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Abstract

Beimel and Orlov proved that all information inequalities on four or five variables, to-
gether with all information inequalities on more than five variables that are known to date,
provide lower bounds on the size of the shares in secret sharing schemes that are at most
linear on the number of participants. We present here another two negative results about
the power of information inequalities in the search for lower bounds in secret sharing. First,
we prove that all information inequalities on a bounded number of variables can only provide
lower bounds that are polynomial on the number of participants. And second, we prove that
the rank inequalities that are derived from the existence of two common informations can
provide only lower bounds that are at most cubic in the number of participants.
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1 Introduction

Secret sharing schemes, which were independently introduced by Shamir [31] and Blakley [6],
make it possible to distribute a secret value into shares among a set of participants in such a
way that only the qualified sets of participants can recover the secret value, while no information
at all on the secret value is provided by the shares from an unqualified set. The qualifed sets
form the access structure of the scheme.

This work deals with the problem of the size of the shares in secret sharing schemes for
general access structures. The reader is referred to [2] for an up-to-date survey on this topic.
Even though there exists a secret sharing scheme for every access structure [22], all known
general constructions are impractical because the size of the shares grows exponentially with
the number of participants. The general opinion among the researchers in the area is that this
is unavoidable. Specifically, the following conjecture, which was formalized by Beimel [2], is
generally believed to be true. It poses one of the main open problems in secret sharing, and a
very difficult and intriguing one.

Conjecture 1.1. There exists an ϵ > 0 such that for every integer n there is an access structure
on n participants for which every secret sharing scheme distributes shares of length 2ϵn, that is,
exponential in the number of participants.

∗The material in this paper was presented in part at Crypto 2013, Santa Barbara, California, USA, and an
earlier version of this paper was published in the Proceedings of Crypto 2013.
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Nevertheless, not many results supporting this conjecture have been proved. No proof for
the existence of access structures requiring shares of superpolynomial size has been found.
Moreover, the best of the known lower bounds is the one given by Csirmaz [10], who presented
a family of access structures on an arbitrary number n of participants that require shares of
size Ω(n/ log n) times the size of the secret.

In contrast, superpolynomial lower bounds on the size of the shares have been obtained
for linear secret sharing schemes [1, 3, 19]. In a linear secret sharing scheme, the secret and
the shares are vectors over some finite field, and both the computation of the shares and the
recovering of the secret are performed by linear maps. Because of their homomorphic properties,
linear schemes are needed for many applications of secret sharing. Moreover, most of the known
constructions of secret sharing schemes yield linear schemes.

As in the works by Csirmaz [10] and by Beimel and Orlov [5], we analyze here the limitations
of the technique that has been almost exclusively used to find lower bounds on the size of the
shares for general (that is, not necessarily linear) secret sharing. This is the case of the bounds
in [7, 8, 10, 23] and many other papers. Even though it was implicitly used before, the method
was formalized by Csirmaz [10]. Basically, it consists of finding lower bounds on the solutions of
certain linear programs. This method provides lower bounds on the information ratio of secret
sharing schemes, and hence on the ratio between the maximum size of the shares and the size
of the secret. The constraints of those linear programs are derived from inequalities that are
satisfied by the values of the joint entropies of the random variables defining a secret sharing
scheme. These constraints can be divided into three classes.

1. The ones that are derived from the access structure, specifically, from the fact that the
qualified subsets can recover the secret while the unqualified ones have no information
about it.

2. The so-called Shannon inequalities, which are the ones implied by the fact that the con-
ditional mutual information is nonnegative or, equivalently, from the fact that the joint
entropies of a collection of random variables define a polymatroid [16, 17].

3. Finally, constraints derived from non-Shannon information inequalities, that is, linear
inequalities that hold for every collection of random variables and are independent from
the Shannon inequalities.

Csirmaz [10] found a negative result on that method. Namely, the lower bounds that are
obtained by considering only the constraints in the first two classes are at most linear on the
number of participants. This was proved by showing that every such linear program admits a
small solution. Notice that he existence of non-Shannon information inequalities was unknown
when the method was formalized.

The first non-Shannon information inequality was presented by Zhang and Yeung [34], and
many others have been found subsequently [12, 14, 26, 33]. The existence of such additional
constraints gave some expectations for the search of lower bounds and, actually, improvements
were obtained for some particular access structures [4, 28, 29].

When searching for lower bounds for linear secret sharing schemes, one can improve the
linear program by using rank inequalities, which apply to configurations of vector subspaces or,
equivalently, to the joint entropies of collections of random variables defined from linear maps.
It is well-known that every information inequality is also a rank inequality. The first known
rank inequality that cannot be derived from the Shannon inequalities was found by Ingleton [21].
Other rank inequalities have been presented afterwards [13, 25]. The use of rank inequalities
improved the known lower bounds on the information ratio of linear secret sharing schemes for
some particular families of access structures [4, 11, 29].
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Some difficulties arise when using non-Shannon rank and information inequalities in the
search for lower bounds. First, only a few methods are currently available to derive rank and
information inequalities [13, 24], and it seems that many of them remain unknown. And second,
except for a few cases, no spanning sets are known for the rank inequalities on a given number
of variables. Besides, even for four variables, there are infinitely many independent information
inequalities [26].

Moreover, the aforementioned negative result by Csirmaz [10] was generalized by Beimel
and Orlov [5], who presented a negative result about the power of non-Shannon information
inequalities to provide better lower bounds on the size of the shares. Namely, they proved that
the lower bounds that can be obtained by using all information inequalities on four and five
variables, together with all inequalities on more than five variables that are known to date, are
at most linear on the number of participants. Specifically, they proved that every linear program
that is obtained by using these inequalities admits a small solution that is related to the solution
used by Csirmaz [10] to prove his negative result. They used the fact that there exists a finite set
of rank inequalities that, together with the Shannon inequalities, span all rank inequalities, and
hence all information inequalities, on four or five variables [13, 20]. By executing a brute-force
algorithm using a computer program, they checked that Csirmaz’s solution is compatible with
every rank inequality in that finite set. In addition, they manually executed their algorithm on a
symbolic representation of the infinite sequence of information inequalities given by Zhang [33].
This sequence contains inequalities on arbitrarily many variables and generalizes the infinite
sequences from previous works.

In particular, the results in [5] imply that all rank inequalities on four or five variables cannot
provide lower bounds on the size of shares in linear secret sharing schemes that are better than
linear on the number of participants. Unfortunately, their algorithm is not efficient enough to
be applied on the known rank inequalities on six variables.

We present here another two negative results about the power of rank and information
inequalities to provide lower bounds on the size of the shares in secret sharing schemes.

Our first result deals with rank and information inequalities on a bounded number of vari-
ables. We prove in Theorem 5.2 that every lower bound that is obtained by using rank inequal-
ities on at most r variables is O(nr−2), and hence polynomial on the number n of participants.
Since all information inequalities are rank inequalities, this negative result applies to the search
of lower bounds for both linear and general secret sharing schemes. Therefore, information
inequalities on arbitrarily many variables are needed to find superpolynomial lower bounds by
using the method described above. The proof is extremely simple and concise. Similarly to the
proofs in [5, 10], it is based on finding small solutions to the linear programs that are obtained
by using rank inequalities on a bounded number of variables. These solutions are obtained from
a family of polymatroids that are uniform and Boolean. This family contains the polymatroids
that were used in [5, 10]. In some sense, our result is weaker than the one in [5], because for
r = 4 and r = 5, our solutions to the linear programs do not prove that the lower bounds must
be linear on the number of participants, but instead quadratic and cubic, respectively. But in
another sense our result is much more general because it applies to all (known or unknown)
rank inequalities. In addition, our proof provides a better understanding on the limitations of
the use of information inequalities in the search of lower bounds for secret sharing schemes.

Our second result shows that, in addition to the number of variables, also the methods used
to derive rank and information inequalities can imply limitations in the search of lower bounds.
Only a few techniques are known to find rank and information inequalities [9, 13, 24, 27]. In par-
ticular, non-Shannon rank inequalities have been found by using common informations [13, 20].
Specifically, all known sharp rank inequalities are derived from the existence of two common
informations [13]. We prove in Theorem 7.5 that all lower bounds on the length of the shares
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that can be obtained from such rank inequalities are at most cubic on the number of partici-
pants. Even though its proof is much more involved, this result is based on the same ideas as
Theorem 5.2.

2 Polymatroids, Rank Inequalities and Information Inequalities

Some basic concepts and facts about polymatroids that are used in the paper are presented
here. A more detailed presentation can be found in textbooks on the topic [30, 32]. We begin
by introducing some notation. For a finite set Q, we use P(Q) to denote its power set, that is,
the set of all subsets of Q. We use a compact notation for set unions, that is, we write XY for
X ∪ Y and Xy for X ∪ {y}. In addition, we write X r Y for the set difference and X r x for
X r {x}. For a function f : P(Q) → R and subsets X,Y, Z ⊆ Q, we define

∆f (Y :Z|X) = f(XY ) + f(XZ)− f(XY Z)− f(X).

In addition, we notate ∆f (Y :Z) = ∆f (Y :Z|∅) and ∆f (y :z|X) = ∆f ({y}:{z}|X). For a positive
integer r, we use [r] to represent the set {1, . . . , r}.

Definition 2.1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the ground set ,
and a rank function f : P(Q) → R satisfying the following properties.

• f(∅) = 0.

• f is monotone increasing : if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).

• f is submodular : f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X,Y ⊆ Q.

A polymatroid is called integer if its rank function is integer-valued. If S = (Q, f) is a poly-
matroid and α is a positive real number, then (Q,αf) is a polymatroid too, which is called a
multiple of S.

The polymatroid axioms can be presented in a more compact way.

Remark 2.2. A map f : P(Q) → R is the rank function of a polymatroid with ground set Q if
and only if f(∅) = 0 and ∆f (Y :Z|X) ≥ 0 for every X,Y, Z ⊆ Q.

The following characterization of rank functions of polymatroids is a straightforward conse-
quence of [30, Theorem 44.1].

Proposition 2.3. A map f : P(Q) → R is the rank function of a polymatroid with ground set
Q if and only if f(∅) = 0 and ∆f (y :z|X) ≥ 0 for every X ⊆ Q and y, z ∈ QrX.

In the following, four important classes of polymatroids are discussed. Namely, the en-
tropic, the linear, the Boolean, and the uniform polymatroids. The notation SX , where X is
a set, will be used for random variables, vector subspaces and subsets with different meanings.
Nevertheless, the context in which this notation is used should avoid any confusion.

Only discrete random variables are considered in this paper. For a finite set Q, consider a
random vector (Sx)x∈Q. For every X ⊆ Q, we use SX to denote the subvector (Sx)x∈X , and
H(SX) will denote its Shannon entropy. Given three random variables (Si)i∈[3], the entropy of
S1 conditioned on S2 is

H(S1|S2) = H(S12)−H(S2),
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the mutual information of S1 and S2 is

I(S1 :S2) = H(S1)−H(S1|S2) = H(S1) +H(S2)−H(S12)

and, finally, the conditional mutual information is defined by

I(S1 :S2|S3) = H(S1|S3)−H(S1|S23) = H(S13) +H(S23)−H(S123)−H(S3).

A fundamental fact about Shannon entropy is that the conditional mutual information is always
nonnegative, and this implies the following result by Fujishige [16, 17].

Theorem 2.4. Let (Sx)x∈Q be a random vector. Consider the mapping h : P(Q) → R defined
by h(∅) = 0 and h(X) = H(SX) if ∅ ̸= X ⊆ Q. Then h is the rank function of a polymatroid
with ground set Q.

Proof. Observe that ∆h(Y :Z|X) = I(SY :SZ |SX) ≥ 0 for every X,Y, Z ⊆ Q and apply Re-
mark 2.2.

Because of the connection between Shannon entropy and polymatroids given by Theorem 2.4,
and by analogy to the conditional entropy, we write f(X|Y ) = f(XY ) − f(Y ) if (Q, f) is a
polymatroid and X,Y ⊆ Q.

A polymatroid S = (Q,h) is called entropic if there exists a random vector (Sx)x∈Q such
that h(X) = H(SX) for every X ⊆ Q. Let V be a vector space over a field K and (Vx)x∈Q
a tuple of vector subspaces of V . For X ⊆ Q, we notate VX =

∑
x∈X Vx. Then the map

f : P(Q) → Z defined by f(X) = dimVX for every X ⊆ Q is the rank function of an integer
polymatroid S with ground set Q. Integer polymatroids that can be defined in this way are
said to be K-linearly representable, or simply K-linear .

We discuss in the following the well known connection between entropic and linear polyma-
troids, as described in [20]. Let K be a finite field. Let V be a K-vector space and let V ∗ be its
dual space, which is formed by all linear forms α : V → K. Let S be the random variable given
by the uniform probability distribution on V ∗. For every vector subspaceW ⊆ V , the restriction
of S to W determines a random variable S|W , which is uniformly distributed over its support
W ∗. Therefore, H(S|W ) = log |K| dimW ∗ = log |K| dimW . A random vector (Sx)x∈Q is called
K-linear if Sx = S|Vx for some collection (Vx)x∈Q of vector subspaces of a K-vector space V .
An entropic polymatroid is K-linearly entropic if it is determined by a K-linear random vector.
The following result is a consequence of the previous discussion.

Proposition 2.5. For a finite field K, every K-linearly entropic polymatroid is a multiple of a
K-linear polymatroid.

Consider a finite set M and a family (Mx)x∈Q of subsets of M . For every X ⊆ Q, take MX =∪
x∈X Mx. Then the map defined by f(X) = |MX | for every X ⊆ Q is the rank function of an

integer polymatroid S with ground set Q. The family (Mx)x∈Q is called a Boolean representation
of S. Boolean polymatroids are those admitting a Boolean representation. Boolean polymatroids
are K-linear for every field K. Indeed, the set KM of all functions v : M → K is a K-vector
space. For every w ∈ M , consider the vector ew ∈ KM given by ew(w′) = 1 if w′ = w and
ew(w′) = 0 otherwise. Obviously, (ew)w∈M is a basis of KM . For every x ∈ Q, consider the
vector subspace Vx = ⟨ew : w ∈ Mx⟩. Clearly, these subspaces form a K-linear representation
of S.

We say that a polymatroid S with ground set Q is uniform if every permutation on Q is
an automorphism of S. In this situation, the rank f(X) of a set X ⊆ Q depends only on
its cardinality, that is, there exist values 0 = f0 ≤ f1 ≤ · · · ≤ fn, where n = |Q|, such that
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f(X) = fi for every X ⊆ Q with |X| = i. By Proposition 2.3, such a sequence (fi)1≤i≤n defines
a uniform polymatroid if and only if fi − fi−1 ≥ fi+1 − fi for every i = 1, . . . , n − 1. Clearly,
a uniform polymatroid is univocally determined by its increment vector δ = (δ1, . . . , δn), where
δi = fi−fi−1. Observe that δ ∈ Rn is the increment vector of a uniform polymatroid if and only
if δ1 ≥ · · · ≥ δn ≥ 0. All uniform integer polymatroids are linearly representable. Specifically,
a uniform integer polymatroid is K-linear if the field K has at least as many elements as the
ground set [15].

Given a positive integer r, a collection (Ai)i∈[r] of subsets of a set Q, and I ⊆ [r], we notate
AI =

∪
i∈I Ai. An information inequality, respectively rank inequality, on r variables consists

of a collection (αI)I∈P([r]) of real numbers such that∑
I⊆[r]

αIf(AI) ≥ 0

for every entropic, respectively linear, polymatroid (Q, f) and for every collection (Ai)i∈[r] of r
subsets of Q.

By Proposition 2.5, every information inequality is also a rank inequality. The Shannon
inequalities are the information inequalities that can be derived from the fact that the con-
ditional mutual information is nonnegative or, equivalently, from Theorem 2.4. The Ingleton
inequality [21] was the first known example of a rank inequality that is not a Shannon in-
equality. The first known non-Shannon information inequality was presented by Zhang and
Yeung [34]. Subsequently, many other rank and information inequalities have been found
in [12, 13, 14, 25, 26, 33] and other works. We need the following technical result, which is
a consequence of [5, Lemma 4.3].

Lemma 2.6. Let (αI)I∈P([r]) be a rank inequality. Then
∑

I : I∩J ̸=∅ αI ≥ 0 for every J ⊆ [r].

Proof. Take J ⊆ [r], a set M with |M | = 1, and the family (Mi)i∈[r] of subsets of M given by
Mi = M if i ∈ J and Mi = ∅ otherwise. Let ([r], f) be the Boolean polymatroid defined by
this family. Then

∑
I : I∩J ̸=∅ αI =

∑
I⊆[r] αIf(I) ≥ 0 because Boolean polymatroids are linearly

representable.

3 Polymatroids and Secret Sharing

Let P be a finite set of participants, po /∈ P a special participant, usually called dealer, and
Q = Ppo. This notation will be used from now on. An access structure Γ on P is a monotone
increasing family of subsets of P , that is, if X ⊆ Y ⊆ P and X ∈ Γ, then Y ∈ Γ. To avoid
anomalous situations, we assume always that ∅ /∈ Γ and P ∈ Γ. The members of Γ are called
qualified sets. An access structure Γ is determined by the family minΓ of its minimal qualified
sets. An access structure Γ on P can be identified with a monotone increasing boolean function
Γ : P(P ) → {0, 1}, where Γ(X) = 1 if and only if X ∈ Γ.

For an access structure Γ on P , a Γ-polymatroid is a polymatroid S = (Q, f) such that

Γ(X) =
f(po)− f(po|X)

f(po)
=

∆f (po :X)

f(po)

for every X ⊆ P . A Γ-polymatroid is said to be normalized if f(po) = 1.
A secret sharing scheme Σ on P with access structure Γ is a random vector (Sx)x∈Q such

that the entropic polymatroid S = (Q,h) determined by Σ is a Γ-polymatroid. The random
variables Spo and (Sx)x∈P correspond, respectively, to the secret value and the shares that are
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distributed among the participants in P . If X /∈ Γ, then I(Spo :SX) = 0, that is, the random
variables Spo and SX are independent. On the other hand, H(Spo |SX) = 0 if X ∈ Γ, that is,
Spo is a function of SX . A secret sharing scheme is K-linear if it is a K-linear random vector.

The information ratio σ(Σ) of the secret sharing scheme Σ is defined by

σ(Σ) =
maxx∈P H(Sx)

H(Spo)
.

For every x ∈ Q, let Sx be the support of the random variable Sx. If the secret value Spo is
uniformly distributed, then

σ(Σ) ≤ maxx∈P log |Sx|
log |Spo |

.

That is, the information ratio is at most the ratio between the maximum length of the shares
and the length of the secret. Assuming that the secret value is uniformly distributed is not
restrictive. Indeed, every secret sharing scheme can be transformed into a scheme with uniformly
distributed secret value, the same access structure, and shares of the same length [2]. Therefore,
lower bounds on the information ratio σ(Σ) provide lower bounds on the length of the shares.

For a polymatroid S = (Q, f), we define

σpo(S) =
maxx∈P f({x})

f({po})
.

Observe that σ(Σ) = σpo(S) if S is the entropic polymatroid defined by Σ. The optimal
information ratio σ(Γ) of an access structure Γ is the infimum of the information ratios of all
secret sharing schemes for Γ. Clearly,

σ(Γ) = inf{σpo(S) : S is an entropic Γ-polymatroid}.

Therefore, the parameters

κ(Γ) = inf{σpo(S) : S is a Γ-polymatroid}

and
λ(Γ) = inf{σpo(S) : S is a linear Γ-polymatroid}

are, respectively, a lower and an upper bound for σ(Γ). Observe that λ(Γ) is the infimum
of the information ratios of the linear secret sharing schemes for Γ. The value κ(Γ) is the
solution of a linear programming problem, and hence the infimum is a minimum and κ(Γ) is a
rational number [29]. Most of the known lower bounds on the information ratio, as the ones
from [7, 8, 10, 23], are lower bounds on κ(Γ). In fact, this is the case for all lower bounds that
can be obtained by using only Shannon inequalities.

Information inequalities and rank inequalities can be added to the linear program computing
κ(Γ) to find better lower bounds on σ(Γ) and λ(Γ), respectively. This has been done for several
families of access structures [4, 11, 28, 29].

A polymatroid Ŝ = (Q̂, g) is called an extension of a polymatroid S = (Q, f) if Q ⊆ Q̂ and
g(X) = f(X) for every X ⊆ Q. In general, we will use the same symbol for the rank function
of a polymatroid and the rank function of an extension of it. An access structure Γ on a set P
and a polymatroid S = (P, f) are said to be compatible if S can be extended to a normalized
Γ-polymatroid S(Γ) = (Q, f). The following characterization of compatibility between access
structures and polymatroids is a variant of a result by Csirmaz [10, Proposition 2.3].
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Proposition 3.1. A polymatroid S = (P, f) is compatible with an access structure Γ on P if
and only if ∆f (y :z|X) ≥ ∆Γ(y :z|X) for every X ⊆ P and y, z ∈ P rX, that is, if and only if
(P, f − Γ) is a polymatroid.

Proof. Extend the rank function f of S to P(Q) by taking f(Xpo) = f(X)+1−Γ(X) for every
X ⊆ P . This is the only possible extension of f that can produce a normalized Γ-polymatroid.
Therefore, S is compatible with Γ if and only if (Q, f) is a polymatroid. By Proposition 2.3,
(Q, f) is a polymatroid if and only if ∆f (y :z|X) ≥ 0 for every X ⊆ Q and y, z ∈ Q r X.
Since (P, f) is a polymatroid, (Q, f) is a polymatroid if and only if the following conditions are
satisfied.

1. ∆f (y :z|Xpo) ≥ 0 for every X ⊆ P and y, z ∈ P rX.

2. ∆f (po :z|X) ≥ 0 for every X ⊆ P and z ∈ QrX.

The second condition is always satisfied and the first one is equivalent to the condition in the
statement.

Remark 3.2. Observe that ∆Γ(Y :Z|X) ∈ {−1, 0, 1} for every X,Y, Z ⊆ P . In addition,
∆Γ(Y :Z|X) = 1 if and only if XY,XZ ∈ Γ and X /∈ Γ.

4 A Family of Uniform Boolean Polymatroids

We present a family of polymatroids that are uniform and Boolean. In addition, every member
of this family is compatible to all access structures on its ground set. The following results are
straightforward consequences of Proposition 3.1.

Proposition 4.1. A polymatroid S = (P, f) is compatible with all access structures on P if
and only if ∆f (y :z|X) ≥ 1 for every X ⊆ P and y, z ∈ P rX.

Proposition 4.2. Let P be a set with |P | = n and let S be a uniform polymatroid on P . Then
S is compatible with all access structures on P if and only if its increment vector (δ1, . . . , δn) is
such that δi ≥ δi+1 + 1 for i = 1, . . . , n− 1 and δn ≥ 1.

Given a set P and an integer r ≥ 2, let M(P, r) be the set of all multisets of size r of the
set P . For example, if P = {a, b, c}, then

M(P, 3) = {aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc}.

Observe that |M(P, r)| =
(
n+r−1

r

)
if |P | = n. For every x ∈ P , let Mx(P, r) be the set of the

multisets in M(P, r) that contain x. In the previous example,

Ma(P, 3) = {aaa, aab, aac, abb, abc, acc}.

Finally, we define Z(P, r) = (P, f) as the Boolean polymatroid on P defined by the family
(Mx(P, r))x∈P of subsets of M(P, r). As usual, we notate MX(P, r) =

∪
x∈X Mx(P, r) for every

X ⊆ Q.
Clearly, every permutation on P is an automorphism of Z(P, r), and hence this polymatroid

is uniform. For every X ⊆ P , the multisets in M(P, r)rMX(P, r) are the ones involving only
elements in P rX. That is, M(P, r)rMX(P, r) = M(P rX, r), and hence

f(X) = |MX(P, r)| = |M(P, r)| − |M(P rX, r)|

=

(
|P |+ r − 1

r

)
−

(
|P | − |X|+ r − 1

r

)
.
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Therefore, if |P | = n, the increment vector (δ1, . . . , δn) of Z(P, r) is given by

δi =

(
n− i+ r

r

)
−

(
n− i+ r − 1

r

)
=

(
n− i+ r − 1

r − 1

)
for every i = 1, . . . , n. Observe that δ1 > · · · > δn > 0, and hence Z(P, r) is compatible
with all access structures on P . In particular, δi = n − i + 1 if r = 2, and hence κ(Γ) ≤ n
for every access structure Γ on n participants [10]. The Csirmaz function introduced in [5,
Definition 3.10] coincides with the rank function of Z(P, 2). The rank function of Z(P, 2) is
the smallest among the rank functions of all uniform polymatroids on P that are compatible
with all access structures on P [5, Lemma 3.11]. Finally, observe that [5, Lemma 6.2] is a
straightforward consequence of the fact that Z(P, 2) is a Boolean polymatroid.

5 On Rank Inequalities on a Bounded Number of Variables

This section is devoted to prove our first main result, Theorem 5.2.

Proposition 5.1. Let P be a set of n participants and Γ an access structure on P . For an
integer r ≥ 3, consider Zr−1 = Z(P, r − 1) and the Γ-polymatroid Zr−1(Γ), an extension of
Zr−1 to Q = P ∪ {po}. Then Zr−1(Γ) satisfies all rank inequalities on r variables.

Proof. Let f be the rank function of Zr−1(Γ) and (αI)I∈P([r]) a rank inequality on r variables.
We have to prove that

∑
I⊆[r] αIf(AI) ≥ 0 for every r subsets (Ai)i∈[r] ofQ. Take Bi = Air{po}.

If Bi ∈ Γ for every i ∈ [r], then
∑

I⊆[r] αIf(AI) =
∑

I⊆[r] αIf(BI) ≥ 0 because Zr−1 is Boolean.
If B[r] /∈ Γ, then ∑

I⊆[r]

αIf(AI) =
∑
I⊆[r]

αIf(BI) +
∑

I : po∈AI

αI ≥ 0

by Lemma 2.6 with J = {i ∈ [r] : po ∈ Ai}. From now on, we assume that B[r] ∈ Γ and that
Bi /∈ Γ for some i ∈ [r].

Consider the polymatroid S = ([r], g) determined by g(I) = f(BI) for every I ⊆ [r]. In
addition, consider the access structure Λ on [r] formed by the sets I ⊆ [r] such that BI ∈ Γ.
We prove next that S can be extended to a linearly representable Λ-polymatroid S(Λ) =
([r]∪{0}, g). This concludes the proof. Indeed, since S(Λ) is a Λ-polymatroid, f(AI) = g(I∪{0})
if po ∈ AI , and hence∑

I⊆[r]

αIf(AI) =
∑

I : po /∈AI

αIf(BI) +
∑

I : po∈AI

αIf(AI)

=
∑

I : po /∈AI

αIg(I) +
∑

I : po∈AI

αIg(I ∪ {0}).

Consider the family (Ci)i∈[r] of subsets of [r] ∪ {0} given by Ci = {i, 0} if po ∈ Ai and Ci = {i}
otherwise. Then ∑

I : po /∈AI

αIg(I) +
∑

I : po∈AI

αIg(I ∪ {0}) =
∑
I⊆[r]

αIg(CI) ≥ 0

because S(Λ) is linearly representable.
The polymatroid S is Boolean. Indeed, take M = M(P, r − 1) and MX = MX(P, r − 1) for

every X ⊆ P . Then (MBi)i∈[r] is a Boolean representation of S. Therefore, this polymatroid
is linearly representable over every field, as proved in Section 2. For a field K, take a basis
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(ew)w∈M of KM . Then the subspaces (Vi)i∈[r] with Vi = ⟨ew : w ∈ MBi⟩ form a K-linear
representation of S.

Consider the dual access structure Λ∗ = {J ⊆ [r] : [r] r J /∈ Λ}. Take J ∈ minΛ∗ and
I = [r]r J . Observe that BI /∈ Γ and BI ∪ Bj ∈ Γ for every j ∈ J . In particular, this implies
that J ̸= ∅, [r]. Therefore, we can take an element xj ∈ Bj r BI for every j ∈ J . Consider a
multiset wJ ∈ M(P, r − 1) containing exactly the elements in {xj : j ∈ J}, repeating some of
them if necessary. Take the vector

v0 =
∑

J∈minΛ∗

ewJ ∈ KM

and the subspace V0 = ⟨v0⟩. By adding this subspace to the collection (Vi)i∈[r], an extension
S(Λ) = ([r] ∪ {0}, g) of S is obtained. Obviously, S(Λ) is K-linearly representable.

Finally, we prove that S(Λ) is a Λ-polymatroid. Clearly, I ∈ Λ if and only if I ∩ J ̸= ∅ for
every J ∈ minΛ∗. If I ∈ Λ, then wJ ∈ MBI

(P, r− 1) for every J ∈ minΛ∗. Indeed, if j ∈ I ∩ J ,
the element xj in the multiset wJ is also in BI . Therefore, ewJ ∈ VI for every J ∈ minΛ∗,
and hence v0 ∈ VI and g(I ∪ {0}) = g(I). Suppose now that I /∈ Λ and take J ∈ minΛ∗ with
I ∩ J = ∅. Then wJ /∈ MBI

(P, r − 1) because xj /∈ BI for every j ∈ J . Therefore, v0 /∈ VI and
g(I ∪ {0}) = g(I) + 1.

Theorem 5.2. For an access structure Γ on n participants, the best lower bound on λ(Γ) that
can be obtained by using rank inequalities on r variables is at most(

n+ r − 3

r − 2

)
(1)

and hence O(nr−2). As an immediate consequence, the same applies to the lower bounds on
the optimal information ratio σ(Γ) that are obtained by using information inequalities on r
variables.

Proof. By Proposition 5.1, the polymatroid Zr−1(Γ) is a feasible solution to any linear program
that is obtained from rank inequalities on r variables. Therefore, every lower bound on λ(Γ)
derived from such a linear program is at most σpo(Zr−1(Γ)) = δ1, where δ1 is the first component
of the increment vector of Z(P, r − 1).

A smaller value for the bound (1) can be proved for the case r ≤ n by using in the same way
the uniform Boolean polymatroid defined by the set M of all subsets (instead of multisets) of
P with at most r − 1 participants and the subsets (Mx)x∈P , where Mx consists of the subsets
in M that contain x. Nevertheless, the asymptotic result is not improved.

6 Common Information

We say that a random variable S3 conveys the common information of the random variables
S1 and S2 if H(S3|S2) = H(S3|S1) = 0 and H(S3) = I(S1 :S2). In general, it is not possible to
find a random variable conveying the common information of two given random variables [18].
Nevertheless, this is possible for every pair of K-linear random variables. Indeed, if S1 = S|V1

and S2 = S|V2 for some vector subspaces V1, V2 of a K-vector space V , then S3 = S|V1∩V2

conveys the common information of S1 and S2. The following definition is motivated by the
concept of common information of a pair of random variables.

Definition 6.1. Consider a polymatroid S = (Q, f) and two sets A,B ⊆ Q. Then every subset
X0 ⊆ Q such that
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• f(X0|A) = f(X0|B) = 0 and

• f(X0) = ∆f (A:B) = f(A) + f(B)− f(AB).

is called a common information for the pair (A,B). By an abuse of language, if X0 = {x0},
then the element x0 is also called a common information for the pair (A,B).

Proposition 6.2. Let S = (Q, f) be a polymatroid, A,B ⊆ Q, and X0 ⊆ Q a common
information for (A,B). Consider a subset Y ⊆ Q such that f(Y |A) = f(Y |B) = 0. Then
f(Y |X0) = 0.

Proof. Observe that

0 ≤ ∆f (A:B|Y ) = f(AY ) + f(BY )− f(ABY )− f(Y )

= f(A) + f(B)− f(AB)− f(Y )

= f(X0)− f(Y ).

The second equality holds because f(Y |A) = f(Y |B) = 0. Finally, f(Y X0) ≤ f(X0) because
f(Y X0|A) = f(Y X0|B) = 0, and hence f(Y |X0) = 0.

Let (Vx)x∈Q be a collection of vector subspaces representing a K-linear polymatroid S =
(Q, f), and consider two subsets A,B ⊆ Q. By taking Vx0 = VA ∩VB, an extension of S to Qx0
is obtained in which x0 is a common information for (A,B). Obviously, this new polymatroid
is K-linear as well. In particular, if S = (Q, f) is a Boolean polymatroid defined by a family
(Mx)x∈Q of sets, then the extension of S to Qx0 given by Mx0 = MA ∩ MB is a Boolean
polymatroid in which x0 is a common information for (A,B).

Definition 6.3. Let k be a positive integer. A polymatroid S = (Q, f) satisfies the k-common
information property if, for every k pairs (Ai0, Ai1)i∈[k] of subsets of Q, there exists an extension

Ŝ = (Q̂, f) of S such that, for every i ∈ [k], there exists a common information Yi ⊆ Q̂ for the
pair (Ai0, Ai1)

Clearly, every linear polymatroid satisfies the k-common information property for all k.
Every rank inequality on four variables is a combination of the Shannon inequalities and the
Ingleton inequality [20]. If a polymatroid satisfies the 1-common information property, then
it satisfies the Ingleton inequality [13], and hence it satisfies all information inequalities on 4
variables. Moreover, there exist 24 rank inequalities on five variables that, together with the
Ingleton and Shannon inequalities, generate all rank inequalities on five variables [13]. All these
inequalities are satisfied by every polymatroid with the 2-common information property [13], and
hence such polymatroids satisfy all information inequalities on 5 variables. Moreover, according
to [13], all known sharp rank inequalities are derived from the 2-common information property.

7 On Rank Inequalities Derived from Common Informations

Let P be a set of n participants, Γ an access structure on P , and Z = Z(P, 4). Consider the
Γ-polymatroid Z(Γ) that is an extension of Z to Q = Ppo. Take M = M(P, 4) and Mx =
Mx(P, 4) for every x ∈ P . Then (Mx)x∈P is a Boolean representation of Z = Z(P, 4) = (P, f).
Consider a collection (Bi0, Bi1)i∈[k] of pairs of subsets of P . Consider the Boolean extension
S = (Py1 . . . yk, f) of Z that is given by the sets Myi = MBi0 ∩ MBi1 for i ∈ [k]. Then yi
is a common information for (Bi0, Bi1) in S. Consider the extension of Γ to Py1 . . . yk such
that, for every X ⊆ P and {i1, . . . , is} ⊆ [k], the set Xyi1 . . . yis is qualified if and only if
XBi1j1 . . . Bisjs ∈ Γ for every (j1, . . . , js) ∈ {0, 1}s. We also use Γ to denote this extended
access structure.
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Lemma 7.1. Let (Mx)x∈P be a Boolean representation of a polymatroid (P, f) and X,Y, Z
subsets of P . Then ∆f (Y :Z|X) = 0 if and only if MY ∩MZ ⊆ MX .

Proof. Observe that MY ∩ MZ ⊆ MX if and only if MX ∩ MZ = MXY ∩ MZ . In addition,
∆f (Y :Z|X) = |MXY ∩MZ | − |MX ∩MZ |.

Lemma 7.2. The polymatroid S and the access structure Γ on Py1 . . . yk are compatible.

Proof. By combining Proposition 3.1, Remark 3.2, and Lemma 7.1, we only have to prove that
My ∩ Mz ̸⊆ MX for every X ⊆ Py1 . . . yk and y, z ∈ Py1 . . . yk such that Xy,Xz ∈ Γ and
X /∈ Γ. Without loss of generality, we can assume that X = Y y1 . . . ys for some Y ⊆ P and
0 ≤ s ≤ k, and that Y B10 . . . Bs0 /∈ Γ. If y, z ∈ P , then y, z /∈ Y B10 . . . Bs0, and hence
yyzz ∈ (My ∩ Mz) r MX . If y /∈ P and z ∈ P , we can assume that y = yk. Then there
exist uj ∈ Bkj r Y B10 . . . Bs0 for j = 0, 1 and u0u1zz ∈ (My ∩ Mz) r MX . If y, z /∈ P , we
can assume that y = yk and z = yℓ for some ℓ > s. Then u0u1v0v1 ∈ (My ∩ Mz) r MX if
uj ∈ Bkj r Y B10 . . . Bs0 and vj ∈ Bℓj r Y B10 . . . Bs0.

Proposition 7.3. Let Γ be an access structure on P and (Bi0, Bi1)i∈[k] a collection of pairs of
subsets of P . Take Z = Z(P, 4). Then there exists a polymatroid (Qy1 . . . yk, f), extension of
Z(Γ), such that yi is a common information for (Bi0, Bi1) for every i ∈ [k].

Proof. The polymatroid S(Γ) satisfies the required properties.

Observe that Proposition 7.3 does not imply that Z(Γ) satisfies the k-common information
property, because the existence of common informations is guaranteed only for pairs of subsets
of P but not for pairs of subsets of Q. Some additional difficulties appear when dealing with
pairs of subsets involving the element po. We discuss this issue in the following.

Lemma 7.4. Consider a pair (B0, B1) of subsets of P . Let (Q, g) be a Γ-polymatroid and let
(Qy, g) be an extension such that y is a common information for (B0, B1).

1. If both B0 and B1 are qualified, then y is a common information for the pairs (B0po, B1),
(B0, B1po), and (B0po, B1po).

2. If B0 ∈ Γ and B1 /∈ Γ, then y is a common information for (B0po, B1) and ypo is a
common information for both (B0, B1po) and (B0po, B1po).

3. If B0∪B1 /∈ Γ, then y is a common information for both (B0po, B1) and (B0, B1po), while
ypo is a common information for (B0po, B1po).

Proof. If B0, B1 ∈ Γ, then g(ypo|B0) = g(ypo|B1) = 0, and hence g(ypo) = g(y) by Proposi-
tion 6.2. If B1 /∈ Γ, then g(ypo)−g(y) = g(po|y) ≥ g(po|B1) = 1 and g(ypo) = g(y)+1. Observe
that g(ypo|Ai) = 0 for i = 0, 1. In addition, g(ypo|Bi) = 0 if and only if Bi ∈ Γ. By taking
these facts into account, one can easily check all statements.

One situation is missing in Lemma 7.4, namely B0, B1 /∈ Γ and B0 ∪ B1 ∈ Γ. In this case,
neither y nor ypo provides common informations for the pairs (B0po, B1) and (B0po, B1po). A
method to find those common informations is given in the proof of Proposition 7.5. Take Z ′ =
(P, g) = (P, 3f), a multiple of the polymatroid Z(P, 4) = (P, f). Obviously, Z ′ is compatible
with all access structures on P .

Proposition 7.5. For every access structure Γ on P , the polymatroid Z ′(Γ) satisfies the 2-
common information property.

12



Before giving the proof of this proposition, we present the main result of this section. It is
a consequence of Proposition 7.5 and the value of σpo(Z ′(Γ)).

Theorem 7.6. For an access structure Γ on n participants, the best lower bound on λ(Γ) that
can be obtained by using rank inequalities that can be derived from the 2-common information
property is at most

3 ·
(
n+ 2

3

)
and hence O(n3).

The remaining of this section is devoted to the proof of Proposition 7.5, which is divided
into several partial results.

Consider two pairs (Ai0, Ai1)i∈[2] of subsets of Q and take Bij = Aij r {po}. For the pairs
(Bi0, Bi1)i∈[2], consider the extension S = (Py1y2, f) of Z(P, 4) = (P, f) and the extension of
Γ to Py1y2 as defined at the beginning of this section. Recall that yi is a common information
of (Bi0, Bi1) for i = 1, 2 and that the polymatroid S is compatible with the access structure
Γ. Obviously, these properties hold as well for the polymatroid T = (Py1y2, g) = (Py1y2, 3f).
Observe that the polymatroid T (Γ) = (Qy1y2, g) is an extension of Z ′(Γ).

Assume that there is no common information in T (Γ) for the pair (A10, A11). Then, by
Lemma 7.4, we can suppose that po ∈ A10 and B10, B11 /∈ Γ while B10 ∪B11 ∈ Γ. Extend Z ′ to
Py1y2z1 by taking, for every X ⊆ Py1y2,

• g(Xz1) = g(Xy1) if XB10 ∈ Γ, and

• g(Xz1) = g(Xy1) + 1 otherwise.

In addition, consider the extension of Γ to Py1y2z1 such that, for every X ⊆ Py1y2, the set Xz1
is qualified if and only if XB11 ∈ Γ. Observe that g(y1|z1) = 0 and that Xz1 ∈ Γ if Xy1 ∈ Γ.

Lemma 7.7. (Py1y2z1, g) is a polymatroid, and it is compatible with the access structure Γ.

The proof of Lemma 7.7 will be presented later. Assuming this result, it is not difficult
to check that z1 is a common information for (A10, B11). Indeed, g(A10z1) = g(B10z1) =
g(B10y1) + 1 = g(B10) + 1 = g(A10) and g(B11z1) = g(B11y1) = g(B11). Moreover, g({z1}) =
g({y1}) + 1 = ∆g(B10 :B11) + 1 = ∆g(A10 :B11) and our affirmation is proved. In addition, it is
clear that z1po is a common information for (A10, A11) if po ∈ A11.

Assume now that there is no common information in T (Γ) for any of the pairs (Ai0, Ai1)i∈[2].
Then we can suppose that po ∈ Ai0 and Bi0, Bi1 /∈ Γ while Bi0 ∪ Bi1 ∈ Γ for i = 1, 2. As
before, one can find, for i = 1, 2, an extension (Qy1y2zi, g) of Z ′(Γ) such that zi is a common
information for (Ai0, Bi1). At this point, we have to extend Z ′ and Γ to Py1y2z1z2 in some
way that is compatible with the previous extensions. This is done as follows. For each set
X ⊆ Py1y2, let N(X) be the number of pairs (j, k) ∈ {0, 1}2 such that XB1jB2k ∈ Γ. The
following requirements define extensions of Z ′ and Γ to Py1y2z1z2.

• If N(X) = 0, 1, then g(Xz1z2) = g(Xy1y2) + 2 and Xz1z2 /∈ Γ.

• If N(X) = 2 and XB11B21 /∈ Γ, then g(Xz1z2) = g(Xy1y2) + 1 and Xz1z2 /∈ Γ.

• If N(X) = 2 and XB11B21 ∈ Γ, then g(Xz1z2) = g(Xy1y2) + 2 and Xz1z2 ∈ Γ.

• If N(X) = 3 and XB11B21 /∈ Γ, then g(Xz1z2) = g(Xy1y2) and Xz1z2 /∈ Γ.

• If N(X) = 3 and XB11B21 ∈ Γ, then g(Xz1z2) = g(Xy1y2) + 1 and Xz1z2 ∈ Γ.
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• If N(X) = 4, then g(Xz1z2) = g(Xy1y2) and Xz1z2 ∈ Γ.

Lemma 7.8. (Py1y2z1z2, g) is a polymatroid, and it is compatible with the access structure Γ.

Assuming that Lemma 7.8 is true, we have that, for i = 1, 2, either zi or zipo is a common
information for (Ai0, Ai1) in the polymatroid (Qy1y2z1z2, g). Therefore, the proof of Proposi-
tion 7.5 is concluded with the proofs of Lemmas 7.7 and 7.8. By combining Propositions 2.3
and 3.1, it is enough to prove the following result.

Lemma 7.9. ∆g(y :z|X) ≥ max{0,∆Γ(y :z|X)} for every X ⊆ Py1y2z1z2 and y, z ∈ Py1y2z1z2r
X.

Proof. Since T = (Py1y2, g) is a polymatroid that is compatible with Γ, the result holds if
Xyz ⊆ Py1y2. For a subset X ⊆ Py1y2z1z2, we notate X̂ for the subset of Py1y2 that is
obtained by substituting zi by yi for i = 1, 2. For X ⊆ Py1y2z1z2 and y, z ∈ Py1y2z1z2 r X,
consider

• δ = max{0,∆Γ(y :z|X)} and

• ε = ∆g(y :z|X)−∆g(ŷ :ẑ|X̂).

Then ∆g(y :z|X) = ∆g(ŷ :ẑ|X̂) + ε = 3∆f (ŷ :ẑ|X̂) + ε. Since ∆f (ŷ :ẑ|X̂) ≥ 0 and δ ≤ 1, the

lemma is proved by checking that ε ≥ −2 and that ε ≥ δ if ∆f (ŷ :ẑ|X̂) = 0. Recall that, by

Lemma 7.1, ∆f (ŷ :ẑ|X̂) = 0 if and only if Mŷ ∩Mẑ ⊆ M
X̂
. We distinguish several cases. The

first three involve z1 but not z2, while the remaining ones involve both z1 and z2.

Case 1. X ⊆ Py1y2 and y = z = z1. Then ε = g(Xz1) − g(Xy1) ≥ 0. If δ = 1 and ε = 0,
then X /∈ Γ and Xy1 ∈ Γ, and hence ∆f (y1 :y1|X) ≥ ∆Γ(y1 :y1|X) ≥ 1.

Case 2. Xy ⊆ Py1y2 and z = z1. Then ε = g(Xz1)− g(Xy1)− (g(Xyz1)− g(Xyy1)) ≥ 0 and
ε = 0 if and only if XyB10 /∈ Γ or XB10 ∈ Γ. If δ = 1 and ε = 0, then X /∈ Γ while Xy ∈ Γ
and Xy1 ∈ Γ, which implies that ∆f (y :y1|X) ≥ ∆Γ(y :y1|X) ≥ 1.

Case 3. X = Y z1 with Y yz ⊆ Py1y2. Take ε0 = g(Y z1) − g(Y y1), ε1 = g(Y yz1) − g(Y yy1),
ε2 = g(Y zz1)− g(Y zy1), and ε3 = g(Y yzz1)− g(Y yzy1). Then ε = ε1 + ε2 − ε3 − ε0, and hence
ε ≥ −1 because 0 ≤ ε3 ≤ ε1, ε2 ≤ ε0 ≤ 1. Suppose that My ∩Mz ⊆ MY y1 . Then we can assume
that y ∈ B10 and {y, z} ∩B11 ̸= ∅, which implies that ε1 = ε0 and δ = 0.

Case 4. X ⊆ Py1y2, and y = z1 and z = z2. For i = 1, 2, take εi = g(Xzi) − g(Xyi), and
also ε3 = g(Xz1z2)− g(Xy1y2). Then ε = ε1+ ε2− ε3. If ε3 = 2, then ε1 = ε2 = 1. In addition,
ε3 = 0 if ε1 = ε2 = 0. Therefore, ε ≥ 0. Suppose now that δ = 1 and ε = 0. In this case
ε3 ≤ 1 because XB11, XB21 ∈ Γ. If ε3 = 1, then XB10B20 /∈ Γ, and hence ε1 = ε2 = 1, a
contradiction. If ε1 = ε2 = 0, then XB10, XB20 ∈ Γ, and hence Xy1, Xy2 ∈ Γ. Since X /∈ Γ,
this implies that ∆f (y1 :y2|X) ≥ 1.

Case 5. X = Y z1 with Y ⊆ Py1y2, and y = z = z2. In this case, ε = ε1 − ε0, where
ε0 = g(Y z1) − g(Y y1) and ε1 = g(Y z1z2) − g(Y y1y2), and hence ε ≥ −1. Suppose that
∆f (y2 :y2|Y y1) = 0, which is equivalent to My2 ⊆ MY y1 . In particular, My2 ⊆ MY B1j for
j = 1, 2. If ε0 = 1, then Y B10 /∈ Γ, and hence Y B10 y2 /∈ Γ, which implies that ε1 ≥ 1.
Therefore, ε ≥ 0. Assume that δ = 1 and ε = 0. Then Y z1z2 ∈ Γ while Y z1 /∈ Γ. In particular,
Y B11 /∈ Γ, and hence Y B11 y2 /∈ Γ. This implies that N(Y ) = 3, ε1 = 1, and Y B11B21 ∈ Γ, and
hence Y B11B20 /∈ Γ. Then ε0 = 1 and Y B10 /∈ Γ, and hence Y B10 y2 /∈ Γ, a contradiction.
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Case 6. X = Y z1 with Y y ⊆ Py1y2, and z = z2. Take ε0 = g(Y z1)− g(Y y1), ε1 = g(Y yz1)−
g(Y yy1), ε2 = g(Y z1z2)−g(Y y1y2) and ε3 = g(Y yz1z2)−g(Y yy1y2). Then ε = ε1+ε2−ε3−ε0.
Then 0 ≤ ε1 ≤ ε0 ≤ 1 and 0 ≤ ε3 ≤ ε2 ≤ 2, and hence ε ≥ −1. Suppose that ε = −1, that
is, ε0 = 1, ε1 = 0, and ε2 = ε3. In particular, Y B10 /∈ Γ and Y B10 y ∈ Γ, and hence ε3 ≤ 1.
If ε2 = ε3 = 1, then Y yB11B20 /∈ Γ, and hence Y B10B2k ∈ Γ for k = 0, 1. Since Y B10 /∈ Γ
and Y B10 y, Y B10 y2 ∈ Γ, we have that ∆f (y :y2|Y y1) ≥ 1. Similarly, ∆f (y :y2|Y y1) ≥ 1 if
ε2 = ε3 = 0. Suppose now that ε = 0 and δ = 1. Then Y B11 /∈ Γ while Y yB11 ∈ Γ and
Y z1z2 ∈ Γ. If ε1 = 0, then Y yy1 ∈ Γ, and hence ε3 = 0. If, in addition, ε0 = 1, we have that
ε2 = 1 and, since Y z1z2 ∈ Γ, we have that Y B10B2k ∈ Γ for k = 0, 1 or Y B11B2k ∈ Γ for
k = 0, 1. Therefore, ∆f (y :y2|Y y1) ≥ 1. If ε1 = ε0 = 0, Then Y y1y2 ∈ Γ. This implies that
∆f (y :y2|Y y1) ≥ 1 because Y B11 /∈ Γ while Y yB11 ∈ Γ and Y B11B2k ∈ Γ for k = 0, 1.

Case 7. X = Y z1z2, where Y yz ⊆ Py1y2. Take ε0 = g(Y z1z2)− g(Y y1y2), ε1 = g(Y z1z2y)−
g(Y y1y2y), ε2 = g(Y z1z2z) − g(Y y1y2z) and ε3 = g(Y z1z2yz) − g(Y y1y2yz). Then ε = ε1 +
ε2 − ε3 − ε0. Observe that 0 ≤ ε3 ≤ ε1, ε2 ≤ ε0 ≤ 2, and hence ε ≥ −2. Suppose that
∆f (y :z|Y y1y2) = 0, that is, My ∩Mz ⊆ MY y1y2 . Without loss of generality, we can assume that
y ∈ B10∩B11 or y ∈ B10 and z ∈ B11. Suppose that y ∈ B10∩B11 (observe that this covers the
case y = z). Then ε1 = ε0 and ε3 = ε2, and hence ε = 0. Moreover, δ = 0 because Y y1y2y /∈ Γ
if Y y1y2 /∈ Γ. Suppose now that y ∈ B10 and z ∈ B11. We prove first that ε ≥ 0. Three cases
are considered.

1. If ε1 = 0, then Y yB10B2k ∈ Γ for k = 0, 1, and hence Y B10B2k ∈ Γ for k = 0, 1, which
implies that ε0 ≤ 1. If ε1 = 0 and ε0 = 1, then Y B11B20 /∈ Γ and Y zB11B20 /∈ Γ, which
implies that ε2 = 1. Therefore, ε = 0 if ε1 = 0.

2. Suppose now that ε1 = 1 and ε2 = 0. Then Y zB11B20 ∈ Γ, and hence Y B11B20 ∈ Γ. If
ε < 0, then ε0 = 2, and hence Y B10B2k /∈ Γ for k = 0, 1, a contradiction with ε1 = 1.

3. Consider now the case ε1 = ε2 = 1, and suppose that ε < 0. Then ε0 = 2 and ε3 = 1.
Since ε1 = 1, exactly one of the sets Y B10B20, Y B10B21 is in Γ. Moreover, Y B11B20 /∈ Γ
while Y yB11B20 ∈ Γ. and Y zB10B21 ∈ Γ. This implies that ε3 = 0, a contradiction.

Now, we have to prove that ε ≥ 1 if δ = 1. Suppose that, on the contrary, ε = 0 and δ = 1. As
before, we distinguish three cases.

1. If ε1 = 0, then Y B10B2k ∈ Γ for k = 0, 1, and hence Y z1z2 ∈ Γ, a contradiction. Therefore,
we assume from now on that ε1 ≥ 1, and hence ε0 ≥ 1.

2. If ε0 = 1, then N(Y ) = 2 and Y B11B21 /∈ Γ because Y z1z2 /∈ Γ. This implies that
Y zz1z2 /∈ Γ, a contradiction.

3. If ε0 = 2, then N(Y ) = 1 and Y B11B21 ∈ Γ because Y zz1z2 ∈ Γ. Therefore, Y yB10B2k /∈
Γ for k = 0, 1, and hence ε1 = 2. Moreover, N(Y z) ≥ 2 and Y zB11B20 /∈ Γ. If Y zB10B20 /∈
Γ or Y zB10B21 /∈ Γ, then ε2 = 2, and hence ε3 = 2. This implies that Y yB11B20 /∈ Γ,
and hence Y yz1z2 /∈ Γ, a contradiction. If Y zB10B2k ∈ Γ for k = 0, 1, then ε2 = 1, and
hence ε3 = 1. Again, this implies that Y yz1z2 /∈ Γ, a contradiction.
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8 Conclusion

Even though other methods have been used for linear secret sharing schemes [1, 3, 19], the only
known general technique to find lower bounds on the length of the shares in secret sharing is
the one formalized by Csirmaz [10]. By this method, the lower bounds are derived from linear
programs that involve information inequalities.

In the same line as the works by Csirmaz [10] and Beimel and Orlov [5], we present some
limitations on power of that method. First, the lower bounds that are obtained by using all
rank inequalities (and hence all information inequalities) on a bounded number of variables are
polynomial on the number of participants (Theorem 5.2). And second, the rank inequalities
that are implied by the existence of two common informations can provide only lower bounds
that are at most cubic on the number of participants (Theorem 7.6). Both results are proved
by similar techniques. Namely, by finding solutions to the corresponding linear programs.
Specifically, we present families of polymatroids such that the values of their rank functions are
polynomial on the number of participants and satisfy all constraints given by the corresponding
rank inequalities.

Theorem 7.6 refers to the common informations, which provide the only known method to
find rank inequalities. Extending this result from two to a larger number of common informa-
tions does not seem easy, at least by using the ideas and techniques in this work. Finally, we
think that the extension of this result to the known methods of finding information inequalities
is worth considering. These methods have been recently analyzed by Kaced [24].
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