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Abstract

Beginning with the work of Lindell and Pinkas, researchers have proposed several protocols
for secure two-party computation based on the cut-and-choose paradigm. In existing instan-
tiations of this paradigm, one party generates κ garbled circuits; some fraction of those are
“checked” by the other party, and the remaining fraction are evaluated.

We introduce here the idea of symmetric cut-and-choose protocols, in which each party
generates κ circuits to be checked by the other party. The main advantage of our technique is
that the number κ of garbled circuits can be reduced by a factor of 3 while attaining the same
statistical security level as in prior work. Since the number of garbled circuits dominates the
costs of the protocol, especially as larger circuits are evaluated, our protocol is expected to run
up to 3 times faster than existing schemes. Preliminary experiments validate this claim.

1 Introduction

Secure two-party computation was shown to be feasible in the late 1980s [34, 8]. But it is only
in the past 10 years that the research community has devoted significant efforts toward making
such protocols practical. Work in this direction was spurred by the Fairplay paper [24], which gave
an implementation of Yao’s protocol for two-party computation with security in the semi-honest
setting. More recent work [10, 12, 11] has shown that Yao’s protocol (sometimes in combination
with other techniques) can be surprisingly efficient when semi-honest security is sufficient.

More desirable, of course, is to achieve security against malicious adversaries. While this is
known to be feasible, in principle, using generic zero knowledge [8], a generic approach of this sort
does not currently seem likely to result in efficient protocols even if specialized zero-knowledge
proofs (as suggested in [15]) are used. The first technique to be explored for making efficient two-
party computation protocols secure against malicious adversaries was the cut-and-choose paradigm.
In that approach, roughly speaking, one party generates κ garbled circuits (where κ is a statistical
security parameter); some fraction of those are “checked” by the other party — who aborts if any
misbehavior is detected — and the remaining fraction are evaluated with the results being used
to derive the final output (we return to the exact mechanism for doing so in the next section).
Cut-and-choose was used in a relatively naive way in [24] to give inverse-polynomial security (in
fact, the approach taken was later shown to be flawed [25, 16]). A rigorous analysis of the cut-
and-choose paradigm was first given by Lindell and Pinkas [20], and their work was followed by
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numerous others exploring variations of this technique and their application to (ever more) efficient
secure two-party computation [33, 23, 29, 31, 22, 32, 18].

In parallel with the above, other efficient approaches to achieving “full” malicious security in the
two-party setting have also been explored. Approaches based on the IPS compiler [14] appear to
have good asymptotic complexity [19], but seem challenging to implement (indeed, we are not aware
of any implementations); other approaches [28, 5, 4] have round complexity proportional to the
depth of the circuit being evaluated. Another direction is to explore weaker security guarantees [1,
25, 13], still against arbitrary malicious behavior. In the remainder of this paper we restrict our
attention to protocols achieving the strongest notion of malicious security.

The critical question regarding the cut-and-choose approach is: how many garbled-circuit copies
(namely, κ) are needed to ensure some desired security level? The value of κ has the greatest
impact on the efficiency of cut-and-choose protocols, especially as larger circuits C are evaluated.
The computational/communication complexity of such protocols is O(κ · k · |C|) + poly(n, k, s),
where k is a cryptographic security parameter and n is the input length. Since |C| À k, n (typical
values are k ≈ 128 and n < 1000, while |C| ≈ 109 in [18]), the importance of minimizing κ is clear.

1.1 Prior Work

In previous applications of the cut-and-choose paradigm, one party (say, P1) acts as the garbled-
circuit generator and the other (P2) acts as the garbled-circuit evaluator; assume for simplicity
that only P2 gets output. If the oblivious-transfer (OT) protocol used is secure against malicious
adversaries, then the main issue is to ensure correctness of P2’s output. (Note, however, that
correctness is closely connected with privacy, since P1 can potentially carry out a selective failure
attack in which the output of P2 is correlated with P2’s input, in a way which would not be possible
in an ideal evaluation of the function.) Toward that end, P2 checks some number c out of the κ
garbled circuits generated by P1 to make sure they were constructed correctly. Assuming they were,
the remaining κ − c garbled circuits are evaluated by P2, who then outputs the majority value of
those circuits’ results on each output wire. (This informal description omits other checks that must
also be performed, since we wish to focus on the cut-and-choose aspect of the protocols.)

From the above we see that a malicious P1 can successfully cheat if they generate b “bad”
garbled circuits and (1) none of those bad garbled circuits is among the c garbled circuits checked
by P1, and (2) of the remaining κ− c garbled circuits being evaluated, half or more are bad. Doing
the analysis, prior work [20, 22] culminating in the work of Shelat and Shen [32] shows that using
κ garbled circuits yields security level 2−0.32κ. Moreover, this bound was shown to be the best
possible for a certain class of cut-and-choose approaches [32].

1.2 Our Contribution

We recast the cut-and-choose approach in a symmetric setting, where both parties generates κ
garbled circuits to be checked by the other party. In doing so, we are motivated by work of
Mohassel and Franklin [25] (see also [13]) who show how symmetric creation/evaluation of garbled
circuits (but without any cut-and-choose) can be used to achieve security with only one bit of
“disallowed” leakage against malicious adversaries. Here we show how to extend their approach to
achieve the standard (i.e., “full”) notion of malicious security.

After checking each other’s garbled circuits, each party in our protocol evaluates the remaining
garbled circuits of the other party, and then the results of both parties’ evaluations are securely
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“combined” to yield the final output. Informally, a party outputs a value v for some output wire
of the circuit if and only if at least one of their own garbled circuits, and at least one of the garbled
circuits generated by the other party, evaluate to v on that wire. Since an honest party always
generates correct garbled circuits, our analysis shows that correctness holds as long as at least one
of the evaluated circuits provided by the other party is correct. (This is in contrast to one-sided
cut-and-choose, where a majority of the evaluated circuits must be correct.) Thus, a malicious
party can successfully cheat only if they generate exactly κ− c “bad” garbled circuits, and none of
those is checked by the other party. Setting c = κ/2 (which minimizes the cheating probability),
the probability of successful cheating is

(
κ

κ/2

)−1 = 2−κ+O(log κ). We can therefore achieve the same
security level as previous work while reducing the number of garbled circuits by a factor of 3.1

As an added advantage, our protocol naturally supports having both parties receive output (an
explicit concern of [32]), with no performance penalty if only one party should learn the output.

1.3 Outline of the Paper

In Section 2 we review the cryptographic building blocks used in our protocol. We provide an
overview of the protocol in Section 3 along with some intuition for why it is secure. In Section 4
we provide a formal description of our protocol, and we prove security in Section 5. In Appendix A
we give some preliminary experimental results showing that we outperform the recent work of [18].

2 Notation and Building Blocks

For simplicity, we describe our protocol using concrete (rather than asymptotic) notation. Never-
theless, it should be clear that our protocol can be cast in an asymptotic setting without difficulty.

Let G be a group of prime order q with generator g. We assume the computational Diffie-
Hellman (CDH) problem is hard in G. We let H be a hash function that will be treated in the
analysis as a random oracle. We let Com be a commitment scheme.

We use the standard definitions of secure two-party computation for malicious adversaries [7].

2.1 Naor-Pinkas Oblivious Transfer

In our protocol we do not use oblivious transfer as a “black box,” but instead rely on specific details
of the OT protocol used. Although several candidate OT protocols could be used, for concreteness
and efficiency we use an OT protocol due to Naor and Pinkas [26] which we now describe.

Say we have a sender holding inputs x0, x1 ∈ {0, 1}∗, and a receiver holding input b ∈ {0, 1}.
In the first round, the sender chooses random C ← G and sends C to the other party. The receiver
picks k ← Zq, defines h0 = gk and h1 = C/gk, and sends h = hb to the sender. In turn, the sender
chooses r ← Zq and sends gr,H(hr)⊕x0,H((C/h)r)⊕x1 to the other party. The receiver recovers
xb by computing (gr)k and using the appropriate component of the sender’s final message. We
remark that several independent OTs can all share the same first message C.

This OT protocol is simulatable for a malicious receiver under the CDH assumption in the
random oracle model. It achieves privacy (but is not known to be simulatable) against a malicious

1To be clear: in our protocol each party generates κ garbled circuits and so the total number of garbled circuits
is 2κ. However, since this work is done in parallel by the two parties — in addition to whatever parallel processing is
available on each user’s own machine — and since the communication is symmetric in each direction, the “wall-clock
time” of our protocol is expected to improve on previous protocols by up to a factor of 3.
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sender, and this suffices for our purposes. A variant of this protocol requires the receiver to
give a (standard) perfect witness-indistinguishable proof of knowledge of logg h or logg(C/h) after
sending h. We use this variant in our analysis since it simplifies the proof.

2.2 Garbled Circuits

We use a modification of standard garbled circuits [34]. Fix a function f : {0, 1}n×{0, 1}n → {0, 1}n.
We abstract the construction/evaluation of a garbled circuit for f via algorithms GenGC,EvalGC
with the following properties. GenGC is a randomized algorithm that takes as input 2n input-
wire labels v0

1, v
1
1, . . . , v

0
n, v1

n ∈ G (corresponding to the first input of f), 2n input-wire labels
v0
n+1, v

1
n+1, . . . , v

0
2n, v1

2n ∈ {0, 1}n (corresponding to the second input of f), and 2n output-wire
labels w0

1, w
1
1, . . . , w

0
n, w1

n ∈ Zq. It outputs a garbled circuit GC. Deterministic algorithm EvalGC
takes as input GC and 2n input-wire labels v1, . . . , v2n; it outputs n values b1‖w1, . . . , bn‖wn, with
b1, . . . , bn ∈ {0, 1}. Note that EvalGC explicitly outputs wire labels in addition to bits.

Correctness requires that for any set of input/output-wire labels, any garbled circuit GC output
by GenGC

({v0
i , v

1
i }2n

i=1, {w0
i , w

1
i }n

i=1

)
, and any x, y ∈ {0, 1}n with z = f(x, y), we have

EvalGC
(
GC, {vxi

i }n
i=1, {vyi

i }2n
i=n+1

)
= z1‖wz1

1 , . . . , zn‖wzn
n .

Security requires a simulator SimGC such that for all x, y with z = f(x, y), any vx1
1 , . . . , vxn

n ∈ G
and vy1

n+1, . . . , v
yn
2n ∈ {0, 1}n, and any w0

1, w
1
1, . . . , w

0
n, w1

n ∈ Zq, the distribution




v1−x1
1 , . . . , v1−xn

n ← G;
v1−y1
n+1 , . . . , v1−yn

2n ← {0, 1}n;
GC ← GenGC

({v0
i , v

1
i }2n

i=1, {w0
i , w

1
i }n

i=1

) :
(
GC, {vxi

i }n
i=1, {vyi

n+i}n
i=1

)




is computationally indistinguishable from
{
GC ← SimGC

(
x, z, {vxi

i }n
i=1, {vyi

n+i}n
i=1, {wzi

i }n
i=1

)
:
(
GC, {vxi

i }n
i=1, {vyi

n+i}n
i=1

)}
.

In particular, this means (informally) that (1) given GC, {vxi
i }n

i=1, and {vyn+i

i }n
i=1, no informa-

tion is leaked about {w1−zi
i }n

i=1 where z = f(x, y), and (2) this holds regardless of how the
{vxi

i }n
i=1, {vyi

n+i}n
i=1 are chosen (as long as the other input-wire labels are random). These properties

are not standard, but are easily seen to hold by modifying the construction/proof from [21].

Note: We always let input wires 1, . . . , n denote the inputs of the party generating the circuit.
Thus, technically, P1 generates garbled circuits for the function f , and P2 generates garbled circuits
for the function f ′(y, x) def= f(x, y).

2.3 Verifiable Secret Sharing

We use a notion of (non-interactive) verifiable secret sharing (VSS) that is weaker than the usual
one in the literature. For our purposes, a t-out-of-κ VSS scheme comprises three algorithms
Share,Vrfy, Rec with the following functionality:

• Share takes input s ∈ Zq and outputs κ shares w1, . . . , wκ ∈ Zq and additional information pub.

• Vrfy takes as input the information pub, an index i, and a candidate share wi ∈ Zq. It outputs
a bit, with 1 denoting validity.
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• Rec takes as input pub and t indices/shares {(ij , wij )}t
j=1. It outputs a value s ∈ Zq.

We require that for any s ∈ Zq, any w1, . . . , wκ, pub output by Share(s), and any i1, . . . , it ⊂ [κ], we
have (1) Vrfy(pub, i, wi) = 1 and (2) Rec(pub, {(ij , wij )}t

j=1) = s.
We define a secrecy requirement for an honest dealer, and a verifiability requirement for honest

receivers. Secrecy requires hardness of recovering a random secret s given pub and at most t − 1
shares. Formally, the following should be small for all efficient algorithms A and any i1, . . . , it−1:

Pr[s ← Zq; (pub, w1, . . . , wκ) ← Share(s) : A(pub, wi1 , . . . , wit−1) = s].

Verifiability requires that the dealer cannot generate pub and two different sets of valid shares that
reconstruct to different secrets. Formally, the following is small for all efficient algorithms A:

Pr


(

pub, {(ij , wj)}t
j=1, {(i′j , w′j)}t

j=1

) ← A :
∀j : Vrfy(pub, ij , wj) = 1∧ ∀j : Vrfy(pub, i′j , w

′
j) = 1∧

Rec(pub, {(ij , wj)}t
j=1) 6= Rec(pub, {(i′j , w′j)}t

j=1)


 .

Feldman VSS [6] satisfies the above properties under the discrete-logarithm assumption.

3 High-Level Description of the Protocol

At a high level, the protocol proceeds in the following stages:

1. Generate garbled circuits: Each party generates κ garbled circuits along with their cor-
responding input-wire labels.

2. Oblivious transfer: Each party uses the Naor-Pinkas OT protocol (cf. Section 2.1) to obtain
its input-wire labels for the garbled circuits constructed by the other party. This is done in
such a way that a party must use the same effective input across all circuits.

3. “Cut-and-choose”: Each party sends the garbled circuits they constructed to the other
party. Using coin tossing, parties choose half of each of their circuits for checking. Then:

(a) For each of its check circuits, each party (1) sends all the input-wire labels for that
circuit (to prove that the check circuit was constructed correctly) and (2) reveals all the
values it used as the OT sender in step 2 (to prove that it used the correct input-wire
labels in the OT execution corresponding to the check circuit).

(b) For each of its remaining circuits (the evaluation circuits), each party sends the input-
wire labels corresponding to its own input.

4. Output determination: Each party evaluates the garbled circuits they received from the
other party, using the input-wire labels obtained in steps 2 and 3(b). For each output wire i
of the circuit, each party decides on output zi ∈ {0, 1} iff at least one of the circuits they
evaluated (that the other party constructed) gave output zi and at least one of the circuits
the other party evaluated (that they constructed) gave output zi.

We defer the details of step 4, and for now just assume it can be done. We also assume that if
a party successfully passes the cut-and-choose step, then for at least one of that party’s evaluation
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circuits (1) the evaluation circuit is constructed correctly and (2) the correct input-wire labels were
used in the corresponding OT; this assumption holds except with probability at most

(
κ

κ/2

)−1.
The main issue to address is to ensure that a malicious party uses the same (effective) input

in step 2 (when it obtains input-wire labels for its own input from the other party using OT) and
for all the input-wire labels it sends in step 3(b) (for the garbled circuits that it generated). We
achieve this by noting that when an honest receiver obtains the input-wire labels for its ith input
wire during the OT step, it sends a message hi for which (1) it knows logg hi when its effective input
(on the ith wire) is 0, and (2) it knows logg(C/hi) when its effective input (on the ith wire) is 1.
We require the parties to use this same “template” for the input-wire labels corresponding to their
own input in the garbled circuits they prepare. That is, for each garbled circuit and each input
wire i corresponding to an input of the circuit generator, the input-wire label v0

i corresponding to 0
is chosen such that logg v0

i is known, and the input-wire label v1
i corresponding to 1 is chosen such

that logg(C/v1
i ) is known. Moreover, this property is verified to hold (for the check circuits) during

the cut-and-choose step. When sending its ith input-wire label vi in step 3(b), each party must
then also prove2 that it knows logg(vi/hi). This is reminiscent of a similar technique used by Shelat
and Shen [32] to enforce input consistency among input-wire labels sent by the circuit generator;
here, we extend it to enforce consistency also to the input-wire labels received as a circuit evaluator.

Given this — and still assuming step 4 can be carried out — one can informally verify that
the protocol is secure. Assume for concreteness that P2 is honest. Privacy of P2’s input is easy to
see. As for correctness, P2 constructed all its garbled circuits correctly and sent input-wire labels
for its own input y in all its evaluation circuits. In step 2, P1 obtained input-wire labels for its
own (effective) input x in all of P2’s evaluation circuits. So all of P2’s garbled circuits that were
evaluated by P1 yield output z

def= f(x, y). In the other direction, with high probability at least one
of P1’s evaluation circuits GC∗ was constructed correctly, and moreover the correct input-wire labels
(for P2’s input) were used in the corresponding OT; thus, P2 obtained the correct input-wire labels
for its input y in GC∗. Furthermore, from the previous paragraph we know that the input-wire
labels for P1’s input in GC∗ correspond to the same input x it used before. Thus, evaluation of GC∗

by P2 also yields z = f(x, y), and thus z will be the final output of P2 in the protocol.
The missing piece is to show how to implement step 4, and this is the most involved part of our

protocol. The basic idea here is for each party to choose a secret value sb
i for each output wire i

of the circuit and each possible value b ∈ {0, 1} that wire can take. Each such secret is then split
into κ shares wb

1,i, . . . , w
b
κ,i using a (κ/2+1)-out-of-κ secret-sharing scheme. Share wb

j,i is then used
as the label corresponding to b on the ith output wire of the jth garbled circuit. The net result
is that for each output wire i and bit b, the other party can reconstruct sb

i if and only if it learns
κ/2 + 1 of the shares corresponding to that wire and bit.

Note that κ/2 shares of every wire and bit will be revealed as part of the cut-and-choose phase.
Assuming again that P2 is honest, we thus have the following:

• As noted earlier, all of the garbled circuits that P2 constructed will evaluate to the same value
z = f(x, y). This means that P1 only learns shares corresponding to the secrets sz1

1 , . . . , szn
n ,

and learns nothing about the remaining secrets s1−z1
1 , . . . , s1−zn

n . This gives P2 a way to
“test” whether the circuits it constructed (that were evaluated by P1) resulted in output z
by checking which of each pair of secrets P1 knows (e.g., using a secure equality test).

2Actually, as in [32], the party can simply reveal logg(vi/hi).
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• In the opposite direction, as long as one of the garbled circuits constructed by P1 (and
evaluated by P2) yields z, this will give P2 one additional share of each of s̃z1

1 , . . . , s̃zn
n (where

we use s̃ here to denote that these secrets are chosen by P1) and hence P2 will be able to
reconstruct each of those secrets. Note that it does not matter which garbled circuit evaluates
to z, as any correctly constructed circuit that evaluates to z reveals the requisite share.

One point omitted from the above discussion is that now it must be possible to check during the
cut-and-choose phase that correct shares were used when constructing the garbled circuits. For this
reason, we use verifiable secret sharing (see Section 2.3). We defer to the next section additional
technical details of the protocol needed for the proof of security.

4 Formal Specification of the Protocol

Fix a function f : {0, 1}n × {0, 1}n → {0, 1}n that parties P1 and P2 wish to compute over their
respective inputs x, y ∈ {0, 1}n. We assume both parties learn the output, but it is easy to modify
the protocol so that only one party learns the output. The protocol proceeds as follows.

1. P1 chooses C ← G and sends it to P2. Symmetrically, P2 chooses C̃ ← G and sends it to P1.

2. P1 generates 4n input-wire labels for each of κ garbled circuits in the following way. For
j = 1, . . . , κ, it chooses a0

j,1, a
1
j,1, . . . , a

0
j,n, a1

j,n ← Zq and sets the first 2n input-wire labels of

circuit j to be of the form {v0
j,i = ga0

j,i}n
i=1 and {v1

j,i = C̃/ga1
j,i}n

i=1. It chooses the next 2n
input-wire labels of circuit j uniformly as v0

j,n+1, v
1
j,n+1, . . . , v

0
j,2n, v1

j,2n ← {0, 1}n.

Symmetrically,3 P2 generates 4n input-wire labels ṽ0
j,1, ṽ

1
j,1, . . . , ṽ

0
j,2n, ṽ1

j,2n for j = 1, . . . , κ.

Each party then uses the Naor-Pinkas OT protocol to obtain the input-wire labels correspond-
ing to its own input in the circuits generated by the other party. I.e., for i = 1, . . . , n party
P1 chooses ki ← Zq, generates (h0

i , h
1
i ) = (gki , C̃/gki), and sends hi

def= hxi
i to P2. Then P2

generates κ independent responses as in the Naor-Pinkas protocol, using inputs (ṽ0
j,n+i, ṽ1

j,n+i)
in the jth such instance where, recall, ṽb

j,n+i denotes the label corresponding to bit b on the
(n + i)th input wire in the jth garbled circuit. P1 recovers ṽxi

1,n+i, . . . , ṽ
xi
κ,n+i.

P2 acts symmetrically to obtain vyi
1,n+i, . . . , v

yi
κ,n+i for i = 1, . . . , n.

3. For i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 chooses sb
i ← Zq and generates a (κ/2 + 1)-out-

of-κ secret sharing (pubb
i , w

b
1,i, . . . , w

b
κ,i) ← Share(sb

i). It uses wb
j,i as the label for bit b on

the ith output wire in the jth circuit, i.e., for j = 1, . . . , κ it computes the garbled circuit
GCj = GenGC

(
{v0

j,i, v
1
j,i}2n

i=1, {w0
j,i, w

1
j,i}n

i=1

)
. It sends {GCj}κ

j=1 and {pub0
i , pub1

i }n
i=1 to P2.

P2 acts symmetrically to obtain s̃b
i and (p̃ub

b

i , w̃
b
1,i, . . . , w̃

b
κ,i) and to generate G̃Cj ; it sends

{G̃Cj}κ
j=1 and {p̃ub

0

i , p̃ub
1

i }n
i=1 to P1.

4. For j = 1, . . . , κ and i = 1, . . . , n, party P1 commits to the input-wire labels v0
j,i and v1

j,i

corresponding to its own input, in random permuted order. Let ComSetj,i denote the resulting
pair of commitments. P2 acts symmetrically.

3Recall that the first n input wires always denote the inputs of the party generating the circuit.
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5. The parties run secure coin-tossing protocols to generate strings J , J̃ ∈ {0, 1}κ that are each
uniform among strings containing exactly κ/2 ones.4 These are interpreted in the natural
way as subsets of {1, . . . , κ} of size κ/2.

J̃ is used to check the garbled circuits constructed by P1. Specifically, for j = 1, . . . , κ:

(a) If j ∈ J̃ the jth circuit is a check circuit. Here, P1 sends {a0
j,i, a

1
j,i}n

i=1, {v0
j,i, v

1
j,i}2n

i=n+1,
{w0

j,i, w
1
j,i}n

i=1, and the randomness it used to generate GCj . It also reveals the sender-
randomness it used in all the OTs corresponding to the jth circuit, and opens both
commitments in ComSetj,i for i = 1, . . . , n.

P2 sets v0
j,i = ga0

j,i and v1
j,i = C̃/ga1

j,i for i = 1, . . . , n. It re-generates the jth garbled
circuit and verifies that it matches GCj . It verifies that {v0

j,i, v
1
j,i}2n

i=n+1 were used in the
OTs for the jth circuit, and that the commitments in ComSetj,i open to {v0

j,i, v
1
j,i} in

some order. Finally, it checks that Vrfy(pubb
i , j, w

b
j,i) = 1 for i = 1, . . . , n and b ∈ {0, 1}.

It aborts if any of these fail.

(b) If j 6∈ J̃ the jth circuit is an evaluation circuit. In this case, P1 sends (vj,1, . . . , vj,n) def=
(vx1

j,1, . . . , v
xn
j,n) (i.e., the wire labels corresponding to P1’s input in the jth circuit) to P2.

It also opens the commitment in ComSetj,i that corresponds to vj,i. Finally, it sends
logg(vj,1/h1), . . . , logg(vj,n/hn). (Recall that h1, . . . , hn are the values used by P1 when
acting as receiver in the Naor-Pinkas OT protocol.)
P2 checks that one of the commitments in ComSetj,i opens to vj,i, and verifies the discrete
logarithms sent by P1. It aborts if any inconsistencies are found.

Symmetrically, the parties use J to check the garbled circuits constructed by P2.

6. For each evaluation circuit j of P2, party P1 evaluates G̃Cj using the input-wire labels it
obtained in steps 2 and 5. By doing so, it learns n values b̃j,1‖w̃j,1, . . . , b̃j,n‖w̃j,n.

For i = 1, . . . , n and b ∈ {0, 1}, party P1 tries to recover5 s̃b
i . To do so, it finds an evaluation

circuit j for which b̃j,i = b and w̃j,i is a valid share of s̃b
i (i.e., Vrfy(p̃ub

b̃j,i

i , j, w̃j,i) = 1). If no

such j exists, it chooses tbi ← Zq. Otherwise, it computes tbi by running Rec using p̃ub
b̃j,i

i , the

κ/2 shares {(k, w̃
b̃j,i

k,i )}k∈J it learned in step 5, and the additional share (j, w̃j,i).

P2 acts symmetrically to compute t̃0i , t̃
1
i for i = 1, . . . , n.

7. For i = 1, . . . , n, the parties do the following: Run a secure equality test, with P1 using input
s0
i ‖t0i and P2 using input t̃0i ‖s̃0

i . If the result is 1, each party sets zi = 0 and goes to the
next i. Otherwise, the parties run a second equality test with P1 using input s1

i ‖t1i and P2

using input t̃1i ‖s̃1
i . If the result is 1, each party sets zi = 1 and goes to the next i. If neither

equality test succeeds for some i then cheating is detected and the parties abort.

Assuming no abort has occurred, each party then outputs z = z1 · · · zn.
4This can be implemented easily by using a standard coin-tossing protocol to generate polynomially many uniform

bits, and then using those bits as the random coins for applying a Knuth shuffle to the string 0κ/21κ/2.
5In an honest execution, only one of s̃0

i or s̃1
i will be recovered.
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4.1 Optimizations

For simplicity in our proof of security in the following section, we analyze the protocol as presented
above. However, we observe that the following optimizations can be applied to the protocol (and
the reader can verify that the proof can be suitably modified for each of these).

Naor-Pinkas OT. We assume a variant of Naor-Pinkas OT is used in which the receiver gives
a witness-indistinguishable (WI) proof of knowledge that its message was computed correctly (see
Section 2.1). This is used in our proof to extract the receiver’s input. In fact, as shown in [26],
such WI proofs are not necessary and extraction can be done using the random-oracle queries of
the receiver. The same is true in our setting, though it complicates the presentation of the proof.

Secure coin tossing. In the (programmable) random-oracle model, very efficient coin tossing is
possible since it is trivial to construct an equivocal and extractable commitment scheme.

Secure equality testing. In our proof, we assume a hybrid world in which the parties have
access to an ideal functionality for equality testing; equivalently (relying on standard composition
theorems [3]), we assume that the equality test is done using a fully secure protocols for this task.

In fact, using a fully secure equality test is overkill for our purposes. Instead, we can use a
different approach that is very efficient in the random-oracle model. First, assume the VSS scheme
has the stronger property of indistinguishability, i.e., given pub and t − 1 shares of a uniform
secret s ∈ {0, 1}n, it is hard to distinguish s from an independent uniform value s′ ∈ {0, 1}n.
(Any VSS scheme satisfying the unpredictability requirement from Section 2.3 can be modified
to achieve this stronger notion in the random-oracle model by simply hashing the secret.) Then,
rather than performing an equality test using values s0

i ‖t0i and t̃0i ‖s̃0
i (resp., s1

i ‖t1i and t̃1i ‖s̃1
i ) as

before, the parties now carry out an equality test on values s0
i ⊕ t0i and t̃0i ⊕ s̃0

i (resp., s1
i ⊕ t1i and

t̃1i ⊕ s̃1
i ). At this point, we observe that a full-fledged equality test is not needed since (1) the honest

party’s input to the equality test is either known to the malicious party or is (indistinguishable
from) uniform, and (2) in either case, it is ok if the honest party’s input to the equality test is
leaked to the other party after equality is checked. Thus, it suffices to use a “cheap” equality test in
which P1 (resp., P2) commits to, e.g., s0

i ⊕ t0i (resp., to t̃0i ⊕ s̃0
i ) using an extractable and equivocal

commitment scheme (which is easily constructed in the random-oracle model), and then each party
decommits and checks equality of the decommitted results in the clear.

Saving bandwidth. Following an observation in [9], we can modify the way we do cut-and-
choose as follows: Parties construct their jth garbled circuit by choosing a random seed seedj

and using that seed to generate certain (pseudo)random choices they need for constructing that
circuit. (In our case, this would mean using seedj to generate {a0

j,i, a
1
j,i}n

i=1, {v0
j,i, v

1
j,i}2n

i=n+1, and the
randomness used to generate GCj .) Then, in step 3, the parties send the hash hGCj = H(GCj) in
place of GCj . If j is a check circuit then seedj is sent; the other party re-generates GCj and verifies
that H(GCj) = hGCj . If j is an evaluation circuit then GCj is sent and the other party checks that
H(GCj) = hGCj . Since |seedj | + |hGCj | ¿ |GCj |, this has the effect of reducing the bandwidth in
steps 3 and 5 (which dominate the bandwidth of the entire protocol) by roughly half.

Batch verification. We can use batch verification [2] when simultaneously verifying validity of
shares in step 5(a) (assuming Feldman VSS is used) and the discrete logarithms in step 5(b).

Efficient garbled circuits. Our protocol is fully compatible with existing optimizations for
garbled circuits such as garbled-row reduction [27] and the free-XOR technique [17].6

6We cannot apply the free-XOR optimization at first-level gates because of the way the circuit generator chooses
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5 Proof of Security

Theorem 1 Under the assumptions outlined in Section 2, and modeling H as a random oracle,
the protocol in the previous section securely computes f in the presence of malicious adversaries.

Since we are not in an asymptotic setting, technically speaking “secure” is not well-defined. In
the proof below, all steps introduce a computational security factor (which can be set as small as
desired by setting the cryptographic security parameter large enough) except for one step which
introduces a statistical security factor of

(
κ

κ/2

)−1 = 2−κ+O(log κ).
All our assumptions are standard, and can be based on the CDH assumption in G. We remark

that the only place the random oracle is used is for the Naor-Pinkas OT. It would be possible
to remove the random oracle by switching, e.g., to the OT protocol of [30] (and modifying the
rest of the protocol accordingly). Although this would impact the efficiency, the effect would be
proportional to the input length and not the size of the circuit being computed.

Proof We analyze the protocol in a hybrid world in which the parties have access to ideal
functionalities for coin tossing and equality testing. Using standard composition theorems [3], this
implies security when those sub-routines are instantiated using secure protocols for those tasks.
See Section 4.1 for further discussion.

Since the protocol is symmetric, we assume without loss of generality that P1 is malicious. Let
y denote the input of P2. We define a sequence of experiments, beginning with the real execution
of the protocol between P1 and P2 (in the hybrid world discussed above) and ending with an ideal
execution involving a simulator S playing the role of the first party and interacting with a trusted
party computing f . We show that each experiment is indistinguishable from the one before it,
taking into account both the view/output of the malicious party and the output of P2.

Experiment 0. This is the real execution of the protocol (in the hybrid world discussed above)
between P1 and the honest P2 holding input y.

Experiment 1. Here we change the way P2 behaves when acting as OT sender in step 2 and when
sending commitments in step 4. First of all, we now pick J at the outset of the experiment. This
defines the check circuits and evaluation circuits for P2. Next, in each instance i in which P1 acts
as OT receiver in step 2 and sends message hi, we extract (using the WI proof of knowledge) either
logg hi or logg(C̃/hi). In the former case we set xi = 0 and in the latter case we set xi = 1. Then,
when computing the κ responses for the ith OT, in each response that corresponds to an evaluation
circuit j of P2 we continue to use ṽxi

j,n+i but we replace ṽ1−xi
j,n+i with the all-0 string. (Responses that

correspond to check circuits of P2 are treated exactly as before.)
In addition, for each evaluation circuit j of P2 and i = 1, . . . , n, we now set ComSetj,i =

{Com(ṽyi
j,i), Com(g)}, in random permuted order.

Indistinguishability of Experiments 0 and 1 follows easily from the security of Naor-Pinkas OT
(based on the CDH assumption in the random-oracle model) and computational hiding of Com.

Experiment 2. Now we generate all the evaluation circuits of P2 using the garbled-circuit simula-
tor SimGC. In more detail: after extracting P1’s effective input x as in the previous experiment, we
compute z = f(x, y). In step 3, once the {w̃b

j,i} have been determined we compute for every evalu-

the input-wire labels. However, the free-XOR method can be used at all lower levels of the circuit.
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ation circuit j the simulated garbled circuit7 G̃Cj ← SimGC
(
x, z, {ṽyi

j,i}n
i=1, {ṽxi

j,n+i}n
i=1, {w̃zi

j,i}n
i=1

)
.

The remainder of the experiment is exactly as in Experiment 1.
Indistinguishability of Experiments 1 and 2 follows from security of the garbled-circuit simula-

tion algorithm as defined in Section 2.2.
Note that in Experiment 2, we no longer use {ṽ1−yi

j,i }n
i=1, {ṽ1−xi

j,n+i}n
i=1, or {w̃1−zi

j,i }n
i=1 for any

evaluation circuit j of P2.

Experiment 3. This is the same as the previous experiment, except that now when performing
the ith pair of equality tests we proceed as follows: if zi = 1, we return 0 to both parties in the
first equality test; if zi = 0, we return 0 to both parties in the second equality test (if run).

Indistinguishability of this experiment from Experiment 2 follows from secrecy of VSS. Specifi-
cally, for i = 1, . . . , n only p̃ub

1−zi

i and κ/2 shares of the secret s̃1−zi
i are used throughout the entire

experiment before the equality tests. Thus, the probability (in Experiment 2) that P1 can make
any of the equality tests corresponding to 1− zi return 1 is negligible.

Experiment 4. If P1 successfully responds to the “challenge” J̃ chosen during the cut-and-choose
step, we repeatedly rewind P1 in an attempt to find a J̃ ′ 6= J̃ for which P1 also responds correctly.8

If no such J̃ ′ is found, output fail. Otherwise, re-send the original challenge J̃ and continue as in
the previous experiment.

The only difference between this experiment and the previous one occurs in case P1 responds
correctly to only a single challenge J̃ and that challenge happens to be the one chosen during the
experiment. This can occur with probability at most 1/

(
κ

κ/2

)
.

Experiment 5. We now change how we compute t̃zi
i for all i. (Recall that t̃zi

i represents P2’s
guess for P1’s secret szi

i .) Assuming P1 answers two different challenges J̃ , J̃ ′ correctly, there is
some j∗ ∈ {1, . . . , κ} such that j∗ is an evaluation circuit with respect to J̃ but a check circuit
with respect to J̃ ′. For any such j∗, we reconstruct szi

i using the share wzi
j∗,i sent by P1 when

answering challenge J̃ ′, along with the κ/2 other shares of szi
i that were sent by P1 when answering

challenge J̃ . We then set t̃zi
i = szi

i and use that value in the relevant equality test later.
We claim that this experiment is indistinguishable from the previous one; this is the crux of the

proof. To prove this, we show that the shares {wzi
j∗,i}n

i=1 computed in Experiment 5 are, except with
negligible probability, the same shares that P2 obtains by evaluating circuit GCj∗ in Experiment 4.
Verifiability of the secret-sharing scheme then implies that, except with negligible probability, the
same values {t̃zi

i }n
i=1 are computed in both experiments (namely, even if in Experiment 4 a valid

share from an evaluation circuit other than j∗ is used by P2 to reconstruct some szi
i ).

Fix i. To see that the same share wzi
j∗,i is computed in each experiment, observe that in

Experiment 4 the share wzi
j∗,i is computed by evaluating garbled circuit GCj∗ using input-wire

labels for P2’s input that P2 obtains from the OTs corresponding to circuit j∗, and input-wire
labels for P1’s input that were sent by P1 in step 5. Because P1 responds correctly to challenge J̃ ′,
in which j∗ is a check circuit, we know that: (1) GCj∗ is correctly constructed; (2) the input-wire
labels that P2 obtained from the OTs are correct labels for GCj∗ that correspond to P2’s input y;

7Recall that the first n input wires always denote the inputs of the party generating the circuit, so in this case
correspond to input y.

8We use standard techniques in order to ensure that the experiment runs in expected polynomial time. Specifically,
in parallel with rewinding P1 and sending a random challenge J̃ ′ 6= J̃ we also enumerate over all possible J̃ ′; we
output fail if after completing this enumeration we find that J̃ is the only challenge to which P1 responds correctly.
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(3) the input-wire labels for its own input that P1 sends must be correct labels for GCj∗ (this follows
from binding of the commitments in {ComSetj∗,i}n

i=1) and moreover must correspond to the same
effective input x defined by P1’s execution as OT receiver (otherwise we obtain a discrete logarithm
of the random group element C̃). Since GCj∗ , when evaluated on input-wire labels corresponding
to x and y, yields the share wzi

j∗,i on the ith output wire, we are done.
We remark that in Experiment 5 none of P1’s evaluation circuits need to be evaluated by P2.

Moreover, P2 no longer needs to compute its output in any of the OTs in which it acts as receiver.

Experiment 6. In the previous experiment, when P2 acts as OT receiver it sends h̃i with either
logg h̃i or logg(C/h̃i) known (depending on yi). The input-wire labels {ṽyi

j,i}n
i=1 (when j is an

evaluation circuit) are chosen in a similar way. In this experiment, for i = 1, . . . , n we choose h̃i

uniform with logg h̃i known so that we are simply running the OT execution honestly using input 0.
Similarly, choose ṽyi

j,i uniform with logg ṽyi
j,i known for every evaluation circuit j. (Note that this

allows P2 to reveal logg(ṽj,i/h̃i) in step 5 for every evaluation circuit j.)
This experiment is distributed identically to the previous experiment, since gk and C/gk (where

k is uniform in each case) have the same distribution. (P2 also gives a WI proof of knowledge of
either logg h̃i or logg(C/h̃i), but we assume a perfect WI proof is used.)

To conclude, we observe that Experiment 6 can equivalently be described in terms of an ideal-
world execution in which the honest P2 and a simulator S (playing the role of the first party, and
running P1 as a subroutine) interact with a trusted party computing f . Namely, S works as follows:

1. Choose J in advance; this defines the check circuits and the evaluation circuits for the
simulated P2. Choose C̃ ← G and send it to P1. Receive in return C ∈ G.

2. For each check circuit j, generate input-wire labels exactly as in the real protocol. For each
evaluation circuit j, choose ãj,1, . . . , ãj,n ← Zq and set ṽj,i = gãj,i for i = 1, . . . , n. Also choose
ṽj,n+i ← {0, 1}n for i = 1, . . . , n.

When P2 acts as OT receiver, run the OT protocol honestly using input bit 0.

In each instance i in which P2 acts as OT sender, extract from P1 (by rewinding the WI proof
of knowledge) either logg hi or logg(C̃/hi). In the former case set xi = 0 and in the latter case
set xi = 1. Then, for check circuits send the final OT message exactly as in the real protocol,
and for any evaluation circuit j send the final OT message using ṽj,n+i as the xi-input, and
the 0-string as the (1− xi)-input.

3. Send x to the trusted party, and receive in return an output z.

Generate {p̃ub
b

i , w̃
b
j,i} as in the real protocol. Then for each evaluation circuit j, compute

G̃Cj ← SimGC
(
x, z, {ṽj,i}2n

i=1, {w̃zi
j,i}n

i=1

)
; for each check circuit j, compute G̃Cj as in the real

protocol. Send {G̃Cj}κ
j=1 and {p̃ub

0

i , p̃ub
1

i }n
i=1 to P1.

Receive in return {GCj}κ
j=1 and {pub0

i , pub1
i }n

i=1 from P1.

4. For each check circuit j, compute {C̃omSetj,i}n
i=1 as in the real protocol. For each evaluation

circuit j, set C̃omSetj,i = {Com(ṽj,i), Com(g)} in random permuted order. Send all these pairs
of commitments to P1, and receive in return all the pairs of commitments from P1.
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5. Give P1 the value J as the output of the appropriate coin-tossing protocol. Respond for all
check circuits as in the real protocol. For each evaluation circuit j, send {ṽj,i}n

i=1, open the
appropriate commitment from {C̃omSetj,i}n

i=1, and send {logg(ṽj,i/h̃i)}n
i=1, where h̃i is the

message sent by P2 in the ith OT when P2 is receiver.

Choose J̃ at random as in the real protocol, and give it to P1. If P1 responds correctly, then
repeatedly rewind to find J̃ ′ 6= J̃ for which P1 responds correctly. (If none is found, S aborts
with output fail.) Rewind again and continue the interaction using J̃ .

6. Let j∗ be a circuit which is an evaluation circuit in J̃ , but a check circuit in J̃ ′. For
i = 1, . . . , n, use the κ/2 shares of szi

i from P1’s check circuits (with respect to J ) plus
the additional share of szi

i from circuit j∗ (that was a check circuit with respect to J̃ ′) to
reconstruct szi

i . Set t̃zi
i = szi

i .

7. For i = 1, . . . , n, do the following.

• If zi = 0, obtain P1’s input s0
i ‖t0i to the first equality test. If s0

i ‖t0i = t̃0i ‖s̃0
i , return 1;

else return 0. Return 0 to the second equality test (if run).

• If zi = 1, return 0 to the first equality test. Then obtain P1’s input s1
i ‖t1i to the second

equality test. If s1
i ‖t1i = t̃1i ‖s̃1

i , return 1; else return 0.

If for some i both equality tests return 0, abort. If an abort occurred, send abort to the
trusted party; otherwise, send continue.

This completes the proof.
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A Experimental Results

We describe some preliminary experimental results indicating that our protocol significantly out-
performs the result work of [18]. Further experiments are on-going.

We implemented our protocol in Java using all the optimizations of Section 4.1. We evaluated
the protocol at the 80-bit security level, which means in particular that (1) each party generates
84 garbled circuits, 42 of which are checked; (2) the length of all wire labels is 80 bits; and (3) we
use an order-q subgroup of Z∗p where |p| = 1024, |q| = 160. We ran experiments over a LAN using
two laptops with Intel Core i7 2.4GHz processors. Note that 80-bit security was also used in the
experiments of [18].

In typical settings where the number of gates in the underlying circuit is much larger than the
number of inputs/outputs, the dominant overall cost of the protocol is the generation, sending, and
checking of the garbled circuits. When each side uses only a single core, our protocol evaluates
circuits at the rate of 1.4 ms/gate. By comparison, the implementation of Kreuter et al. [18]
evaluates circuits at the rate of about 8 ms/gate when a single thread is used.

When each side utilizes two cores, our protocol evaluates circuits at the rate of 0.8 ms/gate;
by comparison, the two-threaded execution in [18] achieved a rate of roughly 4 ms/gate. We do
not gain a factor of 2 in performance by leveraging a second core in part because the parties are
sometimes idle, and in part because of inter-thread interference (e.g., due to cache contention and
dependence on shared hardware and I/O).

Our measured performance gains relative to [18] exceed the expected factor of 3. This may be
due to differences in hardware or implementation, or the complexity of managing multiple threads
in the implementation of [18] regardless of how many cores are being used. We are in the process
of re-implementing their protocol in order to compare the protocols under similar conditions.

The number of public-key operations used in our protocol scales linearly with the lengths of the
inputs and outputs, though we stress again that in typical scenarios the number of gates is much
larger than the number of inputs/outputs and so the overall performance impact of these public-
key operations is small. Nevertheless, we measured performance of this aspect of our protocol as
well. When each side uses a single core, our protocol processes inputs at the rate of 0.7 s/bit (our
experiments assume the lengths of the parties’ inputs are the same). Output is computed at the
rate of 0.1 s/bit.

16


