
On the Function Field Sieve and the Impact of Higher Splitting
Probabilities?

Application to Discrete Logarithms in F21971

Faruk Göloğlu, Robert Granger, Gary McGuire and Jens Zumbrägel

Claude Shannon Institute, School of Mathematical Sciences
University College Dublin, Ireland

{farukgologlu,robbiegranger}@gmail.com, {gary.mcguire,jens.zumbragel}@ucd.ie

Abstract. In this paper we propose a binary field variant of the Joux-Lercier medium-sized Func-
tion Field Sieve, which results not only in complexities as low as Lqn(1/3, 2/3) for computing
arbitrary logarithms, but also in an heuristic polynomial time algorithm for finding the discrete
logarithms of degree one elements. To illustrate the efficiency of the method, we have successfully
solved the DLP in the finite field with 21971 elements.

1 Introduction

When it comes to selecting appropriate parameters for public-key cryptosystems, one invariably
observes a trade-off between security and efficiency. At a most basic level, for example, larger
keys usually mean higher security, but worse performance.

A related rule of thumb which one does well to keep in mind, is that a specialised param-
eter which improves efficiency, typically weakens (or potentially weakens) security. Examples
abound of such specialisations and consequent attacks: discrete logarithms modulo Mersenne
(or Crandall) primes and the Special Number Field Sieve [16]; Optimal Extension Fields [2] and
Weil descent for elliptic curves [7]; high-compression algebraic tori [18] and specialised index
calculus [8]; quasi-cyclic or dyadic McEliece variants [17] and Grobner basis attacks [5], and
more recently elliptic curves over binary fields [6], to a name just a few. In practice therefore,
one should be wary of any additional structure, which may potentially weaken a system.

In this paper we give a fairly extreme example of this principle in the case of binary (or in
general small characteristic) fields, which possess a medium-sized base field. In 2006 Joux and
Lercier designed a particularly efficient variation of the Function Field Sieve (FFS) algorithm
for computing discrete logarithms [14], which at the time possessed the fastest asymptotic com-
plexity of all known discrete logarithm algorithms for appropriately balanced q and n, namely
Lqn(1/3, 31/3), where

Lqn(a, c) = exp
(
(c+ o(1))(log qn)a(log log qn)1−a

)
,

where qn is the cardinality of the finite field.

In 2012, Joux proposed a more efficient method of obtaining relations, dubbed ‘pinpoint-
ing’, in which relations can be generated efficiently without the need for sieving [11], which is
advantageous when sieving is the dominant phase, rather than the linear algebra (or individual
logarithm phase). With this technique the overall complexity of solving the DLP can be as low
as Lqn(1/3, 2/32/3) = Lqn(1/3, 0.961), subject to suitable modular conditions between q and n.
To demonstrate the approach, Joux solved the DLP in two cases: an 1175-bit field and a 1425-bit
field, setting records for medium-sized base fields, in this case prime fields.

? Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006. The fourth
author was in addition supported by SFI Grant 08/IN.1/I1950.



In this work we demonstrate that a basic assumption used in the analysis of virtually all fast
index calculus algorithms can be very wrong indeed; in the case of the medium-sized base field
FFS over binary fields this leads to the dramatic conclusion that the logarithms of degree one
elements in some binary fields can be solved in polynomial time. As far as we are aware, no other
algorithm for the collecting relations and linear algebra step has beaten the Lqn(1/3) barrier.
Our fundamental observation is that the splitting probabilities in Joux-Lercier’s variation of the
FFS can be cubic in the degree — rather than exponential. The reason for this is the richer
structure of binary extension fields relative to prime fields, which lends weight to the argument
that such fields should be avoided in practice. We also exploit our basic observation to solve
individual logarithms, which for a range of binary fields gives the fastest Lqn(1/3) algorithms to
date.

We emphasise that our work is completely independent of [11]. Firstly, it does not use
pinpointing, and secondly, it is applicable to far many more binary fields. In particular we
impose no conditions on the extension degree n of the base field (except in one case).

The paper is organised as follows. In §2 we recall the Joux-Lercier variant of the FFS. In §3
we present our specialisation and our analysis of splitting probabilities, while in §4 we present our
new descent methods and analyse the complexity of the resulting algorithms. In §5 we present
our implementation results and conclude in §6.

2 The medium-sized base field Function Field Sieve

In this section we briefly recall the 2006 FFS variant of Joux and Lercier [14]. Let Fqn be the
finite field in which discrete logarithms are to be solved, where q is a prime power. In order to
represent Fqn , choose two univariate polynomials g1, g2 of degrees d1 and d2 respectively, and
define two bivariate polynomials

f1(X,Y ) = X − g1(Y ), f2(X,Y ) = −g2(X) + Y.

Then whenever X − g1(g2(X)) possesses a degree n irreducible factor F (X) over Fq, one can
represent Fqn in two related ways:

Fq[X]/F (X) and Fq[Y ]/G(Y ),

where G(Y ) is the corresponding degree n irreducible factor of −g2(g1(Y )) + Y over Fq. In
the most basic version of the algorithm (which also leads to the best complexity) one chooses
d1 ≈ d2 ≈

√
n, and considers elements of Fqn represented by:

XY + aY + bX + c, with a, b, c ∈ Fq.

Substituting X by g1(Y ), and Y by g2(X), we obtain the following equality in the respective
representations of the finite field Fqn :

Xg2(X) + ag2(X) + bX + c = Y g1(Y ) + aY + bg1(Y ) + c. (1)

The factor base consists simply of the degree one elements of Fq[X]/F (X) and Fq[Y ]/G(Y );
then for every triple (a, b, c) for which both sides of (1) splits over Fq — ie., when all of its roots
are in Fq — in the respective factor bases, one obtains a relation. Determining such triples can
naturally be faster by using sieving techniques. Once more than 2q such relations have been
collected, one performs a linear algebra elimination to recover the individual logarithms. To
compute arbitrary discrete logarithms, one uses a ‘descent’ method as detailed in §4.

2



In order to assess the complexity of this algorithm, throughout the paper let Q = qn, let
q = LQ(1/3, α), and let LQ(1/3, c1) and LQ(1/3, c2) denote the complexity of the sieving and
linear algebra phases respectively. As shown in [14], heuristically one has

c1 = α+
2

3
√
α

and c2 = 2α.

In order to generate sufficiently many relations, α must satisfy the condition:

2α ≥ 2

3
√
α
.

For such α’s, the complexity of the entire algorithm, including the descent phase, is minimised
for α = 3−2/3, with resulting complexity LQ(1/3, 31/3).

3 Specialisation to binary fields

We now present a specialisation of the construction of [14] as presented in the previous section,
and detail some resulting consequences. From now on let Fq denote the finite field with 2l

elements.

All of our improvements and observations arise from the rather innocent substitution Y =
X2k , i.e., setting g2(X) = X2k . Our primary motivation for this was to automatically eliminate

half of the factor base, since any linear polynomial (Y +a) is then equal to (X+a2
−k

)2
k
, and so

log (Y + a) = 2k · log (X + a2
−k

). However, this selection has further serendipitous consequences,
the central two being:

• Whenever k | l and 3k ≤ l, the probability of the l.h.s. of (1) splitting over Fq is approxi-
mately 2−3k, instead of the expected 1/(2k + 1)!. We show that for some asymptotic families of
binary fields, this leads to a polynomial time algorithm to find the logarithms of all degree one
elements of Fqn .

• As surprising as the above result is, for such families, the individual logarithm phase
then has complexity Lqn(1/2). Hence one must ensure the complexity of the stages is balanced.
Depending on the form of n, we show that the bottleneck of the descent changes from degree 2
special-q to degree 3, or even degree 4 special-q, since the X-side has the same form of the l.h.s.
of (1), and thus enjoys the same higher splitting probability. This ensures that our claimed new
Lqn(1/3) complexities are achieved across all the phases of the algorithm.

In the remainder of the paper we explicate these advantages in more detail. In addition to the
above two observations, using non-prime base fields induces extra automorphisms of the factor
base, which reduce its size further, see §5.

Other practical speed ups arise from our choice Y = X2k . The matrix-vector multiplications
in Lanczos’ algorithm consists of only cyclic rotations, i.e., shifts mod qn−1, and so no multipli-
cations need to be performed. Furthermore, in the descent phase, one ordinarily needs to perform
special-q eliminations in both function fields. However, due to the simple relation between X
and Y , one is free to map from one side to the other in order to increase the probability of
smoothness. One can also balance the degrees of both sides by utilising other auxiliary function
fields arising from passing a power of 2 from the X-side to other side; this not only provides a
practical speed up but is core to our new complexity results, see §4.

3



3.1 Higher splitting probabilities

Assume 1 < k < l. When Y = X2k the l.h.s of (1) becomes

X2k+1 + aX2k + bX + c. (2)

Assuming c 6= ab and b 6= a2
k
, this polynomial may be transformed (up to a scalar factor) into

the polynomial

fB(X) = X
2k+1

+BX +B, with B =
(b+ a2

k
)2
k+1

(ab+ c)2k
, (3)

via

X =
ab+ c

b+ a2k
X + a.

The polynomial fB is related to PA(X) = X
2k+1

+X+A, which is well-studied in the literature,
having arisen in several contexts including finite geometry, difference sets, as well as determining
cross correlation between m-sequences; see references in [10] for further details.

We have the following theorem due to Bluher [3] (and refined in the binary case by Helleseth
and Kholosha [10]), which counts the number of B ∈ Fq for which fB splits over Fq.

Theorem 1. [10, Thm. 1] Let d = gcd (l, k). Then the number of B ∈ F×
2l

such that fB(X) has

exactly 2d + 1 roots over F2l is 
2l−d − 1

22d − 1
if l/d odd,

2l−d − 2d

22d − 1
if l/d even.

Theorem 1 of [10] also states that fB can have no more than 2d + 1 roots in Fq, and so if
gcd (l, k) < k then fB can not split. Hence we must have k | l for our application. Indeed we
must also have l ≥ 3k in order for there to be at least one such B. Observe that for d = k
and B chosen uniformly at random from Fq, the probability that fB splits completely over Fq is
approximately 1/23k — far higher than the splitting probability 1/(2k + 1)! for a degree 2k + 1
polynomial chosen uniformly at random.

3.2 Relation generation

If one naively takes random triples (a, b, c) and tests whether both sides of (1) split over Fq, the

expected cost of generating q relations is Õ(q · 23k · (d1 + 1)!) Fq-operations. In order for there
to be sufficiently many relations, we must have

q3

23k · (d1 + 1)!
> q, or q2 > 23k · (d1 + 1)!.

Since we insist that l ≥ 3k, having q > (d1+1)! suffices. As we are free to set d1 to be as small an

integer as possible, such that g1(Y )2
k

+ Y contains a degree n irreducible factor, this condition
can be assumed to be always satisfied (in practice it seems that d1 = 3 may suffice to produce
an irreducible of degree n, for q sufficiently large).

As naive as this approach is, it is already sufficient to provide an heuristic polynomial time
algorithm for solving the discrete logarithms of all degree one elements of Fqn , for constant d1
as l→∞ and l = k′ · k with k′ ≥ 3 a constant. In particular, for n ≈ 2k · d1 = 2l/k

′ · d1, we have

Q = qn ≈ 2l·2
l/k′ ·d1 .

4



As l→∞, we therefore have
logQ

log logQ
= O(2l/k

′
).

The cost of sieving is Õ(q · 23k) = Õ(2l(1+3/k′)) = Õ(logk
′+3Q), whereas the cost of sparse linear

algebra, using Lanczos’ algorithm [15] for instance, is the product of the row weight and the
square of number of variables, namely

(2l/k
′
+ d1) · Õ(q2) = Õ(log2k

′+1Q).

For the optimal choice k′ = 3 the complexity is therefore Õ(log7Q). We summarise this in the
following:

Heuristic Result 1. Let q = 2l with l = k · k′ and k′ ≥ 3 a constant, let d1 ≥ 3 be constant,
and assume n ≈ 2k ·d1. Assuming that Y ·g1(Y )+aY + bg1(Y )+ c splits over Fq with probability
1/(d1 + 1)! over all triples (a, b, c) ∈ (Fq)3, the logarithms of all degree one elements of Fqn can

be computed in time Õ(log2k
′+1Q).

By exploiting the above transformation of (2) to (3), a simple improvement upon the naive
approach stated at the beginning of this subsection is as follows. We begin by computing the
list LB of all B for which (2) splits. Indeed, the proof of Prop. 5 in [10] gives an explicit
parameterisation of all such B: for u ∈ G = F2l \ F22k , we have

LB = Im

(
u −→ (u+ u2

2k
)2
k+1

(u+ u2k)22k+1

)
.

Computing this list costs Õ(q) Fq-operations, avoiding smoothness tests if preferable. Then for
any fixed (a, b), for each B ∈ LB we compute via (3), the corresponding (unique) c ∈ Fq and
check whether

Y g1(Y ) + bg1(Y ) + aY + c (4)

splits over Fq. Assuming that this occurs with probability 1/(d1 +1)!, we expect to obtain about

q

(d1 + 1)! · 23k

relations. Since we need q relations, we expect to require about (d1 + 1)! · 23k pairs (a, b) to
obtain sufficiently many. For each pair (a, b) this costs O(q/23k) 1-smoothness tests, or Õ(q/23k)
Fq-operations. Hence the total cost is only Õ(q · (d1 + 1)!). Indeed, for fixed d1, k

′ ≥ 3 and

l = k′ · k, as l→∞, the relation generation time is Õ(q).

4 Individual logarithms and complexity analysis

As unexpected as Heuristic Result 1 is, it does not by itself solve the DLP. Using a de-
scent method á la [14, 4], computing individual logarithms unfortunately then has complexity
Lqn(1/2). Hence one can not allow the extension degree n to grow as fast as Theorem 1 permits;
it must be tempered relative to the base field size. With this in mind, we now consider the
complexity of the descent, for q and n appropriately balanced so that the total complexity is
Lqn(1/3).

For a generator g ∈ F×qn and a target element h ∈ 〈g〉, the descent proceeds by first finding

an i ∈ N such that z = h · gi is m-smooth for a suitable m, i.e., so that all of the irreducible
factors of z have degrees ≤ m. The goal of the descent is to eliminate every irreducible factor of

5



z, by expressing each as a product of smaller degree irreducibles recursively, until only degree
one elements remain, whose logarithms are known. We do so using the special-q lattice approach
from [14], as follows.

Let p(X) be a degree d irreducible which we wish to eliminate. Since Y = X2k , we have

p(X)2
k

= p(X2k) = p(Y ),

where the coefficients of p are those of p, powered by 2k. Note that we also have

p(Y )2
−k

= p(X),

and hence we can freely choose to eliminate p using either the X-side or the Y -side of (1). For
convenience we focus on the Y -side. The corresponding lattice Lp is defined by:

Lp(Y ) = {(u0(Y ), u1(Y )) ∈ Fq[Y ]2 : u0(Y )g1(Y ) + u1(Y ) ≡ 0 (mod p(Y ))}.

A basis for this lattice is (0, p(Y )), (1, g1(Y ) (mod p(Y ))), which is clearly unbalanced. Using the
extended Euclidean algorithm, we may construct a balanced basis (u0(Y ), u1(Y )), (v0(Y ), v1(Y ))
for which the degrees are ≈ d/2. Then for any r(Y ), s(Y ) ∈ Fq[Y ] with r(Y ) monic we have
RHS(Y ) ≡ 0 (mod p(Y )), where

RHS(Y ) = (u0(Y )r(Y ) + v0(Y )s(Y ))g1(Y ) + (u1(Y )r(Y ) + v1(Y )s(Y )).

When RHS(Y )/p(Y ) is (d− 1)-smooth, we also check whether LHS(X) is also (d− 1)-smooth,
where

LHS(X) = (u0(X
2k)r(X2k) + v0(X

2k)s(X2k))X + (u1(X
2k)r(X2k) + v1(X

2k)s(X2k)).

When both sides are (d − 1)-smooth, we may replace p(Y ) with a product of irreducibles of
degree at most d− 1, and then recurse.

Let Q = qn. As in [14], we assume there is a parameter α such that:

n =
1

α
·
(

logQ

log logQ

)2/3

, q = exp

(
α · 3

√
logQ · log2 logQ

)
. (5)

The three stages to consider are sieving, linear algebra, and the descent, whose complexities
we denote by LQ(1/3, c1), LQ(1/3, c2) and LQ(1/3, c3), respectively. The total complexity is
therefore LQ(1/3, c), where c = max{c1, c2, c3}. We now consider three cases.

4.1 Case 1: n ≈ 2k · d1 and 2k ≈ d1

In this section we will show the following:

Heuristic Result 2(i): Let q = 2l, let k | l and let n be such that (5) holds. Then for n ≈ 2k ·d1
where 2k ≈ d1, the DLP can be solved with complexity LQ(1/3, 2/32/3) ≈ LQ(1/3, 0.961).

This is the simplest case we present; however for the sake of completeness and ease of exposition
of the latter cases, we explicitly tailor the derivation presented in §3.2. By Theorem 1 the proba-
bility of (2) being smooth is 1/23k, whereas the probability of (4) being smooth is approximately
1/
√
n!. Using the standard approximation log n! ≈ n log n, the log of the probability P of both

sides being smooth is:

logP = − log 23k −
√
n log

√
n = −3

2
log n− 1

2

√
n log n ≈ −1

2

√
n log n.

6



The size of the sieving space is q3, and since we require q relations we must have:

q3 · P ≥ q, or 2 · log q ≥ 1

2

√
n log n.

Ignoring low order terms, by (5) this is equivalent to

2α ≥ 1

3
√
α
, or α ≥ 1

62/3
. (6)

Given that we require q relations, the expected time to collect these relations is

q

P
= LQ

(
1/3, α+

1

3
√
α

)
,

and hence c1 = α+ 1
3
√
α

. Since the linear algebra is quadratic in the size of the factor base, we

also have c2 = 2α.
For the descent, as in [14], let the smoothness bound be m = µ

√
n. Then the probability of

finding such an expression is

1/LQ

(
1/3,

1

3µ
√
α

)
.

If the descent is to be no more costly than either the relation generation or the linear algebra,
then we must have

1

3µ
√
α
≤ max{α+

1

3
√
α
, 2α}. (7)

We also need to ensure three further conditions are satisfied. Firstly, that the cost of all the
special-q eliminations is no more than LQ(1/3,max{c1, c2}). Secondly, that there are enough
(r, s) pairs to ensure a relation is found. And thirdly, that during the descent the degrees of the
polynomials being tested for smoothness is really descending.

The natural bottleneck in the descent is for degree 2 special-q, therefore let p(Y ) be a degree
2 irreducible to be eliminated. A reduced basis for the lattice Lp(Y ) can always be found with
degrees (1, 1), (0, 1); in fact, it can even be of the form

(u01Y, u11Y + u10), (1, v11Y + v10).

Hence with r normalised to be 1 and s ∈ Fq, we have

(u01Y + s)g1(Y ) + (u11Y + u10) + (v11Y + v10)s ∈ Lp(Y ),

and so the remaining factor has degree d1 − 1. The corresponding polynomial LHS(X) is

(u01X
2k + s)X + (u11X

2k + u10) + (v11X
2k + v10)s,

which is thus of the form X2k+1 + aX2k + bX + c, and so by Theorem 1, splits over Fq with
probability 2−3k. We therefore need to ensure that there are sufficiently many s ∈ Fq for this to
occur, i.e., q > 23k · (d1 − 1)!, or equivalently,

α >
1

3
√
α
, or α > 3−2/3.

Since for degree 3 special-q LHS(X) will not have the form (2), we need to check that the
smoothness probability does not impose an extra condition on α. For p(Y ) a degree 3 irre-
ducible to be eliminated, a reduced basis for the lattice Lp(Y ) can always be found with degrees
(1, 1), (1, 2); in fact, it can even be of the form

(u01Y + u00, u11Y + u10), (v10Y, v21Y
2 + v11Y + v10).

7



Hence with r now allowed to be monic of degree one and s ∈ Fq, we have

((u01Y + u00)r(Y ) + (v10 · sY ))g1(Y ) + (u11Y + u10)r(Y ) + (v21Y
2 + v11Y + v10)s ∈ Lp(Y ).

The corresponding polynomial LHS(X) is

((u01X
2k +u00)r(X

2k)+(v10 ·sX2k))X+(u11X
2k +u10)r(X

2k)+(v21X
2k+1

+v11X
2k +v10)s (8)

Once divided by p(Y ), the degree of the Y -side is d1 − 1 ≈
√
n while the degree of the X-side

is 2k+1 + 1 ≈ 2
√
n. The logarithm of the probability that a degree n polynomial over Fq is

m-smooth, for q and n tending to infinity but m fixed, can be estimated by −(n/m) log (n/m),
as shown in [14]. Therefore the log of the probability P of both sides being 2-smooth is:

logP = −
√
n

2
log

√
n

2
− 2
√
n

2
log

√
n

2
≈ −3

2

√
n log

√
n

2
≈ −3

4

√
n log n,

and therefore P = 1/LQ(1/3, 1
2
√
α

). Since the (r, s) search space has size q2 (which is also the

complexity of the linear algebra), we require that

2α >
1

2
√
α

or α > 16−1/3.

Since 16−1/3 < 3−2/3, this imposes no additional constraint on α. Hence we can set α = 3−2/3,
and one can check that in this case, c1 = c2 = c3 = 2α, giving complexity

LQ(1/3, 2/32/3) ≈ LQ(1/3, 0.961),

which is precisely the complexity that Joux obtains using advanced pinpointing for Kummer
extensions [11]. However, the crucial difference between what we have presented so far and
Joux’s work is that we make no assumptions on the form of n, and we do not need a specific
pinpointing strategy, even if our more general approach may be viewed as a form of pinpointing.

Furthermore, for this α (7) implies that µ > 1/2. For an upper bound, note that for special-q
of degree µ

√
n, the degree of RHS(Y ) is about

√
n(1 − µ/2), while the degree of LHS(X) is

about µn/2, so that µ < 2 ensures the decent degrees actually descend to one.
Incidentally, in this case, if for degree 2 special-q we allow s to be degree 1, we obtain the

condition 2α > 2
3
√
α

, giving exactly the same optimal α. In the following case this no longer

holds, and we obtain a dramatic improvement.

4.2 Case 2: n ≈ 2k · d1 and 2k � d1

In this section we will show the following:

Heuristic Result 2(ii): Let q = 2l, let k | l and let n be such that (5) holds. Then for n ≈ 2k ·d1
where 2k � d1, the DLP can be solved with complexity LQ(1/3, (2/3)2/3) ≈ LQ(1/3, 0.761).

Observe that this is the square-root of the complexity of the original FFS [1, 12], for which
c = (32/9)1/3. For n and q of the form (5), we claim that c1 = α, c2 = 2α, and that there
are sufficiently many relations available. In particular, if we write d1 = nβ with β < 1/2 and
2k = n1−β then the log of the probability P of both sides being smooth is:

logP = − log n3(1−β) − nβ log nβ ≈ −βnβ log n.

By (5) we have

−βnβ log n = − 2β

3αβ
·
(

logQ

log logQ

)2β/3

· (log logQ) = − 2β

3αβ
· (logQ)2β/3(log logQ)1−2β/3.

8



Hence the expected time of the relation generation is

q/P = LQ(1/3, α) · LQ
(

2β/3,
2β

3αβ

)
.

For β < 1/2 the second term on the right is absorbed by the o(1) term in the first term, and
hence c1 = α and c2 = 2α. The size of the sieving space is q3, and since we require q relations
we must have:

q3 · P ≥ q, or LQ(1/3, 2α) > LQ

(
2β/3,

2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
For the descent (as for Case 1) the cost of finding the first µ

√
n-smooth relation is LQ(1/3, 1

3µ
√
α

).

And as before, for degree 2 special-q, the X-side has the same form and the condition on q arising
from the search space being sufficiently large is always satisfied, since

q > 23k · (d1 − 1)! = n3(1−β) · LQ
(

2β/3,
2β

3αβ

)
,

which holds for any α > 0 when β < 1/2.
Hence degree 3 special-q are the bottleneck. As in the first case, with r now allowed to be

monic of degree one and s ∈ Fq, the degree of RHS(Y ) is d1 − 1 while the degree of LHS(X) is
2k+1 + 1. These degrees are clearly unbalanced. However, we can employ the following tactic to
balance them.

Since g1(Y )2
k

+Y = 0, we let X ′ = g1(Y )2
a

and thus Y = X ′2
k−a

. We are free to choose any
1 < a < k as an elimination of a special-q using Y and X ′ can be written in terms of Y and X
by powering by a power of 2. With r now allowed to be monic of degree one and s ∈ Fq, our
new expressions become

((u01Y + u00)r(Y ) + (v10 · sY )) · g1(Y )2
a

+ (u11Y + u10)r(Y ) + (v21Y
2 + v11Y + v10)s ∈ Lp(Y ).

The corresponding polynomial LHS(X ′) is

((u01X
′2k−a + u00)r(X

′2k−a) + (v10 · sX ′2
k−a

))X ′ + (u11X
′2k−a + u10)r(X

′2k−a)

+ (v21X
′2k−a+1

+ v11X
′2k−a + v10)s.

Assuming the degrees are (approximately) the same, taking logs we have

k − a+ 1 = log2 (d1) + a, or a =
k + 1− log2 (d1)

2
.

Although we must take the nearest integer to this a, asymptotically we may assume it is exact.
Such a choice ensures that both degrees are

√
2d1 · 2k/2 =

√
2 ·
√
n. Therefore the log of the

probability P of both sides being 2-smooth is:

logP = −
√

2

2

√
n log (

√
2

2

√
n)−

√
2

2

√
n log (

√
2

2

√
n) ≈ −

√
2

2

√
n log n,

and hence P = LQ(1/3,−
√
2

3
√
α

). In order to have a sufficiently large search space we must

therefore have

2α >

√
2

3
√
α
, or α > 18−1/3.

For α = 18−1/3 the descent initiation stipulates that µ > 1
6α3/2 = 1/

√
2, and so any α ∈ (1/

√
2, 2)

suffices. We therefore have a total complexity of

LQ(1/3, 2α) = LQ(1/3, (2/3)2/3) ≈ LQ(1/3, 0.761).

9



4.3 Case 3: n = 2k − 1

In this section we will show the following:

Heuristic Result 2(iii): Let q = 2l, let k(k − 1) | l and let n be such that (5) holds. Then for
n = 2k − 1 the DLP can be solved with complexity LQ(1/3, 2/3).

One case where the assumption in Heuristic Result 1 that the splitting probability is 1/(d1 + 1)!

is clearly false, is when g1(Y ) = Y 2k1 , since this is the basis of Theorem 1. However, the natural
idea to exploit Theorem 1 in this way only works when d2 = 2k−1 and d1 = 2, as otherwise the
intersection of the factors on each side is almost empty. When d1 = 2, (4) covers all degree 3
polynomials over Fq and so the set of splitting roots are randomly distributed in Fq. This ensures
that we can perform the linear algebra elimination, with the only condition being (k − 1) | l.

We are therefore looking for polynomials Y 2k +γY with irreducible factors of about the same
degree. If k | l as well, then fγ = Y 2k−1 + γ is irreducible whenever γ has no root of prime order
p | (2k− 1). When reducible, the polynomial fγ may have other fairly high-degree factors (up to
(2k−1)/3), but then our complexity improvement is less pronounced when using the embedding

into the ring Fq[Y ]/(Y 2k + γY ).

Hence let l = k(k − 1) and let q = 2l. The case where l is a greater multiple of k(k − 1)
merely increases the cost of the sieving and linear algebra, and can be dealt with similarly. We
have Y = X2k−1

and X = Y 2/γ.

By a similar argument to Case 2, we have c1 = α and c2 = 2α for any α > 0, and there are
sufficiently many relations.

For the descent, the complexity of finding an initial µ
√
n-smooth element is LQ(1/3, 1

3µ
√
α

).

For the same reason as in Case 2, degree 2 special-q are easy to eliminate. Let p(Y ) be a degree 3
special-q. Then as before, a reduced basis for Lp(Y ) can always be found with degrees (1, 1), (1, 2);
in fact, it can even be of the form

(Y + u00, u11Y + u10), (Y, v12Y
2 + v11Y + v10).

Hence with r = 1 and s ∈ Fq we have

((u00 + s)Y )Y 2 + (u11Y + u10) + (v12Y
2 + v11Y + v10)s ∈ Lp(Y ),

which is equal to q in Fq[Y ]/F×q . The corresponding polynomial on the LHS is

((u00 + s)X2k−1
)X + (u11X

2k−1
+ u10) + (v12βX + v11X

2k−1
+ v10)s,

where the Y 2 term is replaced by X2k = βX. Hence this is of the form (2), and again, these are
easy to eliminate. Hence degree 4 special-q are the bottleneck, as unfortunately LHS(X) does
not have the form required to apply Theorem 1.

As in Case 2, we therefore take a slightly different approach. Since Y = X2k−1
and X = Y 2/γ,

for 1 < a ≤ k − 1 we can set X ′ = Y 2k−a/β and Y = X ′2
a
. The degrees of the reduced lattice

basis (u0, u1), (v0, v1) after Gaussian reduction are (2, 2), (1, 2). Hence RHS(Y ) has the form

((u02Y
2+u01Y +u00)+(v01Y +v00)s(Y ))Y 2k−a/γ+(u12Y

2u11Y +u10)+(v12Y
2+v11Y +v10)s(Y ),

while the LHS will have the form

(u02X
′2a+1

+ u01X
′2a + u00) + (v01X

′2a + v00)s(X
′2a))X

+ (u12X
′2a+1

u11X
′2a + u10) + (v12X

′2a+1
+ v11X

′2a + v10)s(X
′2a).

10



When s is a linear polynomial, the respective degrees are 2k−a − 2 and 3 · 2a. Balancing these
degrees as before, asymptotically with k they become about

√
3 · 2k/2. Hence the logarithm of

the probability of each side being 3-smooth is

−
√
n√
3
· log

√
n√
3
≈ −

√
n

2
√

3
· log n.

The probability of both sides being 3-smooth is

exp

(
−
√
n√
3
· log n

)
= LQ

(
1/3,− 2√

27
√
α

)
.

Since there are only q2 such s ensuring these degrees, we must have

2α >
2√

27
√
α
, or α > 1/3.

For this α, we must have µ > 1
6α3/2 =

√
3/2 ≈ 0.866. For an upper bound, we have a lot more

freedom than before, since for any degree d special-q, the degree of both sides can balanced
to approximately 2k/2 ·

√
d/2 + 1. Hence setting m = µ

√
n the degrees of both sides is 2k/2 ·√

µ·2k/2
2 + 1 ≈ 23k/4

√
µ
2 . Since this should be less than 2k, any µ < 2k/2 will do. In practice of

course, a smaller µ reduces the number of special q’s to be eliminated in total. Hence the total
complexity of the algorithm is

LQ(1/3, 2/3).

We summarise all three cases in the following:

Heuristic Result 2. Let q = 2l, k | l and n be such that (5) holds. Then we have:

(i) For n ≈ 2k · d1 and 2k ≈ d1 the DLP can be solved with complexity LQ(1/3, 2/32/3) ≈
LQ(1/3, 0.961);

(ii) For n ≈ 2k · d1 and 2k � d1 the DLP can be solved with complexity LQ(1/3, (2/3)2/3) ≈
LQ(1/3, 0.761).

(iii) For n = 2k − 1 and (k − 1) | l, the DLP can be solved with complexity LQ(1/3, 2/3).

5 Application to F21971

In this section we give details of our implementation and report our results. Let Fq = F227 =
F2[t]/(t

27 + t5 + t2 + t + 1) and let Fq73 = Fq[X]/(X73 + t) be the finite field of order 21971. In
this field it holds that Y = X8 and X = t/Y 9.

We use the Kummer extension idea of [14, 11] to reduce the size of the factor base from 227

to ≈ 227/73. As stated in §3 we can use a larger group than just the Galois group of Fq73/Fq to

reduce the number of variables. In fact, X29 = cX for c = t7 ∈ Fq, so the map σ : a→ a2
9

is an
additional automorphism which preserves the set of degree one factor base elements. The map
σ3 equals the Frobenius a → aq (of order 73) and hence σ generates a group G of order 219.
Considering the orbits of G acting on the factor base elements, we find 612864 orbits of full size
219, seven of size 73, and one of size 1, resulting in N = 612872 orbits, which gives the number
of factor base variables.

For relation generation, we began by using Joux’s pinpointing method from [11]; however
we then developed a simple new pinpointing method which arises from the technique in §3.2,
which we will include in an updated version. We computed approximately 10N relations in
about 14 core hours computation time. For simplicity, we keep only those relations with distinct

11



factors, as this ensures that each entry of the relation matrix is a power of two, as this ensures
that all element multiplications in the matrix-vector products consist of cyclic rotations modulo
21971 − 1, due to our choice of g2(X) and the factor base reduction method.

After relation generation, we performed structured Gaussian elimination (SGE) (in a version
based on [13]) to reduce the number of variables and thus to decrease the cost for the subsequent
linear algebra step. During our experiments we made the observation that additional equations
are indeed useful for reducing the number of variables. However, the benefit of SGE is unclear as
the row weight is being increased. We therefore stopped the SGE at this point, which resulted
in a 528812 × 527766 matrix of constant row weight 19. The running time here was about 10
minutes on a single core.

We then applied a parallel version of the Lanczos algorithm (see [15]) using OpenMP on
an SGI Altix ICE 8200EX cluster using Intel (Westmere) Xeon E5650 hex-core processors and
GNU Multi-Precision library [9], taking 2220 core hours in total. We took as generator g =
X + 1 ∈ F×

21971
and a target element set as usual to be

Xπ =
72∑
i=0

τ(bπ · qi+1c mod q)Xi,

where τ takes the binary representation of an integer and maps to Fq via 2i 7→ ti. We obtained
the following partial factorisation of 21971 − 1:

C338 · 7 · 732 · 439 · 3943 · 262657 · 2298041 · 10178663167 · 27265714183 · 9361973132609 ·
1406791071629857 · 5271393791658529 · 671165898617413417 · 2762194134676763431 ·
4815314615204347717321 · 42185927552983763147431373719 ·
22068362846714807160397927912339216441 · 781335393705318202869110024684359759405179097,

where C338 is a 338-digit composite. We solved the log in the subgroups of order the first eleven
terms using linear search or Pollard rho, with the remaining 507-digit factor being the modulus
for Lanczos’ algorithm.

The descent proceeded by first finding an i ∈ N such that

Xπ g
i = z1/z2 ,

where both z1 and z2 were 7-smooth, ie., all of their irreducible factors of degrees are at most
7. At each stage, we have two choices for how to sieve for that special-q; on the LHS or on the
RHS, one of which may be much faster. Note that for degree 2 special-q we must perform this
on the Y -side, as it is not possible to do so on the X-side, due to the factorisation patterns. And
for theses special-q, we combined (8) and (3) so that for each B ∈ Fq for fB splits, we compute
the set of s ∈ Fq that satisfy

B =

(
s
u01

+

(
u11+v11s

u01

)2k)2k+1

(
u11+v11s

u01
· s
u01

+ u10+v10s
u01

)2k
.

For each such s we check whether the RHS is 1 smooth as normal. This chops a factor of 29

from the elimination of each degree 2 special-q.
As one can see from Table 1, sieving on the Y-side is always the fastest. Choosing degree

7 special-q means that the maximum cost of an elimination is 225.1 occuring at the degree 3
special-q eliminations.

12



Table 1. Individual logarithm data for n = 1971, with Y = X8 and X = t/Y 9.

Setup Special-Q on X-side Special-Q on Y -side

δ(Q) #trials basis δ’s δ(X-side) δ(Y -side) #trials δ(X-side) δ(Y -side) #trials

2 2126.3 (1, 0), (0, 1) N.A. 9 8 215.3

3 275.9 (1, 1), (0, 2) 6 19 227.8 17 7 225.1

4 251.3 (2, 1), (1, 2) 6 19 215.4 17 7 213.7

5 237.1 (2, 2), (1, 3) 5 28 217.6 25 6 215.0

6 228.1 (3, 2), (2, 3) 5 28 212.3 25 6 210.3

7 221.9 (3, 3), (2, 4) 4 37 214.7 33 5 212.1

We implemented the descent in such a way that at the early phase of the algorithm the
expected subsequent costs are as small as possible. This means that we try to find factorisations
which consist of as many small degree factors as possible.

We used about 40 core hours to find an exponent i with favourable factorisation patterns
and found i = 47 147 576 to be a good choice. Then we spent about 3 hours to perform the
descent up to degree 3. At this point we were left with 103 special-q of degree 3 (in comparison
to about 500 special-q of degree 3 in a naive implementation). These special-q elements have
been resolved on the same SGI Altix ICE 8200EX cluster in about 850 core hours, using Victor
Shoup’s Number Theory Library [19], resulting in 1140 special-Q elements of degree 2. These
elements were subsequently resolved in 5 core hours, by which time the descent is finished.

Thus the running time for solving an instance of the discrete logarithm problem completely
in the finite field F21971 is 14 + 2220 + 898 = 3132 core hours in total. In particular, we have:

logg(Xπ) = 1199298421535410686609114637198885584518685275544716335236895900760902198795745784008

1811487759339446560383051978254174236023653588993736220077111736167826942310116340313

5355522280804113903215273555905901082282248240021928787820730402856528057309658868827

9004416835100344085961912427000601289864337521100022143802898875460611252245879711978

7275080584651962314043764573936293823541736161168108256277804596578927095611589241735

7940067473968434606299268294291957378226451182620783745349502502960139927453196489740

065244795489583279208278827683324409073424466439410976702162039539513377673115483439.

6 Conclusions

We have presented and analysed a new variant of the medium-sized base field FFS, for binary
fields. We have established new complexity results as well as the intriguing fact that the logarithm
of degree one elements can be solved in polynomial time. We have also presented the results of
an implementation of the method, setting a DLP record in the field F21971 .

It would be interesting to know whether there are more general theorems on splitting be-
haviours for other polynomials arising during the descent, and also to what extent the known
theorems extend to other characteristics.

Acknowledgements

The authors would like to extend their thanks to the Irish Centre for High-End Computing
(ICHEC) — and Gilles Civario in particular — for their support throughout the course of our
computations.

13



References

1. Leonard M. Adleman and Ming-Deh A. Huang. Function field sieve method for discrete logarithms over finite
fields. Inform. and Comput., 151(1-2):5–16, 1999.

2. Daniel V. Bailey, Christof Paar, Gabor Sarkozy, and Micha Hofri. Computation in optimal extension fields.
In Conference on The Mathematics of Public Key Cryptography, The Fields Institute for Research in the
Mathematical Sciences, pages 12–17, 2000.

3. Antonia W. Bluher. On xq+1 + ax+ b. Finite Fields and Their Applications, 10(3):285–305, 2004.
4. Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE Transactions on

Information Theory, 30(4):587–593, 1984.
5. Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Algebraic cryptanalysis of

McEliece variants with compact keys. In Advances in cryptology—EUROCRYPT 2010, volume 6110 of Lecture
Notes in Comput. Sci., pages 279–298. Springer, Berlin, 2010.

6. Jean-Charles Faugre, Ludovic Perret, Christophe Petit, and Gunal Renault. Improving the complexity of
index calculus algorithms in elliptic curves over binary fields. In Advances in Cryptology EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 27–44. Springer Berlin Heidelberg, 2012.

7. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and destructive facets of Weil descent on
elliptic curves. J. Cryptology, 15(1):19–46, 2002.

8. Robert Granger and Frederik Vercauteren. On the discrete logarithm problem on algebraic tori. In Advances
in cryptology—CRYPTO 2005, volume 3621 of Lecture Notes in Comput. Sci., pages 66–85. Springer, Berlin,
2005.

9. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 5.0.5 edition, 2012. http://gmplib.org/.

10. Tor Helleseth and Alexander Kholosha. x2
l+1+x+a and related affine polynomials over GF(2k). Cryptography

and Communications, 2(1):85–109, 2010.
11. Antoine Joux. Faster index calculus for the medium prime case. application to 1175-bit and 1425-bit finite

fields. IACR Cryptology ePrint Archive, 2012:720, 2012.
12. Antoine Joux and Reynald Lercier. The function field sieve is quite special. In Algorithmic number theory

(Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages 431–445. Springer, Berlin, 2002.
13. Antoine Joux and Reynald Lercier. Improvements to the general number field sieve for discrete logarithms in

prime fields: a comparison with the gaussian integer method. Math. Comput., 72(242):953–967, April 2003.
14. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case. In Serge Vaudenay,

editor, EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 254–270. Springer,
2006.

15. Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems over finite fields. In
CRYPTO 1990, pages 109–133, 1990.

16. Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development of the number field sieve, volume
1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.

17. Rafael Misoczki and Paulo S. Barreto. Compact McEliece keys from Goppa codes. In Michael J. Jacobson,
Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, pages 376–392.
Springer-Verlag, Berlin, Heidelberg, 2009.

18. Karl Rubin and Alice Silverberg. Torus-based cryptography. In Advances in cryptology—CRYPTO 2003,
volume 2729 of Lecture Notes in Comput. Sci., pages 349–365. Springer, Berlin, 2003.

19. Victor Shoup. NTL: A library for doing number theory, 5.5.2 edition, 2009. http://www.shoup.net/ntl/.

14


