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ABSTRACT
Software attestation has become a popular and challenging
research topic at many established security conferences with
an expected strong impact in practice. It aims at verifying
the software integrity of (typically) resource-constrained em-
bedded devices. However, for practical reasons, software at-
testation cannot rely on stored cryptographic secrets or ded-
icated trusted hardware. Instead, it exploits side-channel in-
formation, such as the time that the underlying device needs
for a specific computation. As traditional cryptographic so-
lutions and arguments are not applicable, novel approaches
for the design and analysis are necessary. This is certainly
one of the main reasons why the security goals, properties
and underlying assumptions of existing software attestation
schemes have been only vaguely discussed so far, limiting
the confidence in their security claims. Thus, putting soft-
ware attestation on a solid ground and having a founded
approach for designing secure software attestation schemes
is still an important open problem.

We provide the first steps towards closing this gap. Our
first contribution is a security framework that formally cap-
tures security goals, attacker models, and various system
and design parameters. Moreover, we present a generic soft-
ware attestation scheme that covers most existing schemes
in the literature. Finally, we analyze its security within our
framework, yielding sufficient conditions for provably secure
software attestation schemes. We expect that such a con-
solidating work allows for a meaningful security analysis of
existing schemes and supports the design of arguably secure
software attestation schemes and will inspire new research
in this area.

1. INTRODUCTION
Embedded systems are increasingly permeating our infor-

mation society, being more and more used also in security-
and safety-critical applications. This generates an increasing
need for enabling technologies that can validate and verify
the integrity of a system’s software state against malicious
code. In this context, software attestation has become a pop-
ular research topic at many established security conferences
with a large body of literature [15, 24, 26, 11, 23, 25, 22, 9,
21, 20, 3, 10, 14, 17, 19, 16, 29].

Software attestation is a trust establishment mechanism
that allows a system, the verifier, to check the integrity of

the program memory content of another system, the prover
against modification, e.g., by malicious code. As it mainly
targets resource-constrained embedded systems (such as At-
mel tinyAVR [2] microcontrollers), software attestation aims
at making no specific assumptions about the prover’s hard-
ware. One consequence is that the verifier cannot access the
memory of the prover directly as this would require further
hardware modifications in practice. Instead it deploys the
common approach of challenge-response protocols, where
the verifier challenges the prover with respect to the ex-
pected memory content. However cryptographic challenge-
response protocols typically rely on secret values that should
be unknown to malicious provers. This likewise cannot be as-
sumed for resource-constrained embedded systems, because
they typically cannot afford secure hardware (such as a TPM)
[28, 18, 27, 5, 16]. This implies that the adversary may get
full control of the prover and its cryptographic secrets, ren-
dering classical cryptographic primitives and protocols use-
less, a fact that demands for keyless security solutions.

Therefore software attestation follows a radically different
approach than most conventional security mechanisms: It
exploits the intrinsic physical constraints of the underlying
hardware and side-channel information, typically the compu-
tation time required by the prover to complete the attesta-
tion protocol. More detailed, software attestation schemes
are typically designed to temporarily utilize all the comput-
ing and memory resources of the prover, aiming at ensuring
that the prover can only give the correct responses in time
if the memory state is genuine. Of course this requires that
the verifier can authenticate the device characteristics of the
prover using an out-of-band channel, such as visual authenti-
cation, which clearly distinguishes software attestation from
other approaches like remote attestation.

Without question, this requires completely different forms
of security reasoning and likewise demands for other security
assumptions on the underlying core functionalities and sys-
tem properties, representing a highly challenging task. This
may be the main reason that, despite its popularity and
practical relevance, software attestation has not received any
formal treatment yet but is still subject to ambiguities. To
start with, there exist no common adversary model and no
precise formalization of the security goals so far, hindering
a founded security analysis and making it difficult or even
impossible to compare existing schemes.

Likewise the underlying security properties and assump-



tions have been only vaguely discussed, limiting the confi-
dence in the security claims. In fact, current proposals of-
ten combine weak PRNGs and ad-hoc checksum function
designs with unclear and possibly insufficient security prop-
erties. As a result, checksum collisions have been exploited
directly to hide code modifications [24] and indirectly to
manipulate the location of the measured code in the mem-
ory (memory copy attack [3]). Some works even propose to
simply XOR consecutive memory blocks [32], leading to ob-
vious collision attacks that were only indirectly considered
in subsequent work [1]. Likewise, although several works
consider the problem of free memory, i.e., unused sections of
the memory, code compression attacks [3] have been ignored
in recent works [17, 31] and considered as impractical [16]
without giving any arguments.

Contribution.
In this paper, we make a first step towards putting soft-

ware attestation on a solid ground. Our contributions are
as follows:

Security framework: We describe the first formal secu-
rity framework for software attestation. This includes an
adversary model that, interestingly, fundamentally deviates
from classical cryptographic adversary models. Typically,
the adversary is modelled by a polynomially bounded algo-
rithm that aims to achieve a certain goal without having
certain knowledge (e.g., cryptographic keys). In contrast,
an adversary against a software attestation scheme can be
unbounded in principle and has complete knowledge of the
prover device configuration and state. However, during the
attack it has to specify (or program) a malicious prover de-
vice with tight resource constraints. The goal is that this
malicious prover can cheat in the attestation protocol within
the strict time bound with reasonable success probability but
without any interaction with the adversary. In other words,
the adversary has unbound resources for preparing the at-
tack but only a tight time-bound and limited computational
and memory resources for executing the attack. Moreover
we provide precise definitions for the security and the correct-
ness of software attestation schemes and propose a formal
system model that aims to balance between expressiveness
and applicability. This allows a founded and comparable
treatment of current and coming schemes and should help
to avoid ambiguities in the future.

Generic software attestation scheme: We present a
generic software attestation scheme that covers most exist-
ing software attestation protocols in the literature. More-
over, we identify and formalize several system parameters
of software attestation and provide an upper bound of the
success probability of a malicious prover against the generic
scheme as a function of these parameters. The derived upper
bound of the success probability implies sufficient conditions
on the system parameters. Although some of these aspects
have been implicitly assumed and informally discussed in the
literature, we present their first formal treatment. Moreover,
our approach provides new insights on how these parame-
ters impact the security of the underlying software attesta-
tion scheme, which has never been analyzed before. This
result allows to argue on the security of software attestation
schemes by mapping the generic scheme and properties to
the concrete scheme and by examining whether the proper-
ties are fulfilled. Moreover the generic scheme may serve as

a blueprint for future schemes.

Argumentation techniques: The security treatment of
the generic scheme required to use novel types of arguments.
Since the common cryptographic proof technique of reducing
the security of the scheme to a hard problem is not possible
anymore, we had to argue directly that any attack strategy
that is possible within the given time-bound fails with a
certain probability. We conjecture that our approach may
be of independent interest. For example, we expect that the
security of concrete schemes that are not directly covered by
the generic scheme may be argued using similar techniques.

New insights: Furthermore, our investigations yield new
insights with respect to the cryptographic properties of the
underlying primitives. Our work shows that cryptographic
primitives can be used that are similar to established prim-
itives, such as pseudo-random number generators or hash
functions, but that differ in subtleties: Some cryptographic
assumptions can be relaxed while others need to be strength-
ened. Such observations are relevant with respect to con-
crete realizations of secure software attestation schemes.

We see our work as a first step paving the way for a
founded treatment of secure software attestation schemes.
We expect that such a consolidating work allows for a mean-
ingful security analysis of existing schemes and supports the
design of arguably secure software attestation schemes and
will inspire new research in this area.

Outline.
We give an overview of the related work in Section 2 and

introduce our system model in Section 3. We present the for-
mal framework for software attestation in Section 4, describe
the generic software attestation scheme and its requirements
in Section 5 and formally analyze its security in Section 6.
Finally, we discuss our results and conclude in Section 7.

2. RELATED WORK
The existing literature on software attestation focuses on

the design of checksum functions for different platform ar-
chitectures and countering platform-specific attacks [24, 23,
9, 22, 17]. Several works consider the strengthening of self-
checksumming code against unintended modifications by ei-
ther limiting the memory available to the prover during attes-
tation [10, 29] or by using self-modifying and/or obfuscated
attestation algorithms [25, 11]. Many works investigate the
suitability and extension of software attestation to a variety
of computing platforms, including sensors, peripherals and
voting machines [21, 17, 9, 23, 16]. Furthermore, software
attestation has been proposed as a key establishment mech-
anism [21].

Software attestation is different from remote attestation
which has the goal to verify the integrity of remote provers,
e.g., over a network. Specifically, remote attestation usually
relies on secrets shared between the verifier and the hon-
est prover, which is fundamentally different from software
attestation that cannot rely on cryptographic secrets and in-
stead typically assumes that the verifier can authenticate the
prover using an out-of-band channel, such as visual authen-
tication. Several works consider how to combine software
attestation with hardware trust anchors such as TPMs and
SIM-cards [20, 16, 14] or intrinsic hardware characteristics
such as code execution side-effects [15, 24, 26] and Physically



Unclonable Functions [19]. Interestingly, most proposed im-
plementations employ hash functions and PRNGs that are
not cryptographically secure. Further, works that use cryp-
tographically secure algorithms do not consider whether these
algorithms maintain their security properties in the “keyless”
software attestation scenario where the underlying secrets,
such as the PRNG states, are known to the adversary. This
is the reason why existing analysis papers on remote attes-
tation, such as [4, 8], cannot be applied to software-based
attestation, as they assume trusted hardware or software
components. In this respect, our formal analysis provides a
fundamental first step towards a deeper and more compre-
hensive understanding of software attestation.

An approach [13, 12] related to software attestation uses
Quines. The basic idea is that the device outputs the whole
content of its memory such that the verifier can compare
it to the expected content. In contrast, software attesta-
tion aims to use short outputs only for practical reasons.
In that sense, both approaches can be seen as special in-
stantiations of proof-of-knowledge schemes where the proof
either includes the knowledge itself (Quines) or responses de-
pending on the knowledge (software attestation). A further
difference is that, to reduce the impact of network jitter, soft-
ware attestation typically minimizes the interaction between
the prover and the verifier. In contrast the Quine-schemes
in [13, 12] require significant interaction between the verifier
and the device.

Similar to software attestation protocols, proofs of work
schemes challenge the prover with computationally expen-
sive or memory-bound tasks [6, 7]. However, while the goal
of these schemes is to mitigate denial-of-service attacks and
Spam by imposing artificial load on the service requester,
the goal of software attestation schemes is using all of the
prover’s resources to prevent it from executing malicious
code within a certain time frame. Hence, proofs of work are
in general not suitable for software attestation since they
are usually less efficient and not designed to achieve the op-
timality requirements of software attestation algorithms.

3. PRELIMINARIES

Notation.
Let A and B be arbitrary algorithms. Then y ← A(x)

means that on input x, A assigns its output to y. The ex-
pression AB means that A has black-box access to B. We

denote with AB̂ an algorithm A that does not access an al-
gorithm B. Let D be a probability distribution over the set

X, then the term x
D← X means the event of assigning an

element of X to variable x that has been chosen according

to D. Further, we define D(x) := Pr
[
x|x D← X

]
for each

x ∈ X and denote with U the uniform distribution.

System Model.
Software attestation is a protocol between a verifier V and

a (potentially malicious) prover P where the latter belongs
to a class of devices with clearly specified characteristics.
That is, whenever we speak about a prover P, we refer to
a device that belongs to this class. Typically a prover P is
a low-end embedded system that consists of memory and a
computing engine (CE). The memory is composed of pri-
mary memory (PM), such as CPU registers and cache, and

secondary memory (SM), such as RAM and Flash memory.
We assume that the memory is divided into memory words
and denote by Σ := {0, 1}ls the set of all possible memory
words (e.g., ls = 8 if memory words are bytes). Let s and p
be the number of memory words that can be stored in SM
and PM, respectively. An important notion is the state of a
prover:

Definition 1 (State). Let P be a prover, i.e., a device that
belongs to the specified class of devices. The state State(P) =
S of P are the memory words stored in secondary mem-
ory (SM).

Note that S includes the program code of P and hence spec-
ifies the algorithms executed by P.

The computing engine (CE) comprises an arithmetics and
logic unit that can perform computations on the data in
primary memory (PM) and alter the program flow. For per-
formance reasons, PM is typically fast but also expensive.
Hence, the size of PM is usually much smaller than the size
of SM. To make use of SM, CE includes the Read instruction
to transfer data from SM to PM and the Write instruction
to write data from PM to SM. More precisely, Read(S, a, b)
takes as input a memory address a of SM and a memory ad-
dress b of PM and copies the data word x stored at address
a in SM to the data word at address b in PM. For conve-
nience, we write Read(S, a) instead of Read(S, a, b) whenever
the address b of PM is not relevant. Note that Read(S, a, b)
overwrites the content y of PM at address b. Hence, in
case y should not be lost, it must be first copied to SM us-
ing Write or copied to another location in PM before Read
is performed. It is important to stress that, whenever CE
should perform some computation on some value x stored
in SM, it is mandatory that x is copied to PM before CE
can perform the computation. Further, since SM is typically
much slower than PM, Read and Write incur a certain time
overhead and delay computations on x. We denote the time
required by CE to perform some instruction or algorithm
Ins with Time(Ins). The program code that determines the
behaviour of the prover P is encoded in the state of P. Note
that we only consider provers as described above while the
verifier V can be an arbitrary computing platform that may
interact with P.

Remark 1: Platform Architecture. We explicitly ex-
clude provers that are high-end computing platforms with
multiple CPUs and/or Direct Memory Access (DMA) since
these are typically equipped with secure hardware (such as
TPMs) and hence could support common cryptographic solu-
tions based on secrets. Further, their memory architectures
are usually more complex than in our system model. In par-
ticular, such platforms usually feature additional hardware
to predict and fetch memory blocks in advance, making the
time-bounded approach much more difficult and its realiza-
tion highly dependent on the concrete system.

4. SECURE SOFTWARE ATTESTATION
Secure software attestation enables the verifier V to gain

assurance that the state of a prover P is equal to a particular
state S. If this is the case, we say that P is in state S,
i.e., formally State(P) = S. Consequently, a prover P is
called honest (with respect to some state S) if State(P) = S,
otherwise it is considered to be malicious.



Remark 2: Distance between Honest and Malicious
Prover State. Observe that a prover P̃ is already con-
sidered to be malicious even if its state differs by only one
state entry (memory word) from S. This is a necessary con-
sequence of the goal of having a definition of honest and
malicious provers that is as generic as possible. Nonetheless,
in practice it could be sufficient to verify whether the state
of a prover coincides with S almost completely. We address
this issue by considering the Hamming distance λ between

the state S of an honest prover and the state S̃ of a malicious

prover P̃. As far as we know, we are the first to formally
take into account the impact of λ on the security of software
attestation schemes (cf. λ in Theorem 1).

Ideal Approach.
Ideally, V could disable the computing engine (CE) of P

and directly read and verify the state S stored in the sec-
ondary memory (SM) of P. However, exposing CE and SM
of P to V in such a way requires hardware extensions1 on P,
which contradicts the goal of software attestation to work
with no hardware modifications.

Practical Approach.
As the ideal approach is not feasible in practice, the com-

mon approach in the literature is that V and P engage in a
challenge-response protocol Attest where P must answer to a
challenge of V with a response that depends on S. In the fol-
lowing, whenever we refer to a software attestation scheme
we actually mean the corresponding challenge-response pro-
tocol Attest. Observe that Attest needs to include a descrip-
tion of the algorithm that processes the challenge for com-
puting the response.

In general, software attestation aims to figure out whether
the original state S of a device has been replaced by the

adversary with a malicious state S̃ 6= S. Observe that al-

though S̃ is different from S, we cannot exclude that S̃ may
depend on S. This implies an important difference to com-
mon cryptographic scenarios: Software attestation cannot
rely on any secrets since the adversary has access to the
same information as the honest prover P. Therefore soft-
ware attestation follows a fundamentally different approach
and leverages side-channel information, typically the time
δ the prover takes to compute the response. A basic re-
quirement of this approach is that S specifies a practically
optimal implementation of the algorithm that processes the
challenge according to Attest. This means that it should
be hard to find any other implementation of this algorithm
that can be executed by a prover P in significantly less time
than δ. Otherwise, a malicious prover could use a faster
implementation and exploit the time difference to perform
additional computations, e.g., to lie about its state.

Furthermore, the communication time jitter between V
and P is typically much higher than the time needed by
the computing engine of P to perform a few instructions.
Hence, to ensure that V can measure also slight changes to
the prover’s code (that could be exploited by a malicious
prover to lie about its state), V needs to amplify the effect
of such changes. The most promising approach to realize

1Existing testing interfaces such as JTAG cannot be used
since they are typically disabled on consumer devices to
prevent damage to the device and unintended reverse-
engineering.

this in practice is designing the attestation protocol as an
iterative algorithm with a large number of rounds.

Further, since showing the optimality of complex imple-
mentations is a hard problem and since P must compute
the response in a reasonable amount of time, it is paramount
that the individual rounds are simple and efficient. As a re-
sult, cryptographically secure hash functions and complex
Pseudo-Random Number Generators (PRNGs) are not a vi-
able option. Hence, several previous works deployed light-
weight ad-hoc designs of compression functions and PRNGs,
however, without analyzing the underlying requirements on
these components and their interaction. In contrast, we iden-
tify concrete sufficient requirements.

Adversary Model and Security Definition.
In the following, we provide the first formal specification

of the adversary model and the security of a software attesta-
tion scheme Attest based on a security experiment ExpAAttest
that involves an adversary A. The experiment is divided
into two phases and works as follows:

Preparation Phase: At the beginning, the adversary A
receives as input a state S and a time-bound δ. It

outputs a (possibly) malicious prover P̃ by specifying

its state S̃, i.e., State(P̃) = S̃.

Execution Phase: The prover P̃ specified in the previous
phase receives the challenge c and returns a “guess” r̃
for the correct response r .

The result of the experiment is accept if P̃ responded within
time δ and r̃ = r , and reject otherwise.

Based on this experiment we define correctness and sound-
ness. Correctness is defined analogously to the common
meaning of correctness of challenge-response protocols: In

case State(P̃) = S, that is P̃ is in the state expected by V,

the prover P̃ should always succeed, i.e., the result of the ex-
periment should always be accept. Soundness means that

in case State(P̃) 6= S, the probability that the result of the
experiment is accept should be below a certain threshold.

Definition 2 (Correctness and Soundness). Consider a soft-
ware attestation scheme Attest and a state S. For a given ad-
versary A we denote by EqualState the event that the output

of A during the experiment is a prover P̃ with State(P̃) = S.
The software attestation scheme Attest is correct if for all

adversaries A it holds that

Pr
[
ExpAAttest(S) = accept|EqualState

]
= 1.

Attest is ε-secure if for all adversaries A it holds that

Pr
[
ExpAAttest(S) = accept|¬EqualState

]
≤ ε.

Remark 3: Power of A. The security of software atten-
tion significantly differs from common cryptographic models,
where the time effort of the adversary is typically bounded
(often polynomially bounded in some security parameter).
More detailed, in the preparation phase, A can be any un-
restricted probabilistic algorithm. However, A has no in-

fluence anymore once Attest is executed between P̃ and V
in the execution phase. As P̃ is a device with the same

characteristics as an honest prover, P̃ has to comply to the



Prover P Verifier V
SS

g0, r0

Accept iff r ′N = rN ∧ t′ − t ≤ δ

r ′N

for i = 1, . . . , N do

endfor

si ← Read(S, ai)

for i = 1, . . . , N do

endfor

Store current time t

Store current time t′

(gi, ai)← Gen(gi−1)

r ′i ← CHK(ri−1, si)

si ← Read(S, ai)

ri ← CHK(ri−1, si)

(g0, r0)
U← {0, 1}lg+lr

(gi, ai)← Gen(gi−1)

r ′0 ← r0

Figure 1: The Generic Attestation Scheme Attest

same restrictions as P. In other words, the adversary has un-
bounded resources for preparing the attack but only a tight
time-bound and limited resources for executing the attack.

Observe that this reflects the strongest possible adver-
sary model, which in principle could be relaxed by imposing
bounds during the preparation phase.

Remark 4: Difference to Remote Attestation. The
goal of remote attestation is to verify the integrity of re-
mote provers, e.g., over a network. In particular, in practice
a verifier V usually cannot exclude that a malicous prover
may have more computational power than the honest prover.
Therefore, remote attestation schemes usually rely on secrets
shared between the verifier and the honest prover.

This is fundamentally different from software attestation
which cannot rely on cryptographic secrets to authenticate
the prover device to V. Hence, as already elaborated, exist-
ing works on software attestation typically assume that V
can authenticate the prover hardware using an out-of-band
channel, such as visual authentication.

5. GENERIC SOFTWARE ATTESTATION
In this section, we formalize a generic software attestation

scheme that captures most existing schemes in the litera-
ture. In particular, we formally define several aspects and
assumptions, most of them being only informally discussed
or implicitly defined so far.

5.1 Protocol Specification
The main components of our generic attestation scheme

(Figure 2) are two deterministic algorithms:

• Memory address generator:
Gen : {0, 1}lg → {0, 1}lg × {0, 1}la , g 7→ (g′, a′)

• Compression function:
Chk : {0, 1}lr × Σ→ {0, 1}lr , (r , s) 7→ r ′

Here lg, la and lr are the bit length of the state g of Gen,
the memory addresses a and the attestation response r ′, re-
spectively, and Σ is the set of possible state entries (mem-
ory words). Both algorithms are iteratively applied within
the scheme over N ∈ N rounds. For the sake of readabil-
ity, we provide an iterative definition of ChkN : For some
r0 ∈ {0, 1}lr and ~s := (s1, . . . , sN ), we define r ← ChkN (c, ~s)
as ri := Chk(ri−1, si) for i = 1, . . . , N .

The protocol works as follows: The verifier V sends an at-
testation challenge (g0, r0) to the prover P, who iteratively

generates a sequence of memory addresses (a1, . . . , aN ) based
on g0 using Gen. For each i ∈ {1, . . . , N}, P reads the state
entry si = Read(S, ai) at address ai and iteratively com-
putes r ′i = Chk(r ′i−1, si) using r ′0 = r0. Finally, P sends
r ′N to V, which executes exactly the same computations as
P using the state S and compares the final result with the
response r ′N from P. Eventually, V accepts iff r ′N = rN and
P responded in time δ := N(δGen + δRead + δChk), where δGen,
δRead and δChk are upper time-bounds for running Gen, Read
and Chk, respectively, on a genuine and honest prover.

In practice the delay for submitting and receiving mes-
sages needs to be considered. The common approach is to
choose N , the number of rounds, big enough such that this
delay is small compared to the runtime of the protocol. For
simplicity, we assume that this is the case in the following
and hence ignore the time for sending messages.

Remark 5: Correctness. Observe that an honest prover
P always makes an honest verifier V accept since both per-
form exactly the same computations on the same inputs and
the honest prover by assumption requires at most time δ.

Remark 6: Generality of the Protocol. Note that the
basic concept of our generic scheme and several instantia-
tions for specific platforms can be found in the literature
on software attestation (cf. Section 2). However, we aim at
abstracting from the particularities of individual platforms
and instead design and analyze a construction that is as
generic as possible. Further, some existing software attesta-
tion schemes also use the memory addresses ai and/or the
index i as input to the checksum function Chk. However,
since there is a dependence between the index i, the memory
address ai and the memory block si = Read(S, ai) and since
the use of simple components is a primary goal of software
attestation, we restrict to the case where only the memory
blocks are used as input.

5.2 Design Criteria and Properties
Next, we discuss the design criteria of the underlying al-

gorithms and formally define their properties required later
in the security analysis. Note that, although some of these
properties have been informally discussed or implicitly made
in prior work, they have never been formally specified and
analyzed before.

5.2.1 Implementation of the Core Functionalities
The generic protocol deploys three core functionalities:

Read, Gen and Chk, which of the execution time is of para-
mount importance for the security of software attestation.
Hence, we make the following assumptions that are strongly
dependent on the concrete implementation and computing
engine of the prover and hard to cover in a generic formal
framework:

1. Optimality: There is no implementation of Read, Gen
and Chk (or their combination) that is more efficient
(with respect to time and/or memory) than the imple-
mentation used by the honest prover in state S.

2. Atomicity: It is not possible to execute Read, Gen
and Chk only partially, e.g., by omitting some of the
underlying instructions.



We formally cover these assumptions by modelling Read, Gen
and Chk as oracles. That is, whenever P wants, e.g., to ex-
ecute Read(State(P), a), P sends a to the Read-oracle and
receives the corresponding result s. While sending and re-
ceiving messages between P and the oracles are modelled to
take no time, the determination of the response does. More
precisely when P invokes one of these oracles, it takes a cer-
tain amount of time before P gets the result. Within this
time period P is inactive and cannot perform any computa-
tions. We denote the response time of the Read, Gen and
Chk-oracle by δRead, δGen and δChk, respectively. Moreover
the inputs to the oracles need to be stored in the primary
memory of P.

Remark 7: Order of Computations. A consequence of

this modelling approach is that a malicious prover P̃ can
compute the outputs of Gen and Chk only in the right order.

For instance, before P̃ can determine si it must first deter-
mine si−1. Given that concrete instantiations of the generic
scheme are iteratively executed, the limited size of the pri-
mary memory (PM) (see below) and the fact that accessing
the secondary memory requires significantly more time than
accessing PM, we consider this assumption to be reasonable
for most practical instantiations.

5.2.2 System-Level Properties
The size and utilization of the primary memory (PM)

plays a fundamental role for assessing the optimality of a soft-
ware attestation scheme with regard to the resources used

by a prover P̃. Therefore, a common assumption is that the
size of PM is just enough to honestly execute Attest, i.e.,
there are no free parts of PM that could be used otherwise.2

Another crucial assumption of any software attestation
scheme not explicitly made in most previous works is that
the state S should not be compressible into PM. For in-
stance, consider the extreme case where all entries of S con-

tain the same value s. In this case a malicious prover P̃ could
easily determine the correct attestation response by simply

storing s in PM while having a different state State(P̃) 6= S.

Hence, we require that P̃ should not be able to determine
a randomly selected entry si of S without accessing the sec-
ondary memory with better probability than guessing:

Definition 3 (State Incompressibility). For a state S, let
DS denote the probability distribution of S in the following
sense: For any state entry x ∈ Σ it holds that

DS(x) := Pr
[
x = s|a U← {0, 1}la ∧ s := Read(S, a)

]
.

S is called incompressible if for any algorithm AlgR̂ead that
can be executed by the prover P and that does not invoke
Read, it holds that

Pr
[
s̃ = s|a U← {0, 1}la ∧ s = Read(S, a) ∧ s̃← AlgR̂ead(a)

∧ TimeP(AlgR̂ead) ≤ δRead
]
≤ γ = max

x∈Σ
DS(x).

5.2.3 Cryptographic Properties

2Possible measures to achieve this are either to choose Gen
and Chk accordingly or to run several instances of the pro-
tocol in parallel.

Although it is quite obvious that the security of the soft-
ware attestation scheme depends on the cryptographic prop-
erties of Gen and Chk, these requirements have not been sys-
tematically analyzed and formally specified before. While it
would be straightforward to model these functions as pseudo-
random number generators (PRNGs) and hash functions (or
even random oracles), respectively, there are some subtle dif-
ferences to the common cryptographic scenario which must
be carefully considered. As we elaborate below, Gen needs
to meet a property which is stronger than the common secu-
rity definition of cryptographic PRNGs while for Chk a sig-
nificantly weaker condition than the classical security prop-
erties of hash functions is sufficient.

Pseudo-Randomness of the Outputs of Gen. To pre-

vent a malicious prover P̃ from using pre-computed attesta-
tion responses, the memory addresses ai generated by Gen
should be “sufficiently random”. Ideally, all combinations
should be possible for (a1, . . . , aN ). While this is impossible
from an information-theoretic point of view, the best one
may ask for is that the memory addresses ai generated by
Gen should be computationally indistinguishable from uni-
formly random values within a certain time-bound t:

Definition 4 (Time-Bounded Pseudo-Randomness of Gen).
Gen : {0, 1}lg → {0, 1}lg+la is called (t, %)-pseudo-random if
for any algorithm Alg that is executable by P in Time(Alg) ≤
t it holds that∣∣∣Pr

[
b = 1|g0

U← {0, 1}lg

∧ (gi+1, ai+1)← Gen(gi) : i ∈ {0, . . . , N − 1}

∧ b← Alg(a1, . . . , aN )
]

−Pr
[
b = 1|ai

U← {0, 1}la : i ∈ {1, . . . , N}

∧ b← Alg(a1, . . . , aN )
]∣∣∣ ≤ %.

Observe that this definition requires that Alg does not know
the seed g0 of Gen, which is not given in the generic soft-
ware attestation scheme. In principle nothing prevents a

malicious prover P̃ from using g0 to compute the addresses
(a1, . . . , aN ) on its own, making them easily distinguishable

from random values. The best we can do is to require that P̃
cannot derive any meaningful information about ai+1 from
gi without investing a certain minimum amount of time.
Specifically, we assume that an algorithm with input g that
does not execute Gen cannot distinguish (g′, a′) = Gen(g)
from uniformly random values. Formally:

Definition 5 (Time-Bounded Unpredictability of Gen). Gen :
{0, 1}lg → {0, 1}lg ×{0, 1}la is νGen-unpredictable if for any

algorithm AlgĜen that can be executed by P and that does not
execute Gen, it holds that∣∣∣Pr

[
b = 1|g U← {0, 1}lg ∧ (g′, a′)← Gen(g)

∧ b← AlgĜen(g, g′, a′)
]

−Pr
[
b = 1|g U← {0, 1}lg ∧ (g′, a′)

U← {0, 1}lg × {0, 1}la

∧ b← AlgĜen(g, g′, a′)
]∣∣∣ ≤ νGen.

Weakened Pre-image Resistance of Chk. The purpose
of the compression function ChkN is to map the state S of



the prover P to a smaller attestation response rN , which
reduces the amount of data to be sent from P to the veri-
fier V. Observe that the output of ChkN depends also on
the challenge sent by the verifier to avoid simple replay at-
tacks and the pre-computation of attestation responses. A
necessary security requirement on Chk is that it should be

hard for a malicious prover P̃ to replace the correct input
~s = (s1, . . . , sN ) to Chk with some other value ~̃s 6= ~s that
yields the same attestation response rN as ~s. This is similar
to the common notion of second pre-image resistance of cryp-
tographic hash functions. However, due to the time-bound
of the software attestation scheme it is sufficient that ChkN

fulfills only a much weaker form of second pre-image resis-
tance since we need to consider only “blind” adversaries who
(in contrast to the classical definition of second pre-image
resistance) do not know the correct response rN to the ver-
ifier’s challenge (g0, r0). The reason is that, as soon as P
knows the correct response rN , he could send it to V and
would not bother to determine a second pre-image. Hence,
we introduce the definition of blind second pre-image resis-
tance which concerns algorithms that are given only part of
the input ~s of ChkN and that have to determine the correct
output of ChkN (r0, ~s):

Definition 6 (Blind Second Pre-image Resistance). Chk :
{0, 1}lr ×Σ→ {0, 1}lr is ω-blind second pre-image resistant
with respect to the distribution DS (cf. Definition 3) if for
any N ∈ N, any subset of indices J ( {1, . . . , N} and for
any algorithm Alg that can be executed by P, it holds that

Pr
[
r̃ = r |r0 U← {0, 1}lr ∧ si

DS← Σ : i ∈ {1, . . . , N}

∧ r̃ ← Alg(r0, (sj)j∈J ) ∧ r ← ChkN (r0, s1, . . . , sN )
]
≤ ω.

In addition we require (similar to Definition 5) that P̃ can-
not determine any information on rN = ChkN (r0, s1, . . . , sN )
without executing ChkN :

Definition 7 (Unpredictability of ChkN ). Chk : {0, 1}lr ×
Σ → {0, 1}lr is νChk-unpredictable with respect to the dis-

tribution DS (cf. Definition 3) if for any algorithm AlgĈhk
N

that can be executed by P and that does not execute ChkN ,
it holds that∣∣∣Pr

[
b = 1|r0

U← {0, 1}lr ∧ si
DS← Σ : i ∈ {1, . . . , N}

∧ r = ChkN (r0, s1, . . . , sN )

∧ b← AlgĈhk
N

(r0, s1, . . . , sN , r)
]

−Pr
[
b = 1|r0

U← {0, 1}lr ∧ si
DS← Σ : i ∈ {1, . . . , N}

∧ r
U← {0, 1}lr

∧ b← AlgĈhk
N

(r0, s1, . . . , sN , r)
]∣∣∣ ≤ νChk.

6. SECURITY OF THE SCHEME
In this section we derive an upper bound for the success

probability of a malicious prover P̃ to make the verifier V
accept. This bound depends on the parameters defined in
Section 5.2 which provide a sufficient condition to prove the
generic attestation scheme secure. The bound is as follows:

Theorem 1 (Generic Upper Bound). Let S be an incom-
pressible state (Definition 3). Consider the generic attesta-
tion scheme in Figure 2 with the components Read, Gen and
Chk such that

1. Gen is (N(δGen + δRead), %)-pseudo-random (Definition 4)
and νGen-unpredictable (Definition 5),

2. Chk is ω-blind second pre-image resistant (Definition 6)
and νChk-unpredictable (Definition 7).

Consider an arbitrary prover P̃ as in Section 3 with state

State(P̃) = S̃ that can store p memory words in its pri-
mary memory and s memory words in its secondary memory
(cf. Section 3). Let

λ :=
∣∣∣{a ∈ {0, 1}la |Read(S̃, a) = Read(S, a)

}∣∣∣ · 2−la ,
denote the fraction of state entries that are different in S and

S̃. Then the probability of P̃ to win the security experiment
ExpAAttest (Definition 2) is upper bounded by

p+s
ls/lr

· 2−(lg+lr ) + max {ω, νChk}+

max
0≤M≤N

{
(π (M, ops) + %) · γN−M + νGen · (N −M)

}
(1)

where

π(n, x) :=

n−1∑
j=max{0,n−2la}

(
max

{
λx+1, γ

}) n
x+1
−j ·

(
n

j

)

·

(
n−j∏
i=0

2la − i
2la

)
·
(
n− j
2la

)j
(2)

and ops denotes the number of instructions P̃ can execute
in time δRead + δGen.

This result implies that a software attestation scheme is
ε-secure if the expression in Equation 1 is ≤ ε, yielding a
sufficient condition for security. For example if a user aims
for ε-security for a system with fixed system parameters, he
may choose the number of rounds N in dependence of an
expected value of λ accordingly.

Note that the bound given in Equation 1 gives new in-
sights on the impact of the distribution of the state entries
in S (expressed by γ) and the similarity between the state

S and the state S̃ of the prover (expressed by λ) on the
security of the scheme. Both aspects have been either ne-
glected or have been considered only informally in previous
work (cf. Section 7). To provide a better intuition and to
show the general applicability of the theorem

”
we compute

and discuss the bound for several concrete parameters in
Appendix B. More extensive tests are planned for future
work.

Proof of Theorem 1. Let Win denote the event that a mali-

cious prover P̃ wins the security experiment ExpAAttest, i.e.,
Win means that ExpAAttest(S, l) = accept. We are interested
in an upper bound for Pr [Win]. To this end we consider
several sub-cases. Let Precomp denote the event that the

verifier V sends a challenge (g0, r0) to P̃ for which P̃ has
precomputed and stored the correct response rN in its mem-



ory (primary and/or secondary).3 Then we have

Pr [Win] =Pr [Win|Precomp] · Pr [Precomp]

+Pr [Win|¬Precomp] · Pr [¬Precomp]

≤Pr [Precomp] + Pr [Win|¬Precomp].

The maximum number of responses P̃ can store in its mem-
ory is p+s

ls/lr
. Since the challenge (g0, r0) ∈ {0, 1}lg+lr is

uniformly sampled, it follows that Pr [Precomp] = p+s
ls/lr

·
2−(lg+lr ).

We now estimate the term Pr [Win|¬Precomp], which we

abbreviate to Pr [Win]. Let Correct denote the event that P̃
determined all state entries (s1, . . . , sN ), i.e., si = Read(S, ai)

and (gi, ai) = Gen(gi−1) for i ∈ {1, . . . , N} and that P̃ has
executed ChkN . Then we have

Pr [Win] ≤ Pr [Correct] + Pr [Win|¬Correct].

It follows from the fact that ChkN is ω-blind second pre-
image resistant (Definition 6) and νChk-unpredictable (Defi-
nition 7) that Pr [Win|¬Correct] ≤ max{ω, νChk}.

For the final term Pr [Correct], we use the following claim,
which we prove afterwards.

Claim 1. The probability Pr [Correct] that P̃ determines all
(s1, . . . , sN ) and computes rN = ChkN (r0, s1, . . . , sN ) in the
security experiment ExpAAttest under the assumption that the
response to the requested challenge has not been precomputed
is upper bounded by

max
0≤M≤N

{
(π(M, ops) + %) · γN−M + νGen · (N −M)

}
where π(N, x) and ops are as in Theorem 1.

Taking these bounds together concludes the proof.

Proof of Claim 1
We now prove Claim 1 used in the proof of Theorem 1.
That is we show the claimed upper bound of Pr [Correct],

which is the probability that a malicious prover P̃ with

state S̃ := State(P̃) 6= S correctly determines all state en-
tries (s1, . . . , sN ) in the security experiment ExpAAttest (Def-
inition 2) under the assumption that the response for the
requested challenge has not been precomputed.

Observe that P̃ may decide to deviate from the protocol
specification, e.g., skipping some instructions with respect to
one round i (probably accepting a lower success probability
for determining si) to save some time that could be spent
on the determination of another state entry sj wit i 6= j
(probably aiming for a higher probability to determine sj).
Hence the challenge is to show that for any of these ap-
proaches the success probability does not exceed a certain
(non-trivial) bound, which cannot be done by a reduction to
a single assumption.

We base our proof on a sequence of games played by P̃ and
an oracle O that has access to S. All these games are divided
into two phases: A setup phase and a challenge phase. In
the setup phase O generates all addresses (a1, . . . , aN ) and
determines the corresponding state entries si = Read(S, ai).

Afterwards, in the challenge phase, P̃ and O exchange sev-

eral messages. In particular P̃ must submit its guesses x̃i
3More precisely, A has precomputed this value during the

preparation phase and stored the response as part of S̃.

for the state entries si to O. P̃ wins the game only if all
guesses are correct, i.e., x̃i = si for all i = 1, . . . , N .

The differences between the games lie in the possibilities

of P̃ to deviate from the protocol specification. While these

possibilities are quite limited in the first game (Game 0), P̃
gets more and more control with each subsequent game and
thus can to perform more powerful attacks. For each trans-
formation between two consecutive games, we show how the

success probability of P̃ changes. In most cases it turns out
that the previous game represents a subset of the possible
attack strategies of the current game. Note that O formally
represents the honest execution of certain parts of the pro-
tocol and should not be confused with a real party. Con-

sequently, we assume that transferring messages between P̃
and O takes no time.

Observe that the intention of O is to have an elegant

method for ignoring all computations of P̃ which are hon-
estly executed by assumption. Hence to exclude artificial

attacks where P̃ uses the time and/or memory gained by out-
sourcing the computation to O, we restrict the time-bound

and the size of the primary memory of P̃ to what is nec-
essary for honestly executing those computations that are
note outsourced to O.

Game 0: Randomly Sampling Addresses in Regular
Time Intervals.

Game Description. The purpose of this game is to investi-

gate provers P̃ which (1) do not exploit any aspects related
to the execution of Gen and (2) that are forced to use ex-
actly time δRead for the determination of each state entry si.
This is captured by modelling the game as follows: Within
the setup phase, O samples pairwise independent and uni-
form addresses (a1, . . . , aN ) and sets si := Read(S, ai) for all
i ∈ {1, . . . , N}. In the challenge phase, O iteratively queries

P̃ with ai and P̃ returns some response x̃i.

Hereby, P̃ can access the Read oracle, which on input a

returns s = Read(S̃, a) after time δRead. Since this is the
only operation expected from an honest prover, the size of
the primary memory only allows to store an address a and
a state entry s. Moreover the total time-bound is limited to

N ·δRead, meaning that P̃ automatically fails if it needs more
time in total than this bound.

Observe that O ensures that P̃ cannot change the order of

the memory addresses, i.e., O only sends ai to P̃ after ai−1

has been sent.4 We denote with round i the time-frame
between the point in time where P̃ receives ai and the point

in time where P̃ receives ai+1 for i ∈ {1, . . . , N − 1}. With
round N we denote the time-frame between the point in

time where P̃ receives aN and the point in time where P̃
sends the last protocol message x̃N to O. P̃ wins the game
if (1) x̃i = si for all i ∈ {1, . . . , N} and (2) each round took

at most time δRead. Otherwise P̃ looses the game.

Success Probability. We are interested in an upper bound

for the probability Pr [Win0] that P̃ wins Game 0. Since P̃
looses for sure when he uses more time than δRead to respond
to ai in at least one round i, it is sufficient to restrict to
provers that take at most time δRead in each round. To this
end, we derive an upper bound which allows to treat the

4This is a consequence of Remark 7.



individual rounds separately. We start with the final round
N and distinguish between two cases.

In Case 1 the response x̃N is the direct result of a query

to the Read oracle, i.e., x̃N = Read(S̃, a) for some address

a. If a = aN the probability of x̃N := Read(S̃, aN ) = sN :=
Read(S, aN ) is λ (cf. Theorem 1) since aN is sampled uni-
formly and independently from the previous addresses. Now

consider that a 6= aN . Since x̃N = Read(S̃, a) and due

to the fact that P̃ must respond with x̃N in time δRead af-

ter receiving aN , P̃ has no time left to perform any other
instructions than Read during round N . In particular a
could not be chosen in dependence of aN , hence being in-
dependent of aN . Then x̃N = sN happens with probability
of at most γ (cf. Definition 3). It follows that in Case 1
the probability Pr [Win0] is upper bounded by max {λ, γ} ·
Pr [x̃1 = Read(S, a1) ∧ . . . ∧ x̃N−1 = Read(S, aN−1)].

Next we consider Case 2, where x̃N is not the result of a
query to the Read oracle. It follows from the incompressibil-
ity of S (Definition 3) and the fact that aN has been sampled
uniformly and independent of all previous addresses ai with
i < N , that the probability of x̃N = Read(S, aN ) is upper
bounded by γ. Hence,

γ · Pr [x̃1 = Read(S, a1) ∧ . . . ∧ x̃N−1 = Read(S, aN−1)]

is an upper bound of Pr [Win0] in Case 2. It follows from
Cases 1 and 2 that

Pr [Win0] ≤ max {λ, γ} · Pr
[
x̃1 = Read(S, a1)

∧ . . . ∧ x̃N−1 = Read(S, aN−1)
]

and by induction Pr [Win0] ≤ π0 = π0(N) := (max {λ, γ})N .

Game 1: Prover Controls the Address Generation Time.

Game Description. In this game we increase the power

of the malicious prover P̃ and allow him to freely choose
how much time he devotes to determine each value si, as
long as the total time for determining (s1, . . . , sN ) does not
exceed N ·δRead. This reflects the fact that in the attestation
protocol a malicious prover P̃ may generate the memory
addresses (a1, . . . , aN ) on its own whenever it wants to.

Formally, this is captured by introducing a req protocol

message which P̃ needs to send to O for receiving the next
address ai during the challenge phase. More precisely, O
sends ai to P̃ only when P̃ sent the i-th request req to O.

Since each round may take a different time period, the
winning conditions are relaxed by replacing the time restric-
tion on the individual rounds by an overall time-bound for

the entire challenge phase. This means that P̃ wins Game 1
if (1) x̃i = si for all i ∈ {1, . . . , N} and (2) the duration of
the challenge phase does not exceed the time N · δRead. The
size of the primary memory remains as in Game 0.

Success Probability. We now upper bound the probabil-

ity Pr [Win1] that P̃ wins Game 1. To this end, we divide the
number of rounds into four distinct sets. LetNcoll denote the
number of rounds where the address sampled by O is equal
to an address of some previous round by coincidence, i.e.,
Ncoll := |{i ∈ {2, . . . , N}|∃j ∈ {1, . . . , i− 1} : ai = aj}| .With
respect to the remaining N −Ncoll rounds, let Nequal (resp.

Nmore, resp. Nless) be the number of rounds where P̃ re-

sponds in time equal (resp. more, resp. less) than δRead.
Thus we have N = Ncoll +Nequal +Nless +Nmore.

Let Coll(Ncoll) denote the event that exactly Ncoll of the
N addresses are equal to some previous addresses. This
implies that in N −Ncoll rounds pairwise different addresses
are sampled. Moreover, since there are only 2la different
addresses, N −Ncoll is upper bound by 2la . It follows that
N −Ncoll ≤ 2la ⇔ Ncoll ≥ N − 2la . Thus it must hold that
Ncoll ≥ max{0, N − 2la}. Hence, Pr [Win1] is equal to

N−1∑
Ncoll=max{0,N−2la}

Pr [Win1|Coll(Ncoll)] · Pr [Coll(Ncoll)].

We now derive upper bounds for Pr [Win1|Coll(Ncoll)] and
Pr [Coll(Ncoll)].

In general, Pr [Coll(Ncoll)] can be expressed by (number
combinations of rounds with equal addresses) × (probabil-
ity that addresses in N − Ncoll rounds are pairwise differ-
ent) × (probability that addresses in the remaining rounds
are equal to some previous address). The first term is at

most
(

N
Ncoll

)
while an upper bound for the last term is(

N−Ncoll

2la

)Ncoll

. This gives an upper bound

(
N

Ncoll

)
·

N−Ncoll∏
i=0

2la − i
2la

 · (N −Ncoll

2la

)Ncoll

. (3)

for Pr [Coll(Ncoll)] if max{0, N − 2la} ≤ Ncoll ≤ N − 1. We
now fix a value for Ncoll and aim for an upper bound for the
probability Pr [Win1|Coll(Ncoll)]. We do so by giving sepa-
rate upper bounds on the success probability for the four
different types of rounds. Let ops = ops(δRead) be the num-
ber of instructions that can be executed by the computing

engine of P̃ in time δRead. Since we are interested in an upper

bound of P̃’s success probability, we make several assump-

tions in favor of P̃: (1) For rounds where P̃ invested more
time than δRead, we use the trivial upper bound of 1 even if
the time period exceeded δRead only by the time required to
execute one single instruction. (2) For rounds where the re-
quested address coincides with an address previously asked,
we likewise use the bound of 1. Moreover we assume that
these rounds take no time at all and the ops instructions
saved can be used in ops other rounds. (3) In rounds that
take less time than δRead, it follows from the incompressibil-
ity of S (Definition 3) and the fact that all addresses are
pairwise distinct that x̃i = si with probability ≤ γ. Again,
we assume that these rounds take no time at all and that
the ops instructions saved can be used in ops other rounds.

(4) In a round that takes exactly time δRead P̃ succeeds at
most with probability max{λ, γ} (cf. Game 0).

While these assumptions strongly exaggerate the possibil-

ities of P̃, they allow to identify optimum strategies. More

precisely for each round where P̃ uses less time than δRead
or where a previously asked address is requested again, the
best approach is to spend the ops saved instructions in ops
other rounds such that for each of these rounds the probabil-
ity of correctly determining si is equal to 1. It follows that
Nmore = ops · (Ncoll +Nless) and hence N = Ncoll +Nequal +
Nless + Nmore = Nequal + (ops + 1) · (Ncoll + Nless). Hence,



we have

Pr [Win1|Coll(Ncoll)] ≤ π0(Nequal) · γNless · 1Ncoll+Nmore =

max
Nless

{
λN−(ops+1)·(Ncoll+Nless)·γNless , γN−(ops+1)·Ncoll−ops·Nless

}
cf. Apx. A

=
(

max
{
λops(δRead)+1, γ

}) N
ops(δRead)+1

−Ncoll
. (4)

where the last equation is shown in Appendix A. This shows
that π (N, ops(δRead)) is an upper bound for the probability
Pr [Win1]. where π(n, x) is defined as in Equation 2. Observe
that for any fixed value for Ncoll, the probability of having
Ncoll collisions (Equation 3) increases with N (as long as
Ncoll ≥ max{0, N −2la}) while the probability to determine
the values (s1, . . . , sN ) (Equation 4) decreases for N .

Game 2: Skipping Address Generation.

Game Description. So far we covered only provers P̃
that honestly generate all addresses (a1, . . . , aN ). Now we

change the game such that P̃ may decide in each round i

to skip the generation of address ai. This allows P̃ to “buy”
more time for determining the values si but at the “cost”
of not knowing ai. Formally this is captured by defining a
second message skip besides req . Specifically, in each round

i of the challenge phase, P̃ either sends req or skip. In
case of req , O behaves as in Game 1 and sends the next ai
to P̃. However, when P̃ sends skip then O does not send

ai to P̃ and extends the time-bound by δGen. That is, at
the beginning of the challenge phase, the winning conditions

are that (1) all responses (x̃1, . . . , x̃N ) of P̃ are correct, i.e.,
x̃i = si ∀i ∈ {1, . . . , N} and (2) the challenge phase does not

take more time than N · δRead. However each time P̃ sends
a skip message to O, the time-bound is extended by δGen.

Success Probability. We now determine the probability

Pr [Win2] that P̃ wins Game 2. To this end we follow the
same line of arguments as in Game 1. The only difference is
that rounds where collisions in the addresses took place or
where either Read or Gen have been skipped take no time at
all and free ops(δRead + δGen) instructions for other rounds.
That is we get a bound with the same structure as in Game 1
but where ops(δRead) is replaced by ops(δRead + δGen), i.e.,
Pr [Win2] ≤ π (N, ops(δRead + δGen)).

Game 3: Replacing the Random Sampling with Gen .

Game Description. Now we consider a variant of Game 2
with the only difference being that the addresses (a1, . . . , aN )
are generated by Gen instead of being randomly sampled by
O. That is, during the setup phase O randomly samples g0

and generates (a1, . . . , aN ) using Gen.

Success Probability. Let Pr [Win3] be the probability that

P̃ wins Game 3. Using a standard argument, it follows
from the pseudo-randomness of the outputs of Gen (Defini-
tion 4) that |Pr [Win3]−Pr [Win2]| ≤ % and hence Pr [Win3] ≤
Pr [Win2] + % ≤ π (N, ops(δRead + δGen)) + %.

Game 4: Giving Access to Gen.

Game Description. In the final game O no longer gen-

erates (a1, . . . , aN ) for P̃. Instead P̃ now queries the Gen
oracle, which on input gi returns (gi, ai) = Gen(gi−1) after

time δGen. To this end, O samples g0 in the setup phase and

gives this value to P̃.

Observe that the size of the primary memory of P̃ is in-
creased to additionally store a value g. Further, the time-
bound of the challenge phase is increased to N ·(δGen +δRead).

Success Probability. The only difference between Game 4

and Game 3 is that P̃ now knows g0 and can query the
Gen oracle. Recall that g0 is used by Gen for computing

(a1, . . . , aN ). Hence P̃ may decide to skip the generation of
one or more addresses and save the time and memory for
other computations. However, since Gen is assumed to be

νGen-unpredictable (Definition 5), P̃ cannot derive any in-
formation on ai+1 or gi+1 from gi without querying Gen.

Thus if P̃ never queries Gen with some value gi it can-
not distinguish the subsequent values (gi+1, . . . , gN ) with
a probability better than (N − i) · νGen. Therefore we can
restrict to provers that compute (a1, g1), . . . , (aM , gM ) and
skip (aM+1, gM+1), . . . , (aN , gN ).

Let Pr [Win4] be the probability to win Game 4 and let
Pr [Win4(M)] be the probability to win Game 4 for a fixed
M . That is we have Pr [Win4] ≤ maxM {Pr [Win4(M)]}.
Now consider a variation of Game 4 where O replaces the
values (aM+1, gM+1), . . . , (aN , gN ) by independent and uni-
formly sampled values and we denote with Pr [Win′4(M)]

the probability that P̃ wins this game. Since Gen is as-
sumed to be νGen-unpredictable (cf. Definition 5), it holds
that Pr [Win4(M)] ≤ Pr [Win′4(M)] + νGen · (N −M).

With respect to Pr [Win4(M)], observe that for the first
M rounds the situation is as in Game 3. Hence the suc-
cess probability for the first M rounds is upper bounded
by π (M, ops(δRead + δGen)) + %. For the remaining N −M
rounds, O uses uniformly sampled values (aM+1, . . . , aN )

that are unknown to P̃. Hence the probability of P̃ to derive
(sM+1, . . . , sN ) correctly is upper bounded by γN−M . This
yields Pr [Win′4(M)] ≤ (π (M, ops(δRead + δGen)) + %) · γN−M
and hence Pr [Correct] is at most

max
0≤M≤N

{
(π(M, ops(δRead + δGen)) + %) ·γN−M + νGen · (N −M)

}
.

7. DISCUSSION AND CONCLUSION
We presented the first formal security framework for soft-

ware attestation and precisely defined various of the underly-
ing system and design parameters. Moreover we presented a
generic software attestation protocol that encompasses most
existing schemes in the literature. For this generic scheme
we derived an upper bound on the success probability of a
malicious prover that depends on the formalized parameters.

One lesson learned is the impact of these parameters on
the security of the generic scheme. For example, it was ob-
served before that free memory should be filled with pseudo-
random data [24], and a later code-compression attack [3]
indicated that code redundancy also impacts security. How-
ever, the attack was dismissed as impractical [16] or ignored
in later works [17, 29]. In contrast, we consider the general
probability distribution of the state (code and data) in Defi-
nition 3 and directly connect it to the adversary advantage.
As a result, one can directly evaluate S to determine if addi-
tional measures are required for secure attestation. Our re-
sults also show that traditional cryptographic assumptions
are partially too strong (second pre-image resistance) and
partially too weak (pseudo-randomness).

Further, we identified new (sufficient) conditions on the



core functionalities of software attestation. Moreover most
previous works require the software attestation algorithm
to iterate over all memory words of the secondary memory
without giving any formal justification. Our bound allows
to identify lower values for N (if the other parameters are
known), allowing for more efficient solutions. Thus our work
represents the first step towards efficient and provably secure
software attestation schemes.

Still, several open questions remain for future work. One
being to relax the presented conditions or to derive neces-
sary conditions. A further task is to determine concrete
instantiations. While Gen and Chk could be easily realized
on devices with hardware block ciphers (similar to the AES
instructions in modern CPUs [30]), this becomes more chal-
lenging on other platforms.

We are currently working on the following aspects: (1) a
practical instantiation of the generic software attestation
scheme and its evaluation and (2) the evaluation of exist-
ing software attestation schemes in our framework.
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APPENDIX
A. DETAILS TO THE PROOF

In this section, we prove the upper bound

Pr [Win1|Coll(Ncoll)] ≤

max
Nless

{
λN−(ops+1)·(Ncoll+Nless) · γNless , γN−(ops+1)·Ncoll−ops·Nless

}
.

which has been used in Game 1 of the proof to Theorem 1.
Observe that 0 ≤ Nless and 0 ≤ Nequal = N − (ops + 1) ·
(Ncoll +Nless)⇔ Nless ≤ N

ops+1
−Ncoll, i.e.,

0 ≤ Nless ≤
N

ops + 1
−Ncoll.

To simplify the first term λN−(ops+1)·(Ncoll+Nless) · γNless , we
define e := logλ(γ) and rephrase this expression as

λN−(ops+1)·Ncoll−(ops+1−e)·Nless .

When ops + 1 − e < 0, the maximum value is achieved for
Nless = 0, hence in this case the upper bound is λN−(ops+1)·Ncoll .
In the other case we get an upper bound for Nless = N

ops+1
−

Ncoll, yielding

λ
N−(ops+1)·Ncoll−(ops+1−e)·

(
N

ops+1
−Ncoll

)

= λ
N−(ops+1)·Ncoll−N+e· N

ops+1
+(ops+1)·Ncoll−e·Ncoll

= γ
N

ops+1
−Ncoll .

With respect to the second term, i.e., γN−(ops+1)·Ncoll−ops·Nless ,
the maximum value is achieved if Nless is as big as possible,
i.e., Nless = N

ops+1
−Ncoll. This gives an upper bound of

γN−(ops+1)·Ncoll−ops·Nless

= γ
N−(ops+1)·Ncoll−ops·

(
N

ops+1
−Ncoll

)

= γ
N

ops+1
−Ncoll .

Altogether, it follows that

Pr [Win1|Coll(Ncoll)] ≤
(

max
{
λops(δRead)+1, γ

}) N
ops(δRead)+1

−Ncoll

.
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Figure 2: Upper Bound (Equation 1) for different values of
N and λ.

B. AN EXEMPLARY APPLICATION OF THE
UPPER BOUND

To get a better intuition of the upper bound (Equation 1)
given in Theorem 1, especially on the impact of the similarity
of the malicious prover’s state to the honest prover’s state
expressed by λ and the number of rounds N , we provide
some concrete examples in this section.

At first we have to fix the various parameters. To this
end, we consider typical parameters for lg and lr that can be
found in the literature on software attestation. Moreover, we
assume that all cryptographic primitives are perfectly secure
and that the values in S are uniformly distributed:

ω := 2−lr , νChk = 0, % := 0, γ := 2−ls , νGen := 0.

The bound Equation 1 then simplifies to

p + s

ls/lr · 2(lg+lr )
+ 2−lr + max

0≤M≤N

{
(π (M, ops)) · 2−ls·(N−M)

}
.

Recall that the value ops has been defined as the number
of operations a prover can perform in time δRead + δGen. It
was used in the proof to tackle the following question: If
an attacker decides to skip one round, for how many other
rounds can he increase his probability of success? While
ops certainly expresses an upper bound on this number (the
adversary has to spend at least one instruction per round), it
certainly is an overestimation of the adversary’s capabilities.
Hence, we set ops = 2 to get more meaningful results. This
represents an adversary who can win two rounds if he skips
another round.

Recall that λ expresses the fraction of state entries where
the state of the malicious prover matches with the state S
of the honest prover. We exemplarily use λ ∈ {0.2, . . . , 0.8}.
As shown in Figure 2, for small values of λ (i.e., for malicious
provers with a state that is quite different from the honest
prover’s state), a relatively low number of rounds is sufficient
to achieve a reasonably low adversary advantage. However,
for large values of λ more rounds are required. Further,
for the chosen system parameters, the advantage seems to
converge to a minimal adversary advantage of 10−48.

Observe that in the literature, it is often suggested to use
N = log(s)·s rounds. Interestingly, our experiments indicate
that significantly less rounds can be sufficient.
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