
Why Proving HIBE Systems Secure is Difficult

Allison Lewko Brent Waters

Abstract

Proving security of Hierarchical Identity-Based Encryption (HIBE) and Attribution
Based Encryption scheme is a challenging problem. There are multiple well-known schemes
in the literature where the best known (adaptive) security proofs degrade exponentially in
the maximum hierarchy depth. However, we do not have a rigorous understanding of why
better proofs are not known. (For ABE, the analog of hierarchy depth is the maximum
number of attributes used in a ciphertext.)

In this work, we define a certain commonly found checkability property on ciphertexts
and private keys. Roughly the property states that any two different private keys that are
both “supposed to” decrypt a ciphertext will decrypt it to the same message. We show that
any simple black box reduction to a non-interactive assumption for a HIBE or ABE system
that contains this property will suffer an exponential degradation of security.

1 Introduction

In recent years, there has been emerging interest in increasing the expressiveness of encryp-
tion systems in terms of targeting ciphertexts to certain groups of users. First examples
included Hierarchical Identity-Based Encryption (HIBE) [HL02] and Attribute-Based En-
cryption (ABE) [SW05]. The early difficulty in HIBE and ABE research was to obtain sys-
tems that were provably secure under robust security definitions. Initial constructions of
HIBE [GS02, CHK03, BB04a, BBG05] and ABE [SW05, GPSW06] had the drawback that
their security reductions degraded exponentially in the depth of the hierarchy when encrypting
an HIBE ciphertext or number of attributes used when creating an ABE ciphertext. For this
reason, the first (standard model) security proofs were done in the selective model, a term coined
by Canetti, Halevi and Katz [CHK03]. In this weaker model, an attacker (artificially) declared
the challenge identity he was attacking before seeing the public parameters of the system.

At the time, researchers identified achieving standard (sometimes called adaptive or full)
security for these systems as an important open problem. However, it was not well understood
whether there existed full security reductions for the already proposed constructions without
exponential decay, and if not, why. While there was general intuition about the limitations of
what were called partitioning proofs (e.g., see discussion in [Wat09]), there was no rigorous
explanation of these difficulties.

In 2009, Gentry and Halevi [GH09] gave an HIBE construction and proved it fully secure
without an exponential degradation in the depth. Their construction made use of projective
hash techniques from [CS02, Gen06]. One tradeoff is that it required the use of non-static or
q-type assumptions to prove security where the size of the assumption grew with the number of
key queries. Later, Waters [Wat09] described a new and more systematic approach to proving
full security called dual system encryption. Using dual system encryption, he proved an HIBE
system fully secure under simple assumptions. Dual system encryption was subsequently used
to prove full security of ABE and other related systems [LOS+10, OT10, LW12].

While these new proof techniques represent an advance in proving security, they still leave us
with an incomplete picture about the security of the initial selectively secure constructions. Can

1

these systems only be proven selectively secure? If so, why? Coming to a better understanding is
important for multiple reasons. First, the earlier systems are typically more practically efficient
than the recent dual system encryption counterparts. If they could be proven fully secure, they
might be more desirable to use. Second, it is valuable to have a more rigorous characterization
of what properties of a construction make it difficult to prove security, as identifying these
properties can potentially inspire new construction and proof methods for encryption systems.

Understanding Partitioning Proofs We organize our investigation around the goal of
understanding partitioning proofs. Intuitively, these are proofs where a reduction algorithm
(when creating a set of public parameters) splits ciphertext descriptors or “identities” into two
disjoint sets. Those it can leverage for the challenge ciphertext (we call this the “challenge
set”) and those it cannot. If a certain identity x is in the challenge set, then the reduction
cannot issue a private key for y if a private key for y should be allowed to decrypt a ciphertext
associated with x.

We begin by asking the following two questions:

1. Are there functionalities where a partitioning proof cannot work? (I.e. No reduction with
a polynomial security loss exists.)

2. Under what circumstances are we stuck with a partitioning proof?

To begin to answer the first question, we try to think of a basic case where partitioning
will fail. To this end, we introduce a prefix encryption functionality. In a prefix encryption
system, a private key is associated with a binary string y and a ciphertext with a binary string
x. One can decrypt the ciphertext to reveal a hidden message M if and only if y is a prefix
of x. The point of introducing this primitive is to describe a simple primitive which distills
the core features needed for our impossibility result. HIBE and most expressive ABE systems
imply prefix encryption in a straightforward way.

To be successful, any partitioning reduction algorithm must have the set of challenge cipher-
text descriptors cover at least a non-negligible fraction of the descriptors, else one would almost
never get chosen by an attacker. In addition, there must be some non-negligible chance that the
private keys requested by the attacker do not violate this partition. Immediately, we see this
cannot work with a prefix encryption system. Consider an attacker, A that choose a random
length n string x (for security parameter n) as the challenge ciphertext. In addition, it asks for
private keys for strings y1, . . . , yn, where string yi is the length i string that matches x in the
first i− 1 bits and is different in the last bit. This small number of private keys can be used to
decrypt a ciphertext associated with any string except x. Thus, any partitioning reduction that
has more than one string in its challenge set will not be able to answer all the key queries for
this attacker. Consequently, its best strategy is to pick one string for its challenge set, which
will match A’s choice with only 2−n probability.

Next, we want to understand what properties of a construction force us to be “stuck with”
a partitioning proof, in the sense that there is nothing to be gained from considering different
reduction techniques. For prefix encryption, it was problematic for a partitioning proof that
a large number of ciphertexts types could be covered by a small number of keys. Intuitively,
one might be stuck with a partitioning proof if any authorized key can “equally decrypt” a
ciphertext. We consider prefix encryption constructions that implicitly allow a pair of efficient
algorithms for respectively checking an acceptability condition of a key and a ciphertext. If
a ciphertext associated with a string x is determined to be acceptable by this check, then all
acceptable keys for any prefix y will decrypt to the same message (or all fail decryption). We
refer to constructions that allow such decisive checks as “checkable” schemes.

2

Essentially, this says that all keys that should be able to decrypt an acceptable ciphertext
will decrypt it the same way. It is notable that early constructions of HIBE [GS02, CHK03,
BB04a, BBG05] and ABE [SW05, GPSW06] which were only proved selectively secure all have
this property when instantiated under typically used prime order bilinear groups. This matches
our intuition that they are in some sense stuck with partitioning proofs. However, constructions
using the techniques of Gentry [Gen06] and dual system encryption do not meet this criteria. For
example, in dual system encryption proofs, a normal secret key will decrypt a semi-functional
ciphertext differently than a semi-functional secret key will.

Our Result In this work, we formalize this intuition by showing that there are no simple black
box reductions from the full security of checkable prefix encryption schemes to non-interactive
assumptions 1. This result extends to HIBE and ABE as we show that these both can embed
prefix encryption systems.

We capture our result in a somewhat similar manner to Coron [Cor02] and Hofheinz, Jaegar,
and Knapp [HJK12] who showed that no unique [Cor02] or rerandomizable [HJK12] signatures
can have black box proofs to non-interactive assumptions. While their focus was on showing
the necessity of a polynomial loss (in the number of signature queries) for a class of signatures,
we show the necessity of a drastic exponential loss of security for HIBE and ABE schemes.

At a high level, we construct an algorithm B that runs the reduction algorithm R, where
B acts as an computationally unbounded attacker. Since B is actually not a “real” attacker it
will need to find a way to look like one.

To do this, B will first wait for the reduction algorithm to commit to a set of public pa-
rameters. Next, it will run R with the same public parameters multiple times (we specify more
precisely the number of times in Section 3), each time choosing a random string x and collecting
private keys y1, . . . , yn for the n strings that are prefixes of x except in their last bits. After
each run, B rewinds R to the point where it published the system parameters. The point of
these runs is to collect private key information relative to the committed public parameters. If
any of these runs for a particular x value does not abort, then B has the private key information
to decrypt a ciphertext for any string but x.

Finally, B will request a challenge ciphertext for a new random string z. If x 6= z for some x
used in a prior run where B successfully collected keys, then B has a private key that allows it
to decrypt the challenge ciphertext and act as an attacker. If R is an efficient reduction, it will
then break the assumption with non-negligible advantage. We can generalize this to reductions
that run the attacker a polynomial number of times in sequence, but like [Cor02, HJK12] we
do not cover reductions that concurrently run executions of the attack algorithm.

Future Directions Multiple interesting questions arise from this work. Perhaps the most
exciting direction is to see if limitations of our impossibility result can lead to new proof tech-
niques in the positive direction. For example, in the course of this work we discovered that
one can build prefix encryption from any IBE scheme. The proof is an easy hybrid reduction.
This construction lies outside of impossibility result since two keys for different prefixes y and
y′ of some string z might decrypt a (malformed) ciphertext to different values. This is different
than dual system encryption techniques, which rely on giving a different key structure for the
same key value. A parallel goal is of course to strengthen our impossibility results. An natural
target is to see if either our impossibility results can be extended to handle reductions that run
attack algorithms concurrently or alternatively if building reductions that run attack algorithms

1The restriction to non-interactive assumptions is natural and arguably necessary. Any scheme can be proven
secure under the (possibly interactive) assumption that it is secure. The work of [BSW07] essentially does this,
but with the mitigating factor of proving generic group security.

3

concurrently can be leveraged for new positive results. By expanding our knowledge from both
ends of the spectrum, we can hope to get a more complete understanding of the space of possible
security proofs for functional encryption systems.

Another direction is to examine how recent selectively secure lattice HIBE [CHKP10, ABB10]
constructions fit into this framework. These constructions allow some form of key rerandom-
ization in that an algorithm can sample a new short basis, however, the “quality” of this basis
is not as good as the original and in general higher quality private keys are not reachable from
lower quality private keys. One possibility is that this quality of key difference can be leveraged
to prove full security of these existing schemes.

2 Preliminaries

2.1 Prefix Encryption

We present the functionality of prefix encryption as the simplest functionality that captures
the core structure of hierarchical identity-based encryption. Essentially, we strip off the usual
trappings of HIBE schemes that are not relevant to our purposes. In particular, we do not
require explicit delegation capabilities, and we do not use “identity vectors” with large sets
of potential values for each coordinate. Instead, keys and ciphertexts in a prefix encryption
scheme will be associated with binary strings, and a key will be able to decrypt a ciphertext
if and only if the binary string associated to the key is a prefix of the binary string associated
to the ciphertext. We observe that such a functionality can be easily derived from any HIBE
scheme by designating fixed identities in each coordinate to play the role of “0” and “1”.

We formally define a Prefix Encryption scheme as having the following algorithms:

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and outputs
the public parameters PP and a master secret key MSK.

Encrypt(x,M,PP) → CT The encryption algorithm takes in a binary string x, a message
M , and the public parameters PP. It outputs a ciphertext CT.

KeyGen(MSK, y) → SK The key generation algorithm takes in the master secret key MSK
and a binary string y. It outputs a secret key SK.

Decrypt(CT, SK)→M The decryption algorithm takes in a ciphertext CT and a secret key
SK. If the binary string y of the secret key is a prefix of the binary string x of the ciphertext,
it outputs the message M .

As we will study how security reductions behave as the binary strings involved grow longer,
we will allow public parameters to specify a maximum length, q, for the indexing strings of the
keys and ciphertexts. Our lower bound on the provable security degradation as an exponential
function of the maximum string length will only apply to schemes that are suitably “checkable.”
In order to define this precisely, we will restrict our consideration to schemes can be augmented
with two additional algorithms:

CTCheck(PP,CT, x)→ {True,False} The ciphertext checking algorithm takes in public pa-
rameters PP, a ciphertext CT, and a binary string x. It outputs either True or False.

4

KeyCheck(PP,SK, y) → {True,False} The key checking algorithm takes in public parame-
ters PP, a secret key SK, and a binary string y. It outputs either True or False.

We note that these additional algorithms are required to be efficient (just like the more
standard algorithms above). We also require them to be deterministic.

For correctness, we require that CTCheck(PP,CT, x) outputs True whenever PP is honestly
generated and CT is an honestly generated ciphertext for x from PP. Similarly, we require that
KeyCheck(PP,SK, y) outputs True whenever PP,MSK are honestly generated and SK is an
honestly generated key for y from MSK.

Definition 1. We say a prefix encryption scheme is checkable if for any PP,CT, x,SK1, y1,SK2, y2

such that CTCheck(PP,CT, x) = True, KeyCheck(PP, SK1, y1) = True, KeyCheck(PP,SK2, y2) =
True, and y1, y2 are both prefixes of x, then Decrypt(CT,SK1) = Decrypt(CT, SK2).

2.1.1 Security Definition

We now define full security for a prefix encryption scheme in terms of the following game between
a challenger and an attacker. This is essentially the definition of full IND-CPA security for
HIBE schemes, but the case of prefix encryption is a bit simpler as there is no need to track
the delegation of keys. The game proceeds in the following phases:

Setup Phase The challenger runs Setup(λ) to produce MSK and PP. It gives PP to the
attacker.

Key Query Phase I The attacker adaptively chooses binary strings y and queries the chal-
lenger for corresponding secret keys. For each queried string y, the challenger runs KeyGen(MSK, y)
to produce a secret key SK, which it gives to the attacker.

Challenge Phase The attacker declares to equal length messages M0,M1, and a binary string
x. It is required that for all strings y queried in the previous phase, y is not a prefix of x. The
challenger chooses a uniformly random bit b ∈ {0, 1} and creates a ciphertext CT by running
Encrypt(x,Mb,PP). It gives CT to the attacker.

Key Query Phase II This is the same as the first key query phase, except that any queried
y must not be a prefix of the challenge string x.

Guess The attacker submits a guess b′ for the bit b.

Definition 2. We define the advantage of an attacker in this game to be |Pr[b = b′]− 1
2 |. We say

an algorithm A (t, ε, q)-breaks a prefix encryption scheme if it runs in time t, achieves advantage
ε, and makes at most q total key queries. We say a prefix encryption scheme is secure if no
algorithm (t, ε, q)-breaks for parameters t, q, ε where t, q are polynomial in the security parameter
and ε is non-negligible.

The weaker notion of selective security would be obtained by modifying the security game
above by having the attacker declare the binary string x for the challenge at the very beginning
of the game, before seeing the public parameters.

2.2 Hierarchical Identity-Based Encryption

For completeness, we now present the relevant definitions for HIBE schemes. We use ~I =
(I1, . . . , Ik) to denote an identity vector.

A HIBE scheme is composed of the following algorithms:

5

Setup(λ) → PP,MSK The setup algorithm takes in the security parameter λ and outputs
the public parameters PP and a master secret key MSK.

Encrypt(~I,M,PP)→ CT The encryption algorithm takes in an identity vector ~I, a message
M , and the public parameters PP. It outputs a ciphertext CT.

KeyGen(MSK, ~I) → SK The key generation algorithm takes in the master secret key MSK
and an identity vector ~I. It outputs a secret key SK for ~I.

Delegate(PP,SK, Ik+1) → SK′ The delegation algorithm takes in the public parameters, a
secret key for an identity vector ~I = (I1, . . . , Ik), and a new component Ik+1 to be added to the
identity vector. It produces a new secret key SK′ for the identity (I1, . . . , Ik, Ik+1).

Decrypt(CT, SK)→M The decryption algorithm takes in a ciphertext CT and a secret key
SK. If the identity vector of the secret key is a prefix of the identity vector of the ciphertext, it
outputs the message M .

As we will study how security reductions behave as the identity vectors involved grow longer,
we will allow public parameters to specify a maximum length, q, for the identity vectors asso-
ciated with the keys and ciphertexts.

Similarly to our definitions for Prefix Encryption schemes, we consider HIBE schemes
equipped with two additional algorithms:

CTCheck(PP,CT, ~I) → {True,False} The ciphertext checking algorithm takes in public
parameters PP, a ciphertext CT, and an identity vector ~I. It outputs either True or False.

KeyCheck(PP,SK, ~I)→ {True,False} The key checking algorithm takes in public parame-
ters PP, a secret key SK, and an identity vector ~I. It outputs either True or False.

We note that these additional algorithms are required to be efficient (just like the more
standard algorithms above). We also require them to be deterministic.

For correctness, we require that CTCheck(PP,CT, ~I) outputs True whenever PP is honestly
generated and CT is an honestly generated ciphertext for ~I from PP. Similarly, we require that
KeyCheck(PP,SK, ~I) outputs True whenever PP,MSK are honestly generated and SK is an
honestly generated key for ~I from MSK.

Definition 3. We say a HIBE scheme is checkable if for any PP,CT, ~I∗,SK1, ~I
1, SK2, ~I

2 such
that CTCheck(PP,CT, ~I∗) = True, KeyCheck(PP,SK1, ~I

1) = True, KeyCheck(PP,SK2, ~I
2) =

True, and ~I1, ~I2 are both prefixes of ~I∗, then Decrypt(CT,SK1) = Decrypt(CT, SK2).

2.2.1 Security Definition

We present the full security definition for a HIBE scheme that is given in [SW08]. We define
the following game between a challenger and an attacker.

Setup Phase The challenger runs Setup(λ) to produce MSK and PP. It gives PP to the
attacker. The challenger also initializes a set S = ∅. (As the game progresses, S will hold the
secret keys that the challenger has produced but not given out.)

6

Key Query Phase I The attacker adaptively makes three kinds of queries: Create, Delegate,
and Reveal. In a Create query, the attacker supplies an identity vector ~I. The challenger creates
a key for ~I by running the KeyGen algorithm with MSK and ~I as input. It places the resulting
key in the set S and gives the attacker a reference to it (note that it does not give the key itself
to the attacker). In a Delegate query, the attacker specifies a reference to a key in S and an
identity component I ′. The challenger takes the key in S, which corresponds to some identity
vector ~I and runs the delegation algorithm on it to create a new key for the identity ~I : I ′ (this
denotes the vector created by appending I ′ to ~I). The new key is placed in S, and the attacker
is given a reference to it. In a Reveal query, the attacker supplies a reference to a key in S and
the challenger gives the corresponding key to the attacker and removes it from S.

Challenge Phase The attacker declares two equal length messages M0,M1, and an identity
vector ~I∗. It is required that none of the revealed keys in the previous phase have identity
vectors that are prefixes of ~I∗. The challenger chooses a uniformly random bit b ∈ {0, 1} and
creates a ciphertext CT by running Encrypt(~I∗,Mb,PP). It gives CT to the attacker.

Key Query Phase II This is the same as the first key query phase, except that any revealed
key must not be a prefix of the challenge vector ~I∗.

Guess The attacker submits a guess b′ for the bit b.

Definition 4. We define the advantage of an attacker in this game to be |Pr[b = b′] − 1
2 |.

We say an algorithm A (t, ε, q)-breaks a HIBE scheme if it runs in time t, achieves advantage
ε, and makes at most q total key queries. We say a HIBE scheme is secure if no algorithm
(t, ε, q)-breaks for parameters t, q, ε where t, q are polynomial in the security parameter and ε is
non-negligible.

We note that for schemes where the delegation algorithm produces keys that are identi-
cally distributed to keys produced directly by the key generation algorithm, this definition is
equivalent to a simpler definition that only allows the usual reveal queries. This is because the
delegation lineage of a key is now irrelevant for its distribution. Since it suffices for our purposes
to ignore the delegation algorithm, we could just as easily work with the simpler definition, but
we prefer to present the full definition here for completeness.

The weaker notion of selective security is obtained by modifying the security game above by
having the attacker declare the vector ~I∗ for the challenge at the very beginning of the game,
before seeing the public parameters.

2.3 Non-interactive Decisional Problems and Simple Black Box Reductions

We now formally define the kinds of decisional problems and reductions we will consider. We
start by describing the non-interactive decisional problems we allow:

Definition 5. A non-interactive decisional problem Π = (C,D) is described by a set C and a
distribution D on C. We refer to C as the set of challenges, and each c ∈ C is associated with
a bit b(c) ∈ {0, 1}. We say that an algorithm A (ε, t)-solves Π if A runs in time t and

Pr[A(c) = b(c) : c D←− C] ≥ 1
2

+ ε.

Here, c D←− C denotes that c is chosen randomly from C according to the distribution D.

7

Decisional problems used as cryptographic hardness assumptions are actually families of
such problems, parameterized by a security parameter λ. Below, we will abuse notation mildly
and write only Π while λ is implicit. We will write poly(λ) and neg(λ) to denote functions that
are polynomial functions of λ and negligible functions in λ, respectively.

We next define the type of reductions we will address. We do not consider reductions
in full generality - instead we restrict our consideration to black box reductions that satisfy
additional requirements. Namely, we require simple reductions that only run the attacker once
in a straight line fashion - meaning that the reduction simulates the security game exactly once
with the attacker, who it interacts with as a black box. Note that this does not allow the
reduction to rewind the attacker or supply its randomness, etc.

Definition 6. An algorithm R is a simple (t, ε, q, δ, t′)-reduction from a decisional problem Π
to breaking the security of a prefix encryption scheme Prefix if, when given black box access to
any attacker A that (t, ε, q)-breaks the scheme Prefix, the algorithm R (δ, t′)-solves the problem
Π after simulating the security game once for A.

We note that all of the security reductions given for prior HIBE and ABE schemes are simple
reductions in the sense of Definition 6.

2.4 Obtaining Prefix Encryption from HIBE

Given a HIBE scheme with algorithms SetupHIBE , KeyGenHIBE , EncryptHIBE , DelegateHIBE ,
and DecryptHIBE , we will derive a prefix encryption scheme with algorithms SetupPre, KeyGenPre,
EncryptPre, and DecryptPre. To accomplish this, we only require that there are at least two
possible values for each component of the identity vectors allowed in the HIBE scheme.

We let SetupPre := SetupHIBE . We then suppose that {I0
1 , I

1
1}, {I0

2 , I
1
2}, . . . , {I0

q , I
1
q } are sets

of values such that taking any combination (Ib11 , I
b2
2 , . . . , I

bq
q) for bits b1, . . . , bq ∈ {0, 1} forms a

valid identity vector (and I0
j 6= I1

j for all j). We define KeyGenPre to generate a key for a binary
string y = (y1, y2, . . . , yk) for k ≤ q by running KeyGenHIBE on the identity (Iy11 , Iy22 , . . . , Iykk).
We similarly define EncryptPre to encrypt to a binary vector x = (x1, . . . , xj) by running
EncryptHIBE to encrypt to (Ix1

1 , . . . , I
xj
j). We can then set DecryptPre = DecryptHIBE .

We now observe that if we start with a checkable HIBE, then the derived prefix encryption
scheme will also be checkable:

Lemma 7. If SetupHIBE, KeyGenHIBE, EncryptHIBE, DelegateHIBE, and DecryptHIBE is a
checkable HIBE scheme, than SetupPre, KeyGenPre, EncryptPre, and DecryptPre obtained from
it as described above is a checkable prefix encryption scheme.

Proof. We define the CTCheck algorithm for our prefix scheme as follows. It first translates the
binary vector input into the corresponding identity vector via the encoding described above.
Then it runs the CTCheck algorithm of the HIBE scheme on the same ciphertext and parameters
on this identity vector. Similarly, the KeyCheck algorithm for our prefix scheme will simply
translate the binary vector to the corresponding identity vector and run the KeyCheck algorithm
for the HIBE scheme. It is clear that the required correctness properties of these algorithms
are retained. Since the decryption algorithm of the prefix scheme simply runs the decryption
algorithm of the HIBE scheme, the fact that the HIBE scheme is checkable implies that the
derived prefix scheme is also checkable.

Finally, we observe that simple security reductions for the initial HIBE scheme can be
translated into simple security reductions for the derived prefix encryption scheme:

8

Lemma 8. If RHIBE is a simple (t, ε, q, δ, t′)-reduction from a decisional problem Π to breaking
the security of a HIBE encryption scheme, then we can obtain from R a new reduction RPre that
is a simple (t, ε, q, δ, t′)-reduction from the same decisional problem Π to breaking the security
of the derived prefix encryption scheme.

Proof. We derive RPre as follows. When given black box access to an attacker A on the prefix
encryption scheme, RPre runs R and simulates an attacker A′ on the HIBE scheme. It does
this by translating a key request made by A for a binary vector y into a key request for the
corresponding identity vector ~I. It similarly translates the challenge vector declared by A and
forward these translations to R. When R produces an output, RPre copies this output as its
own. Note that the running time of RPre is precisely the running time of R.

3 Main Result

We now prove our main result, establishing that any polynomial time simple black box reduc-
tion between the security of a checkable prefix encryption scheme and a hard, non-interactive
decisional problem can only achieve an advantage that degrades exponentially in q, where q is
the maximum string length of the scheme.

Essentially, we leverage the fact that the reduction can be run to obtain secret keys and
then be rewound to “forget” these keys were produced. We can then use the secret keys
obtained during the first runs of the reduction to simulate a successful attacker against a different
challenge in a final run. The checking algorithms play a pivotal role in ensuring that the
unorthodox manner in which these keys are obtained does not compromise their effectiveness.
Intuitively, for keys and ciphertexts that pass the (publicly computable) checks, the result of a
successful decryption is guaranteed to be independent of the origins of the key.

It is interesting to consider what happens if one tries to apply such techniques to more
complicated reductions. A first example would be reductions that sequentially run the attacker
a bounded number of times. In such a case, our result should extend easily via an application
of the union bound, analogously to the extensions in [Cor02, HJK12]. However, it is not clear
how to extend our argument to reductions that may run interleaved instances of the attacker,
using concurrency in an arbitrary way. We observe that the arguments in [Cor02, HJK12] also
do not address this case.

Theorem 9. Let Prefix = (Setup, Encrypt, KeyGen, Decrypt, CTCheck, KeyCheck) denote
a checkable prefix encryption scheme, and let Π(λ) denote a decisional problem such that no
algorithm running in time t = poly(λ) can obtain an advantage that is non-negligible in λ.
Then any simple (t, ε, q, δ, t′)-reduction R from Π to the security of Prefix with t = poly(λ),
t′ = poly(λ) must have a value of δ such that δ vanishes exponentially as a function of q (up to
terms that are negligible in λ).

Proof. We let Prefix = (Setup, Encrypt, KeyGen, Decrypt, CTCheck, KeyCheck) denote a
checkable prefix encryption scheme. We suppose that R is a simple (t, ε, q, δ, t′)-reduction from
a decisional problem Π to breaking the security of this prefix encryption scheme. We now design
an algorithm B to solve Π.

A Hypothetical Attacker We first define a hypothetical attacker A that (t, ε, q)-breaks the
security of the prefix encryption scheme for some time t. A proceeds as follows: it first receives
PP as input (we assume this also implicitly includes λ). It chooses a random binary string x of
length q. In the first key query phase, it requests keys for strings y1, . . . , yq where each yi is the
binary string of length i formed by taking the first i−1 bits of x and then the opposite of the ith

9

bit of x. Note that each yi is not a prefix of x. It receives the corresponding keys SK1, . . . ,SKq

from the challenger. For each, it runs KeyCheck(PP, SKi, yi). If any of these checks outputs
False, it quits.

Next, the attacker A declares two messages M0,M1 (we suppose these are fixed, distinct
messages) and x as the challenge string. It receives the ciphertext CT from the challenger.
It then runs CTCheck(PP,CT, x). If this outputs False, it quits. Otherwise, it samples SK∗

uniformly from the set of all values of SK such that KeyCheck(PP,SK, xi) = True for any prefix
xi of x. (Of course, this step may not be efficient.) After obtaining SK∗, it decrypts CT with
SK∗. If the result is Mb′ for some b′ ∈ {0, 1}, it guesses b′ with probability 1

2 + ε and guesses
the opposite with probability 1

2 − ε. If the result is not M0 or M1, it guesses randomly.
For ease of analysis we will view the hypothetical attacker’s set of coins as drawn from a

space Z × F . The set Z is the set of possible choices of the challenge string x, and we let F
denote the set of all other random coins used.

We now verify that attacker A has advantage ε in the real security game. In this case, since
the public parameters and ciphertext are honestly generated, then SK∗ properly decrypts the
challenge ciphertext, and hence the result will always be Mb. A then guesses b correctly with
probability 1

2 + ε.

Using the Reduction We are assuming that the reduction R runs the attacker once in a
straight-line fashion (e.g. no rewinding). We now create an algorithm B to solve Π by using R.
(Note that B can rewind R: we just do not allow R to rewind the attacker.)
B first receives a problem instance c, which it gives as input to R. R then outputs public

parameters PP. Now B will simulate the hypothetical attacker described above as follows. First,
it will run R several times in an attempt to collect secret keys. Then it will use the collected
keys to simulate the attacker on a new run of R.

More precisely, we let τ be a parameter to be specified later (it will be polynomial in the
string length q and the security parameter). B will choose τ independent random binary strings
x1, x2, . . . , xτ of length q. It will then query keys for strings y1

1, . . . , y
1
q derived from x1 as

described above (note this behavior is identical to the hypothetical attacker A). After receiving
each key, it runs the KeyCheck algorithm. If this check ever outputs False, then B considers
this run to be an “aborting run”. In addition, B receives a challenge ciphertext CT. If the
CTCheck algorithm run on CT returns false, then it is is also considered to be an “aborting
run.”2 If the run was not aborting, then B successfully received a corresponding key SK1

i for
each i from 1 to q such that KeyCheck(PP,SK1

i , y
1
i) = True. It then stores these SK1

1, . . . ,SK1
q

values.
Next, it rewinds the reduction R to the point just after it output the public parameters.

It will then run R again (using fresh random coins) and querying keys for strings y2
1, . . . , y

2
q

derived from x2. It continues in this way until it has run R exactly τ times on these same PP.
If all τ runs were aborting runs, then B stops and guesses randomly. Otherwise, it continues.

Next, it chooses a new random binary string z of length q. If z = xi for any i from 1 to
τ , then B stops and guesses randomly. Otherwise, it runs R one more time on these same PP
with fresh random coins, querying keys for strings w1, . . . , wq derived from z. Upon receiving
each key for w1, . . . , wq, it runs the KeyCheck algorithm as before. If any of these checks fail, it
stops and guesses randomly. Otherwise, B submits the fixed, distinct messages M0,M1 and the
challenge string z to the reduction. B receives CT in return. It runs the CTCheck algorithm.
If this check fails, B stops and guesses randomly. If the check passes, it fixes and index j from

2We observe that for the purposes of collecting private keys, it is not important for the reduction algorithm
to return a valid challenge ciphertext. However, we choose to require this to maintain a uniform definition of an
“aborting run” in our analysis.

10

1 to τ such that the jth run was not aborting. Then, it considers the unique yji that is a prefix
of z (note that the index i is defined as the first bit where z and xj differ).
B now decrypts CT with SKj

i . If the result is Mb′ for some b′ ∈ {0, 1}, it guesses b′ with
probability 1

2 + ε and guesses the opposite with probability 1
2 − ε. If the result is not M0 or M1,

it guesses randomly. It gives b′ to R, and finally copies the output of R as its own output.
It is crucial to observe here that B is decrypting the challenge ciphertext with a secret key

that may not be equivalently distributed to the key that the hypothetical attacker A would
use. Nonetheless, since decryption only occurs when the key SKj

i and the challenge ciphertext
CT have passed their respective checks, it must be the case that the decryption of CT by SKj

i

produces the same result as decryption of CT by any other acceptable key, hence B correctly
simulates the decryption output that A would obtain, despite the fact that it is not simulating
the proper key distribution.

Analyzing Algorithm B We recall that C denotes the set of challenges. We let R denote the
set of possible random coins chosen by R for a single run. We introduce the following notation
for the coins used by B during its final run of the reduction algorithm R. Recall, that in a single
run the hypothetical attacker’s coins is draw from a space Z × F , Z is the choice of possible
challenge strings and F is the set of other coins used. For the final run, we let z ∈ Z and f ∈ F
denote the simulated choice of these coins.

Fixing c ∈ C, r ∈ R, z ∈ Z, and f ∈ F , we define that the tuple (c, r, z, f) belongs to the
event W if running the reduction once with this c and these coins r and an attacker using coins
z, f results in all the key and ciphertext checks passing and the reduction correctly solving the
challenge. (I.e. W is the set of coins for the final run where the final run does not abort and it
gives the correct answer.)

We partition the tuples (c, r, z, f) ∈ W into two disjoint sets. For notational convenience,
we split r ∈ R into substrings r1 and r2 such that r1 are the coins used to determine PP and
r2 are the remaining coins used by the reduction. We let U denote the set of tuples in W
such that, fixing c and r1, replacing the remaining coins for R and the attacker with freshly
sampled coins results in a non-aborting run with probability ≥ ρ (where ρ is a threshold we will
specify later). We let V denote the set of tuples in W such that this results in a non-aborting
run with probability < ρ. Note that by definition, W is a disjoint union of U and V . Hence
P[W] = P[U] + P[V].

Note that any two runs that share the same c and r1 coins also share the same challenge
and public parameters generated by the reduction. This is the point to which B rewinds
when conducting multiple runs. We can think of these are being “neighboring” sets of runs.
Intuitively, we are partitioning the set W into the set U where a neighbor of u ∈ U is more likely
to be non-aborting and the set V where a neighbor of v ∈ V is less likely to be non-aborting.

Claim 10. P[V] < ρ.

The proof of this claim follows in a similar vein to the heavy row lemma [OO98].

Proof. Given c, r1, we can define p(c, r1) to be the probability of a non-aborting run when
independent random values of r2, z, f are chosen and p′(c, r1) to be the probability of a non-
aborting and correct run when independent random values of r2, z, f are chosen. Then we
observe:

P[V] =
∑

c,r1 s.t. p′(c,r1)<ρ

P[c, r1]p′(c, r1) ≤
∑

c,r1 s.t. p(c,r1)<ρ

P[c, r1]p(c, r1) < ρ
∑
c,r1

P[c, r1] < ρ.

11

We define the event A to be the collection of tuples (c, r, z, f) such that an aborting run
is produced (here, we consider an aborting run to include any key check or ciphertext check
failure). We note that A is disjoint from W . We let S denote the event that the reduction
solves the challenge correctly.

Claim 11. If Π is computationally hard, then P[A]
∣∣(P[S|A]− 1

2

)∣∣ = negl(λ).

Proof. Suppose that P[A]
(
P[S|A]− 1

2

)
= ε′ > 0. We then define the following algorithm B′ to

solve Π. B′ chooses random coins for the attacker and runs R once until either an abort occurs
or it reaches the end where the attacker should provide a response. If an abort occurs, then B′
copies the output of the reduction as its own. Otherwise, it guesses randomly.

The success probability of B′ is

1
2

(1− P[A]) + P[A]P[S|A] =
1
2

+ P[A]
(

P[S|A]− 1
2

)
=

1
2

+ ε′.

Thus, we must have ε′ = negl(λ) if Π is computationally hard. The case when P[A]
(

1
2 − P[S|A]

)
=

ε′ > 0 is analogous, except that B′ should flip the output of the reduction in the case of an
abort.

We observe that the success probability of the reduction (with one run of the hypothetical
attacker) is

= P[A]P[S|A] + P[W] =
1
2

+ δ.

Combining this with Claim 10 and Claim 11, we see that

1
2
· P[A] + P[U] ≥ 1

2
+ δ − ρ− negl(λ). (1)

We let Xi, Fi denote the sets of possible coins for the attacker that B will use during the
ith run of R, and we let Ri2 denote the set of possible coins the reduction will use for the ith

run. For each i, we define Ai to be the event that (c, r1, ri2, xi, fi) produces an aborting run.
We define Ei to be the event that z = xi. We let Ai and Ei denote their complements.

We now consider the probability that B solves the decisional problem Π. We observe that
this is:

≥ 1
2
· P[A] +

∑
(c,r,z,f)∈U

P[c, r, z, f] · P

[
τ⋃
i=1

Ai ∩ Ei | c, r, z, f

]
. (2)

We consider a tuple (c, r, z, f) ∈ U . We observe

P

[
τ⋃
i=1

Ai ∩ Ei | c, r, z, f

]
≥ 1− P

[
τ⋃
i=1

Ei|c, r, z, f

]
− P

[
τ⋂
i=1

Ai|c, r, z, f

]
.

By the union bound, P [
⋃τ
i=1Ei|c, r] ≤ τ2−q. Since the events Ai are independent once c, r, z, f

are fixed, we have P [
⋂τ
i=1Ai|c, r, z, f] ≤ (1− ρ)τ (here we have also used that (c, r, z, f) ∈ U).

Thus,

P

[
τ⋃
i=1

Ai ∩ Ei | c, r, z, f

]
≥ 1− τ2−q − (1− ρ)τ .

Combining this with (2), we see that B solves the decisional problem Π with probability

≥ 1
2
· P[A] + P[U](1− τ2−q − (1− ρ)τ).

12

Considering (1), we see this is

≥ 1
2

+ δ − ρ− negl(λ)− τ2−q − (1− ρ)τ .

Hence, if we set ρ = δ
4 , the advantage of B is at least

3
4
δ − negl(λ)− τ2−q −

(
1− δ

4

)τ
. (3)

We now set τ = λ
δ . We observe that

(
1− δ

4

) 1
δ is upper bounded by a constant strictly less

than 1, since limn→∞
(
1− 1

n

)n = 1
e . Hence we see that (3) is = 3

4δ −
λ
δ 2−q − negl(λ). This

shows that δ must be exponentially small as a function of q when Π is computationally hard.

4 Implications for Existing Constructions

Our result can be applied to explain why the first HIBE schemes that were proven secure in
the standard model relied on the weaker notion of selective security. Of course, one can easily
translate selective security into full security for the same schemes while incurring an exponential
loss in terms of the hierarchy depth, as we have shown to be inherent for checkable schemes
when using a typical class of reductions.

As an illustrative example, we show that the selectively secure HIBE scheme of Boneh
and Boyen [BB04a] is checkable. We first review the scheme. Below, λ denotes the security
parameter and q denotes the maximum depth. The scheme will be constructed in a bilinear
group G of prime order p. We will assume that identities ~I are vectors of length ≤ q whose
components are elements of Zp and that messages M are elements of GT .

4.1 The Boneh-Boyen HIBE Construction

Setup(λ, q)→ MSK,PP The setup algorithm chooses a bilinear group G of sufficiently large
prime order p. We let g denote a generator of G and e : G×G→ GT denote the bilinear map.
The algorithm chooses a uniformly random exponent α ∈ Zp and sets g1 = gα. The algorithm
also chooses random generators g2, h1, . . . , hq ∈ G. The MSK is gα2 , while the public parameters
are:

PP := {G, p, e, g, g1, g2, h1, . . . , hq}.

Encrypt(M, ~I = (I1, . . . , Ik) → CT The encryption algorithm chooses a uniformly random
exponent s ∈ Zp and forms the ciphertext as:

CT :=
{
Me(g1, g2)s, gs,

(
gI11 h1

)s
, . . . ,

(
gIk1 hk

)s}
.

KeyGen(~I = (I1, . . . , Ik),MSK) → SK~I The key generation algorithm chooses uniformly
random exponents r1, . . . , rk and produces a secret key for identity ~I as:

SK~I :=

{
gα2

K∏
i=1

(
gIi1 hi

)ri
, gr1 , . . . , grk

}
.

We note that delegation here is rather natural, as one can add on a new coordinate Ik+1 to
the identity vector by sampling a new exponent rk+1 ∈ Zp, multiplying

(
g
Ik+1

1 hk+1

)rk+1

into
the first group element, and appending the extra element grk+1 to the current key. However, we
will not need to refer to delegation in order to apply our result.

13

Decrypt(CT, SK~I) → {M,⊥} The decryption algorithm takes in a ciphertext encrypted to
an identity vector ~I∗ = (I∗1 , . . . , I

∗
j) and a secret key for an identity vector ~I = (I1, . . . , Ik). If

~I is not a prefix of ~I∗, it outputs ⊥. Otherwise, it computes the message as follows. We let
{C,C0, C1, . . . , Cj} denote the elements of the ciphertext, ordered as in the description above.
We let {K,K1, . . . ,Kk} similarly denote the elements of the secret key. Then the decryption
algorithm computes:

M = C ·
∏k
i=1 e(Ci,Ki)
e(C0,K)

.

Correctness Observe that when ~I is a prefix of ~I∗:

C ·
∏k
i=1 e(Ci,Ki)
e(C0,K)

= Me(g, g2)αs ·
∏k
i=1 e(g

Ii
1 hi, g)ris

e(g, g2)αse
(∏k

i=1(gIi1 hi)ri , gs
) = M.

To show this HIBE scheme is checkable, we must specify appropriate efficient algorithms for
ciphertext checking and key checking. Our checking algorithms will assume that the bilinear
group G comes equipped with an efficient membership test, meaning that an arbitrary object
that is purported to be a group element can be efficiently checked for membership in the group.
This test is assumed to be perfect (error-free).

CTCheck(PP,CT, ~I) The ciphertext check algorithm first tests that PP and CT are com-
prised of the appropriate number of group elements (using the group membership test for G).
If any of these tests fail, it outputs False. Otherwise, we let C,C0, C1, . . . , Cj denote the group
elements comprising the ciphertext (where ~I has length j) and we let g, g1, g2, h1, . . . , hq denote
the group elements contained in PP. It is checked that none of PP elements are the identity
element. It is then checked that

e(Ci, g) = e(C0, g
Ii
1 hi)

for each i from 1 to j. If any of these checks fail, the algorithm output False. Otherwise, it
outputs True.

KeyCheck(PP,SK~I ,
~I = (I1, . . . , Ik)) The key check algorithm tests that PP and the secret

key each contain the correct number of elements, and that all the elements of both are in fact
elements of the group G by performing membership tests. If any of these tests fail, the algorithm
outputs False. Otherwise, we letK,K1, . . . ,Kk denote the group elements comprising the secret
key, and we let g, g1, g2, h1, . . . , hq denote the group elements contained in PP. It is checked
that none of PP elements are the identity element. Since each of K1, . . . ,Kk is an element
of the cyclic group G and g is a generator, there must exists values r1, . . . , rk ∈ Zp such that
K1 = gr1 , . . . ,Kk = grk . It remains to check that K is properly formed with respect to these
ri’s. To test this, the algorithm computes

A := e(g,K), B := e(g1, g2)
k∏
i=1

e(Ki, g
Ii
1 hi).

If A = B, the algorithm outputs True. Otherwise, it outputs False.

Proposition 12. The HIBE scheme in Section 4.1 is checkable.

14

Proof. We observe that the checking algorithms always output True when parameters, keys,
and ciphertexts are honestly generated. Furthermore, when the public parameters and a secret
key pass all of the checks, it must be the case that the secret key is correctly formed for some
values of r1, . . . , rk ∈ Zp. Thus, the secret key will correctly decrypt any honestly generated
ciphertext. To see this, note that A = B in the key check if and only if K = gα2

∏k
i=1(gIi1 hi)

ri

for the ri values defined from K1, . . . ,Kk. This again relies on the fact that G is a cyclic group
generated by g and GT is also a cyclic group, generated by e(g, g). Hence, A,B ∈ GT can only
be equal if there discrete logarithms base e(g, g) modulo p are equal. Similarly, a ciphertext can
only pass the check if it is properly formed for some value of s ∈ Zp.

Hence, for any PP that pass the checks, the set of possible secret keys that pass the key
check for a given identity vector is indexed precisely by the pk possible values of r1, . . . , rk, and
the possible ciphertexts for a given identity vector are indexed precisely by the p possible vales
of s. As a consequence, we see that any two acceptable keys for authorized identity vectors
decrypt any acceptable ciphertext to the same message.

4.2 Other Schemes

The reasoning employed above to analyze the checking algorithms of the Boneh-Boyen HIBE
scheme is also applicable to other schemes with similar structure. More specifically, we can apply
the same kind of analysis to any scheme with perfect correctness where the sets of possible keys
and ciphertexts output by the key generation and encryption algorithms are parameterized by
discrete log relationships that can be tested by pairing with public group elements. Other
schemes displaying these properties include the Waters IBE and HIBE schemes in [Wat05], the
HIBE construction by Boneh, Boyen, and Goh in [BBG05] that achieves compact ciphertexts,
the HIBE scheme of Canetti, Halevi, and Katz [CHK03], the HIBE scheme of Gentry and
Silverberg [GS02], and the ABE schemes of Goyal, Pandey, Sahai, and Waters [GPSW06] and
Waters [Wat11]. Thus, all of these schemes are checkable. (A checkable ABE scheme can be
defined analogously to a checkable HIBE scheme, and we show in Appendix A that a checkable
ABE scheme can be used to build a checkable prefix encryption scheme.)

The HIBE construction of Gentry and Halevi [GH09] does not conform to this structure
and is not checkable (under some computational assumption) - this is why it can avoid expo-
nential degradation in security as the hierarchy depth grows. The later HIBE constructions in
[Wat09, LW10] and ABE constructions in [LOS+10, OT10, LW12] that are proven fully secure
through the dual system encryption methodology also avoid the basic structure that leads to
checkability, even though they can be viewed as alternate instantiations of the intuitive mecha-
nisms of the prior Boneh-Boyen, Boneh-Boyen-Goh, and Goyal-Pandey-Sahai-Waters schemes.
More concretely, schemes designed for dual system encryption come equipped with additional
dimensions that complicate the landscape of possible keys and ciphertexts. As a consequence
of this alteration to the scheme structure, they fall outside the rubric of simple discrete log
relationships between pairs of elements in a prime order cyclic group that can be checked by
pairing with public elements. (Some dual system constructions use composite order groups for
this purpose, and some replace single group elements with larger tuples of group elements.) The
additional dimensions that prevent such checks are designed to enable a simulator to produce
“semi-functional” keys that still function like honestly generated keys when decrypting honestly
generated ciphertexts, but behave differently when decrypting “semi-functional” ciphertexts
that cannot be efficiently distinguished from honestly generated ones. This circumvents our
lower bound. The situation for the lattice-based HIBE constructions [ABB10, CHKP10] and
recent ABE construction [Boy13] is not clear: it would be interesting to determine if they are
checkable or not. We summarize the current state of knowledge in Table 1.

15

Table 1: Checkability of Schemes

Checkable Not Checkable Unknown
HIBE schemes [GS02],[CHK03],[BB04a], [GH09],[Wat09], [ABB10, CHKP10]

[BB04b], [Wat05] [LW10]
ABE schemes [GPSW06, Wat11] [LOS+10, OT10, LW12] [Boy13]

5 Prefix Encryption from IBE

We conclude by showing a result in the positive direction; that prefix encryption can actually be
built from the simpler primitive of IBE. We prove the reduction secure relative to the IBE scheme
with a polynomial loss of security. Since there are known IBE constructions [BF01, Wat05] that
are both checkable and have polynomial security reductions to decision assumptions, this might
at first seem like a contradiction to our main result. The catch is that our IBE to prefix
encryption will not preserve the checkability property (if it existed) of the underlying IBE
system.

The transformation itself is very straightforward. For a prefix encryption of message M
under string x of length k, define x(i) as the length i prefix of x for each i. To encrypt, simply
give k separate IBE encryptions of the message M to the identities x(1), x(2), . . . , x(k) (encoded
as strings). A private key for string y is just an IBE secret key for y. To decrypt a ciphertext
for x where y is a prefix of x, the algorithm simply looks up the |y|-th component and uses
the IBE decryption algorithm to decrypt. Security to the underlying IBE systems follows from
a straightforward hybrid argument over the IBE ciphertext components comprising the prefix
encryption ciphertext.

This new prefix encryption will not have our checkability property even if the underlying
IBE system does. The reason is that if y, y′ are secret keys for different prefixes of x, they will
decrypt to different messages for certain invalid ciphertexts (and these cannot be discarded with
a check). Indeed, the hybrid argument of security precisely relies on this.

This transformation gives one example of where restrictions (in this case the checkability
constraint) to our negative result can point to methods for proving security. One interesting
aspect of this example is that it falls in a different category than dual system encryption. Dual
system encryption leveraged the ability to create two forms (normal and semi-functional) for
the same key descriptor that would decrypt certain ciphertexts differently. Here we leverage
that private keys for different key types might decrypt a ciphertext differently.

6 Acknowledgements

We thank the anonymous reviewers for their important points regarding our analysis.

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h)ibe in the standard model.
In EUROCRYPT, pages 553–572, 2010.

[BB04a] D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption
without random oracles. In EUROCRYPT, pages 223 – 238, 2004.

16

[BB04b] D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
In CRYPTO, pages 443–459, 2004.

[BBG05] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[BF01] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In
CRYPTO, pages 213–229, 2001.

[Boy13] X. Boyen. Attribute-based encryption from lattices. In TCC, 2013.

[BSW07] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-
cryption. In Proceedings of the IEEE Symposium on Security and Privacy, pages
321–334, 2007.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In EUROCRYPT, pages 523–552, 2010.

[Cor02] J. Coron. Optimal security proofs for pss and other signature schemes. In EURO-
CRYPT, pages 272–287, 2002.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[Gen06] C. Gentry. Practical identity-based encryption without random oracles. In EURO-
CRYPT, pages 445–464, 2006.

[GH09] C. Gentry and S. Halevi. Hierarchical identity based encryption with polynomially
many levels. In TCC, pages 437–456, 2009.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute based encryption for
fine-grained access control of encrypted data. In ACM conference on Computer and
Communications Security, pages 89–98, 2006.

[GS02] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In ASIACRYPT,
pages 548–566, 2002.

[HJK12] D. Hofheinz, T. Jager, and E. Knapp. Waters signatures with optimal security
reduction. In Public Key Cryptography, 2012.

[HL02] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In EURO-
CRYPT, pages 466–481, 2002.

[LOS+10] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[LW10] A. Lewko and B. Waters. New techniques for dual system encryption and fully
secure hibe with short ciphertexts. In TCC, pages 455–479, 2010.

[LW12] A. Lewko and B. Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, pages 180–198,
2012.

17

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On concrete security treatment of signatures
derived from identification. In CRYPTO, pages 354–369, 1998.

[OT10] T. Okamoto and K. Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[SW05] A. Sahai and B. Waters. Fuzzy identity based encryption. In EUROCRYPT, pages
457–473, 2005.

[SW08] E. Shi and B. Waters. Delegating capabilities in predicate encryption systems.
In Automata, Languages and Programming, volume 5126 of LNCS, pages 560–578.
Springer, 2008.

[Wat05] B. Waters. Efficient identity-based ecnryption without random oracles. In EURO-
CRYPT, pages 114–127, 2005.

[Wat09] B. Waters. Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

[Wat11] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In PKC, pages 53–70, 2011.

A Obtaining Prefix Encryption from ABE

We briefly show how to realize a prefix encryption scheme from Key-Policy-ABE. The construc-
tion is simply a use case of the underlying ABE system. Therefore the checkable properties are
directly inherited in the prefix encryption system. We refer the reader to [GPSW06] for the
formal definition of KP-ABE.

Given a Key-Policy ABE scheme with algorithms SetupABE , KeyGenABE , EncryptABE and
DecryptABE , we will derive a prefix encryption scheme with algorithms SetupPre, KeyGenPre,
EncryptPre, and DecryptPre.

To setup the prefix encryption system for a maximum of length q strings, run SetupABE
with a universe of 2q attributes i : 0, i : 1 for i = 1 to q.

KeyGenPre generates a key for a binary string y = (y1, y2, . . . , yk) for k ≤ q by running
KeyGenABE for the policy 1 : y1 AND 2 : y2 · · · AND k : yk.

EncryptPre encrypts to a binary vector x = (x1, . . . , xj) by running EncryptABE with at-
tributes 1 : x1, 2 : x2, . . . , j : xj . Finally, we can then set DecryptPre = DecryptABE .

Correctness follows directly from the semantics of KP-ABE. Moreover, since the prefix
encryption is directly encoded as a use case of KP-ABE, if the KP-ABE system is checkable,
its use as a prefix encryption scheme is also checkable.

It is also relatively straightforward to construct a (checkable) prefix encryption scheme from
a (checkable) Ciphertext-Policy-ABE scheme.

18

