℓ}: First, we set Q̂1 := Q1 and inpartiular have Q1 ≡E Q̂1 and n 6∈ fn(Q̂1) ∪ bn(Q̂1). For i ∈ {2, . . . , ℓ} we de�ne Q̂i asfollows: By Lemma 3.5, sine Q̂i−1 ≡E Qi−1 → Qi, we �nd Q̃ with Q̂i−1 → Q̃ ≡E Qi.W.l.o.g. we an assume n 6∈ bn(Q̃) sine → and ≡E allow for renaming of bound names.We distinguish two ases:
• n 6∈ fn(Q̃): Then Q̂i := Q̃ meets our requirements.
• n ∈ fn(Q̃): Sine Q̂i−1 → Q̃ and n 6∈ fn(Q̂i−1), the free ourrenes of n an onlyby the result of a destrutor evaluation (LET-THEN, Figure 3). Let D denotethe orresponding destrutor term with D ⇓ T . By De�nition 2.5 (vii) (naturalsymboli model) and sine n 6∈ fn(D) we �nd a term T ′ with n 6∈ fn(T ′) suh that
D ⇓ T ′ and T =E T ′. Then Q̂i := Q̃{T/T ′} meets our requirements.Finally, Q̂ℓ does not ontain n and Q = Q̂1 →∗ Q̂ℓ ≡E Qℓ = Q ′ ≈ P ′. Hene

(P ′, Q̂ℓ) ∈ ≈ ∩ {(P ,Q) : P ,Q losed proesses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}and thus observational equivalene restrited to proesses that do not ontain n ful�llsDe�nition 5.15 (ii).
P ≈n

S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ Q. We �rst introdue a bisimulation ≈ϕ and then show P ≈n

S Q ⇒
P ≈ϕ Q ⇒ P ≈ Q : Let ϕ : N → N \ {n} be a bijetion on names. We de�ne

≈ϕ:= {(P ,Q) : Pϕ ≈n
S Qϕ}We laim that ≈ϕ is a bisimulation: It is easy to verify that ≈ϕ satis�es points (i) and(ii) of De�nition 2.4 (both follow straightforwardly by De�nition 5.15). For point (iii)we have to show C[P] ≈ϕ C[Q], i.e., C[P]ϕ ≈n

S C[Q]ϕ, for all evaluation ontexts C and
P ≈ϕ Q , i.e., Pϕ ≈n

S Qϕ. For any evaluation ontext C we have C[�] ≡ νn.(C|�) forsome proess C and names n ⊆ N . Due to the ompleteness of S we �nd an evaluationontext C̃[�] := νnϕ.(C̃ |�) suh that Cϕ ≈ C̃ with C̃ ∈ S. Sine n is not in therange of ϕ and n 6∈ (fn(C̃) ∪ bn(C̃)) for C̃ ∈ S we have C̃[Pϕ] ≈n
S C̃[Qϕ]. Furthermore

C̃[Pϕ] ≈ C[P]ϕ and hene (both sides do not ontain n) C̃[Pϕ] ≈n
S C[P]ϕ (analogously for

Q). Altogether we have C[P]ϕ ≈n
S C̃[Pϕ] ≈n

S C̃[Qϕ] ≈n
S C[Q]ϕ. Sine ≈ϕ is symmetriby de�nition this loses the proof of our laim that ≈ϕ is a bisimulation.We have that P ≈n

S Q entails P ≈ϕ Q by de�nition of ≈ϕ. Furthermore P ≈ϕ Qentails P ≈ Q sine ≈ is the largest bisimulation. Hene P ≈n
S Q entails P ≈ Q . Thisloses the seond part of our proof. �In the following we �x a name nsid and losed term Msid with nsid 6∈ fn(Msid).De�nition 5.17 (Sid-sensitive proesses) Ssid , the set of sid-sensitive proesses, isthe set of proesses following the grammar from Figure 4.De�nition 5.18 (Ssid -transformation) We de�ne the funtion Φ : P 7→ Φ(P) = S,whih maps a losed proess P with nsid 6∈ P to a sid-sensitive proess S ∈ Ssid , asfollows: 44

P ,Q ::= 0

(Msid ,C)(x).P

(Msid ,C)〈T 〉.P

C ∗(x).P

C ∗〈T 〉.Pif Msid = fst(C) then P else C (x).Qif Msid = fst(C) then P else C 〈T 〉.Q

P | Q

!P

νa.Plet x = D in P else QFigure 4: Syntax of sid-sensitive proesses. Msid is the �xed term. C , T range over allterms with nsid 6∈ fn(C) and nsid 6∈ fn(T), C ∗ over all terms with nsid 6∈ fn(C ∗) suhthat there is no substitution σ with C ∗σ =E (Msid ,�) for some term �. D is a destrutorterm with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-onstrutions bothourrenes of C stand for the same term.1. For eah proteted ourrene of an input C (x).P ′ in P we replae C (x).P ′ byif Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P
′) else C (x).P ′2. For eah ourrene of an output in P we proeed analogously.Lemma 5.19 Ssid is nsid -omplete.Proof.

• Claim 1: For all proesses P we haveif Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P) else C (x).P ∼∼∼ C (x).P(4)(analogously for outputs). Proof: Let σ be a losing substitution for Equation 4.We remember thatif Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P) else C (x).Pis just syntati sugar forlet z = equals(Msid , fst(C)) in (let y = snd(C) in (Msid , y)(x).P) else C (x).PBy de�nition of equals we have equals(Msid , fst(C))σ ⇓ Msid i� fst(C)σ ⇓ Msid .We distinguish two ases: 45

� If fst(Cσ) ⇓ Msid , then by De�nition 2.5 (v) (natural symboli model) we havethat (Msid ,C2) =E Cσ for all C2 with snd(Cσ) ⇓ C2. Heneif Msid = fst(Cσ) then (let y = snd(Cσ) in (Msid , y)(x).Pσ) else Cσ(x).Pσ
(∗)

≈ if Msid = fst((Msid ,C2)) thenlet y = snd((Msid ,C2)) in (Msid , y)(x).Pσelse
(Msid ,C2)(x).Pσ

(∗∗)

≈ let y = snd((Msid ,C2)) in (Msid , y)(x).Pσ
(∗∗)

≈ (Msid ,C2)(x).Pσ
(∗)

≈ C (x).P

(∗) by Lemma 3.2 (iv) and (∗∗) by Lemma 3.2 (vii).� If fst(C)σ 6⇓ Msid , then the laim follows by Lemma 3.2 (vi).
• Claim 2: P ∼∼∼ Φ(P). We prove this by strutural indution on P . Sine Φ doesonly a�et in- and outputs we an fous on those: If P = C (x).P ′ then

P = C (x).P ′

(∗)
∼∼∼ C (x).Φ(P ′)
(∗∗)
∼∼∼ if Msid = fst(C) then (let y = snd(C) in (Msid , y)(x).P

′) else C (x).P ′

= Φ(P)where (∗) holds by the indution hypothesis and (∗∗) by Claim 1.For any losed P we have P ∼∼∼ Φ(P) by Claim 2. Φ(P) is losed sine P is losed andhene P ≈ Φ(P). For P with nsid 6∈ (fn(P) ∪ bn(P)) we have Φ(P) ∈ Ssid . Thus Ssid is
nsid -omplete. �Lemma 5.20 For losed S ∈ Ssid and S → S′ with nsid 6∈ fn(S′) ∪ bn(S′) we have
S′ ∈ Ssid .Proof. First, we observe that all proesses not ontaining nsid and being struturallyequivalent to a sid-sensitive proess are sid-sensitive as well. Furthermore C[P], where Cis an evaluation ontext and P a proess, is sid-sensitive i� C[0] and P are sid-sensitive.In all ases w.l.o.g. nsid 6∈ fn(C) ∪ bn(C) beause ≡ does not introdue free names andbound names are w.l.o.g. not nsid . We have the following ases:

• REPL: S ≡ C[!P] → C[P |!P] ≡ S′. !P is sid-sensitive, hene P and P |!P are.
• COMM: S ≡ C[C 〈T 〉.P |C̃ (x).Q] → C[P |Q{T/x}] ≡ S′. Q is sid-sensitive and

nsid 6∈ fn(T) sine nsid 6∈ fn(S) ∪ bn(C). We an easily hek the grammar of sid-sensitive proesses from Figure 4 to see that a substitution {T/x} with nsid 6∈ Tapplied to a sid-sensitive proess yields a sid-sensitive proess. Therefore Q{T/x}and P |Q{T/x} are sid-sensitive. 46

P ,Q ::= 0

C (x).P

C 〈T 〉.P

(nsid ,C
∗)(x).P

(nsid ,C ∗)〈T 〉.Pif Msid = fst(C) then P else (nsid ,C)(x).Qif Msid = fst(C) then P else (nsid ,C)〈T 〉.Q

P | Q

!P

νa.Plet x = D in P else QFigure 5: Syntax of nsid -good proesses. Msid is the �xed term. C , T range over allterms with nsid 6∈ fn(C), nsid 6∈ fn(T). C ∗ ranges over all terms with nsid 6∈ fn(C ∗) suhthat there is no substitution σ with C ∗σ =E (Msid ,T) for some term T . D is a destrutorterm with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-onstrutions bothourrenes of C stand for the same term.
• LET-THEN: S ≡ C[let x = D in P else Q] → C[P{T/x}] ≡ S′ for some term Twith D ⇓ T and nsid 6∈ fn(T) sine nsid 6∈ fn(S′) ∪ bn(C). Analogously to theargument in the COMM ase, P{T/x} is sid-sensitive.
• LET-ELSE: Here, aording to the grammar of sid-sensitive proesses fromFigure 4, we distinguish three ases:� S ≡ C[if Msid = fst(C) then P else C (x).Q] → C[C (x).Q] ≡ S′. C is losedsine S is losed. Msid = fst(C) is false, i.e., there is no term M suhthat equals(Msid , fst(C)) ⇓ M . Therefore fst(C) 6⇓=E Msid . This implies

C 6=E (Msid ,X) for all terms X by De�nition 2.5 (v) (natural symboli model).Hene C (x).Q is sid-sensitive (mathing the C ∗(x).P rule).� S ≡ C[if Msid = fst(C) then P else C 〈T 〉.Q] → C[C 〈T 〉.Q] ≡ S′. Analo-gously to the previous ase.� S ≡ C[let x = D in P else Q] → C[Q] ≡ S′. Q is sid-sensitive by de�nition.This onludes our proof. �De�nition 5.21 (nsid -good) A proess P is nsid -good if it follows the grammar fromFigure 5.
47

De�nition 5.22 (tag) We de�ne the funtion tag on terms:
tag((nsid ,C)) :=C

tag(C) :=(Msid ,C) otherwiseLet P be an nsid -good proess. Then we write tag(P) for the proess that results fromreplaing any hannel identi�er C by tag(C) in P .The funtion tag adds a tag Msid to all hannel identi�ers in a proess. We will seethat tag returns a sid-sensitive proess. We will need that tag is a bijetive mappingbetween nsid -good proesses and sid-sensitive proesses. The speial name nsid is neededto over the orner ases when onstruting that bijetion.Lemma 5.23 Let P be an nsid -good proess. Then tag(P) ∈ Ssid .Proof. We do a strutural indution over the grammar of nsid -good proesses fromFigure 5. Assume that tag(P ′) and tag(Q ′) are in Ssid .
• For the ommuniation on a hannel C with nsid 6∈ fn(C) we have tag(C (x).P ′) =
(Msid ,C)(x).tag(P ′) whih is obviously in Ssid . tag(C 〈T 〉.P ′) analogous.

• For the ommuniation on a hannel C = (nsid ,C
∗) we have

tag((nsid ,C
∗)(x).P ′) = C ∗(x).tag(P ′). C ∗(x).tag(P ′) is in Ssid sine, byde�nition of nsid -good, there is no substitution σ with C ∗σ =E (Msid ,T) for someterm T . (nsid ,C ∗)〈T 〉.P ′ analogous.

• For the �rst pair of if statements we have that
tag(if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′)

= (if Msid = fst(C) then tag(P ′) else C (x).tag(Q ′))is in Ssid sine nsid 6∈ fn(C). Analogous for (nsid ,C)〈T 〉.Q ′ in the ELSE branh.Cheking the remaining rules from Figure 5 is a straightforward task. �De�nition 5.24 (untag) We de�ne the funtion untag on terms:
untag((Msid ,C)) :=C

untag(C) :=(nsid ,C) otherwiseLet P be a sid-sensitive proess. Then we write untag(P) for the proess that results fromreplaing any hannel identi�er C by untag(C).Lemma 5.25 Let P ∈ Ssid be a sid-sensitive proess. Then untag(P) is nsid -good.Proof. Analogous to the proof of Lemma 5.23 a straightforward strutural indutionshows this Lemma. We quikly sketh the interesting ases:48

• untag((Msid ,C)(x).P ′) = C (x).untag(P ′) mathes rule C (x).P from Figure 5(note that nsid 6∈ fn(C)). (Msid ,C)〈T 〉.P ′ analogous.
• untag(C ∗(x).P ′) = (nsid ,C

∗)(x).untag(P ′): untag(C ∗) = (nsid ,C
∗) sine there isno substitution σ with C ∗σ =E (Msid ,�) for some term �. The expression mathesrule (nsid ,C

∗)(x).P from Figure 5. C ∗〈T 〉.P analogous.
• For the �rst if-rule we distinguish two ases:� C 6= (Msid ,�). Then

untag(if Msid = fst(C) then P ′ else C (x).Q ′)

= (if Msid = fst(C) then untag(P ′) else (nsid ,C)(x).untag(Q ′))mathes rule (if Msid = fst(C) then P else (nsid ,C)(x).Q) from Figure 5.� C = (Msid ,C
′). Then

untag(if Msid = fst(C) then P ′ else C (x).Q ′)

= (if Msid = fst((Msid ,C
′)) then untag(P ′) else C ′(x).untag(Q ′))

= (let y = equals(Msid , fst((Msid ,C
′))) in untag(P ′) else C ′(x).untag(Q ′))

nsid 6∈ fn(C ′) sine nsid 6∈ fn(C). Hene
C ′(x).untag(Q ′) is nsid -good. The proess (let y =
equals(Msid , fst((Msid ,C

′))) in untag(P ′) else C ′(x).untag(Q ′)) mathes rule
(let x = D in P else Q) from Figure 5 with D = equals(Msid , fst((Msid ,C

′))).Analogous for C 〈T 〉.Q ′ in the ELSE branh.
�Lemma 5.26 Let P be an nsid -good proess. Then untag(tag(P)) ∼∼∼ P .Proof. We prove this lemma by strutural indution over P aording to the grammarfrom Figure 5.

• P = C (x).P ′ where C is a hannel identi�er with nsid 6∈ C : Then C 6= (nsid ,C
′)for some term C ′ and thus tag(C) = (Msid ,C). Hene untag(tag(C)) = C and

untag(tag(P)) = untag(tag(C (x).P ′)) = C (x).untag(tag(P ′)) ∼∼∼ C (x).P ′ = P bythe indution hypothesis and sine ∼∼∼ is losed under the appliation of ontexts(Lemma 2.7). P = C 〈T 〉.P ′ analogously.
• P = (nsid ,C

∗)(x).P ′ for some term C ∗ with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃
∗)for all substitutions σ and terms C̃ ∗. Certainly tag((nsid ,C

∗)) = C ∗. By assump-tion C ∗ 6= (Msid , C̃
∗) and thus untag(tag((nsid ,C

∗))) = untag(C ∗) = (nsid ,C
∗).The rest of this ase, as well as the ase for P = (nsid ,C ∗)〈T 〉.P ′, is analogous tothe previous ase.

• P = if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′ where nsid 6∈ fn(C): Clearly
tag((nsid ,C)) = C . We now distinguish two ases for C :49

� C = (Msid ,C
′) for some term C ′. Then untag(C) = untag((Msid ,C

′)) =
C ′ 6= C . This is the reason why we annot have untag(tag(P)) = P ingeneral. However,

untag(tag(P))

= untag(tag(if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′))

= if Msid = fst((Msid ,C
′)) then untag(tag(P ′)) else untag(tag((nsid ,C)(x).Q ′))

(∗)
∼∼∼ untag(tag(P ′))

(∗∗)
∼∼∼ P ′

(∗)
∼∼∼ if Msid = fst((Msid ,C

′)) then P ′ else (nsid ,C)(x).Q ′

= if Msid = fst(C) then P ′ else (nsid ,C)(x).Q ′ = PIn both ases (∗) holds by Lemma 3.2 (vii) and De�nition 2.5 (iv) (naturalsymboli model). (∗∗) holds by the indution hypothesis.� Otherwise untag(C) = (nsid ,C) and it is easy to see that untag(tag(P)) = P .
P = if Msid = fst(C) then P ′ else (nsid ,C)〈T 〉.Q ′ analogously.The missing ases for parallel omposition, bang, name restrition and let-statement allwork straightforwardly. �Lemma 5.27 Let P be a sid-sensitive proess. Then tag(untag(P)) = P .Proof. Sine tag and untag do only modify hannel identi�ers we show tag(untag(C)) =

C for the di�erent kinds of hannel identi�ers that are allowed in an sid-sensitive proessby Figure 4:
• C is a hannel identi�er with C = (Msid ,C

′) for some term C ′ with nsid 6∈ fn(C ′):Then untag(C) = C ′ and tag(C ′) = (Msid ,C
′) = C sine nsid 6∈ fn(C). Hene

untag(tag(C)) = C .
• C is a hannel identi�er C ∗ with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃

∗) for allsubstitutions σ and terms C̃ ∗. Then tag(untag(C)) = tag((nsid ,C
∗)) = C ∗ = C .

• C is a hannel identi�er with nsid 6∈ fn(C) in the ELSE-branh of (if tag = fst(C)).We distinguish two ases:� C = (Msid ,C
′) for some term C ′. Then untag(C) = C ′ and tag(C ′) =

(Msid ,C
′) sine nsid 6∈ fn(C ′) ⊆ fn(C).� Otherwise untag(C) = (nsid ,C) and tag((nsid ,C)) = C .In both ases we have untag(tag(C)) = C .

�50

De�nition 5.28 We de�ne a relation ∼Ssid
:= {(P ,Q) : P ,Q ∈ Ssid , untag(P) ≈

untag(Q)}.Lemma 5.29 Assume that ∼Ssid
is an Ssid -bisimulation and P ≈ Q for losed nsid -goodproesses P and Q . Then tag(P) ≈ tag(Q).Proof. Note that tag(P) and tag(Q) are sid-sensitive proesses by Lemma 5.23 and thusdo not ontain nsid . We have

P ≈ Q ⇒untag(tag(P)) ≈ P ≈ Q ≈ untag(tag(Q)) (by Lemma 5.26)
⇒tag(P) ∼Ssid

tag(Q)

⇒tag(P) ≈nsid

Ssid
tag(Q) (sine ≈nsid

Ssid
is the largest Ssid -bisimulation by De�nition 5.15)

⇒tag(P) ≈ tag(Q) (by Lemmas 5.16, 5.19)
�Lemma 5.30 Let P be a losed nsid -good proess with P ≡E Q → Q ′ for some losedproesses Q , Q ′. Then there is a losed nsid -good proess P ′ suh that P → P ′ ≡E Q ′and tag(P) → tag(P ′).Proof. Aording to Lemma 3.5 we �nd a losed proess P̃ ′ suh that P → P̃ ′ ≡E Q ′ (thisholds for any P , not just for nsid -good ones). Now we show that if P is additionally nsid -good, there is a losed nsid -good proess P ′ with P → P ′ ≡E P̃ ′ and tag(P) → tag(P ′)whih proves the Lemma.First, we make some general observations: For P → P̃ ′ we �nd an evaluation ontext

C and proesses R,R′ suh that P ≡ C[R] → C[R′] ≡ P̃ ′ and R → R′ is a diretappliation of one of the rules for internal redutions from Figure 3. Furthermore, it iseasy to verify that any proess A with P ≡ A and nsid 6∈ bn(A) is also nsid -good and
tag(P) ≡ tag(A). Additionally, C[R] is nsid -good i� C[0] and R are nsid -good. Hene,w.l.o.g. (sine ≡ allows for renaming of bound names), we an assume C[0] and R to be
nsid -good. Sine tag(C[R]) = tag(C)[tag(R)], it remains to show that R′ is nsid -good andthat tag(R) → tag(R′). We will be able to show this for the REPL, the COMM and theTHEN-ELSE rules and have that P ′ := C[R′] ≡ P̃ ′ ≡ Q ′ in these ases. In the LET-THEN ase however, the destrutor evaluation might introdue a term T ontaining afree ourrene of nsid . Fortunately, replaing T with an equivalent term T ′ will solvethe problem and we have that P ′ := C[R′{T/T ′}] ≡E P̃ ′ ≡ Q ′ for R′{T/T ′} being
nsid -good. In detail:

• REPL: !R → C[R|!R] ≡ P̃ ′ where w.l.o.g. C[!R] and therefore C[R|!R] are nsid -good. We set P ′ := C[R|!R] and have tag(P) ≡ tag(C[!R]) = tag(C)[!tag(R)]
(∗)
→

tag(C)[tag(R)|!tag(R)] = tag(C[R|!R]) = tag(P ′). (∗) by the REPL rule.
• COMM: Analogously to REPL P ≡ C[C 〈T 〉.R|C̃ (x).R̃] → C[R|R̃{T/x}] ≡ P̃ ′where C =E C̃ and w.l.o.g. C[C 〈T 〉.R|C̃ (x).R̃] and C[R|R̃{T/x}] are nsid -good.We observe

tag(C 〈T 〉.R) = tag(C)〈T 〉.tag(R) and tag(C̃ (x).R̃) = tag(C̃)(x).tag(R̃)51

by De�nition 5.22. Analogously to REPL we have to show
tag(C)[tag(C)〈T 〉.tag(R)|tag(C̃)(x).tag(R̃)] → tag(C)[tag(R)|tag(R̃){T/x}]Note that tag(R̃){T/x} = tag(R̃{T/x}) sine nsid 6∈ fn(T). Hene it is neessaryand su�ient to show tag(C) =E tag(C̃). Before we prove this diretly we makethe following observation: For all terms C with nsid 6∈ fn(C) we observe C 6=E

(nsid ,C
′) for all terms C ′. We assume C =E (nsid ,C

′) towards ontradition. Then,for some renaming α whih is the identity on fn(C) and α(nsid) 6= nsid , we have
C =E (α(nsid),C

′α) and transitivity of =E yields (nsid ,C ′) =E (α(nsid),C
′α). ByDe�nition 2.5 (vi) and (viii) (natural symboli model) we have α(nsid) = nsid whihontradits our assumption. Now we distinguish two ases to show tag(C) =E

tag(C̃):� C = (nsid ,C
′) for some term C ′. By assumption we have C =E C̃ and hene

C̃ =E (nsid ,C
′). By the grammar of nsid -good proesses (Figure 5) we have

nsid 6∈ fn(C̃) or C̃ = (nsid ,C
∗) for some C ∗. Our observation above exludesthe �rst ase and leaves us with C̃ = (nsid ,C

∗). By De�nition 2.5 (vi) (naturalsymboli model) we have C ′ =E C ∗ and hene tag(C̃) = C ∗ =E C ′ = tag(C).� C 6= (nsid ,C
′) for any term C ′. By the grammar of nsid -good proesses(Figure 5) we then have nsid 6∈ fn(C). C̃ = (nsid ,C

′) for some term C ′leads to C =E (nsid ,C
′) whih ontradits our observation above. Hene(again by the grammar of nsid -good proesses) nsid 6∈ fn(C̃). Thus tag(C) =

(Msid ,C) =E (Msid , C̃) = tag(C̃).
• LET-THEN: P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P̃ ′ with D ⇓ T . ByDe�nition 2.5 (vii) (natural symboli model) we �nd T ′ with nsid 6∈ T ′, D ⇓ T ′and T ′ =E T . Hene we have

P ≡ C[let x = D in R else R̃] → C[R{T ′/x}] =: P ′and P ′ ≡E P̃ ′ ≡ Q ′. Altogether
tag(P) ≡ tag(C[let x = D in R else R̃])

= tag(C)[let x = D in tag(R) else tag(R̃)]

→ tag(C)[tag(R){T ′/x}]
(∗)
= tag(C)[tag(R{T ′/x})]

≡ tag(P ′)

(∗) sine nsid 6∈ fn(T ′).
• LET-ELSE is not a�eted by tag and the proof is analogous to that for the REPLrule.

�Lemma 5.31 Let P be a losed sid-sensitive proess and P ′ be a losed proess with
nsid 6∈ fn(P ′). Then there is a proess P∗ with untag(P) → P∗ and P∗ ≈ untag(P ′).52

Proof. The rest of this proof is partially analogous to that of Lemma 5.30. Similarly, wean fous on the rules from Figure 3 diretly. The main di�erene is that, for some sid-sensitive proess R and term T with nsid 6∈ fn(T), untag(R){T/x} 6= untag(R{T/x}).Instead, we only have untag(R){T/x} ∼∼∼ untag(R{T/x}) (we are going to prove that�rst). Therefore the COMM rule and the LET-THEN rule, where substitutions our,have to be handled di�erently. The arguments for the REPL rule and the LET-ELSErule are analogous.Claim: If R is a sid-sensitive proess, untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x}) for all
TTT with nsid 6∈ fn(T)nsid 6∈ fn(T)nsid 6∈ fn(T). For all hannel identi�ers C = (Msid ,C

′) and C = C ∗ aord-ing Figure 4 we obviously have untag(C){T/x} = untag(C{T/x}) for all substitutions
{T/x}. However, in the ELSE-branh of (if Msid = fst(C)), C an be an arbitraryterm with nsid 6∈ fn(C). If C = (Msid ,C

′) for some term C ′, untag(C){T/x} =
untag(C{T/x}) holds. Otherwise, for a substitution {T/x}, we distinguish two ases:

• C{T/x} 6= (Msid ,C
′) for all terms C ′. Then untag(C){T/x} = (nsid ,C{T/x}) =

untag(C{T/x}).
• Otherwise C{T/x} = (Msid ,C

′) for some term C ′. Then untag(C){T/x} =
(nsid ,C{T/x}) 6= C ′ = untag(C{T/x}). Sine fst(C{T/x}) ⇓ Msid the ELSE-branh of R will never be exeuted and we, analogously to the proof of Lemma 5.26,replae (nsid ,C{T/x}) by C ′ to have untag(R){T/x} ∼∼∼ untag(R{T/x}).Note that P ′ is sid-sensitive by Lemma 5.20.We now handle the COMM rule and the LET-THEN rule:

• COMM: Analogously to Lemma 5.30 we have to prove untag(C) =E untag(C̃)where C and C̃ are the hannel identi�ers used for ommuniation. By the gram-mar of sid-sensitive proesses from Figure 4 all hannel identi�ers whih ourunrestrited are either of the form (a) (Msid ,C
′) for some term C ′ or (b) C ∗ suhthat C ∗σ 6=E (Msid ,C

′) for all substitutions σ and all terms C ′. We distinguishtwo ases� C = (Msid ,C
′). C̃ annot be of form (b) sine C =E C̃ . Hene C̃ = (Msid , C̃

′)and C ′ =E C̃ by De�nition 2.5 (vi) (natural symboli model). Therefore
untag(C) = C ′ =E C̃ ′ = untag(C̃).� Otherwise, C is of form (b). Then C̃ annot be of form (a) sine C =E C̃ .We thus have untag(C) = (nsid ,C) =E (nsid , C̃) = untag(C̃).We �nd

P ≡ C[C 〈T 〉.R|C̃ (x).R̃] → C[R|R̃{T/x}] ≡ P ′

⇒untag(P) ≡ untag(C)[untag(C)〈T 〉.untag(R)|untag(C̃)(x).untag(R̃)]
(∗)
→ untag(C)[untag(R)|untag(R̃){T/x}] =: P∗

(∗) sine untag(C) =E untag(C̃). Due to the laim above P∗ ≈ untag(P ′) whihproves the COMM ase. 53

• LET-THEN: We have P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P ′. Inontrast to Lemma 5.30 the evaluation of the destrutor may not lead to a term
T with nsid ∈ fn(T) here if x ∈ fv(R) sine we required P ′ to be sid-sensitive.(Otherwise, if x 6∈ fv(R), we obviously have untag(R){T/x} = untag(R{T/x}).)Thus
untag(P) ≡ untag(C)[let x = D in untag(R) else untag(R̃)]

→ untag(C)[untag(R){T/x}] =: P ∗ (∗)

≈ untag(C[R{T/x}]) = untag(P ′)(*) due to the laim above. This proves the LET-THEN ase.Sine untag dos not a�et the REPL and LET-ELSE ases these an be handled exatlylike the REPL ase in the proof of Lemma 5.30. �Lemma 5.32 ∼Ssid
is an Ssid -nsid -bisimulationProof.Let (P ,Q) ∈ ∼Ssid
. We show the three points of an Ssid -nsid -simulation.

• P ↓C : We have P ↓C i� P ↓
Ĉ

for a hannel identi�er Ĉ =E C whih ours in
P and thus follows the grammar from Figure 4. Sine P ∼Ssid

Q : untag(P) ≈
untag(Q) holds by de�nition. Sine P ↓

Ĉ
we have untag(P) ↓

untag(Ĉ) and thus
untag(Q) =: Q̂1 → . . . → Q̂n ↓

untag(Ĉ) for some n ∈ N and proesses Qi, i ∈

{1, . . . , n}. By Lemma 5.25 Q̂1 = untag(Q) is nsid -good. By Lemma 5.30 we geta sequene of nsid -good proesses Q̂ ′
1 → . . . → Q̂ ′

n with Q̂ ′
1 = Q̂1, Q̂ ′

i ≡E Q̂iand tag(Q̂ ′
1) → . . . → tag(Q̂ ′

n). Sine Q̂ ′
1 = Q̂1 = untag(Q) we have tag(Q̂ ′

1) =
Q by Lemma 5.27. Furthermore, Q̂ ′

n ≡E Q̂n ↓
untag(Ĉ) implies Q̂ ′

n ↓
untag(Ĉ) (seeFootnote 6) and tag(Q̂ ′

n) ↓
tag(untag(Ĉ)). Sine Ĉ is a term aording to Figure 4we have tag(untag(Ĉ)) = Ĉ (=E C) (see Lemma 5.27). Hene Q = tag(Q̂ ′

1) →
∗

tag(Q̂ ′
n) ↓C .

• P → P ′ with nsid 6∈ fn(P ′)∪bn(P ′): Aording to Lemma 5.31 we �nd P∗ suh that
untag(P) → P∗ ≈ untag(P ′). Sine P ∼Ssid

Q we also have untag(Q) =: Q̂1 →
. . . → Q̂n ≈ P∗. Analogously to the previous part we �nd some nsid -good Q̂ ′

n suhthat Q →∗ tag(Q̂ ′
n) and Q̂ ′

n ≡E Q̂n. By Lemma 5.26 we have untag(tag(Q̂ ′
n)) ≈ Q̂ ′

n(Q̂ ′
n is losed). Thus untag(tag(Q̂ ′

n)) ≈ Q̂ ′
n ≡E Q̂n ≈ P∗ ≈ untag(P ′) whihimplies untag(tag(Q̂ ′

n)) ≈ untag(P ′) sine ≡E entails ≈ by Lemma 3.2 (iv). Hene
Q →∗ tag(Q̂ ′

n) and P ′ ∼Ssid
tag(Q̂ ′

n).
• Assume P ∼Ssid

Q and let R ∈ Ssid be a proess and a names. We have
untag(P) ≈ untag(Q) by de�nition of ∼Ssid

and ≈ is losed under the appliationof evaluation ontexts. Hene untag(νa.(P | R)) = νa.(untag(P)|untag(R)) ≈
νa.(untag(Q)|untag(R)) = untag(νa.(Q |R)). Thus, by de�nition of ∼Ssid

,
νa.(P |R) ∼Ssid

νa.(Q |R). 54

Sine ∼Ssid
is symmetri it is an Ssid -nsid -bisimulation.

�Lemma 5.33 Let P and Q be losed proesses and M be an arbitrary losed term. Then
P ≈ Q ⇒ P((M)) ≈ Q((M)).Proof. Fix a name nsid 6∈ (fn(M)∪ fn(P)∪ bn(P)∪ fn(Q)∪ bn(Q))and Msid := M . Re-member that all lemmas in this setion were proven for an arbitrary �xedMsid with nsid 6∈
fn(Msid). Now P , Q are nsid -good and P((Msid)) = tag(P) and Q((Msid)) = tag(Q). ByLemmas 5.29,5.32: tag(P) ≈ tag(Q). Hene P((M)) = P((Msid)) ≈ Q((Msid)) = Q((M)).
�Lemma 5.34 Let P and Q be proesses and M be a term with fv(M)∩(bv(P)∪bv(Q)) =
∅. Then P ∼∼∼ Q ⇒ P((M)) ∼∼∼ Q((M)).Proof. For all losing substitutions σ we have P ∼∼∼ Q ⇒ Pσ ≈ Qσ. By Lemma 5.33 wehave Pσ((Mσ)) ≈ Qσ((Mσ)) for the losed proesses Pσ and Qσ and the losed term
Mσ. This entails P((M))σ ≈ Q((M))σ sine fv(M) ∩ (bv(P) ∪ bv(Q)) = ∅. Therefore
P((M)) ∼∼∼ Q((M)). �Proof of Lemma 5.13. By Lemma 5.34 P((x)) ∼∼∼ Q((x)). Aording to De�nition 5.11
!!xP = C

x ,np

SID [P((x))] for some names np ∩ fn(P) = ∅ and !!xQ = C
x ,nq

SID [Q((x))] forsome names nq ∩ fn(Q) = ∅. Let n be names suh that n ∩ (fn(P) ∪ fn(Q)) = ∅ and
|n| ≥ max(|np|, |nq |). We have

C
x ,np

SID [P((x))] ≡ C
x ,n
SID [P((x))]

(∗)
∼∼∼ C

x ,n
SID [Q((x))] ≡ C

x ,nq

SID [Q((x))](*) sine P((x)) ∼∼∼ Q((x)) and ∼∼∼ is losed under the appliation of ontexts (Lemma 2.7).Therefore !!xP ∼∼∼ !!xQ . �Note that Lemma 5.13 also implies P ∼∼∼ Q ⇒ !!P ∼∼∼ !!Q .Lemma 5.35 Let P be a proess and n be a name that ours only in hannel identi�ersin P . Then νn.!!xP ∼∼∼ !!xνn.P for all variables x 6∈ bv(P).Proof. First, we observe that instanes of P with distint tags annot ommuniate witheah other. This an be formalized by the followingClaim. Let id , id ′ ∈ SID be distint IDs and P , Q arbitrary proesses. Then
P((id)) →∗lC and Q((id ′)) →∗lC ′ for terms C ,C ′ implies C 6=E C ′. Proof: ByDe�nition 5.1 every hannel identi�er in P((id)) is of the form (id ,X) for some term
X . Analogously, every hannel identi�er in Q((id ′)) is of the form (id ′,Y). Towardsontradition we assume C = (id ,X) =E (id ′,Y) = C ′. Then, by De�nition 2.5 (vi)(natural symboli model), we have id =E id ′. However, id 6=E id ′ is required for all pairsof distint IDs id , id ′ ∈ SID . This proves the laim.55

It is now easy to hek that
R := {(C[νn.(P1((id1))| . . . |Pℓ((idℓ))|

∏

x∈S

P((x)))], C[νn.P1((id1))| . . . |νn.Pℓ((idℓ))|
∏

x∈S

νn.P ((x))]) :

P1, . . . ,Pℓ proesses where n ours only in hannel identi�ers,
id1 , . . . , idl ⊆ SID \ S are distint, S ⊆ SID and C evaluation ontext}is a bisimulation and thereby prove the lemma. Although the Pi in R are formallyarbitrary proesses that ontain n only in hannel identi�ers, they intuitively allow torepresent the running instanes of P . Note that the laim above holds for any pair

Pi((idi)), Pj((idj)) with i 6= j. Intuitively, sine n ours only in hannel identi�ers andthus is never transmitted, no ontext an tell the di�erene between a private n that isshared among all instanes and an n individual n for eah instane. �Lemma 5.36 Let P and Q be proesses. Then !!x(P |Q) ∼∼∼ !!xP |!!xQ for all variables
x 6∈ bv(P) ∪ bv(Q).Proof. We use the semantis of produt proesses (see De�nition 2.9) for this proof. ByDe�nition 5.2 and De�nition 5.11 we have !!xR ∼∼∼

∏
x∈SID R((x)) for any proess R. Let

σ be a losing substitution for !!xP and !!xQ (i.e., fv(P((x))σ), fv (Q((x))σ) ⊆ {x}). Weset ΠP (X) :=
∏

x∈X P((x))σ for arbitrary X ⊆ SID and ∑P (X) :=
∑

x∈X P((x))σ =
P((x1))σ| . . . |P((xℓ))σ for �nite X = {x1, . . . , xℓ} ⊆ SID . Analogously ΠQ(X), ∑Q(X)and ΠPQ(X) :=

∏
x∈X (P((x))σ|Q((x))σ). We then de�ne the relation R:

R := {(C[
∑

P

(SP) |
∑

Q

(SQ) | ΠPQ (SPQ)], C[ΠP (SPQ ∪ SP) | ΠQ(SPQ ∪ SQ)]) :

C evaluation ontext, SP , SQ, SPQ ⊆ SID , SP ∩ SPQ = ∅, SQ ∩ SPQ = ∅}losed under strutural equivalene. Note that
(
∏

x∈SID

(P((x))σ|Q((x))σ),
∏

x∈SID

P((x))σ |
∏

x∈SID

Q((x))σ

)
∈ Rfor SP := ∅, SQ := ∅ and SPQ := SID whih proves this lemma if R ⊆≈. Therefore, weshow the three points of a simulation for R and R−1 respetively. First, we show that

R is a simulation. For (A,B) ∈ R:1. A ↓C : Produt proesses do not emit on hannels. Three ases remain:(a) If C[0] ↓C , then B ↓C .(b) If P((id))σ ↓C for some id ∈ SP , then B an spawn the instane P((id))σ from
ΠP (SPQ ∪ SP) and then emit on C . Hene B →↓C .() Analogously for Q((id))σ ↓C for some id ∈ SQ.Hene A ↓C entails B →∗↓C .2. A→ A′: We distinguish two ases: 56

(a) → follows the IREPL rule: Then → spawns a new instane with id id from
ΠPQ (SPQ): We set C′[�] := C[P((id))σ | Q((id))σ | �] and S′

PQ := SPQ \{id}.Hene we have A→ C′[
∑

P (SP) |
∑

Q(SQ) | ΠPQ (S′
PQ)]. Additionally, we ob-serve B ≡ C[ΠP (SPQ∪SP) | ΠQ(SPQ∪SQ)] →→ C′[ΠP (S

′
PQ∪SP) | ΠQ(S

′
PQ∪

SQ)] by spawning P((id))σ from ΠP (SPQ ∪ SP) and Q((id))σ from
ΠQ(SPQ ∪ SQ). We have (C′[

∑
P (SP) |

∑
Q(SQ) | ΠPQ(S

′
PQ)], C

′[ΠP (S
′
PQ ∪

SP) | ΠQ(S
′
PQ ∪ SQ)]) ∈ R.(b) → follows a rule from Figure 3: Then we distinguish two ases:i. If we have C[0] → C′[0], → translates anonially to C in B → B′ suhthat (A′, B′) ∈ R.ii. Otherwise, → a�ets instanes from ∑

P (SP) |
∑

Q(SQ). We re-move the ids of the a�eted instanes from SP and SQ yieldingsets S′
P and S′

Q and de�ne a ontext C′ (inluding the a�eted in-stanes) suh that A → C′[
∑

P (S
′
P) |

∑
Q(S

′
Q) | ΠPQ(SPQ)]. We nowspawn the orresponding instanes in B �rst and then mimi → ex-atly yielding B →∗ C′[ΠP (SPQ ∪ S′

P) | ΠQ(SPQ ∪ S′
Q)]. We have

(C′[
∑

P (S
′
P) |

∑
Q(S

′
Q) | ΠPQ (SPQ)], C′[ΠP (SPQ∪S′

P) | ΠQ(SPQ∪S′
Q)]) ∈

R.3. By de�nition R is losed under the appliation of evaluation ontexts.Now we show that R−1 is a simulation. For (A,B) ∈ R−1 :1. A ↓C : Sine produt proesses do not emit on hannels we have C[0] ↓C and thus
B ↓C .2. A→ A′: We distinguish two ases:(a) → follows the IREPL rule: We distinguish four ases:i. A new instane P((id))σ is spawned from ΠP (SPQ ∪ SP) with id ∈

SP : We de�ne the ontext C′[�] := C[P((id))σ | �], S′
P := SP \

{id} and have A → C′[ΠP (SPQ ∪ S′
P) | ΠQ(SPQ ∪ SQ)] and B ≡

C′[
∑

P (S
′
P) |

∑
Q(SQ) | ΠPQ(SPQ)]. Hene (C′[ΠP (SPQ∪S′

P) | ΠQ(SPQ∪

SQ)], C′[
∑

P (S
′
P) |

∑
Q(SQ) | ΠPQ(SPQ)] ∈ R−1.ii. A new instane Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SQ:Analogous to the previous ase.iii. A new instane P((id))σ is spawned from ΠP (SPQ ∪ SP) with id ∈ SPQ:We de�ne the ontext C′[�] := C[P((id))σ | �], S′

PQ := SPQ \{id}, S′
Q :=

SQ ∪ {id} and have A → C′[ΠP (S
′
PQ ∪ SP) | ΠQ(S

′
PQ ∪ S′

Q)]. Notethat SPQ ∪ SQ = S′
PQ ∪ S′

Q. In B we spawn P((id))σ | Q((id))σ from
ΠPQ (SPQ) and have B → C′[

∑
P (SP) |

∑
Q(S

′
Q) | ΠPQ (S′

PQ)]. Hene
(C′[ΠP (S

′
PQ∪SP) | ΠQ(S

′
PQ∪S′

Q)], C
′[
∑

P (SP) |
∑

Q(S
′
Q) | ΠPQ (S′

PQ)] ∈

R−1.iv. A new instane Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SPQ:Analogous to the previous ase.(b) → follows a rule from Figure 3: Then we basially have C[0] → C′[0] whihtranslates anonially to C in B → B′ suh that (A′, B′) ∈ R.3. By de�nition R is losed under the appliation of evaluation ontexts.57

This shows that R is a bisimulation and hene R ⊆≈. �We an now state and prove the omposition theorem. It says that if P ≤ Q, wean restrit the IO-names, ompose in parallel with proesses that have disjoint NET-names, rename names (as long as NET- and IO-names are not interhanged), and performonurrent omposition.Theorem 5.37 (Composition Theorem) Let P , Q be proesses with P ≤ Q . Then(i) For any list of names io ⊆ IO we have νio.P ≤ νio.Q .(ii) For any proess R with (fn(R) ∩ (fn(P) ∪ fn(Q))) ⊆ IO we have P |R ≤ Q |R.(iii) For any permutation ψ : NET → NET we have Pψ ≤ Q and P ≤ Qψ.(iv) For any permutation ψ : IO → IO we have Pψ ≤ Qψ.(v) If Q is a NET-stable proess, !!xP ≤ !!xQ for all variables x 6∈ bv(P) ∪ bv(Q).Proof. In the following, let (S,ϕ,n) be as in De�nition 4.3. (They exist beause P ≤ Q .)(i) P ∼∼∼ νn.(Qϕ|S)
(∗)
⇒ νio.P ∼∼∼ νio.νn.(Qϕ|S)

(∗∗)
∼∼∼ νn.((νio.Q)ϕ|S)

(∗) sine ∼∼∼ is losed under the appliation of evaluation ontexts.
(∗∗) sine neither S nor ϕ ontain names from IO(ii) W.l.o.g. we an assume fn(R) ∩ n = ∅ and that ϕ is the identity on (fn(R) ∪
bn(R)) ∩NET. These assumptions guarantee (∗) in the upoming equations. P ∼∼∼

νn.(Qϕ|S) ⇒ P |R ∼∼∼ νn.(Qϕ|S)|R
(∗)
∼∼∼ νn.((Q|R)ϕ|S)(iii) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νnψ.(Q(ψ ◦ ϕ)|Sψ). Therefore, with

(Sψ,ψ ◦ ϕ,nψ) as simulator, we have Pψ ≤ Q . With (S,ϕ ◦ ψ−1,n) we have
P ≤ Qψ.(iv) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νn.(Q(ϕ ◦ ψ)|S) sine S,ϕ and n donot ontain IO names and thus are not a�eted by ψ : IO → IO.(v) Note that Qϕ is NET-stable sine Q is NET-stable. Then P ∼∼∼ νn.(Qϕ|S) entails

!!xP ∼∼∼ !!xνn.(Qϕ|S) (by Lemma 5.13)
∼∼∼ νn.!!x (Qϕ|S) (by Lemma 5.35 sine Qϕ|S NET-stable)
∼∼∼ νn.(!!x (Qϕ)|!!xS) (by Lemma 5.36)
≡ νn.((!!xQ)ϕ|!!xS) (by Lemma 5.12)Thus (!!xS,ϕ,n) is a proper simulator for !!xP ≤ !!xQ . �6 Property preservationBesides seure omposition, the seond salient property of the UC framework is the fatthat seurity properties of the ideal funtionality F automatially arry over to anyprotool emulating F . For example, a seure hannel funtionality that takes a message58

m from Alie and gives it diretly to Bob will obviously have the property that m staysseret. Then, if π UC-emulates F , any message given to π will also stay seret. A similarproperty preservation law holds in our ase, the following theorem formalizes it:Theorem 6.1 (Property preservation) Let P,Q be proesses with P ≤ Q. Let E1and E2 be ontexts whose holes are proteted only by parallel ompositions (|), restri-tions (ν), and indexed repliations (!!x). Assume that E1, E2 do not ontain NET-names(neither bound nor free). Assume that the number of !!x (possibly with di�erent x) overthe hole is the same in E1 and E2.If E1[Q] ∼∼∼ E2[Q], then E1[P] ∼∼∼ E2[P].Proof. Let b denote the number of !!x over the hole of E1, E2. We write !!bS for b ≥ 0appliations of !! to S.Sine P ≤ Q, there are S,ϕ, n with P ∼∼∼ νn.(Qϕ|S) and S losed and NET-stable,and IO ∩ fn(A) = ∅, ϕ : NET → NET a bijetion and n a list of names n ⊆ NET.Without loss of generality, we an assume that n∩ fn(E1, E2) = n∩ bn(E1, E2) = ∅. For
i = 1, 2, we have

Ei[P]
(i)
∼∼∼ Ei[νn.(Qϕ|S)](ii)
∼∼∼ νn.Ei[(Qϕ|S)](iii)
∼∼∼ νn.(Ei[Qϕ]|!!

bS)(iv)
= νn.(Ei[Q]ϕ|!!bS).Here (i) uses Lemma 2.7.And (ii) uses that the names n do not our in Ei, the rules NEW-C and NEW-PARfrom Figure 2, and Lemma 5.35 for swapping !!x in Ei and the names n (the preonditionsof Lemma 5.35 are ful�lled beause n are NET-names and thus do not our in Ei).And (iii) uses that the names in Ei (IO-names only) and the names in S (NET-namesonly) are disjoint, as well as Lemma 5.36 for moving S over a !! in Ei. (Lemma 5.36guarantees !!x(R|S) ≈ !!xR|!!xS, this is why S aumulates on !!x for eah !!x over thehole of Ei. Sine S is losed, we an drop the x from !!x.)And (iv) uses that Ei does not ontain NET-names (bound or free) while ϕ is asubstitution on NET-names.Furthermore, sine ∼∼∼ is losed under renaming of free names, and under applia-tion of ontexts (Lemma 2.7), from E1[Q] ∼∼∼ E2[Q] it follows that νn.(E1[Q]ϕ|!!bS) ∼∼∼

νn.(E2[Q]ϕ|!!bS) and hene E1[P] ∼∼∼ E2[P]. �Thus, any seurity property that an be expressed by an indistinguishability gameof the form �E1[P] ∼∼∼ E2[P]� with E1, E2 as in the theorem will arry over from theideal funtionality Q to the protool P , given P ≤ Q. Note that even many trae basedproperties an be expressed in suh a way. E.g., if we want to say that E1[P] does notraise an event bad (modeled by emitting on a speial hannel), we just de�ne E2 to be59

free netsstart, netnotify, netdeliver, n1, n2.fun empty/0.let FSC = in(netstart,y); in(ioA,x); out(netnotify,empty); in(netdeliver,z); out(ioB,x).proess new ioA; new ioB; out(ioA,hoie[n1,n2℄) | in(ioB,z) | FSCFigure 6: Proverif ode for showing E1[FSC] ≈ E2[FSC] in Lemma 6.3 (prop-pres.pv).like E1, but without the event. Then E1[P] ∼∼∼ E2[P] implies that E1[P] does not raisethe event.We illustrate the use of this theorem with an example. Consider the seure hannelfuntionality:De�nition 6.2 (Seure hannel) FSC := net scstart().ioA(x).netnotify〈〉.netdeliver ().ioB 〈x〉.We want to show:Lemma 6.3 If P ≤ FSC , then P has strong serey in the following sense: We have
P1 ≈ P2 where Pi := νioAioB .ioA〈ni〉|ioB ()|P .Proof. Let Ei := νioAioB .ioA〈ni〉|ioB ()|�. We use Proverif to show that E1[FSC] ≈
E2[FSC]. The Proverif ode is given in Figure 6. By Theorem 6.1 (and using that ≈and ∼∼∼ oinide for losed proesses), we have P1 = E1[FSC] ≈ E2[FSC] = P2. �In Appendix A we show that the various restritions in Theorem 6.1 are neessary.In partiular, property preservation for ontexts E1, E2 having a ! over their hole (insteadof a !!) does not hold. The reasons are similar to those that forbid ! in the ompositiontheorem (f. Setion 5). This is another indiate that an operator like !! is more naturalin this ontext.7 Relation to Delaune-Kremer-PereiraDKP-seurity. As mentioned in the introdution, Delaune, Kremer, and Pereira[DKP09℄ have already presented a variant of the UC model in the applied pi alulus.In this setion, we desribe the di�erenes between their and our model, and why thesedi�erenes are neessary to ahieve stronger seurity results.In [DKP09℄, seurity is de�ned as follows:De�nition 7.1 (DKP-seurity) Let � (observational preorder) be the largest simula-tion (not bisimulation).Let P,Q be proesses. Then P ≤SS Q i� there exists a simulator S (a ontext) suhthat P � S[Q].Here a simulator S is an evaluation ontext subjet to ertain onditions, see [DKP09℄,notably that it only binds NET-names. 60

Notie that in this de�nition, the main di�erene to our de�nition is that P and S[Q]do not have to be observationally equivalent, but only observationally preordered. (Also,the notion of the simulator S is somewhat di�erent from ours, but not in essene.) Thee�et of this is that the simulator may introdue additional non-determinism. For exam-ple, in our model, if the protool P an take one out of two ations, the simulator needsto simulate the appropriate ation, he thus needs to �gure out whih of the two ationsis taken. With respet to DKP-seurity, the simulator an just non-deterministiallyhoose whih ation to take; the observational preorder takes are that the right ationis taken in the right situation. This makes simulators for DKP-seurity muh easier toonstrut and DKP-seurity into a onsiderably weaker notion.DKP-seurity satis�es similar laws as our notion. In partiular, ≤SS is re�exive andtransitive and it satis�es a omposition theorem (whih di�ers from ours mainly in that
P ≤SS Q =⇒ !P ≤SS !Q holds, no need to introdue !!). They do not state a propertypreservation theorem. We believe, though, that their DPK-seurity supports propertypreservation for ertain kinds of trae properties.13The problem with observational preorder. We explain why we believe that ade�nition based on observational preorder instead of equivalene does not give su�ientseurity guarantees. We illustrate this by the following example. Consider a simplefuntionality that is supposed to model an inseure but anonymous hannel:

Fanon := ioA(x).net〈x〉|ioB (x).net〈x〉Obviously, this funtionality preserves anonymity about whether Alie or Bobsends a message (i.e., whether an input on ioA or ioB ours). Formally:
νioAioB .(ioA〈T 〉|Fanon) ≈ νioAioB .(ioB 〈T 〉|Fanon). (In fat, we even have ≡.) Nowonsider a naive protool in whih Alie and Bob send their message over distint han-nels netA,netB . Formally:

P := ioA(x).netA〈x〉|ioB (x).netB 〈x〉Obviously, P does not provide anonymity, it is easy to see that νioAioB .(ioA〈T 〉|P) 6≈
νioAioB .(ioB 〈T 〉|P). Consequently (Theorem 6.1), we have P 6≤ Fanon as we wouldexpet sine P gives less seurity than Fanon .On the other hand, with respet to DKP-seurity, P is onsidered as seure as Fanon ,i.e., P ≤SS Fanon . We use the following simulator: S := net(x).netA〈x〉 | net(x).netB 〈x〉 |
�. Then P � S[Fanon] beause S relays messages sent on net onto netA or netB , andthe de�nition of � makes sure that the message is non-deterministially delivered on theright hannel netA or netB . Hene P ≤SS Fanon .Lemma 7.2 (with non-rigorous proof) P ≤SS Fanon .13Probably a law of the following kind holds: Assume P ≤SS Q. Let c /∈ fv(P,Q), and E be a ontextsatisfying ertain properties. Then E[Q] 6 ↓c =⇒ E[P] 6 ↓c. Compare with Theorem 6.1 whih an dealwith indistinguishability properties. 61

Proof. In this proof, we assume that Lemma 3.3 also holds for the alulus from [DKP09℄.Sine that alulus is somewhat di�erent from ours, this makes the present proof non-rigorous. (However, probably the proof of Lemma 3.3 an be easily adapted to thealulus of [DKP09℄.)Then we have
P

(∗)

≈ νnet .(ioA(x).net〈x〉|net(x).netA〈x〉)

| νnet .(ioB (x).net〈x〉|net(x).netB 〈x〉)
(∗∗)

� ioA(x).net〈x〉|net(x).netA〈x〉

| ioB (x).net〈x〉|net(x).netB 〈x〉

≡ S[Fanon] with S := net(x).netA〈x〉 | net(x).netB 〈x〉 | �.Here (∗) uses two appliations of Lemma 3.3 (in the reverse diretion), the �rst with
n := net , t := x, x := x, and Q := netA〈x〉, and the seond with n := net , t := x, x := x,and Q := netB 〈x〉. And (∗∗) uses that νc.P � P ([DKP, Lemma 8℄).Sine ≈ implies � and � is transitive, we have P � S[Fanon]. Furthermore, S is avalid simulator for DKP-seurity. Thus P ≤SS Fanon . �Thus, the seurity of a protool in the sense of [DKP09℄ does not imply that theprotool has the same anonymity properties as the ideal funtionality. The same probablyholds for other equivalene properties suh as strong serey et. We onsider this a strongrestrition of the notion and thus believe that a symboli analogue to UC seurity shoulduse observational equivalene or a similar notion of equivalene.Why observational preorder? The reader may wonder why [DKP09℄ use observa-tional preorder instead of observational equivalene, in partiular sine observationalequivalene is the more diret analogue to the indistinguishability in the omputationalUC framework [Can01℄. We explain the reasons as we understand them (this is basedboth on explanations in [DKP09℄ and on our own insights while working on the urrentresult), and due to what de�nitional deisions we managed to get around those reasons:

• It is not possible to model �relays�. That is, if we have a proess P that outputson a hannel c, then as a tehnial tool we might wish to onstrut a proess
R (a relay) that forwards all message on c to another hannel c′, i.e., we want
νc.(P |R) ≈ P{c′/c}. Unfortunately, suh a relay does not seem to exist in theapplied pi alulus. R :=!c(x).c′〈x〉 does not work. Consider, e.g., P := c〈n〉.a〈n〉.Then νc.(P |R) ↓a but P{c′/c} 6 ↓a. With respet to �, however, we an have relays(P{c′/c} � νc.(P |R)).Why are relays important? One reason is whether a dummy adversary exists. Suha dummy adversary is an adversary that forwards all messages on NET-hannelsfrom the protool to the environment and vie versa. (So, essentially, a relay.) Theexistene of the dummy adversary is used impliitly or expliitly in most stru-tural theorems (re�exivity, transitivity, onurrent omposition). In fat, it seems62

that when using observational equivalene in [DKP09℄, one would not even havere�exivity.We get around this problem by using a slightly di�erent de�nition of adver-saries/simulators (De�nition 4.2). In our setting, a dummy an be trivially on-struted as (0, ϕ,∅) where ϕ just renames the protool's NET-hannels to theNET-hannels that the environment expets the messages on. This simple trikobviates the need for using relays in the onstrution of the dummy adversary.
• The seond problem is that one does not get a omposition theorem that guaran-tees P ≤SS Q =⇒ !P ≤SS !Q when using observational equivalene. However, webelieve that this is a natural limitation beause we an show that property preser-vation does not even hold for equivalene-based seurity properties that repliatethe protool. Thus we annot expet to get suh a omposition theorem and simul-taneously have property preservation for equivalene properties. We get aroundthis problem by de�ning a di�erent notion of onurrent omposition, using the !!operator (see Setion 5).
• Finally, the non-existene of relays is a problem when proving the seurity of on-rete protools P ≤ F : A typial thing a simulator has to do is to take a message
m on a NET-hannel and somehow rewrite it (e.g., to enc(k,m)) before sendingit on to the environment. This, of ourse, is a generalization of the onept of arelay. Thus, if relays are impossible, we an hardly expet to onstrut sensiblesimulators. This, however, is not true if we pay some attention in the de�nition ofthe funtionality and obey the following guideline:Guideline: When designing a funtionality, use di�erent names for allNET-hannels and, whenever sending something on a NET-hannel C,use C〈T 〉|P ′ instead of C〈T 〉.R.In these ases, R :=!c(x).c′〈x〉 will usually work as a relay (e.g., νc.(P |R) ≈ P{c′/c}for P := c〈n〉|a〈n〉).8 Example: Seure hannelsIn this setion we apply symboli UC hands on. We illustrate how our results fromSetion 5 an be usefully applied in pratie to onstrut a seure hannel from thewidely known NSL protool and a PKI. Furthermore, when extending the seure hannelto multiple sessions, we present an example for a joint state, i.e., multiple instanes ofone protool that jointly use one instane of another funtionality. While the original UCmodel of Canetti [Can01℄ requires an additional theorem to handle joint states [CR03℄,we an diretly use !! in our ase. We used Proverif14 for our proofs as muh as possibleto show how it helps with the veri�ation of various properties in the ontext of symboliUC.14Version 1.86pl4 63

fun sen/3. (* sen(key,msg,rand) *)redu sde(k,sen(k,m,r)) = m.fun empty/0.fun hash/1.fun pk/1.fun sk/1.fun pen/3. (* pen(pk,msg,rand) *)redu pde(sk(k),pen(pk(k),m,r)) = m.redu pkofsk(sk(k)) = pk(k).redu pkofen(pen(p,m,r)) = p.Figure 7: Key-exhange example: Proverif ode for the symboli model(sehan-model.pv)We �rst de�ne the symboli model used in this setion. The onstrutors are:
penc/3, pk/1, sk/1, senc/3, (·, ·), hash/1, and empty/0, representing publi-key enryp-tion, publi and seret keys, symmetri enryption, pairs, hashing, and empty messages,respetively. Enryption has a third argument modeling randomness used for enrypt-ing. More spei�ally, penc(pk(k),m, r) models a publi key enryption using key pk(k),plaintext m, and randomness r, and senc(k,m, r) a symmetri enryption using key k,plaintext m, and randomness r. We believe that senc without the additional random-ness argument r would also work in our setting. However, we introdue this additionalnone to help Proverif, whih an then better distinguish iphertexts (e.g., the proofof sehan-s2.pv fails without r due to Proverif's overapproximation tehnique). Wehave no equations in our theory.Furthermore we have the destrutors pdec/2, sdec/2, pkofsk/1, and pkofenc/1, mod-eling publi-key deryption, symmetri deryption, extration of a publi key from aseret key, and extration of a publi key from a iphertext. (The latter two are notneeded in our protools, but we provide them to make the adversary more realisti.) Thebehavior of the destrutors is spei�ed by the following rewrite rules:

pdec(sk(x), penc(pk(x), y, z)) → y

sdec(x, senc(x, y, z)) → y

pkofsk (sk(x)) → pk(x)

pkofenc(penc(x, y, z)) → xThe Proverif ode for this symboli model is given in Figure 7.8.1 Key exhange using NSLWith the symboli model set up we next show how to tailor a UC-seure key exhangefrom NSL using a PKI funtionality FPKI . Towards this goal we model the ideal key64

exhange funtionality FKE , the PKI FPKI and the NSL protool based on FPKI asfollows:De�nition 8.1 (Key exhange funtionality) FKE := νk.netdelA().ioka〈k〉 |
netdelB ().iokb〈k〉.De�nition 8.2 (Publi key infrastruture funtionality)

FPKI := νkakb.iopkeA〈(sk (ka), pk (ka), pk (kb))〉

| iopkeB 〈(sk (kb), pk (ka), pk (kb))〉

| netpke〈(pk (ka), pk (kb))〉De�nition 8.3 (Needham-Shroeder-Lowe)
NSLA := iopkeA((xsk ,_, xpkB

)).νna.νr1.

netnslA〈penc(xpkB
, na, r1)〉.netnslA(xc).let (=na, xnb

,=B) = pdec(xsk , xc) in
νr2.netnslA〈penc(xpkB

, xnb
, r2)〉.

ioka〈hash((na, xnb
))〉

NSLB := iopkeB ((xsk , xpkA
,_)).netnslB (xc).let xna

= pdec(xsk , xc) in
νnb.νr.netnslB 〈penc(xpkA

, (xna
, nb, B), r)〉.

netnslB (x
′
c).if nb = pdec(xsk , x

′
c) then

iokb〈hash((xna
, nb))〉

NSL := νiopkeAiopkeB .(NSLA | NSLB | FPKI)We an now state the �rst result of this setion, namely that the NSL is a UC-seurerealization of FKE .Lemma 8.4 NSL ≤ FKE .Proof. Let NSL
′
A be NSLA without the initial iopkeA((xsk ,_, xpkB

)). NSL
′
B anal-ogously. And NSL

′′
A := NSL

′
A{netdelA/ioka , sk (ka)/xsk , pk(kb)/xpkB } and NSL

′′
B :=

NSL
′
B{netdelB/iokb , sk(kb)/xsk , pk (ka)/xpkA}.

65

We have
NSL ≡ νiopkeAiopkeBkakb.

(
iopkeA((xsk ,_, xpkB)).NSL′A | iopkeA((xsk , xpkA ,_)).NSL′B

| iopkeA〈(sk(ka), pk (ka), pk (kb))〉 | iopkeB 〈(sk(kb), pk (ka), pk (kb))〉 | netpke〈(pk (ka), pk (kb))〉
)(v)

≈ νkakb.
(let (xsk ,_, xpkB) = (sk(ka), pk (ka), pk (kb)) in NSL

′
A

| let (xsk , xpkA ,_) = (sk(kb), pk (ka), pk(kb)) in NSL
′
B | netpke〈(pk (ka), pk (kb))〉

)(vi)
≈ νkakb.

(
NSL

′
A{sk(ka)/xsk , pk (kb)/xpkB } | NSL′B{sk(kb)/xsk , pk (ka)/xpkA}

| netpke〈(pk(ka), pk (kb))〉
)(vii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉
)(viii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| νk.(netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉)
)
=: NSL1Here (v) uses two onseutive appliations of Lemma 3.3, the �rst with n := iopkeAand C := � and t := (sk (ka), pk (ka), pk (kb)), and the seond with n := iopkeB and

C := � and t := (sk(kb), pk (ka), pk (kb)). Remember also that iopkeA((xsk ,_, xpkB)) issyntati sugar for iopkeA(x).let (xsk ,_, xpkB) = x.And (vi) uses two onseutive appliations of Lemma 3.2 (v) and the fat that ≈ islosed under evaluation ontexts.And (vii) uses two appliations of Lemma 3.3 (both in the opposite diretion), the �rstwith n := netdelA, Q := ioka〈x〉, and t := H((na, xnb
)), and the seond with n := netdelB ,

Q := iokb〈x〉, and t := H((xna
, nb)).And (viii) uses Lemma 3.2 (i) to add νk.Using Proverif, we an show the following observational equivalene:

NSL1
(∗)

≈ νnetdelAnetdelBkakb.(NSL
′′
A | NSL′′B | netpke〈(pk (ka), pk (kb))〉 | FKE)

≡ νnetdelAnetdelB .(FKE |S)for S := νkakb.(NSL
′′
A|NSL

′′
B |netpke〈(pk (ka), pk (kb))〉). The Proverif ode for heking (∗)is given in Figure 8.Hene NSL ≤ FKE . �8.2 Seure hannel from key exhange.Next, we realize a seure hannel. Sine we already have a realization of a seure keyexhange at hand, we realize the seure hannel SC from the idealized key exhange FKE .Later we replae FKE by NSL. We model FSC and SC based on FKE as follows:De�nition 8.5 (Seure hannel) 15 FSC := netscstart ().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)15This de�nition was already given in Setion 6 (De�nition 6.2) and is repeated here for onveniene.66

free B, netnsla, netnslb, netpke.free ioka, iokb.let A =new na;new r1;out(netnsla,pen(pk(kb),na,r1));in(netnsla,x);let (=na,xnb,=B) = pde(sk(ka),x) innew r2;out(netnsla,pen(pk(kb),xnb,r2));out(netdela,hash((na,xnb))).let B =in(netnslb,x);let xna = pde(sk(kb),x) innew nb;new r;out(netnslb,pen(pk(ka),(xna,nb,B),r));in(netnslb,x2);if nb = pde(sk(kb),x2) thenout(netdelb,hash((xna,nb))).let KE =new k;(in(netdela,x);out(ioka,hoie[x,k℄)) |(in(netdelb,x);out(iokb,hoie[x,k℄)).proessnew netdela; new netdelb;new ka; new kb; (A | B | out(netpke,(pk(ka),pk(kb))) | KE)Figure 8: Key-exhange example: Proverif ode for analyzing NSL (sehan-nsl.pv).(Has to be pre�xed with the ode from Figure 7.)
67

De�nition 8.6 (Seure hannel protool)
SCA := ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉

SCB := iokb(xk).netB (xc).let xm = sdec(xk, xc) in ioB 〈xm〉

SC := νioka iokb .(SCA|SCB |FKE)Lemma 8.7 SC ≤ FSC .Proof. We have:
SC ≡ νioka iokbk.

(
ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉 | iokb(xk).netB (xc).let xm = sdec(xk, xc) in ioB

netdelA().ioka〈k〉 | netdelB ().iokb〈k〉
)

(∗)

≈ νk.
(
netdelA().ioA(xm).νr.netA〈senc(k, xm, r)〉 | netdelB ().netB (xc).let xm = sdec(k, xc) in ioB 〈xm〉

)
=:Here (∗) uses two onseutive appliations of Lemma 3.3, the �rst with n := ioka and

C := netdelA().� and t := k, and the seond with n := iokb and C := netdelB ().� and
t := k. (And it uses Lemma 2.7, so that we an apply Lemma 3.3 to a subproess insteadof the whole proess.)We show next:

SC1 ≈ νs k.
(
netdelA().ioA(xm).νr.(!(s, senc(k, xm, r))〈xm〉 | netA〈senc(k, xm, r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈xm〉

)
=: SC2By Lemma 3.7, to show the above it is su�ient to show that the trae property end() ⇒

start() holds in the following event proess:
νk.
(
netdelA().ioA(xm).νr.event start(senc(k, xm, r)).netA〈senc(k, xm, r)〉 |

netdelB ().netB (xc).let xm = sdec(k, xc) in event end(xc).ioB 〈xm〉
)
.We show this trae property using Proverif, the required ode is given in Figure 9.Note: We ould also have shown an analogous observational equivalene with s insteadof (s, senc(k, xm, r)). Then, however, Proverif fails on the ode given in Figure 10 beauseit does not see there is only one message xm sent over the hannel. Thus, it believes thatdi�erent xm ould be onfused. Adding xc to the hannel name helps Proverif to see that

xm is unique (sine xc already determines xm).Sine we send the message xm diretly to Bob via the hannel (s, ·) (who reeivesit as x′m), we an let Bob output the message x′m reeived over that hannel instead ofusing the derypted value xm. Sine then the plaintext of the iphertext xc is then notused any more, we an enrypt empty instead of xm (as the adversary annot tell thedi�erene). Formally, we show the following observational equivalene:
SC2 ≈ νs k.(netdelA().ioA(xm).νr.(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉) =: SC3.68

free ioa. (* A-input of F_SC *)free iob. (* B-output of F_SC *)free neta. (* A-end of inseure hannel in P_SC *)free netb. (* B-end of inseure hannel in P_SC *)free netdela, netdelb.query ev:end(x) ==> ev:start(x).let PA =in(netdela,x);in(ioa,xm);new r;event start(sen(k,xm,r));out(neta,sen(k,xm,r)).let PB =in(netdelb,x);in(netb,x);let xm=sde(k,x) inevent end(x);out(iob,xm).proessnew k;PA | PBFigure 9: Key-exhange example: Proverif ode for analyzing the trae property of SC(sehan-s1.pv). (Has to be pre�xed with the ode from Figure 7.)
69

free ioa. (* A-input of F_SC *)free iob. (* B-output of F_SC *)free neta. (* A-end of inseure hannel in P_SC *)free netb. (* B-end of inseure hannel in P_SC *)free netdela, netdelb.let PA =in(netdela,x);in(ioa,xm);new r;(!out((s,sen(k,hoie[xm,empty℄,r)),xm)) |out(neta,sen(k,hoie[xm,empty℄,r)).let PB =in(netdelb,x);in(netb,x);let xm=sde(k,x) inin((s,x),xm2);out(iob,hoie[xm,xm2℄).proessnew s;new k;PA | PBFigure 10: Key-exhange example: Proverif ode for analyzing the observation equiva-lene in SC (sehan-s2.pv). (Has to be pre�xed with the ode from Figure 7.)
70

free ioa. (* A-input of F_SC *)free iob. (* B-output of F_SC *)free neta. (* A-end of inseure hannel in P_SC *)free netb. (* B-end of inseure hannel in P_SC *)free netdela, netdelb.let PA =in(netdela,x);in(ioa,xm);(!out(hoie[(s,sen(k,empty,r)),s℄,xm)) |out(neta,sen(k,empty,r)).let PB =in(netdelb,x);in(netb,x);let xm=sde(k,x) inin(hoie[(s,x),s℄,xm2);out(iob,xm2).proessnew s;new k;new r;PA | PBFigure 11: Key-exhange example: Proverif ode for analyzing the seond observationequivalene in SC (sehan-s3.pv). (Has to be pre�xed with the ode from Figure 7.)We show this observational equivalene using Proverif, the required ode is given inFigure 10.Then we move the restrition νr to the top and replae the hannel
(s, senc(k, empty , r)) by s:
SC3

(∗)

≈ νs k r.(netdelA().ioA(xm).(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉)

(∗∗)

≈ νs k r.(netdelA().ioA(xm).(!s〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in s(x′m).ioB 〈x
′
m〉) =: SC4Here (∗) follows from Lemma 3.2 (ii), and (∗∗) is proven using Proverif. The requiredode is given in Figure 11. 71

We ontinue:
SC4

(∗)

≈ νnetdeliver k r.(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉)
(∗∗)

≈ νnetdeliver k r netnotify .(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netnotify〈〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉 | netnotify().netA〈senc(k, empty , r)〉)

≡ νnetdeliver netnotify .(FSC {netdelA/net scstart}|S)with S := νkr.netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉

| netnotify().netA〈senc(k, empty , r)〉Here (∗) uses Lemma 3.4 with Q := ioB 〈x′m〉, x := x′m, n := s, and m := netdeliver .And (∗∗) uses Lemma 3.3 with Q := netA〈senc(k, empty , r)〉, n := netnotify , t :=
empty .So SC ≈ νn.(FSCσ|S) for σ := {netdelA/net scstart} and n := netdeliver netnotify .Hene SC ≤ FSC . �With NSL ≤ FKE (Lemma 8.4) and SC ≤ FSC (Lemma 8.7) at hand we an nowuse the ompositional apabilities of UC: We de�ne an evaluation ontext C[�] :=
νioka iokb .(SCA|SCB|�) where SCA and SCB are the proesses from De�nition 8.6. Sine
C meets the requirements of Theorem 5.37 NSL ≤ FKE implies C[NSL] ≤ C[FKE]. Sine
C[FKE] = SC and SC ≤ FSC we have, by transitivity of ≤ (Lemma 4.5), C[NSL] ≤ FSC .We did onstrut a seure hannel from a PKI using the NSL protool. More interest-ing than this result is the way we ahieved it: We did not have to analyze the ompletesystem C[NSL] in one piee but ould replae the NSL protool with an idealized fun-tionality. This illustrates two striking advantages of the UC approah:

• The fat that NSL realizes an ideal key exhange an be re-used for seurity proofsof further systems.
• We annot only plug NSL into C but any protool that realizes a seure key exhange(e.g., if no PKI is available and thus NSL is not an option).Instead of one monolithi seurity proof for C[NSL] we end up with smaller proofs andresults whih an be used �exibly. Furthermore, to split the seurity analysis of a omplexsystem into smaller parts might be the only feasible option to takle it at all.8.3 Generating many keys from oneWhile the example until now illustrates omposition and the power of UC, C[NSL] onlyrealizes a single-use seure hannel. To transfer multiple messages, we ould just useonurrent omposition to have !!C[NSL] ≤ !!FSC . However, the resulting protool usesone instane of NSL per message, and � sine NSL ontains FPKI , another PKI for eahmessage that is sent. This is learly unrealisti. To get rid of this overhead we want tohave all the instanes of SC to jointly use just one key exhange FKE , i.e., we want touse the previously mentions joined state tehnique here. Towards this goal we model awrapper protool KE∗ whih uses one key exhange to emulate multiple key exhanges72

(from a key k it derives session keys hash((sid , k)) where sid is the session id). Formally,we de�ne KE
∗ as follows and then show KE

∗ ≤ !!FKE .De�nition 8.8
KE

∗
A := io′ka(xk).!!xsid

ioka〈hash((xsid , xk))〉

KE
∗
B := io′kb(xk).!!xsid

iokb〈hash((xsid , xk))〉

KE
∗ := νio′ka io

′
kb .(KE

∗
A | KE∗

B | F ′
KE)where F ′

KE := FKE{io
′
ka/ioka , io

′
kb/iokb}.Lemma 8.9 KE

∗ ≤ !!FKE .Proof. Let S := netdelA().!!net
′
delA〈〉 | netdelB ().!!net ′delB 〈〉. Here we use the shorthand

t〈〉 for t〈empty〉. Let n := net ′delAnet
′
delB . Let σ := {net ′delA/netdelA,net

′
delB/netdelB}.We have

KE
∗ (i)
≈ νk.netdelA().!!xsid

ioka〈hash((xsid , k))〉 | netdelB ().!!xsid
iokb〈hash((xsid , k))〉(ii)

≈ νk.netdelA().!!xsid
νnet ′delA.(net

′
delA〈〉 | net

′
delA().ioka〈hash((xsid , k))〉)

| netdelB ().!!xsid
νnet ′delB .(net

′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉)(iii)

≈ νk.νnet ′delA.netdelA().(!!xsid
net ′delA〈〉 | !!xsid

net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .netdelB ().(!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)(iv)
≈ νk.νnet ′delA.(netdelA().!!xsid

net ′delA〈〉 | !!xsid
net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .(netdelB ().!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)(v)
≈ νn.

(
νk.!!xsid

(
net ′delA().ioka〈hash((xsid , k))〉 | net

′
delB ().iokb〈hash((xsid , k))〉

)
| S
)(vi)

≈ νn.(!!xsid
νk.(net ′delA().ioka〈k〉 | net

′
delB ().iokb〈k〉) | S)

= νn.(!!FKE σ | S)Here (i) uses two appliation of Lemma 3.3, the �rst with C := netdelA().�, n := io′ka ,and t := k, the seond with C := netdelB ().�, n := io′kb , and t := k. (And it usesLemma 2.7, so that we an apply Lemma 3.3 to a subproess instead of the whole pro-ess.)And (ii) uses Lemma 3.3 with C := � to show ioka〈hash((xsid , k))〉 ∼∼∼
νnet ′delA.(net

′
delA〈〉 | net ′delA().ioka〈hash((xsid , k))〉 and iokb〈hash((xsid , k))〉 ∼∼∼

νnet ′delB .(net
′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉.And (iii) uses Lemma 3.2 (ii) and Lemma 5.36 and Lemma 5.35.And (iv) uses the following laim (proven below) twie. First with n := net ′delA,

m := netdelA, Q := ioka〈hash((xsid , k))〉. Then with n := net ′delB , m := netdelB , Q :=
iokb〈hash((xsid , k))〉. 73

Claim 4 For names n,m, and for any proess Q, we have νn.m().(!!xn〈〉 | !!xn().Q) ≈
νn.((m().!!xn〈〉) | !!xn().Q).(Intuitively, this laim holds beause !!xn().Q annot perform any observable ationsuntil !!xn〈〉 is exeuted. So it makes no di�erene whether both !!xn().Q and !!xn〈〉 waitfor the input on m to our, or whether only !!xn().Q waits for it.)And (v) follows from the de�nition of ≡ and Lemma 5.36.Finally, (vi) follows from the following laim (proven below):Claim 5 For any proess P , we have νk.!!xP{hash((x, k))/k} ≈ !!xνk.P .Thus we have derived KE

∗ ≈ νn.(!!FKE σ | S). This shows KE∗ ≤ !!FKE . It remainsto show the two laims.To show Claim 4, onsider the following relation:
R :=

{
E[νn.m().(

∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x)))],

E[νn.(m().
∏

x∈SID

n〈〉 |
∏

x∈SID\S

n().Q((x)) |
∑

x∈S

n().Q((x)))]
}
∪ ≈up to strutural equivalene. Here E ranges over evaluation ontexts, and S over �nitesubsets of SID . n,m,Q are from the statement of the lemma. ∑x∈S P stands short for

P{s1/x}| . . . |P{sk/x} with S =: {s1, . . . , sk}. I.e., ∑x∈S is almost the same as ∏x∈S ,exept that ∑x∈S is syntati sugar (and only makes sense for �nite S) while ∏x∈S is aproper onstrut in the syntax of produt proesses.We show that R is a bisimulation:
• If (A,B) ∈ R and A ↓M , then B ↓M :In the ase A ≈ B, the statement is immediate. We an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].In the argument to E, there are no unproteted outputs. Thus the output on Mis in E and thus B ↓M trivially follows.
• If (A,B) ∈ R and B ↓M , then A ↓M : Analogous to the previous ase.
• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:In the ase A ≈ B, the statement is immediate. We an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].If A→ A′ is a redution within E, then let B → B′ be the orresponding redution,and then (A′, B′) ∈ R. 74

Otherwise, A → A′ is a ommuniation on m between E and the input m() in itsargument, hene A′ ≡ E′[νn.(
∏

x∈SID n〈〉 |
∏

x∈SID n().Q((x)))]. And B → B′ :=
E′[νn.(

∏
x∈SID n〈〉 |

∏
x∈SID\S n().Q((x)) |

∑
x∈S n().Q((x)))].From Lemma 3.2 (ix), we have A′ ≈ B′, hene (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′, then there is a A′ with A→∗ A′ and (A′, B′) ∈ R:In the ase A ≈ B, the statement is immediate. We an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].If B → B′ is a redution within E, or if B → B′ is a ommuniation on m between
E and m() in its argument, then the reasoning is as in the previous ase.Otherwise, we have that B → B′ is a redution of the seond produt, i.e. B′ ≡
E[νn.(m().

∏
x∈SID n〈〉 |

∏
x∈SID\S′ n().Q((x)) |

∑
x∈S′ n().Q((x)))] with S′ := S \

{t} for some t ∈ SID \ S. Then (A′, B′) ∈ R with A′ := A.
• If (A,B) ∈ R, then (E[A], E[B]) ∈ R:Immediate from the de�nition of R.The statement of the laim is equivalent to

P1 := νn.m().(
∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x))) ≈ νn.((m().
∏

x∈SID

n〈〉) |
∏

x∈SID

n().Q((x)) =: P2.And this follows from the fat that R is a bisimulation sine (P1, P2) ∈ R. Thus Claim 4is shown.To show Claim 5, onsider the following relation:
R :=

{(
νnk.Qσ |

∏

x∈S

P{hash((x, k))/k}, νn kσ.Q |
∏

x∈S

νk.P
)}up to strutural equivalene. Here k /∈ fn(S) is an arbitrary name, S ⊆ SID is a set ofterms, σ is a (�nite) substitution mapping names to distint (with respet to =E) terms

hash((t, k)) with t ∈ SID \ S, kσ = domσ, kσ ∩ fn(P, S) = ∅, n is a list of names, and
Q is an arbitrary proess with k /∈ fn(Q).We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M then B ↓M :Sine k and kσ are bound names, we have that M does not ontain either of them.But only terms ontaining k or kS are di�erent in A and B. Thus B ↓M .
• If (A,B) ∈ R and B ↓M then A ↓M :Analogous. 75

• If (A,B) ∈ R and A→ A′, then there is a B′ with B →∗ B′ and (A′, B′) ∈ R:If the redution is ∏
x∈S P{hash((x, k))/k} → P{hash((t, k))/k, t/x} |∏

x∈S′ P{hash((x, k))/k} with S′ := S \ {t}, then we have B →∗ B′ and (A′, B′) ∈
R with B′ := νnkσ′ .Q | P{kt/k, t/x} |

∏
x∈S′ νk.P and σ′ := σ ∪ {kt 7→ H((t, k))}for some fresh name kt. Notie that the terms in the range of σ′ are still distintbeause S ⊆ SID ontains only distint terms, and t ∈ SID \ S.If the redution is a redution of Qσ → Q′, then it is easy to see (by heking,in partiular, for all destrutors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Q →

Q′σ−1. From this it follows that B →∗ B′ and (A,B) ∈ R with B′ := νnkσ.Q
′σ−1 |∏

x∈S νk.P .
• If (A,B) ∈ R and B → B′, then there is a A′ with A→∗ A′ and (A′, B′) ∈ R:If the redution is ∏x∈S νk.P → νk.P{t/x} |

∏
x∈S′ νP with S′ := S \{t}, then wehave (A′, B′) ∈ R with A′ := νnk.(Q | P{H((t, k))/k})σ |

∏
x∈S′ P{H((x, k))/k}and B′ ≡ νnkσ′ .Q | P{kt/k} |

∏
x∈S′ νk.P and σ′ := σ∪{kt 7→ H((t, k))} and somefresh name kt. Notie that the terms in the range of σ′ are still distint beause

S ⊆ SID ontains only distint terms, and t ∈ SID \ S.If the redution is a redution of Q → Q′, then it is easy to see (by heking, inpartiular, for all destrutors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Qσ → Q′σ.From this it follows that (A,B) ∈ R with A′ := νnk.Q′σ |
∏

x∈S P{hash((x, k))/k}.
• If (A,B) ∈ R and E is an evaluation ontext, then (E[A], E[B]) ∈ R:Then A = νnk.Qσ |

∏
x∈S P{hash((x, k))/k} and B = νnkσ.Q |

∏
x∈S νk.P .Without loss of generality, k, kσ /∈ fn(E) ∪ fn(E). (Otherwise we ould replae

k, kσ by other names in A,B.) There is a proess Q′ and a list of names n′ suhthat E[P] ≡ νn′.(P |Q′) for all P . Then
(E[A], E[B]) ≡

(
νn′ nk.(Q|Q′)σ |

∏

x∈S

P{hash((x, k))/k}, νn′ nkσ.(Q|Q′) |
∏

x∈S

νk.P
)
∈ R.Sine (νk.

∏
x∈SID P{hash((x, k))/k},

∏
x∈SID νk.P) ∈ R, we have

νk.!!xP{hash((x, k))/k} ≈ νk.
∏

x∈SID P ((x)){hash((x, k))/k} ≈
∏

x∈SID νk.P ((x)) ≈
!!νk.P . This shows Claim 5. �Analogously to the single session ase we de�ne a suitable ontext C∗ by replaing
F ′
KE in KE

∗ with � and have
C∗[NSL] ≤ C∗[F ′

KE] = KE
∗ ≤ !!FKEFurthermore, !!SC ≈ νioka iokb .(!!SCA|!!SCB|!!FKE) (by Lemmas 5.35,5.36). Hene

νioka iokb .(!!SCA|!!SCB |C
∗[NSL])

≤ νioka iokb .(!!SCA|!!SCB |!!FKE)

≤ !!SC ≤ !!FSC .Finally, we have a protool whih realizes multiple seure hannels while invoking the
NSL protool and using only one PKI. 76

9 Virtual primitivesIn this setion, we present a tehnique for deriving seurity of protools in the symboliUC model that is spei� to the symboli model. No analogue in the omputationalworld seems to exist. The idea is the following: When onstruting UC seure pro-tools, it is often neessary to inlude spei� �trapdoors� that allow the simulator toextrat or modify ertain information. For example, when onstruting a simulator fora ommitment sheme, we need to inlude in the protool some way for the simulatorto extrat the value of the ommitment when given a ommitment by the environment(extratability), or to hange the ontent of a ommitment when produing a ommit-ment for the environment (equivoality), see [CF01℄. These additional trapdoors oftenmake the protools more omplex, and they often also need more omplex ryptographiprimitives. A simple ommitment protool in whih the ommitter just sends hash(m, r)for message m and randomness r is not UC seure beause the simulator annot extrator equivoke. Instead, one would need to assume a speial hash funtion that takes anadditional parameter crs (the ommon referene string) hash(crs ,m, r) in suh a waythat given a suitably hosen �fake� crs , one an �nd ollisions in hash or extrat m from
hash(crs ,m, r). With suh a hash funtion, one an onstrut a UC seure ommitmentrelatively easily (see De�nition 9.3 below). However, now our protool uses a onsider-ably more omplex primitive than a simple hash funtion. And ertainly ommon hashfuntions suh as SHA-3 do not have these properties.This leads to a strange situation: We have a protool that we an only prove seureusing a hash funtion that has additional weaknesses (namely that given a �bad� rs, onean heat). One might be tempted to state that if the protool is seure for suh weakhash funtions, it should in partiular be seure for good hash funtions. Unfortunately,suh reasoning does not work in the omputational setting: We annot just remove theexistene of trapdoors from the hash funtion � if we do so, we have a ompletely di�erenthash funtion and our seurity proof makes not laims about that funtion.In the symboli world, things are di�erent. Here it turns out that we an indeed�rst analyze a protool using a hash funtion with trapdoors, and then remove thesetrapdoors in a later step, still preserving seurity. We all this approah the �virtualprimitives� approah, beause we use primitives (in this example a hash funtion withtrapdoors) that do not need to atually exist, and that are removed in the �nal protool.In a nutshell, the virtual primitives approah when trying to realize a funtionality
F (e.g., a ommitment) works as follows:

• First, identify a symboli model Mreal ontaining ryptographi primitives (e.g. ahash funtion) that should be used in the �nal protool.
• Extend Mreal by additional onstrutors, destrutors, or equality rules, all theresulting model Mvirt . The extension Mvirt should be �safe� in the sense that in

Mvirt an adversary will have at least as muh power as in Mreal (this will be madeformal in Setion 9.2).
• Design a protool P . Show that P emulates F with respet to Mvirt .
• Compose P with other protools, leading to a omplex protool C[P] ≤ C[F] ≤ G77

(with respet to Mvirt) where G is some desired �nal goal, e.g., some rypto-heavyvoting protool.
• Property preservation guarantees that any property ℘ that holds for G also holdsfor C[P] (with respet to Mvirt). Sine Mvirt only makes adversaries stronger, ℘also holds for C[P] with respet to Mreal .
• Summarizing, we have onstruted a protool C[P] in a modular way suh that C[P]uses the symboli model Mreal (without any trapdoors) and has all the seurityproperties of the funtionality G.The virtual primitive approah is not limited to ommitments. But in the followingsetions, we illustrate it in the ase of a ommitment protool. Note however, that themain theorem that allows us to onlude that Mvirt -seurity implies Mreal -seurity isformulated for general safe extensions.A few words are in order why the virtual primitives approah works in the symbolisetting. What is the spei� property of the symboli model � in ontrast to the om-putational one � that makes it possible? In our interpretation, this is due to the fatthat a primitive (like hashes) in the symboli world is a onrete objet (i.e., a partiularonstrutor with ertain redution rules and equalities) while in the omputational worldit is a lass of objets (hash funtions) that are desribed by some negative properties(�funtions suh that the adversary annot. . . �). Therefore in the symboli world, it ispossible to formally ompare exeutions using di�erent kinds of a primitive (e.g., hasheswith and without trapdoors); exeutions in one setting an be mapped into exeutions inthe other setting by rewriting the terms sent around. In ontrast, in the omputationalsetting, this is not possible: a seurity result for hash funtions with trapdoors has noimpliations for hash funtions without trapdoors � these two are ompletely di�erentmathematial funtions on bitstrings, and it is not possible to rewrite an exeution thatuses one hash funtion into an exeution using another (in partiular if the adversarymakes his ations depend on individual bits of the hashes). This di�erene between thesymboli and the omputational setting seems to be the reason why virtual primitiveswork in the symboli setting.9.1 Realizing ommitmentsFor simpliity, we formulate a ommitment funtionality where the adversary is notinformed that a ommitment takes plae (when both Alie and Bob are honest). Ofourse, suh a funtionality an only be realized if we assume perfetly seure hannelsbetween Alie and Bob that do not even allow the adversary to notie or blok messages.If our protools were to use seure hannels where the adversary an notie and blokommuniation, we would instead realize a somewhat weaker funtionality whih noti�esthe adversary16 (the resulting hanges in the proof are orthogonal to the issues of thishapter).De�nition 9.1 (Commitment) FCOM := iocoma (xm).(iocomb〈〉|ioopena ().ioopenb〈xm〉).16Namely, FCOM := iocoma(xm).(netcoma〈〉|netcomb().iocomb〈〉|ioopena().(netopena 〈〉|netopenb().

ioopenb〈xm〉)) 78

fun hash/2.fun empty/0.fun fake/3.fun fakeH/2.fun rseqv/1.fun rsext/1.equation hash(rseqv(n),(m,fake(n,m,r))) = fakeH(n,r).redu extrat(n,hash(rsext(n),(m,r))) = m.Figure 12: Virtual primitives example: Proverif ode for the symboli model(virtprim-model.pv)Symboli model. The symboli model Mreal has onstrutors hash/2, empty/0, and
(·, ·) (pairs) � f/n means f has arity n �, has destrutors fst , snd , has no equalities, andhas the rewrite rules for fst , snd , equals presribed by De�nition 2.5. This model Mreal isquite standard and does not use any ryptography exept hash funtions (hash is binaryfor onveniene only).As explained above, to onstrut UC-seure ommitments, we need additional �trap-doors� in our equational theory. Let Mvirt be the symboli model Mreal with the follow-ing additions: Construtors fake/3, fakeH /2, crseqv/1, crsext/1, destrutor extract/2,equation hash(crseqv(xn), (xm, fake(xn, xm, xr))) =E fakeH (xn, xr), and rewrite rule
extract(xn, hash(crsext(xn, (xm, xr)))) → xm.The Proverif ode for this symboli model is given in Figure 12.Notie that if we have a CRS crseqv(n) and know n, we an open fakeH (n, r) toarbitrary values. Similarly, if the CRS is crsext(n) and we know n, we an extrat mfrom hash(crsext(n), (m, r)). These two fats allow us to onstrut a simulator that doesequivoation and extration.Note that we introdued two di�erent CRS-onstrutors for faking, crsextand crseqv . It would be tempting to use only one of them, i.e., use theequation hash(crs(x), (y, fake(x, y, z))) =E fakeH (x, z) and the redution rule
extract(x, hash(crs(x), (y, z))) → y. But then we would have for any terms k,m, rthat extract(k, fakeH (k, r)) =E extract(k, hash(crs(k), (m, r))) → m, so by omputing
extract(k, fake(k, r)) the adversary an derive any term m, thus the adversary will knowall serets. This is learly not a sensible symboli model.The ommitment protool. The protool we onstrut uses a rs, so we �rst need tode�ne the rs funtionality FCRS that gives a random non-seret value k to Alie, Bob,and the adversary.De�nition 9.2 (Common referene string) FCRS := νk.iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉.Our protool is then as expeted. To ommit to a message xm, Alie fethes the rs
xcrs , piks a random r, and sends h := hash(xcrs , (xm, r)) to Bob. To unveil, Alie sends79

(xm, r), so that Bob an hek whether h indeed ontained these values. We all Alie'spart of the protool COMA and Bob's part COMB .De�nition 9.3 (Commitment protool)
COMA := iocrsa(xcrs).iocoma (xm).

νr.
(
net1〈hash(xcrs , (xm, r))〉

|ioopena ().net2〈(xm, r)〉
)

COMB := iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((xm, xr)).if xh = hash(xcrs , (xm, xr)) then ioopenb〈xm〉

)

COM := νiocrsa iocrsbnet1net2.(COMA|COMB |FCRS)To show that COM is a seure ommitment protool, we need to show the followinglemma (f. also the disussion on how to model orruptions in Setion 4):Lemma 9.4 With respet to Mvirt , we have(i) Unorrupted ase: COM ≤ FCOM .(ii) Alie orrupted: νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}(iii) Bob orrupted: νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.In the proof, we show the various observational equivalenes by a sequene of rewritingsteps on the protool, interspersed with automated Proverif proofs for the steps thatatually involve the symboli model (i.e., we do not have to manually deal with theomplex symboli model Mvirt).We split this lemma into the following three lemmas:Lemma 9.5 (Commitment � unorrupted ase) COM ≤ FCOM .

80

Proof. Then
COM ≡ νiocrsa iocrsbnet1net2 k r. iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉

| iocrsa(xcrs).iocoma (xm).
(
net1〈hash(xcrs , (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).if xh = hash(xcrs , (x

′
m, xr)) then ioopenb〈x

′
m〉
)(i)

≈ ν net1net2 k r. netcrs〈k〉

| iocoma(xm).
(
net1〈hash(k, (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).if xh = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉
)(ii)

≈ ν net2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2((x

′
m, xr)).if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉

| ioopena ().net2〈(xm, r)〉
)(iii)

= νnet2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2(xtmp).let (x′m, xr) = z inif hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉

| ioopena ().net2〈(xm, r)〉
)(iv)

≈ ν k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | ioopena (). let (x′m, xr) = (xm, r) inif hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x

′
m〉

)(v)
≈ νk r. netcrs〈k〉 | iocoma (xm).

(
iocomb〈〉 | ioopena (). ioopenb〈xm〉

)

≡ FCOM | S with S := νk r.netcrs〈k〉Here (i) uses two invoations of Lemma 3.3, one with n := iocrsa , t := k, and x := xcrs ,and one with n := iocrsb , t := k, and x := xcrs .And (ii) uses one invoation of Lemma 3.3 with n := net1, x := xh, and t :=
hash(k, (xm, r)).And (iii) uses the fat that t(p).P is syntati sugar for t(z).let p = z in P for apattern p and a fresh variable z.And (iv) uses one invoation of Lemma 3.3 with n := net2, x := xtmp , and t :=
(xm, r). (And it uses Lemma 2.7, so that we an apply Lemma 3.3 to a subproessinstead of the whole proess.)And (v) uses several invoations of Lemma 3.2 (v) to evaluate the let- and the if-statement.So COM ≈ FCOM | S for some S with IO ∩ fn(S) = ∅. Hene COM ≤ FCOM . �Lemma 9.6 (Commitment � Alie orrupted)
νiocrsb .(COMB |FCRS{

netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}81

free netrs,netrsa,net1,net2,ioomb,ioopenb.proessnew k;out(netrsa,hoie[k,rsext(k)℄) |out(netrs,hoie[k,rsext(k)℄) |in(net1,xh);out(ioomb,empty) |in(net2,(xm,xr));if xh = hash(hoie[k,rsext(k)℄,(xm,xr)) thenout(ioopenb,hoie[xm,extrat(k,xh)℄)Figure 13: Virtual primitives example: Proverif ode for orrupted Alie(virtprim-aorr.pv). (Has to be pre�xed with the ode from Figure 12.)Proof. We have
νiocrsb .(COMB |FCRS{

netcrsa
iocrsa

})(i)
≈ νk.netcrsa〈k〉 | netcrs〈k〉 | net1(xh).

(
iocomb〈〉|

net2((xm, xr)).if xh = hash(k, (xm, xr)) then ioopenb〈xm〉
)(ii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then ioopenb〈extract(k, xh)〉
)(iii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).νnetopena .
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)(iv)

≈ νnetopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)(v)

≈ νnetcomanetopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
netcoma 〈extract (k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)
|

netcoma (x
′
m).
(
iocomb〈〉|netopena ().ioopenb〈x

′
m〉
)

≡ νnetcomanetopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S) for some S with IO ∩ fn(S) = ∅.Here (i) uses Lemma 3.3 with n := iocrsb , C := νk.netcrsa〈k〉 | netcrs〈k〉 | �, x := xcrs ,and t := k.And (ii) is shown using Proverif, the required ode is given in Figure 13. Note that inthe rhs of (ii), we have replaed all ourrenes of the CRS k by crsext(k), and insteadof outputting xm in the end, we output extract(k, xh).And (iii) uses Lemma 3.3 (in the opposite diretion) with n :=
netopena , Q := ioopenb〈extract (k, xh)〉, and C := iocomb〈〉|net2((xm, xr)).82

if xh = hash(crsext(k), (xm, xr)) then �. (And it uses Lemma 2.7, so that we anapply Lemma 3.3 to a subproess instead of the whole proess.)And (iv) uses Lemma 3.2 (ii) to swap νnetopena and net1(xh). (And Lemma 2.7 toapply Lemma 3.2 (ii) to a subproess.)And (v) uses Lemma 3.3 (in the opposite diretion) with n := netcoma , x := x′m,
t := extract(k, xh), and Q := iocomb〈〉|netopena ().ioopenb〈x

′
m〉
).So we have νiocrsb .(COMB |FCRS{

netcrsa
iocrsa

}) ≈ νnetcomanetopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S)for some S with IO ∩ fn(S) = ∅. Hene νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤

FCOM {netcoma

iocoma
,
netopena
ioopena

}. �Lemma 9.7 (Commitment � Bob orrupted)
νiocrsa .(COMA|FCRS{

netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.Proof. We have
νiocrsa .(COMA|FCRS{

netcrsb
iocrsb

})(i)
≈ νk.netcrsb〈k〉 | netcrs〈k〉 | iocoma (xm).νr.

(
net1〈hash(k, (xm, r))〉|ioopena ().net2〈(xm, r)〉

)(ii)
≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.

(
net1〈fakeH (k, r)〉|ioopena ().net2〈(xm, fake(k, x(iii)

≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.

νnetopenb .
(
net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)(iv)
≈ νnetopenbkr.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).(

net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x
′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)(v)
≈ νnetcombnetopenbkr.netcrsb〈crseqv (k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).(

ioopena ().netopenb〈xm〉|netcomb〈〉
)
|

netcomb().
(
net1〈fakeH (k, r)〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

≡ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S) for some S with IO ∩ fn(S) = ∅.Here (i) uses Lemma 3.3 with n := iocrsa , C := νk.netcrsb〈k〉 | netcrs〈k〉 | �, x := xcrs ,and t := k.And (ii) is shown using Proverif, the required ode is given in Figure 14. Note that inthe rhs of (ii), we have replaed all ourrenes of the CRS k by crseqv(k), and insteadof sending the hash value hash(k, (xm, r)) we send fakeH (k, r) whih does not dependon xm, and in the end, instead of sending the randomness r, we send fake(k, xm, r).Intuitively, this replaement is indistinguishable beause our symboli model ontainsthe equation hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r).And (iii) uses Lemma 3.3 (in the opposite diretion) with n := netopenb , x := x′m,
t := xm, Q := net2〈(x′m, fake(k, x

′
m, r))〉, and C := net1〈fakeH (k, r)〉 | ioopena ().�. (Andit uses Lemma 2.7, so that we an apply Lemma 3.3 to a subproess instead of the wholeproess.) 83

free netrs,netrsb,net1,net2,iooma,ioopena.proessnew k;out(netrs,hoie[k,rseqv(k)℄) |out(netrsb,hoie[k,rseqv(k)℄) |in(iooma,xm);new r;out(net1,hoie[hash(k,(xm,r)),fakeH(k,r)℄) |in(ioopena,x);out(net2,(xm,hoie[r,fake(k,xm,r)℄))Figure 14: Virtual primitives example: Proverif ode for orrupted Bob(virtprim-borr.pv). (Has to be pre�xed with the ode from Figure 12.)And (iv) uses Lemma 3.2 (ii) to swap νr and νnetopenb with iocoma (xm). (AndLemma 2.7 to apply Lemma 3.2 (ii) to a subproess.)And (v) uses Lemma 3.3 (in the opposite diretion) with n := netcomb , t := empty ,and Q := net1〈fakeH (k, r)〉 | netopenb(x
′
m).net2〈(x′m, fake(k, x

′
m, r))〉.So we have νiocrsa .(COMA|FCRS{

netcrsb
iocrsb

}) ≈ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S)for some S with IO ∩ fn(S) = ∅. Hene νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤

FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. �9.2 Removing the virtual primitivesIn this setion, we will onsider di�erent symboli models. Sine the relation symbols
→,⇓,≈, ↓,=E et. do not expliitly speify the symboli model, we use the followingonvention: When referring to a symboli model Mi, we write →i,⇓i,≈i, ↓i,=Ei

et. Wesay a term (or destrutor term) is an M-term (or M-destrutor term) if it ontains onlyonstrutors (and destrutors) from M. We all a proess an M-proess if it ontainsonly M-terms and M-destrutor terms.We have now shown that COM is a seure ommitment protool with respet toMvirt .However, we would like to dedue seurity of protools using COM with respet to Mreal .For this, we �rst need to formalize what it means that Mvirt is a safe extension of Mreal :De�nition 9.8 (Safe extension) We all a symboli model M1 = (Σ1,E1,R1) a safeextension of a symboli model M2 = (Σ2,E2,R2) i� the following holds:(i) Σ1 ⊇ Σ2.(ii) If D is an M2-destrutor term, and M is an M1-term, and D ⇓1 M , then thereexists an M2-term M ′ =E1 M with D ⇓2 M
′.(iii) For all M2-destrutor terms D and M2-terms M , we have D ⇓2 M ⇒ D ⇓1 M .(iv) For all M2-terms M,M ′ we have M =E1 M
′ ⇔M =E2 M

′.84

The following lemma is relatively easy to show:Lemma 9.9 Mvirt is a safe extension of Mreal .Proof. Obviously, Σvirt ⊇ Σreal . So De�nition 9.8 (i) is satis�ed.We show that De�nition 9.8 (ii) is satis�ed: Let D be an Mreal -destrutor term and
M be an Mvirt -term. Sine Mreal ontains no destrutors, D is an Mreal -term. Thus
D ⇓virt M implies D =M . This implies that M ′ :=M is an Mreal -term and D ⇓real M

′.We show that De�nition 9.8 (iii) is satis�ed: Let D be an Mreal -destrutor term and
M be an Mreal -term. Sine Mreal ontains no destrutors, D is an Mreal -term. Thus
D ⇓virt M implies D =M whih implies D ⇓real M .We show that De�nition 9.8 (iv) is satis�ed: For Mreal -terms M,M ′, obviously
M =Ereal

M ′ implies M =Evirt
M ′. We show the opposite diretion: The only equa-tion in Evirt (namely hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r)) only allows usto rewrite terms ontaining crseqv or fakeH . Sine M,M ′ are Mreal -terms, they do notontain these onstrutors. Hene M =Evirt

M ′ only ifM =M ′. SoM =Evirt
M ′ implies

M =Ereal
M ′. �The following theorem justi�es the above de�nition of safe extensions:Theorem 9.10 Assume that M1 is a safe extension of M2. Then for all M2-proesses

P,P ′ we have P ≈1 P
′ ⇒ P ≈2 P

′.Proof. We �rst show some auxiliary laims:Claim 1 For all M2-proesses P,P ′, we have P →2 P
′ ⇒ P →1 P

′.We show this laim by indution over the derivation of P →2 P
′. We distinguish thefollowing ases:

• Closure under strutural equivalene: In this ase P →2 P
′ has been derived from

P ≡ P̂ →2 P̂
′ ≡ P ′ for M2-proesses P̂ , P̂ ′, and the indution hypothesis implies

P̂ →1 P̂
′. Thus P ≡ P̂ →1 P̂

′ ≡ P ′ whih implies P →1 P
′. The laim follows.

• Closure under evaluation ontexts: In this ase P →2 P
′ has been derived from

P = E[P̂], P ′ = E[P̂ ′], and P̂ →2 P̂ ′ for some M2-proesses P̂ , P̂ ′ and some
M2-evaluation ontext E. The indution hypothesis implies P̂ →1 P̂ ′. Hene
P = E[P̂] →1 E[P̂ ′] = P ′.

• REPL: In this ase P = !P̂ and P ′ = P̂ |!P̂ . Hene P →1 P
′.

• COMM: In this ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′ = P̂ | Q{T/x} and C =E2 C
′.Sine P is an M2-proess, C,C ′ are M2-terms. Sine M1 is a safe extension of

M2, C =E2 C
′ implies C =E1 C

′. Thus P →1 P
′. The laim follows.

• LET-THEN: In this ase P = (let x = D in P̂ else Q̂) and P ′ = P̂{M/x} forsome M2-proesses P̂ , Q̂, and some M2-destrutor term D and M2-term M with
D ⇓2 M . Sine P is an M2-proess, D is an M2-destrutor term. Sine M1 is asafe extension of M2, D ⇓2 M implies that D ⇓1 M . Thus P →1 P

′. The laimfollows. 85

• LET-ELSE: In this ase P = (let x = D in P̂ else Q̂) and P ′ = Q̂ and for all
M2-terms M we have D 6⇓2 M . Sine P is an M2-proess, D is an M2-destrutorterm. If we had D ⇓1 M for some M1-term M , we would have D ⇓2 M

′ for some
M2-term M ′ sine M1 is a safe extension of M2. This ontradits D 6⇓2 M for all
M2-terms M . Thus D 6⇓1 M for all M1-terms M . Hene P →1 P

′. The laimfollows.Claim 2 For all M2-proesses P , and all M1-proesses P ′′ with P →1 P
′′, there existsan M2-proess P ′ suh that P →2 P

′ ≡E1 P
′′.We show this laim by indution over the derivation of P →1 P

′′. We distinguish thefollowing ases:
• Closure under strutural equivalene: In this ase P →1 P ′′ has been derivedfrom P ≡ P̂ →1 P̂

′′ ≡ P ′′ for M1-proesses P̂ , P̂ ′′, and the indution hypothesis(Claim 2) holds for P̂ →1 P̂
′′. Sine strutural equivalene does not rewrite terms,the fat that P is an M2-proess implies that P̂ is an M2-proess. Thus P̂ →1 P̂

′′implies together with the indution hypothesis that P̂ →2 P
′ ≡E1 P̂

′′ for some
M2-proess P ′. Thus P ≡ P̂ →2 P

′ whih implies P →2 P
′ and we have P ′ ≡E1

P̂ ′′ ≡ P ′′ whih implies P ′ ≡E1 P
′′. The laim follows.

• Closure under evaluation ontexts: In this ase P →1 P
′′ has been derived from

P = E[P̂], P ′′ = E[P̂ ′′], and P̂ →1 P̂
′′ for some M1-proesses P̂ , P̂ ′′ and some

M1-evaluation ontext E. And the indution hypothesis holds for P̂ →1 P̂
′′. Sine

P is an M2-proess and P = E[P̂], we have that P̂ is an M2-proess and E and
M2-evaluation ontext. Thus by indution hypothesis, there exists an M2-proess
P̂ ′ suh that P̂ →2 P̂

′ ≡E1 P̂
′′. Let P ′ := E[P̂ ′]. Obviously P ′ is an M2-proess.And P = E[P̂] →2 E[P̂ ′] = P ′ and P ′′ = E[P̂ ′′] ≡E1 E[P̂ ′] = P ′. The laimfollows.

• REPL: In this ase P = !P̂ and P ′′ = P̂ |!P̂ . Sine P is an M2-proess, so is P̂ ,and hene also P ′ := P ′′ is an M2-proess. Then P →2 P
′ and P ′′ ≡E1 P

′ and thelaim follows.
• COMM: In this ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′′ = P̂ | Q̂{T/x} and C =E1 C

′.Sine P is an M2-proess, C,C ′ are M2-terms and P̂ , Q̂ are M2-proesses. Sine
M1 is a safe extension of M2, C =E1 C

′ implies C =E2 C
′. Thus P →2 P

′′. With
P ′ := P ′′, the laim follows.

• LET-THEN: In this ase P = (let x = D in P̂ else Q̂) and P ′′ = P̂{M/x} forsome M1-proesses P̂ , Q̂, and some M1-destrutor term D and M1-term M with
D ⇓1 M . Sine P is an M2-proess, P̂ , Q̂ are M2-proesses and D is an M2-destrutor term. SineM1 is a safe extension ofM2, D ⇓1 M implies thatD ⇓2 M

′for some M2-term M ′ =E1 M . Let P ′ := P̂{M/x}. Then P ′′ = P̂{M/x} ≡E1

P̂{M ′/x} = P ′ and P →2 P
′. The laim follows.

• LET-ELSE: In this ase P = (let x = D in P̂ else Q̂) and P ′′ = Q̂ and for all M1-terms M we have D 6⇓1 M . Sine P is an M2-proess, P̂ , Q̂ are M2-proesses and
D is an M2-destrutor term. Sine M1 is a safe extension of M2, for all M2-terms86

M , D 6⇓1 M implies that D 6⇓2 M . With P ′ := Q̂ = P ′′, we thus have P ′′ ≡E1 P
′and P →2 P

′. The laim follows.Claim 3 For all M2-proesses P , and all M1-proesses P ′′ with P →∗
1 P

′′, there existsan M2-proess P ′ suh that P →∗
2 P

′ ≡E1 P
′′.Proof. To show this laim, we show that for all n ≥ 0, all M2-proesses P , and all M1-proesses P ′′ with P →n

1 P
′′, there exists an M2-proess P ′ suh that P →∗

2 P
′ ≡E1 P

′′.Here→n
1 means exatly n appliations of→. We show this by indution over n. For n = 0,the statement is trivial. Assume the statement holds for n, we show it for n+1: We have

P →n+1
1 P ′′ hene P →n

1 P̂
′′ →1 P

′′ for some M1-proess P̂ ′′. By indution hypothesisthere exists an M2-proess P̂ ′ with P →∗
2 P̂

′ ≡E1 P̂
′′. Sine P̂ ′ ≡E1 P̂

′′ →1 P
′′, byLemma 3.5, we have P̂ ′ →1 P2 ≡E1 P

′′ for some M1-proess P2. Sine P̂ ′ is an M2-proess and P̂ ′ →1 P2, by Claim 2, there is anM2-proess P ′ suh that P̂ ′ →2 P
′ ≡E1 P2.Combining all this, we have

P →∗
2 P̂

′ →2 P
′ ≡E1 P2 ≡E1 P

′′.Thus P →∗
2 P

′ ≡E1 P
′′. �We are now ready to show Theorem 9.10. Let R := {(P,Q) :

P,Q M2-proesses, P ≈1 Q}. We show that R is an M2-simulation (and due to itssymmetry also an M2-bisimulation):
• If (P,Q) ∈ R and P ↓2M for some M2-term M , then Q →∗

2 Q′ ↓2M for some
M2-proess Q′.
P ↓2M implies (see Footnote 6) P ≡E2 E[M 〈T 〉.P ′] for some evaluation ontext Enot binding fn(M). This implies P ≡E1 E[M 〈T 〉.P ′] (sine M1 =E2 M2 implies
M1 =E1 M2 for M2-terms M1,M2). Thus P ↓1M . Sine (P,Q) ∈ R, we have that
P ≈1 Q and thus Q→∗

1 Q
′′ ↓1M for some M1-proess Q′′. By Claim 3, this impliesthat Q →∗

2 Q
′ ≡E1 Q

′′ for some M2-proess Q′. Sine Q′′ ≡E1 Q
′′ ↓1M , we have

Q′ ↓1M (this follows immediately using the haraterization from Footnote 6). Sine
Q′ ↓1M , by de�nition of ↓, we have Q′ ≡ E[M ′〈T ′〉.Q̃] for some M1-terms M ′, T ′with M ′ =E1 M and M1-proess Q̃, and some evaluation ontext not binding
fn(M). Sine Q′ is an M2-proess, E[M ′〈T ′〉.Q̃] is an M2-proess, hene M ′ isan M2-term. Thus M,M ′ are M2-terms, and M ′ =E1 M . Sine M1 is a safeextension of M2, this implies M ′ =E2 M . Thus Q′ ≡ E[M ′〈T ′〉.Q̃] implies Q′ ↓2M .So we have Q →∗

2 Q
′ ↓2M and Q′ is an M2-proess.

• If (P,Q) ∈ R and P →2 P
′ for an M2-proess P ′, then there exists an M2-proess

Q′ with (P ′, Q′) ∈ R and Q→∗
2 Q

′:Sine P,P ′ are M2-proesses, and P →2 P
′, by Claim 1 we have P →1 P

′. Sine
(P,Q) ∈ R, we have P ≈1 Q and thus Q →∗

1 Q
′′ for some M1-proess Q′′ ≈1

P ′. By Claim 3, there is an M2-proess Q′ suh that Q′′ ≡E1 Q
′ and Q →∗

2 Q
′.87

Furthermore, by Lemma 3.2 (iv), we have =E1⊆ ≈1 and trivially ≡⊆≈1, hene
≡E1⊆ ≈1. Thus Q′′ ≡E1 Q

′ implies Q′′ ≈1 Q
′. Together with Q′′ ≈1 P

′, we have
P ′ ≈1 Q

′ and thus (P ′, Q′) ∈ R.
• If (P,Q) ∈ R and E is an M2-evaluation ontext, then (E[P], E[Q]) ∈ R.Sine (P,Q) ∈ R, we have P ≈1 Q. Furthermore, sine E is an M2-evaluationontext, E is also an M1-evaluation ontext. Hene E[P] ≈1 E[Q] and thus
(E[P], E[Q]) ∈ R.Sine R is a M2-bisimulation, R ⊆ ≈2. Thus for M2-terms P,P ′ we have P ≈1 P

′ ⇒
(P,P ′) ∈ R ⇒ P ≈2 P

′. Theorem 9.10 follows. �Now we an �nally state the following result that derives seurity of COM with respetto Mreal in any ontext (we state it generally, though):Lemma 9.11 Let P,F be Mreal -proesses (representing a protool and an ideal funtion-ality, e.g., P = COM and F = FCOM). Let Mvirt be a safe extension of Mreal . Assumethat P ≤virt F .Let C be an Mreal -ontext whose hole is proteted only by νio for IO-names io, byparallel ompositions, and by !, and that does not ontain any NET-names in fn(P,F).Assume that C[F] ≤virt G for some Mreal -proess G.Let E1, E2 be Mreal -ontexts satisfying the onditions of Theorem 6.1 (propertypreservation).If E1[G] ≈virt E2[G] then E1[C[P]] ≈real E2[C[P]].Proof. By the omposition theorem (Theorem 5.37), P ≤virt F implies C[P] ≤virt C[F].With transitivity and C[F] ≤virt G, this implies C[P] ≤virt G. Then by the propertypreservation theorem (Theorem 6.1), E1[G] ≈virt E2[G] implies E1[C[P]] ≈virt E2[C[P]].Sine Mvirt is a safe extension of Mreal , this implies E1[C[P]] ≈real E2[C[P]] byTheorem 9.10. �9.3 On removing the CRSUsing virtual primitives, we have managed to get rid of the need for trapdoors in ourommitment protool. However, we still use a ommon referene string. This leads tothe question whether the CRS an also be removed from the protool. We do not answerthat question here, but we give some indiations as to how it might be possible to removethe CRS, also.First, the question is whether we an onstrut a UC seure ommitment protoolwithout using a CRS in the �rst plae (i.e., instead of the protool from Setion 9.1). Weknow that this is impossible in the omputational UC setting (no matter what primitiveswe use) [CF01℄. Unfortunately, their impossibility result arries over to the symbolisetting:Lemma 9.12 There are no losed proesses A,B and NET-names net with the followingthree properties: 88

(i) νnet .(A|B) ≤ FCOM . (Unorrupted ase.)(ii) A ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. (Bob orrupted.)(iii) B ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}. (Alie orrupted.)Thus, a UC seure ommitment protool has to be of the form νnet .(A|B|F) for somefuntionality F , e.g., FCRS .Proof. Assume that there are suh proesses A,B and NET-names net .Then there are simulators (S0, ϕ0, n0), (SA, ϕA, nA), and (SB, ϕB , nB) suh that
νnet .(A|B) ≈ νn0.(FCOMϕ0|S0) = νn0.(FCOM |S0) (5)

A ≈ νnA.(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}ϕA|SA) = νnA.(FCOM {
net ′

comb

iocomb
,
net′

openb

ioopenb
}|SA)(6)

B ≈ νnB.(FCOM {netcoma

iocoma
,
netopena
ioopena

}ϕB |SB) = νnB.(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB)(7)for suitable names net ′coma ,net
′
opena ,net

′
comb ,net

′
openb . The equalities use the fat that

FCOM does not ontain any NET-names.Let
E := νiocoma iocomb ioopena ioopenb .((

νr.
(
iocoma 〈r〉|iocomb().(ioopena 〈〉|ioopenb(x).if x = r then c〈〉)))|�)where c is a fresh name. Intuitively, this ontext ommits to a fresh none r, waits untilthe ommit sueeds, then opens the ommitment and heks whether the unveiled valueis indeed r. For a �good� ommitment sheme, this should always be the ase. Indeed:By de�nition of FCOM (and using that n0 does not ontain IO-names), we have that

E[νn0.(FCOM |S0)] →∗↓c. By (5) we have E[νnet .(A|B)] ≈ E[νn0.(FCOM |S0)] and thus
E[νnet .(A|B)] →∗↓c.We now use (6) and (7) to transform E[νnet .(A|B)] into a proess that does not usethe ommitment protool A|B any more, but instead uses two instanes of FCOM :
E[νnet .(A|B)]

(6,7)
≈ E[νnet .(νnA.(FCOM {

net ′
comb

iocomb
,
net ′

openb

ioopenb
}|SA)|νnB .(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB))]By moving all restritions up (and potentially renaming names to avoid lashes of boundvariables), we get:
E[νnet .(A|B)] ≈ νnet ′.E[FCOM {

net ′′
comb

iocomb
,
net ′′

openb

ioopenb
}|FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

}|SAB] =: PHere net ′ is the list of all names that were moved up. net ′′coma et are potentially renamednames, and SAB := SA|SB potentially up to renamings. Note that SAB does not ontainIO-names. 89

We now use several appliation of Lemma 3.3 to simplify P . Eah of the followingobservational equivalenes orresponds to one appliation of Lemma 3.3.
P ≡ νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)
| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | FCOM {
net ′′

comb

iocomb
,
net ′′

openb

ioopenb
} | SAB

= νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)
| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | iocoma(xm).(net ′′comb〈〉 | ioopena ().net ′′openb〈xm〉) | SAB(i)
≈ νnet iocomb ioopena ioopenbr.

net ′′comb〈〉 | ioopena ().net
′′
openb〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB(ii)
≈ νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB

= νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| net ′′coma (xm).(iocomb〈〉 | net
′′
opena ().ioopenb〈xm〉) | SAB(iii)

≈ νnet ioopenbr. net
′′
comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉 | net ′′opena ().ioopenb〈xm〉) | SAB(iv)
≈ νnet r. net ′′comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | net ′′opena ().if xm = r then c〈〉) | SABHere (i) uses Lemma 3.3 with n := iocoma , t := r, and x := xm.And (ii) uses Lemma 3.3 with n := ioopena .And (iii) uses Lemma 3.3 with n := iocomb .And (iv) uses Lemma 3.3 with n := ioopenb , t := xm, and x := x (and Lemma 3.2 (ii)to move the νioopenb below the net ′′coma (xm) �rst, and Lemma 2.7, so that we an applyLemma 3.3 to a subproess instead of the whole proess.)Thus we have
E[νnet .(A|B)] ≈ P ≈

νnet r. net ′′comb〈〉 | net
′′
coma (xm).(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB =: P2Note that in P2, xm is reeived before the fresh none r is revealed. Thus we expet90

that the omparison xm = r will always fail. Indeed:
P2

(∗)

≡ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB

(∗∗)

≈ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().0) | SAB =: P3Here (∗) uses Lemma 3.2 (ii) with x := xm to move the restrition νr down, and (∗∗)uses Lemma 3.8 to replae the if-statement by its else-branh (whih is 0).Thus we have that E[νnet .(A|B)] ≈ P2 ≈ P3. Furthermore, we showed above that

E[νnet .(A|B)] →∗↓c. But sine c does not our in P3 (we hose it as a fresh name, thusit also does not our in SAB), we have that P3 →∗↓c annot hold. This is a ontraditionto the observational equivalene E[νnet .(A|B)] ≈ P3. Thus our assumption was wrongthat proesses A,B and NET-names net as in the statement of the lemma exist. �However, Lemma 9.12 does not exlude that an approah similar to the virtual primi-tives approah might work: We �rst onstrut a UC seure ommitment protool (again,ommitments are just one example), build a omplex protool from it using the ompo-sition theorem, and then show that seurity of the omplex protool implies (non-UC)seurity of a modi�ation that does not use the CRS. It is likely that this works as theCRS returned by the CRS funtionality is just a fresh publi name, so instead of theCRS we should be able to just use some fresh (non-restrited) name a.There is one subtlety, though: When omposing the ommitment protool P , we endup with a omplex protool C[P] that may use multiple instanes of FCRS . In partiular,if C[P] ontains !!P , then C[P] will ontain an unbounded number of FCRS -instanes. Sowe annot replae FCRS just by a single name, we will need a way to generate an arbitrarynumber of fresh values. The obvious way for this is to use something like hash(a, sid)instead of the CRS that we get from the FCRS -instane with session-id sid (here a is afresh name).A lemma roughly like the following onjeture should therefore lead to a method forremoving the CRS from a protool that was produed by UC omposition:Conjeture 9.13 Let hash be a free onstrutor (i.e., not ourring in any equations orrewrite rules in the symboli models). Let P be a proess. Let E1, E2 be ontexts. Assumethat hash does not our in E1, E2, P . Let a /∈ fn(E1, E2, P) ∪ bn(E1, E2, P).(i) Let P ′ result from P by replaing all subterms �netcrsa(x).Q� by �let x = a in Q�.Then E1[νnetcrsa .(P |FCRS)] ∼∼∼ E2[νnetcrsa .(P |FCRS)] implies E1[νnetcrsa .(P
′)] ∼∼∼

E2[νnetcrsa .(P
′)].(ii) Let P ′ result from P by replaing all subterms �(Msid ,netcrsa)(x).Q� by �let x =

hash(a,Msid) in Q�. Then E1[νnetcrsa .(P |!!FCRS)] ∼∼∼ E2[νnetcrsa .(P |!!FCRS)] im-plies E1[νnetcrsa .(P
′)] ∼∼∼ E2[νnetcrsa .(P

′)].Proving (i) is probably onsiderably simpler than proving (ii). An alternative toproving (ii) ould be to make sure that C[P] does not ontain FCRS under a !!. Thisould be ahieved if we design a ommitment protool P that does not implement FCOM ,but !!FCOM (ompare with Setion 8.3). Then a single opy of P would be su�ient in
C[P].We leave further exploration of approahes to get rid of the CRS to future researh.91

fun empty/0.free net2, net3.let Q = new n; out(io1,n) |(in(io2,x); if x=n then out(net2,empty)) | (in(io3,x); if x=n then out(net3,empty)).proess new io1; new io2; new io3; in(io1,x1); in(io1,x2);out(io2,x1) | out(io3,hoie[x1,x2℄) | !QFigure 15: Proverif ode for showing E1[Q] ≈ E2[Q] in Lemma A.1(prop-pres-bang1.pv).A Limits for omposition and property preservationIn this setion, we show that the restritions of the omposition theorem are neessary.More preisely, we show that if P ≤ Q, then not neessarily !P ≤ !Q or io(x).P ≤ io(x).Qor io〈t〉.P ≤ io〈t〉.Q or νnet .P ≤ νnet .Q or P |R ≤ Q|R (for R that has NET-namesin ommon with P,Q). We show that this is not just a limitation of the ompositiontheorem, we show that similar limitations also apply to property preservation. Morepreisely, property preservation P ≤ Q,E1[Q] ≈ E2[Q] =⇒ E1[P] ≈ E2[P] does notneessarily hold if E1, E2 ontain a bang (!) over their hole, or an input/output overtheir hole, or an if/let over their hole, or a di�erent number of !!'s over their respetiveholes, or restrit NET-names over their holes, or use NET-names.Example A.1
P := νnm. io1〈n〉 | io2(x).if x = n then net2〈m〉 | io3(x).if x = n then net3〈m〉

Q := νn . io1〈n〉 | io2(x).if x = n then net2〈empty〉 | io3(x).if x = n then net3〈empty〉

E1 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x1〉) | !�

E2 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x2〉) | !�Lemma A.1 Using the notation from Example A.1, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Proof. We show P ≤ Q: We have P ≈ νnet ′2net
′
3.(Q{

net ′2
net2

,
net ′3
net3

}|S) for S :=

νm.(net ′2(x).net2〈m〉|net ′3(x).net3〈m〉) by two invoations of Lemma 3.3 (�rst with
n := net ′2, x := x, and t := empty , seond with n := net ′3, x := x, and t := empty).Hene P ≤ Q.The laim E1[Q] ≈ E2[Q] is shown using Proverif. The Proverif ode is given inFigure 15We now show E1[P] 6≈ E2[P]. Let D := net2(y1).net3(y2).if y1 = y2 then c〈empty〉.Then D | E1[P] →∗ D | · · · | νm.(net2〈m〉 | net3〈m〉) →∗ νm.(· · · |92

fun empty/0.free net2, net3.private free .query mess:,.let P = new n; new m; out(io1,n) |(in(io2,x); if x=n then out(net2,m)) | (in(io3,x); if x=n then out(net3,m)).let E2P = new io1; new io2; new io3; in(io1,x1); in(io1,x2);out(io2,x1) | out(io3,x2) | !P.let D = in(net2,y1); in(net3,y2); if y1=y2 then out(,empty).proess D | E2PFigure 16: Proverif ode for showing that D|E2[P] →∗↓c does not hold in the proof ofLemma A.1 (prop-pres-bang2.pv).if m = m then c〈〉) →∗↓c. Using Proverif, we show that D | E2[P] →∗↓c does nothold (for any ontext D not ontaining c). The Proverif ode is given in Figure 16.
E1[P] ≈ E2[P] would imply D | E1[P] ≈ D | E2[P] whih together with D | E1[P] →∗↓cwould imply the wrong fat D | E2[P] →∗↓c. Thus E1[P] 6≈ E2[P].

�Lemma A.2 Using the notation from Example A.1, we have P ≤ Q but not !P ≤!Q.Proof. From Lemma A.1 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume !P ≤ !Q. Wean write E1 = E′
1[!�] and E2 = E′

2[!�] for NET-free evaluation ontexts E1, E2. Then
E′

1[!Q] = E1[Q] ≈ E2[Q] = E′
2[!Q] and thus by Theorem 6.1, we have E1[P] = E′

1[!P] ≈
E′

2[!P] = E2[P]. This is a ontradition to Lemma A.1. Thus the assumption !P ≤ !Qwas wrong. �Example A.2
P := net〈empty〉

Q := 0

E1 := νio. (io().� | io〈empty〉)

E2 := νio. (io().�)Lemma A.3 Using the notation from Example A.2, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P]. 93

Proof. Obviously, P ≈ Q|S with S := net〈empty〉. Hene P ≤ S.We show E1[Q] ≈ E2[Q]: We have E1[Q] = νio. (io().0 | io〈empty〉) ≈ 0 byLemma 3.3 with n := io and C := �. And E2[Q] = νio.io().0 ≈ 0 by Lemma 3.3with n := io and C := 0. Hene E1[Q] ≈ E2[Q].We show E1[P] 6≈ E2[P]: We have E1[P] →∗ νio.net〈empty〉 ↓net . But E2[P] 6↓net ,and E2[P] does not redue. Thus there is no suessor of E2[P] that emits on net . Thisontradits E1[P] ≈ E2[P] by de�nition of observational equivalene. �Lemma A.4 Using the notation from Example A.2, we have P ≤ Q but not io().P ≤
io().Q.Proof. From Lemma A.3 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume io().P ≤ io().Q.We an write E1 = E′

1[io().�] and E2 = E′
2[io().�] for NET-free evaluation ontexts

E1, E2. Then E′
1[io().Q] = E1[Q] ≈ E2[Q] = E′

2[io().Q] and thus by Theorem 6.1, wehave E1[P] = E′
1[io().P] ≈ E′

2[io().P] = E2[P]. This is a ontradition to Lemma A.3.Thus the assumption io().P ≤ io().Q was wrong. �Example A.3 Let P,Q be as in Example A.2.
E1 := νio. (io〈empty〉.� | io())

E2 := νio. (io〈empty〉.�)Lemma A.5 Using the notation from Example A.3, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Lemma A.6 Using the notation from Example A.3, we have P ≤ Q but not
io〈empty〉.P ≤ io〈empty〉.Q.The proofs of Lemmas A.5 and A.6 are idential to those of Lemmas A.5 and A.6,exept that io() and io〈empty〉 are exhanged.Example A.4 Let P,Q be as in Example A.2.

E1 := if true then �
E2 := if false then �Here true is an equality t = t for an arbitrary losed t (e.g., empty = empty), and falseis an equality t = t′ for arbitrary losed t, t′ with t 6=E t

′ (e.g., empty = (empty , empty)).Remember that if x = y is syntati sugar for let z = equals(x, y). So this exampleis a ounterexample for let-statements.Lemma A.7 Using the notation from Example A.4, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P]. 94

Proof. P ≤ Q was already shown in Lemma A.3. By Lemma 3.2 (v) we have that
E1[P] ≈ P and E1[Q] ≈ Q = 0 and by Lemma 3.2 (v) we have that E1[P] ≈ 0 and
E2[Q] ≈ 0. Obviously, P 6≈ 0. E1[P] 6≈ E2[P], but E1[Q] ≈ E2[Q]. �Example A.5 Let P,Q be as in Example A.2.

E1 := !!�

E2 := �Lemma A.8 Using the notation from Example A.5, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Proof. P ≤ Q was already shown in Lemma A.3. Let t ∈ SID be arbitrary. We have
E1[P] ≈

∏
x∈SID (x,net)〈empty〉 →∗↓(t,net). But no suessor of E2[P] = net〈empty〉emits on (t,net) 6=E net . Thus E1[P] 6≈ E2[P].It is easy to see that 0 ≈

∏
x∈SID 0 (by showing that R := {(R,R|

∏
x∈SID\S 0)} upto strutural equivalene is a bisimulation). Thus

E1[Q] = !!0 ≈
∏

x∈SID

0 ≈ 0 = E2[Q].

�Example A.6
P := net().io().io ′〈〉

Q := net ′().io().io ′〈〉

E1 := νio.(io〈〉 | νnet ′.�)

E2 := νio.(νnet ′.�)Lemma A.9 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈ E2[Q],but E1[P] 6≈ E2[P].Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.It is easy to see that νnet ′.Q ≈ 0. Hene E1[Q] ≈ νio.io〈〉 and E2[Q] ≈ νio.0. Thus
E1[Q] ≈ E2[Q].But E1[P] →∗↓io′ and E2[P] 6→∗↓io′ . Hene E1[P] 6≈ E2[P]. �Lemma A.10 Using the notation from Example A.1, we have P ≤ Q but not νnet ′.P ≤
νnet ′.Q.Proof. From Lemma A.9 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume νnet ′.P ≤ νnet ′.Q.We an write E1 = E′

1[νnet
′.�] and E2 = E′

2[νnet
′.�] for NET-free evaluation ontexts

E1, E2. Then E′
1[νnet

′.Q] = E1[Q] ≈ E2[Q] = E′
2[νnet

′.Q] and thus by Theorem 6.1, wehave E1[P] = E′
1[νnet

′.P] ≈ E′
2[νnet

′.P] = E2[P]. This is a ontradition to Lemma A.9.Thus the assumption νnet ′.P ≤ νnet ′.Q was wrong. �95

Example A.7
P := io().net〈〉

Q := io().net ′〈〉

E1 := νio.(io〈〉 | � |!net ′〈〉)

E2 := (νio.� |!net ′〈〉)Lemma A.11 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P] 6≈ E2[P].Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.By Lemma 3.3, we have E1[Q] ≈ net ′〈〉 |!net ′〈〉. And by Lemma 3.2 (viii), net ′〈〉 |
!net ′〈〉 ≈!net ′〈〉. Finally E2[Q] ≈ 0 |!net ′〈〉. Hene E1[Q] ≈ E2[Q].But E1[P] →∗↓net and E2[P] 6→∗↓net . Hene E1[P] 6≈ E2[P]. �Lemma A.12 Using the notation from Example A.1, we have P ≤ Q but not P |
!net ′〈〉 ≤ Q | !net ′〈〉.Proof. From Lemma A.11 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume P | !net ′〈〉 ≤
Q | !net ′〈〉. We an write E1 = E′

1[� | !net ′〈〉] and E2 = E′
2[� | !net ′〈〉] for NET-freeevaluation ontexts E1, E2. Then E′

1[Q | !net ′〈〉] = E1[Q] ≈ E2[Q] = E′
2[Q | !net ′〈〉] andthus by Theorem 6.1, we have E1[P] = E′

1[P | !net ′〈〉] ≈ E′
2[P | !net ′〈〉] = E2[P]. Thisis a ontradition to Lemma A.11. Thus the assumption P | !net ′〈〉 ≤ Q | !net ′〈〉 waswrong. �Referenes[AF01℄ Martin Abadi and Cedri Fournet. Mobile values, new names, and seureommuniation. In Proeedings of the 28th ACM SIGPLAN-SIGACT sym-posium on Priniples of programming languages, pages 104�115. ACM NewYork, NY, USA, 2001.[BAF08℄ Bruno Blanhet, Martín Abadi, and Cédri Fournet. Automated veri�ationof seleted equivalenes for seurity protools. Journal of Logi and AlgebraiProgramming, 75:3�51, 2008. Online available at http://www.di.ens.fr/~blanhet/publiations/BlanhetAbadiFournetJLAP07.pdf.[BBF+11℄ Jesper Bengtson, Karthikeyan Bhargavan, Cédri Fournet, Andrew D. Gor-don, and Sergio Ma�eis. Re�nement types for seure implementations. ACMTransations on Programming Languages and Systems (TOPLAS), 33:8:1�8:45, 2011. 96

http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf

[BCC04℄ Ernest F. Brikell, Jan Camenish, and Liqun Chen. Diret anonymous at-testation. In Pro. 11th ACM Conferene on Computer and CommuniationsSeurity, pages 132�145. ACM Press, 2004.[Bla04℄ Bruno Blanhet. Automati Proof of Strong Serey for Seurity Proto-ols. Tehnial Report MPI-I-2004-NWG1-001, Max-Plank-Institut für In-formatik, Saarbrüken, Germany, July 2004.[Bla09℄ Bruno Blanhet. Automati veri�ation of orrespondenes for seurity pro-tools. Journal of Computer Seurity, 17(4):363�434, 2009. Preprint avail-able as arXiv:0802.3444v1 [s.CR℄.[Bla12a℄ Bruno Blanhet. Personal ommuniation, August 2012.[Bla12b℄ Bruno Blanhet. Proverif 1.86pl4: Automati ryptographi protool veri�er- user manual and tutorial. http://proseo.gforge.inria.fr/personal/bblanhe/proverif/manual.pdf, 2012.[BPW03℄ Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. A omposableryptographi library with nested operations. In Pro. 10th ACM CCS,pages 220�230, 2003.[BPW07℄ Mihael Bakes, Birgit P�tzmann, and Mihael Waidner. The reative sim-ulatability (RSIM) framework for asynhronous systems. Information andComputation, 205(12):1685�1720, 2007.[Can01℄ Ran Canetti. Universally omposable seurity: A new paradigm for ryp-tographi protools. In Pro. 42nd IEEE Symposium on Foundations ofComputer Siene (FOCS), pages 136�145, 2001. Extended version in Cryp-tology ePrint Arhive, Report 2000/67, http://eprint.iar.org/.[CCK+06a℄ Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nany Lynh,Olivier Pereira, and Roberto Segala. Task-strutured probabilisti I/O au-tomata. Tehnial Report MIT-CSAIL-TR-2006-060, MIT CSAIL, Septem-ber 2006. Online available at http://dspae.mit.edu/handle/1721.1/33964.[CCK+06b℄ Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nany A.Lynh, Olivier Pereira, and Roberto Segala. Time-bounded task-PIOAs: Aframework for analyzing seurity protools. In DISC, pages 238�253, 2006.[CDPW07℄ Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. Universallyomposable seurity with global setup. In Pro. 4th Theory of CryptographyConferene (TCC), pages 61�85, 2007.[CF01℄ Ran Canetti and Mar Fishlin. Universally omposable ommitments. InJoe Kilian, editor, Advanes in Cryptology, Proeedings of CRYPTO 2001,97

http://arxiv.org/abs/0802.3444v1
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://eprint.iacr.org/
http://dspace.mit.edu/handle/1721.1/33964

number 2139 in Leture Notes in Computer Siene, pages 19�40. Springer-Verlag, 2001. Full version online available at http://eprint.iar.org/2001/055.ps.[CH11℄ Ran Canetti and Jonathan Herzog. Universally omposable symboli seu-rity analysis. J Cryptology, 24(1):83�147, January 2011.[CR03℄ Ran Canetti and Tal Rabin. Universal omposition with joint state. In Pro.CRYPTO 2003, volume 2729 of LNCS, pages 265�281. Springer, 2003.[CV12℄ Ran Canetti and Margarita Vald. Universally omposable seurity withloal adversaries. In Ivan Visonti and Roberto De Priso, editors, SCN2012, volume 7485 of Leture Notes in Computer Siene, pages 281�301.Springer, 2012.[DKMR05℄ Anupam Datta, Ralf Küsters, John C. Mithell, and Ajith Ramanathan. Onthe relationships between notions of simulation-based seurity. In Joe Kilian,editor, Theory of Cryptography, Proeedings of TCC 2005, Leture Notes inComputer Siene, pages 476�494. Springer-Verlag, 2005. Online availableat http://www.ti.informatik.uni-kiel.de/~kuesters/publiations_html/DattaKuestersMithellRamanathan-TCC-2005.ps.gz.[DKP℄ Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation basedseurity in the applied pi alulus. IACR ePrint 2009/267, version 5 June2009. full version of [DKP09℄.[DKP09℄ Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation basedseurity in the applied pi alulus. In Ravi Kannan and K. Narayan Kumar,editors, FSTTCS, volume 4 of LIPIs, pages 169�180. Shloss Dagstuhl -Leibniz-Zentrum fuer Informatik, 2009.[DY81℄ Danny Dolev and Andrew Chi-Chih Yao. On the seurity of publi keyprotools (extended abstrat). In FOCS, pages 350�357. IEEE, 1981.[HS11℄ Dennis Hofheinz and Vitor Shoup. GNUC: A new universal omposabilityframework. IACR ePrint 2011/303, 2011.[KDMR08℄ Ralf Küsters, Anupam Datta, John C. Mithell, and Ajith Ra-manathan. On the relationships between notions of simulation-based se-urity. Journal of Cryptology, 2008. To appear. Eletroni publiationhttp://dx.doi.org/10.1007/s00145-008-9019-9.[Küs06℄ Ralf Küsters. Simulation-based seurity with inexhaustible interative Tur-ing mahines. In CSFW 2006, Computer Seurity Foundations Workshop,pages 309�320. IEEE Computer Soiety, 2006. Long version available asIACR eprint 2006/151. 98

http://eprint.iacr.org/2001/055.ps
http://www.ti.informatik.uni-kiel.de/~kuesters/publications_html/DattaKuestersMitchellRamanathan-TCC-2005.ps.gz

[Low95℄ Gavin Lowe. An attak on the needham-shroeder publi-key authentiationprotool. Information Proessing Letters, 56:131�133, November 1995.[MQU07℄ Jörn Müller-Quade and Dominique Unruh. Long-term seurity and universalomposability. In Theory of Cryptography, Proeedings of TCC 2007, volume4392 of Leture Notes in Computer Siene, pages 41�60. Springer-Verlag,Marh 2007. Preprint on IACR ePrint 2006/422, superseeded by [MQU07℄.[UMQ10℄ Dominique Unruh and Jörn Müller-Quade. Universally omposable ino-eribility. In Crypto 2010, volume 6223 of LNCS, pages 411�428. Springer,August 2010. Preprint on IACR ePrint 2009/520.[Unr10℄ Dominique Unruh. Universally omposable quantum multi-party omputa-tion. In Eurorypt 2010, LNCS, pages 486�505. Springer, 2010. Preprint onarXiv:0910.2912 [quant-ph℄.[Unr11℄ Dominique Unruh. Conurrent omposition in the bounded quantum storagemodel. In Eurorypt 2011, volume 6632 of LNCS, pages 467�486. Springer,May 2011. Preprint on IACR ePrint 2010/229.Symbol index
N The set of names 5
V The set of variables 5
Σ The Signature � a set of funtion symbols (ap-plied pi alulus) 5
T The set of terms 5
E The �nite set of equations that are to hold in theequational theory (applied pi alulus) 6
M =E N Terms M and N are equal with respet to theequational theory E

6
D(M1 , . . . ,Mn) → M Redution rule for destrutor D 6
R Finite set of rewrite rules for destrutors 6
DM ⇓ Term D evaluates to M 6
M Symboli model M 6
0 Empty proess (applied pi alulus) 7
!P Conurrent exeutions of instanes of P (appliedpi alulus 7
νa Restrition of the name a (applied pi alulus) 7
M(x) Reeiving x on hannel N 7
M〈N〉 Sending N on hannel N 7let x = D in P else Q Let it be 7
fn(P) Free names in P 7
fv(P) Free variables in P 799

bn(P) Bound names in P 7
bv(P) Bound variables in P 7
P ≡ Q Strutural equivalene of P and Q 7
P → Q Proess P redues to Q 8
P ↓M The proess P emits on a hannel M 8
P ↑M The proess P reads on a hannel M 8
P lM The proess P ommuniates on a hannel M 8
P ≈ Q Observational equivalene of the losed proesses

P and Q 9if M = N then P else Q Syntati sugar for let x =
equals(M ,N) in P else Q

9
C().P Syntati sugar for C(x).P with fresh variable x 9
C〈〉.P Syntati sugar for C(empty).P 9
equals Destrutor equals 10
fst Destrutor: Extrats the �rst omponent of a tag 10
snd Destrutor: Extrats the seond omponent of atag 10
≡E Strutural equivalene modulo equational theory

E
10

P ∼∼∼ Q Full observational equivalene of the non-losedproesses P and Q 11
∏

x∈S P Indexed repliation of the proess P 13
{a/b} Substitution replaing b with a 13
ր≡ Asymmetri variant of strutural equivalene 20
ր≡E ր≡ modulo equational theory 20
event f(t) Raise event f(t) 23
plains(P) P with synhronization hannel s removed 25
evs(P) P with synhronization hannel s replaed byevents 25
syncout s(t1 7→ t′1, . . . ;u1 7→ u′1, . . .) Outputs on synhronization hannel s 25
IO Set of all I/O names 32
NET Set of all network names 32
P ≤ Q P emulates Q 33
P ((M)) Proess P with session-id M 36
SID Set of all session IDs 37
CSID
x ,n An arbitrary but �xed SID -indexing ontext 37

nil Construtor denoting the empty bitstring 37
zero Construtor pre�xing a bitstring with 0 37
one Construtor pre�xing a bitstring with 1 37
SIDbits Conrete set of session IDs built from bitstrings 37
CSIDbits
x ,a A onrete �xed SIDbits-indexing ontext 37

Gn
x ,a Auxiliary de�nition in analysis of CSIDbits

x ,a 37
C
(sID ,gID ,n)
x ,a Auxiliary de�nition in analysis of CSIDbits

x ,a 38100

sID Auxiliary de�nition in analysis of CSIDbits
x ,a � set ofspawned IDs 38

gID Auxiliary de�nition in analysis of CSIDbits
x ,a � set ofgenerator IDs 38

Σx∈SP Short for P{s1/x}|P{s2/x}| . . . for S =
{s1, s2, . . . }

38
〈�〉 Span of a set of IDs 38
!!P Conurrent omposition of P with session ids 42
≈n

S Observational equivalene restrited to proessesthat do not ontain n and ontexts build from S
43

nsid Fixed name for sid-sensitive proesses 44
Msid Fixed term for sid-sensitive proesses 44
Ssid The set of sid-sensitive proesses 44
Φ Transformation of a generi plain proess into asid-sensitive proess 44
tag Tag hannel identi�ers 47
untag Untag hannel identi�ers 48
∼Ssid

An Ssid -observational equivalene relation 51
FSC Seure hannel funtionality 60
� Observational preorder 60
P ≤SS Q P emulates Q in the sense of Delaune et al.[DKP09℄. 60
Fanon Inseure but anonymous hannel funtionality 61
penc Construtor: publi key enryption 64
pk Construtor: publi key 64
sk Construtor: seret key 64
senc Construtor: symmetri enryption 64
hash Construtor: hash funtion 64
empty Construtor: empty message 64
pdec Destrutor: publi key deryption 64
sdec Destrutor: symmetri deryption 64
pkofsk Destrutor extrating seret from publi key 64
pkofenc Destrutor extrating publi key from iphertext 64
FKE Key exhange funtionality 65
FPKI Publi key infrastruture funtionality 65
NSL Needham-Shroeder-Lowe protool 65
SC Seure hannel protool 68
KE

∗ Protool for generating many keys 73
FCOM Commitment funtionality 78
Mvirt Symboli model with virtual primitives 79
Mreal Symboli model without virtual primitives 79
crsext Construtor: CRS for extration 79
crseqv Construtor: CRS for equivoation 79101

fakeH Construtor: Fake (equivoal) hash 79
fake Construtor: Randomness for fake hash 79
extract Destrutor: Extrating from a hash 79
FCRS Common referene string funtionality 79
COM Commitment protool 80Index

S-n-bisimulation, 43
S-n-observational equivalene, 43
S-n-simulation, 430-1-ontext, 9adversary, 32dummy, 33
α-onversion, 8bisimulation, 9blak-box simulatability, 33hannel identi�ers, 10ommuniate, 8omplete (set of proesses), 43ompositiononurrent, 36onurrent omposition, 36ontext, 70-1-, 9evaluation, 7indexing, 37multi-hole, 30destrutor term, 6

M-, 84DKP-seurity, 60dummy adversary, 33emit, 8empty, 10emulate, 33equals, 10equivalenefull observational, 11observational, 9

strutural, 7event proess, 23EVENT rule, 23extensionsafe, 84free, 7full observational equivalene, 11if-statement, 9indexed repliation, 13indexing ontext, 37internal redution, 8IREPL, 13
M-destrutor term, 84
M-proess, 84
M-term, 84modelsymboli, 6multi-hole ontext, 30name, 5bound, 7name-redued, 26natural symboli model, 10
NET-stable, 32observational equivalene, 9full, 11observational preorder, 60preorderobservational, 60proess

M-, 84102

losed, 7event, 23produt, 13produt proess, 13proteted, see unprotetedread, 8relay, 62repliationindexed, 13safe extension, 84satisfytrae property, 23signature, 5simulatabilityblak-box, 33strong, 33universally-omposable, 33simulation, 8

simulator, 33strong simulatability, 33strutural equivalene, 7substitution, 6losing, 11symboli model, 6natural, 10term
M-, 84trae property, 23satisfy, 23universally-omposable simulatability,33unproteted, 7variable, 5bound, 7virtual primitives, 77

103

	Introduction
	Review of the applied pi calculus
	Syntactic sugar
	Additional concepts used in this work

	Useful properties of the pi calculus
	Relating events and observational equivalence
	Unpredictability of nonces

	Symbolic UC
	Composition
	Property preservation
	Relation to Delaune-Kremer-Pereira
	Example: Secure channels
	Key exchange using NSL
	Secure channel from key exchange.
	Generating many keys from one

	Virtual primitives
	Realizing commitments
	Removing the virtual primitives
	On removing the CRS

	Limits for composition and property preservation
	Symbol index
	Index

