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Abstract. We present a computationally secure MPC protocol for threshold adversaries which is parametrized
by a value L. When L = 2 we obtain a classical form of MPC protocol in which interaction is required for
multiplications, as L increases interaction is reduced in that one requires interaction only after computing a higher
degree function. When L approaches infinity one obtains the FHE based protocol of Gentry, which requires no
interaction. Thus one can trade communication for computation in a simple way.
Our protocol is based on an interactive protocol for “bootstrapping” a somewhat homomorphic encryption scheme.
The key contribution is that our presented protocol is highly communication efficient enabling us to obtain reduced
communication when compared to traditional MPC protocols for relatively small values of L.

1 Introduction

In the last few years computing on encrypting data via either Fully Homomorphic Encryption (FHE) or
Multi-Party Computation (MPC) has been subject to a remarkable number of improvements. Firstly, FHE
was shown to be possible [29]; and this was quickly followed by a variety of applications and performance
improvements [8, 11, 10, 26, 27, 37, 38]. Secondly, whilst MPC has been around for over thirty years, only in
the last few years we have seen an increased emphasis on practical instantiations; with some very impressive
results [7, 16, 35].

We focus on MPC where n parties wish to compute a function on their respective inputs. Whilst the
computational overhead of MPC protocols, compared to computing “in the clear”, is relatively small (for
example in practical protocols such as [23, 35] a small constant multiple of the “in the clear” cost), the
main restriction on practical deployment of MPC is the communication cost. Even for protocols in the pre-
processing model, the communication cost in terms of number of bits per multiplication gate and per party
is a constant multiple of the bit length log p of the data being manipulated for a typically large value of
the constant. This is a major drawback of MPC protocols since communication is generally more expensive
than computation. Theoretical results like [21] (for the computational case) and [20] (for the information
theoretic case) brings down the per gate per party communication cost to a very small quantity; essentially
O( logn

n · log |C| · log p) bits for a circuit C of size |C|. While these results suggest that the communication
cost can be asymptotically brought down to a constant for large n, the constants are known to be large for any
practical purpose. Our interest lies in constructing efficient MPC protocols where the efficiency is measured
in terms of exact complexity rather than the asymptotic complexity.

In his thesis, Gentry [28] showed how FHE can be used to reduce the communication cost of MPC
down to virtually zero for any number of parties. In Gentry’s MPC protocol all parties encrypt to each
other, their input under a shared FHE public key. They then compute the function homomorphically, and at
the end perform a shared decryption. This implies an MPC protocol whose communication is limited to a
function of the input and output sizes, and not to the complexity of the circuit. However, this reduction in
communication complexity comes at a cost, namely the huge expense of evaluating homomorphically the
function. With current understanding of FHE technology, this solution is completely infeasible in practice.



A variant of Gentry’s protocol was presented in [1] where the parties outsource their computation to
a server and only interact via a distributed decryption. The key innovation in [1] was that independently
generated (FHE) keys can be combined into a “global” FHE key with distributed decryption capability. We
do not assume such a functionality of the keys (but one can easily extend our results to accommodate this);
instead we focus on using distributed decryption to enable efficient multi-party bootstrapping.

In [23], following on the work in [6], the authors propose an MPC protocol which uses a Somewhat Ho-
momorphic Encryption (SHE) scheme as an “optimization”. Based in the preprocessing model, the authors
utilize an SHE scheme which can evaluate circuits of multiplicative depth one to optimize the preprocessing
step of an essentially standard MPC protocol. The optimizations, and use of SHE, in [23] are focused on the
case of computational improvements. In this work we invert the use of SHE in [23], by using the SHE in the
online phase of the MPC protocol, so as to optimize the communication efficiency of MPC for any number
of parties.

In particular we interpolate between the two extremes of traditional MPC protocols (with high com-
munication but low computational costs) and Gentry’s FHE based solution (with high computation but low
communication costs). Our interpolation is dependent on a parameter, which we label as L, where L ≥ 2.
At one extreme, for L = 2 our protocol resembles traditional MPC protocols, whilst at the other extreme,
for L =∞ our protocol is exactly that of Gentry’s FHE based solution.

The solution we present is in the pre-processing model; in which we allow a pre-processing phase which
can compute data which is neither input nor function dependent. This pre-processed data is consumed in
the online phase. As usual in such a model our goal is for efficiency in the online phase only. We present
our basic protocol and efficiency analysis for the case of passive threshold adversaries only; i.e. we can
tolerate up to t passive corruptions where t < n. We then note that security against t active adversaries with
t < n/3 can be achieved for no extra cost in the online phase. For the active security case, essentially the
same communication costs can be achieved even when t < n/2, bar some extra work (which is independent
of |C|) to eliminate the cheating parties when they are detected. The security of our protocols are proven in
the UC framework [12] (a brief discussion on the UC framework can be found in Appendix D).

Overview: Our protocol is intuitively simple. We first take an L-levelled SHE scheme (strictly it has L + 1
levels, but can evaluate circuits with L levels of multiplications) which possesses a distributed decryption
protocol for the specific access structure required by our MPC protocol. We assume that the SHE scheme
is implemented over a ring which supports N embeddings of the underlying finite field Fp into the message
space of the SHE scheme. Almost all known SHE schemes support such packing of the finite field into the
plaintext slots in an SIMD manner [26, 38]; and such packing has been crucial in the implementation of SHE
in various applications [22, 23, 27].

Clearly with such a setup we can implement Gentry’s MPC solution for circuits of multiplicative depth
L. All that remains is how to “bootstrap” from circuits with multiplicative depth L to arbitrary circuits.
The standard solution would be to bootstrap the FHE scheme directly, following the blueprint outlined in
Gentry’s thesis. However, in the case of applications to MPC we could instead utilize a protocol to perform
the bootstrapping. In a nutshell that is exactly what we propose.

The main issue then is show how to efficiently perform the bootstrapping in a distributed manner; where
efficiency is measured in terms of computational and communication performance. Naively performing an
MPC protocol to execute the bootstrapping phase will lead to a large communication overhead, due to the
inherent overhead in dealing with homomorphic encryptions. But on it’s own this is enough to obtain our
asymptotic interpolation between FHE and MPC; we however aim to provide an efficient and practical
interpolation. That is one which is efficient for small values of L. It turns out that a special case of a suitable
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bootstrapping protocol can be found as a sub-procedure of the MPC protocol in [23]. We extract the required
protocol, generalise it, and then apply it to our MPC situation.

To ease exposition we will not utilize the packing from [26] to perform such evaluations; we see this as
a computational optimization which is orthogonal to the issues we will explore in this paper. In any practical
instantiation of the protocol of this paper such a packing could be used, as described in [26], in evaluating
the multiplicative circuit of depth L. However, we will use this packing to perform the bootstrapping in a
communication efficient manner.

The bootstrapping protocol runs in two phases. In the first (offline) phase we repeatedly generate sets of
ciphertexts, one set for each party, such that all parties learn the ciphertexts but only the given party learns
their underlying messages (which are assumed to be packed). The offline phase can be run in either a passive,
covert or active security model, irrespective of the underlying access structure of the MPC protocol following
ideas from [16]. In the second (online) phase the data to be bootstrapped is packed together, a random mask
is added (computed from the offline phase data), a distributed decryption protocol is executed to obtain the
masked data which is then re-encrypted, the mask is subtracted and then the data is unpacked. All these
steps are relatively efficient, with communication only being required for the distributed decryption.

To apply our interactive bootstrapping method efficiently we need to make a mild assumption on the
circuit being evaluated; this is similar to the assumptions used in [20, 21, 24]. The assumption can be intu-
itively seen as saying that the circuit is relatively wide enough to enable packing of enough values which
need to be bootstrapped at each respective level. We expect that most circuits in practice will satisfy our
assumption, and we will call the circuits which satisfy our requirement “well formed”.

We pause to note that the ability to open data within the MPC protocol enables one to perform more than
a simple evaluation of an arithmetic circuit. This observation is well known in the MPC community, where
it has been used to obtain efficient protocols for higher level functions [13, 19]. Thus enabling a distributed
bootstrapping also enables one to produce more efficient protocols than a purely FHE based one.

We instantiate our protocol with the BGV scheme [9] and obtain sufficient parameter sizes following the
methodology in [27, 16]. Due to the way we utilize the BGV scheme we need to restrict to MPC protocols
defined over arithmetic circuits over a finite field Fp, with p ≡ 1 (mod m) with m = 2 ·N and N = 2r for
some r.

We show that even for a very small value of L, in particular L = 5, we can achieve better commu-
nication efficiency than many practical MPC protocols in the preprocessing model. Most practical MPC
protocols such as [7, 23, 35] require the transmission of at least two finite field elements per multiplication
gate between each pair of parties. In [23] a technique is presented which can reduce this to the transmission
of an average of three field elements per multiplication gate per party (and not per pair of parties). Note the
models in [7] (three party, one passive adversary) and [23, 35] (n party, dishonest majority, active security)
are different from ours (we assume honest majority, active security); but even mapping these protocols to
our setting of n party honest majority would result in the same communication characteristics. We show that
for relatively small values of L, i.e. L > 8, one can obtain a communication efficiency of less than one field
element per gate and party (details available in Section 6).

Clearly, by setting L appropriately one can obtain a communication efficiency which improves upon
that in [20, 21]; albeit we are only interested in communication in the online phase of a protocol in the
preprocessing model whilst [20, 21] discuss total communication cost over all phases. But we stress this is
not in itself interesting, as Gentry’s FHE based protocol can beat the communication efficiency of [20, 21] in
any case. What is interesting is that we can beat the communication efficiency of the online phase of practical
MPC protocols, with very small values of L indeed. Thus the protocol in this paper may provide a practical
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tradeoff between existing MPC protocols (which consume high bandwidth) and FHE based protocols (which
require huge computation).

Our protocol therefore enables the following use-case: it is known that SHE schemes only become
prohibitively computationally expensive for large L; indeed one of the reasons why the protocols in [23,
16] are so efficient is that they restrict to evaluating homomorphically circuits of multiplicative depth one.
With our protocol parties can a priori decide the value of L, for a value which enables them to produce a
computationally efficient SHE scheme. Then they can execute an MPC protocol with communication costs
reduced by effectively a factor of L. Over time as SHE technology improves the value of L can be increased
and we can obtain Gentry’s original protocol. Thus our methodology enables us to interpolate between the
case of standard MPC and the eventual goal of MPC with almost zero communication costs.

2 Well Formed Circuits

In this section we define what we mean by well formed circuits, and the pre-processing which we require on
our circuits. We take as given an arithmetic circuit C defined over a finite field Fp. In particular the circuit C
is a directed acyclic graph consisting of edges made up of nI input wires, nO output wires, and nW internal
wires, plus a set of nodes being given by a set of gates G. The gates are divided into sets of Add gates GA

and Mult gates GM , with G = GA∪GM , with each Add/Mult gate taking two wires (or a constant value in
Fp) as input and producing one wire as output. The circuit is such that all input wires are open on their input
ends, and all output wires are open on their output ends, with the internal wires being connected on both
ends. We let the depth of the circuit d be the length of the maximum path from an input wire to an output
wire. Our definition of a well formed circuit is parametrized by two positive integer values N and L.

We now associate inductively to each wire in the circuit an integer valued label as follows. The input
wires are given the label one; then all other wires are given a label according to the following rule (where
we assume a constant input to a gate has label L)

Label of output wire of Add gate = min(Label of input wires),

Label of output wire of Mult gate = min(Label of input wires)− 1.

Thus the minimum value of a label is 1 − d (which is negative for a general d). Looking ahead, the reason
for starting with an input label of one is when we match this up with our MPC protocol this will result in
low communication complexity for the input stage of the computation.

We now augment the circuit, to produce a new circuitCaug which will have labels in the range [1, . . . , L],
by adding in some special gates which we will call Refresh gates; the set of such gates are denoted as GR.
A Refresh gate takes as input a maximum of N wires, and produces as output an exact copy of the specified
input wires. The input requirement is that the input wires must have label in the range [1, . . . , L], and all that
the Refresh gate does is relabel the labels of the gate’s input wires to be L. At the end of the augmentation
process we require the invariant that all wire labels in Caug are then in the range [1, . . . , L], and the circuit
is now essentially a collection of “sub-circuits” of multiplicative depth at most L − 1 glued together using
Refresh gates. However, we require that this is done with as small a number of Refresh gates as possible.

Definition 1 (Well Formed Circuit). A circuit C will be called well formed if the number of Refresh gates
in the associated augmented circuit Caug is atmost

2 · |GM |
L ·N

.
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We expect that “most” circuits will be well formed due to the following argument: We first note that the
only gates which concern us are multiplication gates; so without loss of generality we consider a circuit C
consisting only of multiplication gates. The circuit has d layers, and let the width of C (i.e. the number of
gates) at layer i be wi. Consider the algorithm to produce Caug which considers each layer in turn, from
i = 1 to d and adds Refresh gates where needed. When reaching level i in our algorithm to produce Caug

we can therefore assume (by induction) that all input wires at this layer have labels in the range [1, . . . , L].
To maintain the invariant we only need to apply a Refresh operation to those input wires which have label
one. Let pi denote the proportion of wires at layer i which have label one when we perform this process.
It is clear that the number of required Refresh gates which we will add into Caug at level i will be at most
d2 ·pi ·wi/Ne, where the factor of two comes from the fact that each multiplication gate has two input wires.

Assuming a large enough circuit we can assume for most layers that this proportion pi will be approxi-
mately 1/L. So summing up over all levels, the expected number of Refresh gates in Caug will be:

d∑
i=1

⌈
2 · wi
L ·N

⌉
≈ 2

L ·N
·

d∑
i=1

wi =
2 · |GM |
L ·N

.

Note, we would expect that for most circuits this upper bound on the number of Refresh gates could be
easily met. For example our above rough analysis did not take into account the presence of gates with fan-
out greater than one (meaning there are less wires to Refresh than we estimated above), nor did it take into
account utilizing unused slots in the Refresh gates to refresh wires with labels not equal to one.

Determining an optimum algorithm for moving from C to a suitable Caug, with a minimal number of
Refresh gates, is an interesting optimization problem which we leave as an open problem; however clearly
the above outlined greedy algorithm will work for most circuits.

3 Threshold L-Levelled Packed Somewhat Homomorphic Encryption (SHE)

Here we summarize the properties we need from our (abstract) underlying SHE scheme. In Appendix A we
shall formally expand on the following high level intuition. The scheme will be parametrized by a number
of values; namely the security parameter κ, the number of levels L and the amount of packing of plaintext
elements which can be made into one ciphertext N . In practice the parameter N will be a function of the
number of levels L and the security parameter κ. The message space of the SHE scheme is defined to be
M = FNp , and we embed the finite field Fp into M via a map χ : Fp −→ M. See Appendix B for a
discussion as to the various choices one has for χ when we specialise to the BGV SHE scheme.

Ciphertexts c in our scheme will have associated to them a level l, so in what follows we shall describe
ciphertexts as a pair (c, l) which defines the ciphertext and the associated level l ∈ [0, . . . , L] which it is at.
The SHE scheme supports the following usual operations:

1. SHE.KeyGen(1κ): it produces a public/private key pair (pk, sk), and an evaluation key ek.
2. SHE.Encpk(m, r): it takes a plaintext m and randomness r, and produces a ciphertext (c, L) at level L.
3. SHE.Decsk(c, l): it decrypts c to obtain a plaintext m. We say that m is the plaintext associated with c.
4. SHE.Evalek(C, (c1, l

in
1 ), . . . , (c`in , l

in
`in

)): This function homomorphically evaluates the arithmetic cir-
cuit C, which is a circuit of multiplicative depth at most L, in an SIMD manner producing the output
(ĉ1, l

out
1 ), . . . , (ĉ`out , l

out
`out

). The procedure SHE.Eval is obtained by evaluating the arithmetic circuit C
via the use of the sub-procedures:

– SHE.Addek((c1, l1), (c2, l2))→ (cAdd,min (l1, l2)).
– SHE.Multek((c1, l1), (c2, l2))→ (cMult,min (l1, l2)− 1).

5



– SHE.ScalarMultek((c1, l1),a)→ (cScalar, l1).

In addition we require the following three operations:

1. SHE.Packek((c1, l1), . . . , (cN , lN )): If ci is a ciphertext with associated plaintext χ(mi) then this proce-
dure produces a ciphertext (c,min(l1, . . . , lN )) with associated plaintext m = (m1, . . . ,mN ).

2. SHE.Unpackek(c, l): If c is a ciphertext with associated plaintext m = (m1, . . . ,mN ) then this proce-
dure produces N ciphertexts (c1, l), . . . , (cN , l) such that ci has associated plaintext χ(mi).

3. SHE.LowerLevelek((c, l), l
′): This procedure, for l′ < l, produces a ciphertext with the same associated

plaintext as of (c, l) but at level l′.

To support threshold decryption we need to modify the key generation algorithm and present additional
algorithms for our scheme. The key difference is that the key generation algorithm takes (n, t) as additional
input (which defines the threshold properties of our scheme), along with the statistical security parameter
sec (for the security of the distributed decryption) and outputs a set of keys (dk1, . . . , dkn) for the distributed
decryption, one for each party, in addition to the public key, secret key and the evaluation key. The keys for
the distributed decryption satisfy the property that given t (or less) such keys no information about the secret
key sk can be obtained, while any set of t+ 1 or more of such keys are sufficient to recover the secret key in
the information theoretic sense.

This allows us to define the following three additional algorithms:

1. SHE.ShareDecdki(c, l): Given a ciphertext c and a key dki for the distributed decryption, this algorithm
computes a decryption share µ̄i of c.

2. SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]): Given a ciphertext c and any set of t + 1 or more (correct)
decryption shares µ̄i corresponding to c, anyone can combine them (using this algorithm) to obtain a
plaintext m. We require that the output m of SHE.ShareCombine should be the same as would have
been obtained by applying the decryption algorithm SHE.Decsk on c.

3. SHE.ShareSim((c, l),m, I, {µ̄i}i∈I): We also require that given a ciphertext c (with associated plaintext
m) and any decryption share µ̄i corresponding to c computed using dki, no information is revealed about
dki. This is formalized by requiring that there exists a PPT algorithm SHE.ShareSim, which on input
a set of decryption shares from the parties in set I with |I| ≤ t, can simulate the remaining (n − t)
decryption shares {µ̄∗j}, such that the simulated shares when combined with the shares of I , outputs m.
Moreover, we want the statistical distance between the simulated and real shares to be at most 2−sec.

Full details of the associated syntax, and the associated correctness and security definitions of our threshold
L-level packed SHE scheme are given in Appendix A. In Appendix B we instantiate the abstract syntax
with a threshold SHE scheme based on the BGV scheme [9]. We pause to note the difference between our
underlying SHE scheme, which is just an SHE scheme which supports distributed decryption, and that of
[1] which requires a special FHE scheme which is key homomorphic.

4 MPC from SHE – The Semi-honest Settings

In this section we present our generic MPC protocol for the computation of any arbitrary depth d circuit
using an abstract threshold L-levelled SHE scheme. For the ease of exposition we first concentrate on the
case of semi-honest security, and then we deal with active security in Section 5.

Without loss of generality we make the simplifying assumption that the function f to be computed takes
a single input from each party and has a single output; specifically f : Fnp → Fp. The ideal functionality
Ff presented in Figure 1 computes such a given function f , represented by a well formed circuit C.
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Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-input function f : Fnp → Fp.

– Upon receiving (sid, i, xi) from the party Pi for every i ∈ [1, . . . , n] where xi ∈ Fp, compute y = C(x1, . . . , xn), send
(sid, y) to all the parties and the adversary S and halt. Here C denotes the (publicly known) well formed arithmetic circuit
over Fp representing the function f .

Fig. 1. The Ideal Functionality for Computing a Given Function

We will present a protocol to realize the ideal functionality Ff in a hybrid model in which we are given
access to an ideal functionality FSETUPGEN which implements a distributed key generation for the underlying
SHE scheme. In particular the FSETUPGEN functionality presented in Figure 2 computes the public key, secret
key, evaluation key and the keys for the distributed decryption of an L-levelled SHE scheme, distributes the
public key and the evaluation key to all the parties and sends the ith key dki (for the distributed decryption)
to the party Pi for each i ∈ [1, . . . , n]. In addition, the functionality also computes a random encryption
c1 with associated plaintext 1 = (1, . . . , 1) ∈ M and sends it to all the parties. Looking ahead, c1 will be
required while proving the security of our MPC protocol. The ciphertext c1 is at level one, as we only need
it to pre-multiply the ciphertexts which are going to be decrypted via the distributed decryption protocol;
thus the output of a multiplication by c1 need only be at level zero. Looking ahead, this ensures that (with
respect to our instantiation of SHE) the noise is kept to a minimum at this stage of the protocol.

Functionality FSETUPGEN

FSETUPGEN interacts with the parties P1, . . . , Pn and the adversary S and is parameterized by an L-levelled SHE scheme

– Upon receiving (sid, i) from the party Pi for every i ∈ [1, . . . , n], compute (pk, ek, sk, dk1, . . . , dkn) =
SHE.KeyGen(1κ, 1sec, n, t) and (c1, 1) = SHE.LowerLevelek((SHE.Encpk(1, r), 1) for 1 = (1, . . . , 1) ∈ M and
some randomness r. Finally send (sid, pk, ek, dki, (c1, 1)) to the party Pi for every i ∈ [1, . . . , n] and halt.

Fig. 2. The Ideal Functionality for Key Generation

4.1 The MPC Protocol in the FSETUPGEN-hybrid Model

Here we present our MPC protocol Π SH
f in the FSETUPGEN-hybrid model. Let C be the (well formed) arith-

metic circuit representing the function f and Caug be the associated augmented circuit (which includes the
necessary Refresh gates). The protocol Π SH

f (see Figure 3) runs in two phases: offline and online. The com-
putation performed in the offline phase is completely independent of the circuit and (private) inputs of the
parties and therefore can be carried out well ahead of the time (namely the online phase) when the function
and inputs are known. If the parties have more than one input/output then one can apply packing/unpacking
at the input/output stages of the protocol; we leave this minor modification to the reader.

In the offline phase, the parties interact withFSETUPGEN to obtain the public key, evaluation key and their
respective keys for performing distributed decryption, corresponding to a threshold L-levelled SHE scheme.
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Protocol Π SH
f

Let Caug denote an augmented circuit for a well formed circuit C over Fp representing f and let SHE be a threshold L-levelled
SHE. Moreover, let P = {P1, . . . , Pn} be the set of n parties For the session ID sid the parties do the following:

Offline Computation: Every party Pi ∈ P does the following:

– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Randomly select ζ plaintexts mi,1, . . . ,mi,ζ ∈ M, compute level L encryptions of these plaintexts (cmi,k , L) =

SHE.Encpk(mi,k, ri,k). Send (sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) to every party in P .
– Upon receiving (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) from all parties Pj ∈ P , apply SHE.Add for 1 ≤ k ≤ ζ, on

(cm1,k , L), . . . , (cmn,k , L), set the resultant ciphertext as the kth offline ciphertext cmk with the (unknown) associated plain-
text mk = m1,k + · · ·+ mn,k.

Online Computation: Every party Pi ∈ P does the following:

– Input Stage: On having input xi ∈ Fp, compute (cxi , 1) = SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness
ri and send (sid, i, (cxi , 1)) to each party. Receive (sid, j, (cxj , 1)) from each party Pj ∈ P .

– Computation Stage: Associate the ciphertexts received in the previous stage with the corresponding input wires of Caug and
then homomorphically evaluate the circuit Caug gate by gate as follows:
• Addition Gate and Multiplication Gate: Given (c1, l1) and (c2, l2) associated with the input wires of the gate where

l1, l2 ∈ [1, . . . , L], locally compute (c, l) = SHE.Addek((c1, l1), (c2, l2)) with l = min (l1, l2) for an addition gate and
(c, l) = SHE.Multek((c1, l1), (c2, l2)) with l = min (l1, l2)− 1 for a multiplication gate. Associate (c, l) with the output
wire of the gate.

• Refresh Gate: For the kth refresh gate in the circuit, the kth offline ciphertext (cmk , L) is used. Let (c1, l1), . . . , (cN , lN )
be the ciphertexts associated with the input wires of the refresh gate where l1, . . . , lN ∈ [1, . . . , L]:
∗ Packing: Locally compute (cz, l) = SHE.Packek({(ci, li)}i∈[1,...,N ]) where l = min (l1, . . . , lN ).
∗ Masking: Locally compute (cz+mk , 0) = SHE.Addek(SHE.Multek((cz, l), (c1, 1)), (cmk , L))
∗ Decrypting: Locally compute the decryption share µ̄i = SHE.ShareDecdki(cz+m, 0) and send (sid, i, µ̄i)

to every other party. On receiving (sid, j, µ̄j) from every Pj ∈ P , compute the plaintext z + mk =
SHE.ShareCombine((cz+mk , 0), {µ̄j}j∈[1,...,n]).

∗ Re-encrypting: Locally re-encrypt z + mk by computing (̂cz+mk , L) = SHE.Encpk(z + mk, r) using a publicly
known (common) randomness r.

∗ Unmasking: Locally subtract (cmk , L) from (̂cz+mk , L) to obtain (̂cz, L).
∗ Unpacking: Locally compute (̂c1, L), . . . , (̂cN , L) = SHE.Unpackek(̂cz, L) and associate (̂c1, L), . . . , (̂cN , L) with

the output wires of the refresh gate.
– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 = (0, . . . , 0) and send (sid, i, (ci, L))

to every other party. On receiving (sid, j, (cj , L)) from every Pj ∈ P , apply SHE.Add on {(cj , L)}j∈[1,...,n] to obtain
(c0, L). Compute (̂c, 0) = SHE.Addek(SHE.Multek((c, l), (c1, 1)), (c0, L)).

• Output Decryption: Compute the decryption share γ̄i = SHE.ShareDecdki (̂c, 0) and send (sid, i, γ̄i) to every party. On
receiving (sid, j, γ̄j) from every Pj ∈ P , compute y = SHE.ShareCombine((̂c, 0), {γ̄j}j∈[1,...,n]), output y and halt,
where y = χ−1(y).

Fig. 3. The Protocol for Realizing Ff against a Semi-Honest Adversary in the FSETUPGEN-hybrid Model

Next each party sends encryptions of ζ random elements and then additively combines them to generate ζ
ciphertexts at level L of truly random elements (unknown to the adversary). Here ζ is assumed to be large
enough, so that for a typical circuit it is more than the number of refresh gates in the circuit, i.e. ζ > GR.
Looking ahead, these random ciphertexts created in the offline phase are used in the online phase to evaluate
refresh gates by (homomorphically) masking the messages associated with the input wires of a refresh gate.

During the online phase, the parties encrypt their private inputs using the public key and distribute the
corresponding ciphertexts to all other parties. These ciphertexts are transmitted at level one, thus consuming
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low bandwidth, and are then elevated to level L by the use of a following Refresh gate (which would have
been inserted by the circuit augmentation process). Note that the inputs of the parties are in Fp and so the
parties first apply the mapping χ (embedding Fp into the message spaceM of SHE) before encrypting their
private inputs.

The input stage is followed by the homomorphic evaluation of Caug as follows: The addition and mul-
tiplication gates are evaluated locally using the addition and multiplication algorithm of the SHE. For each
refresh gate, the parties execute the following protocol to enable a “multiparty bootstrapping” of the input
ciphertexts: the parties pick one of the random ciphertext created in the offline phase (for each refresh gate
a different ciphertext is used) and perform the following computation to refresh N ciphertexts with levels in
the range [1, . . . , L] and obtain N fresh level L ciphertexts, with the associated messages unperturbed:

– Let (c1, l1) . . . , (cN , lN ) be the N ciphertexts with associated plaintexts χ(z1), . . . , χ(zN ) with every
zi ∈ Fp, that need to be refreshed (i.e. they are the inputs of a refresh gate).

– The N ciphertexts are then (locally) packed into a single ciphertext c, which is then homomorphically
masked with a random ciphertext from the offline phase.

– The resulting masked ciphertext is then publicly opened via distributed decryption, This allows for the
creation of a fresh encryption of the opened value at level L.

– The resulting fresh encryption is then homomorphically unmasked so that its associated plaintext is the
same as original plaintext prior to the original masking.

– This fresh (unmasked) ciphertext is then unpacked to obtain N fresh ciphertexts, having the same asso-
ciated plaintexts as the original N ciphertexts ci but at level L.

By packing the ciphertexts together we only need to invoke distributed decryption once, instead of N times.
This leads to a more communication efficient online phase, since the distributed decryption is the only oper-
ation that demands communication. Without affecting the correctness of the above technique, but to ensure
security, we add an additional step while doing the masking: the parties homomorphically pre-multiply the
ciphertext c with c1 before masking. Recall that c1 is an encryption of 1 ∈ M generated by FSETUPGEN and
so by doing the above operation, the plaintext associated with c remains the same. During the simulation in
the security proof, this step allows the simulator to set the decrypted value to the random mask (irrespective
of the circuit inputs), by playing the role of FSETUPGEN and replacing c1 with c0, a random encryption of
0 = (0, . . . , 0). Furthermore, this step explains the reason why we made provision for an extra multipli-
cation during circuit augmentation by insisting that the refresh gates take inputs with labels in [1, . . . , L],
instead of [0, . . . , L]; the details are available in the simulation proof of security of our MPC protocol.

Finally, the function output y is obtained by another distributed decryption of the output ciphertext.
However, this step is also not secure unless the ciphertext is randomized again by pre-multiplication by c1
and adding n encryptions of 0 where each party contributes one encryption. In the simulation, the simulator
gives encryption of χ(y) on behalf of one honest party and replaces c1 by c0, letting the output ciphertext
correspond to the actual output y, even though the circuit is evaluated with zero as the inputs of the honest
parties during the simulation (the simulator will not know the real inputs of the honest parties and thus will
simulate them with zero). A similar idea was also used in [17]; details can be found in the security proof.

Intuitively, privacy follows because at any stage of the computation, the keys of the honest parties for
the distributed decryption are not revealed and so the adversary will not be able to decrypt any intermediate
ciphertext. Correctness follows from the properties of the SHE and the fact that the level of each ciphertext
in the protocol remains in the range [1, . . . , L], thanks to the refresh gates. So even though the circuit C may
have any arbitrary depth d > L, we can homomorphically evaluate C using an L-levelled SHE.
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Theorem 1. Let f : Fnp → Fp be a function over Fp represented by a well formed arithmetic circuit C
of depth d over Fp. Let Ff (presented in Figure 1) be the ideal functionality computing f and let SHE be
a threshold L-levelled SHE scheme. Then the protocol Π SH

f UC-secure realizes Ff against a static, semi-
honest adversary A, corrupting upto t < n parties in the FSETUPGEN-hybrid Model.

The proof of this theorem can be found in Appendix E.

5 MPC from SHE – The Active Setting

The functionalities from Section 4 are in the passive corruption model. In the presence of an active adversary,
the functionalities will be modified as follows: the respective functionality considers the input received from
the majority of the parties and performs the task it is supposed to do on those inputs. For example, in the
case of Ff , the functionality considers for the computation those xis, corresponding to the Pis from which
the functionality has received the message (sid, i, xi); on the behalf of the remaining Pis, the functionality
substitutes 0 as the default input for the computation. Similarly for FSETUPGEN, the functionality performs
its task if it receives the message (sid, i) from the majority of the parties. These are the standard notions
of defining ideal functionalities for various corruption scenarios and we refer [30] for the complete formal
details; we will not present separately the ideal functionality Ff and FSETUPGEN for the malicious setting.

A closer look at Π SH
f shows that we can “compile” it into an actively secure MPC protocol tolerating t

active corruptions if we ensure that every corrupted party “proves” in a zero knowledge (ZK) fashion that it
constructed the following correctly: (1) The ciphertexts in the offline phase; (2) The ciphertexts during the
input stage and (3) The randomizing ciphertexts during the output stage.

Apart from the above three requirements, we would also require a “robust” SHE.ShareCombine which
works correctly even if up to t input decryption shares are incorrect. In Appendix F we show that for our
specific SHE scheme, the SHE.ShareCombine algorithm (based on the standard error-correction) is indeed
robust, provided t < n/3. For the case of t < n/2 we show (in Appendix F) that by including additional
steps and incorporating additional zero-knowledge proofs (namely proof of correct decryption), one can
also obtain a robust output. Interestingly the MPC protocol requires the transmission of at most O(n3) such
additional zero-knowledge proofs; i.e. the communication needed to obtain robustness is independent of the
circuit being computed. We stress that t < n/2 is the optimal resilience for computationally secure MPC
against active corruptions (with fairness) [31]. In this paper, to keep the protocol presentation and its proof
simple, we assume a robust SHE.ShareCombine (i.e. for the case of t < n/3), which applies error correction
for the correct decryption.

Before presenting the actively secure MPC protocol, we present in Figure 4 an ideal ZK functionality
FRZK, parametrized with an NP-relation R, which will be used in our protocol. We next apply this function-
ality to the following relations to obtain the functionalities FRencZK and FRzeroencZK .

– Renc = {((c, l), (x, r)) | (c, l) = SHE.Encpk(x, r) if l = L ∨ (c, l) = SHE.LowerLevelek(
SHE.Encpk(x, r)) if l = 1}: we require this relation to hold for the offline stage ciphertexts (where
l = L) and for the input stage ciphertexts (where l = 1).

– Rzeroenc = {((c, L), (x, r)) | (c, L) = SHE.Encpk(x, r) ∧ x = 0}: we require this relation to hold
for the randomizing ciphertexts during the output stage.

We are now ready to present the protocol ΠMAL
f (see Figure 5) in the (FSETUPGEN,FRencZK ,FRzeroencZK )-hybrid

model and assuming a robust SHE.ShareCombine based on error-correction (i.e. for the case t < n/3).
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Functionality FRZK

FRZK interacts with a prover Pi ∈ {P1, . . . , Pn} and the set of n verifiers P = {P1, . . . , Pn} and the adversary S.

– Upon receiving (sid, i, (x,w)) from the prover Pi ∈ {P1, . . . , Pn}, the functionality sends (sid, i, x) to all the verifiers in
P and S if R(x,w) is true. Else it sends (sid, i,⊥) and halts.

Fig. 4. The Ideal Functionality for ZK

Protocol ΠMAL
f

Let C be the well formed arithmetic circuit over Fp representing the function f , let Caug denote an augmented circuit associated
with C, and let SHE be a threshold L-levelled SHE scheme. For session ID sid the parties in P = {P1, . . . , Pn} do the following:

Offline Computation: Every party Pi ∈ P does the following:

– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Same as in the offline phase of Π SH

f , except that for every message mik for k ∈ [1, . . . , ζ] and the corresponding ciphertext
(cmik , L) = SHE.Encpk(mik, rik), callFRencZK with (sid, i, ((cmik , L), (mik, rik))). Receive (sid, j, (cmjk , L)) fromFRencZK

for k ∈ [1, . . . , ζ] corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider ζ
publicly known level L encryptions of random values fromM as (cmjk , L) for k ∈ [1, . . . , ζ].

Online Computation: Every party Pi ∈ P does the following:

– Input Stage: On having input xi ∈ Fp, compute level L ciphertext (cxi , 1) = SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1)
with randomness ri and call FRencZK with the message (sid, i, ((cxi , 1), (χ(xi), ri))). Receive (sid, j, (cxj , 1)) from FRencZK

corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider a publicly known level
1 encryption of χ(0) as (cxj , 1) for such a Pj .

– Computation Stage: Same as Π SH
f , except that now the robust SHE.ShareCombine is used.

– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 = (0, . . . , 0) and call FRzeroencZK

with the message (sid, i, ((ci, L), (0, r′i))). Receive (sid, j, (cj , L)) from FRzeroencZK corresponding to each Pj ∈ P . If
(sid, j,⊥) is received from FRzeroencZK for some Pj ∈ P , then consider a publicly known level L encryption of 0 as
(cj , L) for such a Pj .

• The rest of the steps are same as in Π SH
f , except that now the robust SHE.ShareCombine is used.

Fig. 5. The Protocol for Realizing Ff against an Active Adversary in the (FSETUPGEN,FRencZK ,FRzeroencZK )-hybrid Model

Theorem 2. Let f : Fnp → Fp be a function represented by a well-formed arithmetic circuit C over Fp. Let
Ff (presented in Figure 1) be the ideal functionality computing f and let SHE be a threshold L-levelled
SHE scheme such that SHE.ShareCombine is robust. Then the protocol ΠMAL

f UC-secure realizes Ff in the
(FSETUPGEN,FRencZK ,FRzeroencZK )-hybrid Model against a static, active adversary A corrupting t parties.

See appendix F for the proof of the theorem. In the same appendix, we further present a more efficient
offline phase attaining a linear communication overhead (asymptotically) in the number of preprocessed
ciphertexts. We note that UC-secure realizations of FRencZK and FRzeroencZK can be obtained in the CRS model
using similar techniques as used in [2]. Finally we do not worry about the instantiation of FSETUPGEN as we
consider it a one time set-up, which can be done via standard techniques (such as running an MPC protocol).
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6 Estimating the Consumed Bandwidth

In Appendix C we determine the parameters for the instantiation of our SHE scheme using BGV by adapting
the analysis from [27] and [16]. In this section we use this parameter estimation to show that our MPC
protocol can infact give improved communication complexity compared to the standard MPC protocols, for
relatively small values of the parameter L. We are interested in the communication cost of our online stage
computation. To ease our exposition we will focus on the passively secure case from section 4; the analysis
for the active security case with t < n/3 is exactly the same (bar the additional cost of the exchange of
zero-knowledge proofs for the input stage and the output stage). For the case of active security with t < n/2
we also need to add in the communication related to the dispute control strategy outlined in Appendix F for
attaining robust SHE.ShareCombine with t < n/2; but this is a cost which is proportional to O(n3).

To get a feel for the parameters from Appendix C, we now specialise to the case of finite fields of size
p ≈ 264, statistical security parameter sec of 40, and for various values of the computational security level κ.
Resolving the various inequalities (from Appendix C), we then estimate in Table 1 the value ofN , assuming
a small value for n (we need to restrict to small n to ensure a large enough range in the PRF needed in the
distributed decryption protocol; see Appendix B.4).

L κ = 80 κ = 128 κ = 256

2 16384 16384 32768
3 16384 16384 32768
4 16384 32768 32768
5 32768 32768 65536
6 32768 32768 65536
7 32768 32768 65536
8 32768 65536 65536
9 32768 65536 65536

10 65536 65536 65536

Table 1. The value of N for various values of κ and L

Since a Refresh gate requires the transmission of n − 1 elements (namely the decryption shares) in the
ring Rq0 from party Pi to the other parties, the total communication in our protocol (in bits) is

|GR| · n · (n− 1) · |Rq0 |,

where |Rq0 | is the number of bits needed to transmit an element inRq0 , i.e.N · log2 p0. Assuming the circuit
meets our requirement of being well formed, this implies that total communication cost for our protocol is

2 · |GM | · n · (n− 1) ·N · log2 p0

L ·N
=

2 · n · (n− 1) · |GM |
L

· log2(309 · 2sec · p ·
√
N).

Using the batch distributed technique (of efficiently and parallely evaluating t+1 independent Refresh gates
simultaneously) from Appendix B.6 this can be reduced to

Cost =
4 · n · (n− 1) · |GM |

L · (t+ 1)
· log2(309 · 2sec · p ·

√
N).

We are interested in the overhead per multiplication gate, in terms of equivalent numbers of finite field
elements in Fp, which is given by Cost/(|GM | · log2 p), and the cost per party is Cost/(|GM | · n · log2 p).

At the 128 bit security level, with p ≈ 264, and sec = 40 (along with the above estimated values of N ),
this means for n = 3 parties, and at most t = 1 corruption, we obtain the following cost estimates:
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L 2 3 4 5 6 7 8 9 10
Total Cost Cost/(|GM | · log2 p) 12.49 8.33 6.31 5.05 4.21 3.61 3.19 2.84 2.55

Per party Cost Cost/(|GM | · n · log2 p) 4.16 2.77 2.10 1.68 1.40 1.20 1.06 0.94 0.85

Note for L = 2 our protocol becomes the one which requires interaction after every multiplication, for
L = 3 we require interaction only after every two multiplications and so on. Note that most practical MPC
protocols in the preprocessing model have a per gate per party communication cost of at least 2 finite field
elements, e.g. [23]. Thus, even when L = 5, we obtain better communication efficiency in the online phase
than traditional practical protocols in the preprocessing model with these parameters.
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A Threshold L-Levelled Packed Somewhat Homomorphic Encryption

In this Appendix we present a detailed explanation of the syntax and requirements for our Threshold L-
Levelled Packed Somewhat Homomorphic Encryption Scheme.

Let C(L) denote the family of circuits consisting of addition and multiplication gates whose labels follow
the conventions in Section 2; except that input wires have label L and whose minimum wire label is zero.
Thus C(L) is the family of standard arithmetic circuits of multiplicative depth at most L which consist of
2-input addition and multiplication gates over Fp, whose wire labels lie in the range [0, . . . , L]. Informally,
an L-levelled SHE scheme supports homomorphic evaluation of any circuit in the family C(L) where the
input wire values vi are mapped to ciphertexts (at level L) by encrypting χ(vi).

As remarked in the introduction we could also, as in [26], extend the circuit family C(L) to include gates
which process N input values at once as

N -Add (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 + v1, . . . , uN + vN 〉,
N -Mult (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 × v1, . . . , uN × vN 〉.

But such an optimization of the underlying circuit is orthogonal to our consideration. However, the under-
lying L-levelled packed SHE scheme supports such operations on its underlying plaintext (we will just not
consider these operations in our circuits being evaluated).

We can evaluate however subcircuits in C(L); and this is how we will describe the homomorphic eval-
uation below (this will later help us to argue the correctness property of our general MPC protocol). In
particular if C ∈ C(L), we can deal with sub-circuits Csub of C whose input wires have labels lin1 , . . . , l

in
`in

,
and whose output wires have labels lout1 , . . . , lout`out

, where lini , l
out
i ∈ [0, . . . , L]. Then given ciphertexts

c1, . . . , c`in encrypting the messages m1, . . . ,m`in , for which the ciphertexts are at level lin1 , . . . , l
in
`in

, the
homomorphic evaluation function will produce ciphertexts ĉ1, . . . , ĉ`out , at levels lout1 , . . . , lout`out

, which en-
crypt the messages corresponding to evaluating Csub on the components of the vectors m1, . . . ,m`in in an
SIMD manner. More formally:

Definition 2 (Threshold L-levelled Packed SHE). An L-levelled public key packed somewhat homomor-
phic encryption (SHE) scheme with the underlying message spaceM = FNp , public key space PK, secret
key space SK, evaluation key space EK, ciphertext space CT and distributed decryption key space DKi for
i ∈ [1, . . . , n] is a collection of the following PPT algorithms, parametrized by a computational security
parameter κ and a statistical security parameter sec:

1. SHE.KeyGen(1κ, 1sec, n, t)→ (pk, ek, sk, dk1, . . . , dkn): The key generation algorithm outputs a public
key pk ∈ PK, a public evaluation key ek ∈ EK, a secret key sk ∈ SK and n keys (dk1, . . . , dkn) for the
distributed decryption, with dki ∈ DKi.
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2. SHE.Encpk(m, r)→ (c, L): The encryption algorithm computes a ciphertext c ∈ CT , which encrypts a
plaintext vector m ∈M under the public key pk using the randomness1 r and outputs (c, L) to indicate
that the associated level of the ciphertext is L.

3. SHE.Decsk(c, l) → m′: The decryption algorithm decrypts a ciphertext c ∈ CT of associated level
l where l ∈ [0, . . . , L] using the decryption key sk and outputs a plaintext m′ ∈ M. We say that m′ is
the plaintext associated with c.

4. SHE.ShareDecdki(c, l)→ µ̄i: The share decryption algorithm takes as input a ciphertext c with associ-
ated level l ∈ [0, . . . , L], a key dki for the distributed decryption, and computes a decryption share µ̄i of
c.

5. SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: The share combine algorithm takes as input a cipher-
text c with associated level l ∈ [0, . . . , L] and a set of n decryption shares and outputs a plaintext
m′ ∈M.

6. SHE.Evalek(C
sub, (c1, l

in
1 ), . . . , (c`in , l

in
`in

))→ (ĉ1, l
out
1 ), . . . , (ĉ`out , l

out
`out

): The homomorphic evaluation
algorithm is a deterministic polynomial time algorithm (polynomial in L, `in, `out and κ) that takes as
input the evaluation key ek, a sub-circuit Csub of a circuit C ∈ C(L) with `in input gates and `out output
gates as well as a set of `in ciphertexts c1, . . . , c`in , with associated level lin1 , . . . , l

in
`in

, and outputs
`out ciphertexts ĉ1, . . . , ĉ`out , with associated levels lout1 , . . . , lout`out

respectively, where each lini , l
out
i ∈

[0, . . . , L] is the label associated to the given input/output wire in Csub.
Algorithm SHE.Eval associates the input ciphertexts with the input gates of Csub and homomorphically
evaluates Csub gate by gate in an SIMD manner on the components of the input messages. For this,
SHE.Eval consists of separate algorithms SHE.Add and SHE.Mult for homomorphically evaluating ad-
dition and multiplication gates respectively. More specifically, given two ciphertexts (c1, l1) and (c2, l2)
with associated levels l1 and l2 respectively where l1, l2 ∈ [0, . . . , L] then2:

– SHE.Addek((c1, l1), (c2, l2)) → (cAdd,min (l1, l2)): The deterministic polynomial time addition al-
gorithm takes as input (c1, l1), (c2, l2) and outputs a ciphertext cAdd with associated level min (l1, l2).

– SHE.Multek((c1, l1), (c2, l2)) → (cMult,min (l1, l2) − 1): The deterministic polynomial time mul-
tiplication algorithm takes as input (c1, l1), (c2, l2) and outputs a ciphertext cMult with associated
level min (l1, l2)− 1.

– SHE.ScalarMultek((c1, l1),a) → (cScalar, l1): The deterministic polynomial time scalar multiplica-
tion algorithm takes as input (c1, l1) and a plaintext a ∈ M and outputs a ciphertext cScalar with
associated level l1.

7. SHE.Packek((c1, l1), . . . , (cN , lN )) → (c,min(l1, . . . , lN )): If ci is a ciphertext with associated plain-
text χ(mi), then this procedure produces a ciphertext (c,min(l1, . . . , lN )) with associated plaintext
m = (m1, . . . ,mN ).

8. SHE.Unpackek(c, l)→ ((c1, l), . . . , (cN , l)): If c is a ciphertext with associated plaintext m = (m1, . . . ,
mN ), then this procedure producesN ciphertexts (c1, l), . . . , (cN , l) such that ci has associated plaintext
χ(mi).

9. SHE.LowerLevelek((c, l), l
′) → (c, l′): This procedure, for l′ < l, produces a ciphertext with the same

associated plaintext as (c, l), but at level l′.

2

We require the following homomorphic property to be satisfied:
1 In the paper, unless it is explicitly specified, we assume that some randomness has been used for encryption.
2 Without loss of generality we assume that we can perform homomorphic operations on ciphertexts of different levels, since we

can always deterministically downgrade the ciphertext level of any ciphertext to any value between zero and its current value
using SHE.LowerLevelek.
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– Somewhat Homomorphic SIMD Property: Let Csub : F`inp → F`outp be any sub-circuit of a circuit C in
the family C(L) with respective inputs m1, . . . ,m`in ∈ M, such that C when evaluated N times in an
SIMD fashion on the N components of the vectors m1, . . . ,m`in , produces N sets of `out output values
m̂1, . . . , m̂`in ∈ M. Moreover, for i ∈ [1, . . . , `in] let ci be a ciphertext of level lini with associated
plaintext vector mi and let (ĉ1, l

out
1 ), . . . , (ĉ`out , l

out
`out

) = SHE.Evalek(C, (c1, l
in
1 ), . . . , (c`in , l

in
`in

)). Then
the following holds with probability one for each i ∈ [1, . . . , `out]:

SHE.Decsk(ĉi, l
out
i ) = m̂i.

We also require the following security properties:

– Key Generation Security: Let S and Di be the random variables which denote the probability distri-
bution with which the secret key sk and the ith key dki for the distributed decryption is selected from
SK and DKi by SHE.KeyGen for i = 1, . . . , n. Moreover, for a set I ⊆ {1, . . . , n}, let DI denote the
random variable which denote the probability distribution with which the set of keys for the distributed
decryption, belonging to the indices in I , are selected from the corresponding DKis by SHE.KeyGen.
Then the following two properties hold:
• Correctness: For any set I ⊆ {1, . . . , n} with |I| ≥ t + 1, H(S|DI) = 0. Here H(X|Y ) denotes

the conditional entropy of a random variable X with respect to a random variable Y [14].
• Privacy: For any set I ⊂ {1, . . . , n} with |I| ≤ t, H(S|DI) = H(S).

– Semantic Security: For every set I ⊂ {1, . . . , n} with |I| ≤ t and all PPT adversaries A, the advantage
of A in the following game is negligible in κ:
• Key Generation: The challenger runs SHE.KeyGen(1κ, 1sec, n, t) to obtain (pk, ek, sk, dk1, . . . , dkn)

and sends pk, ek and {dki}i∈I to A.
• Challenge:A sends plaintexts m0,m1 ∈M to the challenger, who randomly selects b ∈ {0, 1} and

sends (c, L) = SHE.Encpk(mb, r) for some randomness r to A.
• Output: A outputs b′.

The advantage of A in the above game is defined to be |12 − Pr[b′ = b]|.
– Correct Share Decryption: For any (pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, the

following should hold for any ciphertext (c, l) with associated level l ∈ [0, . . . , L]:

SHE.Decsk(c, l) = SHE.ShareCombine((c, l), {SHE.ShareDecdki(c, l)}i∈[1,...,n]).

– Share Simulation Indistinguishability: There exists a PPT simulator SHE.ShareSim, which on input a
subset I ⊂ {1, . . . , n} of size at most t, a ciphertext (c, l) of level l ∈ [0, . . . , L], a plaintext m and
|I| decryption shares {µ̄i}i∈I outputs n − |I| simulated decryption shares {µ̄∗j}j∈I with the following
property: For any (pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, any subsets I ⊂
{1, . . . , n} of size at most t, any m ∈ M and any (c, l) where m = SHE.Decsk(c, l), the following
distributions are statistically indistinguishable:

({µ̄i}i∈I , SHE.ShareSim((c, l),m, {µ̄i}i∈I))
s
≈
(
{µ̄i}i∈I , {µ̄j}j∈I

)
,

where for all i ∈ [1, . . . , n], µ̄i = SHE.ShareDecdki(c, l). We require in particular that the statistical dis-
tance between the two distributions is bounded by 2−sec. Moreover SHE.ShareCombine((c, l), {µ̄i}i∈I
∪ SHE.ShareSim((c, l),m, {µ̄i}i∈I)) outputs the result m. Here I denotes the complement of the set I;
i.e. I = {1, . . . , n} \ I .
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B Instantiating our FHE using BGV

In this section we show an instantiation of SHE based on the scheme of Brakerski, Gentry and Vaikun-
tanathan (BGV) ([9]). As in [5] we make use of Shamir secret sharing to share the secret key among the
parties and pseudorandom secret sharing (PRSS) [15] to non-interactively share a pseudorandom value from
a chosen interval. We describe a variant of the BGV-type cryptosystems based on the ring learning with error
(RLWE) assumption ([34]), naturally supporting the packing operations described in Appendix A.

B.1 Preliminaries

Plaintext Space: We define the polynomial ring R := Z[x]/(f(x)), where f(x) is a monic irreducible
polynomial. For our purposes it will suffice to fix f(x) as the cyclotomic polynomial Φm(x) = xm/2 + 1
with m a power of two. We set N = φ(m) = m/2, where φ is the Euler totient function. The ring R is
the ring of integers of the mth cyclotomic number field Q(ζm), with ζm an mth root of unity. Denote by
Rq := R/qR, for an integer q the reduction of R modulo q, i.e. the set of all integer polynomials of degree
at most N − 1 with coefficients in (−q/2, q/2].

Looking ahead the plaintext space of the scheme will be defined to be Rp := R/pR for some prime p
such that p ≡ 1 mod m. Since p ≡ 1 (mod m), the polynomial Φm(x) splits into distinct linear factors
Fi(x) modulo p:

M := Rp ∼= Zp[x]/F1(x)× · · · × Zp[x]/FN (x) ∼= FNp ,

where each factor corresponds to an independent “plaintext slot”, holding an element of the finite field
Fp. Thus each message m ∈ M actually corresponds to N messages in Fp and can be represented as
an N -vector (m mod Fi)i=1,...,N . By the Chinese Remainder Theorem addition and multiplication in Rp
correspond to SIMD (Single Instruction Multiple Data) operations on the slots and this allows to process N
input values at once as described in Appendix Section A.

If we consider the Galois group Gal of Q(ζm), then Gal = Gal(Q(ζm)/Q) ∼= Z∗m and it is formed by
the mappings σi : a(x) 7→ a(xi) mod Φm(x) for all i ∈ Z∗m. It is well known ([26]) that Gal transitively
acts on plaintext slots, i.e. ∀i, j ∈ {1, . . . , N} there exists an element σi→j ∈ Gal which sends an element
in slot i to an element in slot j.

Random Values: During our construction we will need to sample elements from different distributions over
Rq. We will use the following distributions over R, and then map to Rq as appropriate.

– HWT (h,N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the
number of non-zero elements is equal to h.

– ZO(0.5, N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the
coefficient probabilities are p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

– DG(σ2, N): This generates a vector of lengthN with elements chosen according to the discrete Gaussian
distribution DZN ,σ.

– RC(0.5, σ2, N): This generates a triple of elements (a, b, c) where a is sampled from ZOs(0.5, N) and
b and c are sampled from DGs(σ2, N).

– U(q,N): This generates a vector of length N with elements generated uniformly modulo q.

Pseudorandom Secret Sharing Over Polynomial Rings: Pseudorandom secret sharing was first introduced in
[15]. Given a setup, a PRSS scheme allows parties to generate almost unlimited number of Shamir sharings

18



of pseudorandom values at the cost of no communication. Furthermore, the setup is generated once and for
all and therefore can be reused many times. While known PRSS works over fields or rings [15, 5], for our
purposes we will require a PRSS defined over the polynomial rings Rql .

In [15] the construction of a PRSS was presented. This was used in [5] to construct a PRSS over Zq,
where q =

∏
pi for n parties, such that each pi is prime with pi > n. This construction immediately extends

to Rq by computing the underlying PRF N times. For completeness we overview the construction here:
Given an element s ∈ Rq, we use [s] for the Shamir’s sharing of s, [s]i = si for the ith component of
the sharing of s, i = 1, . . . , n. We assume a prior one-time setup which distributes a vector of shared keys
kA = (k0,A, . . . , kN−1,A) to each party in A for every subset A of size n − t. These keys will be used as
the keys of a keyed pseudorandom function PRF family, {ψk(·)}k∈K. The pseudorandomness of the output
of the following algorithm can be reduced to the PRF security of the underlying PRF at the cost of security
loss by a factor of 1/N .

1. The parties in P agree on N elements tj ∈ Zq for j ∈ {0, . . . , N − 1}.
2. For j = 0, . . . , N − 1, every party Pi ∈ P computes [sj ]i =

∑
A⊂P:|A|=n−t,Pi∈A ψkj,A(tj) · fA(i).

Where fA(X) denotes the polynomial of degree at most t, such that fA(0) = 1 and fA(l) = 0 for every
Pl 6∈ A.

3. For j = 0, . . . , N − 1, the value sj =
∑

A⊂P:|A|=n−t,Pi∈A ψkj,A(tj) denotes the jth pseudorandom
shared value from Zq. Define the associated element in Rq by the polynomial

∑
sjX

j .

If the underlying PRF family has range [−T, . . . , T ] over Zq then the output of the above PRSS is an element
in Rq whose coefficients lie in the range [−

(
n
t

)
T,
(
n
t

)
T ]. To ease notation we write s =

∑
A⊂P:|A|=n−t,Pi∈A

ψkA(t) for the shared value in Rq, and [s]i =
∑

A⊂P:|A|=n−t,Pi∈A ψkA(t) · fA(i) for the shares themselves.
We note that in general

(
n
t

)
becomes exponentially large, specially if t is a constant fraction of n; however

in most practical applications of threshold cryptography, the number of parties n is indeed expected to be
small.

Canonical Embedding Norm: Here we recall some results on cyclotomic fields that we need to estimate the
parameters of our protocol instantiations. For details regarding properties of canonical norms we refer to
[27, 26, 23]. Given a polynomial a ∈ R we denote by ‖a‖∞ = max0≤i≤N−1 |ai| the standard l∞-norm. All
estimates of noise are taken with respect to the canonical embedding norm ‖a‖can∞ = ‖σ(a)‖∞, where σ is
the canonical embedding R→ Cφ(m) defined by σ : a 7→ a(ζkm), k ∈ Z∗m and ζm a fixed primitive mth root
of unity. When a ∈ Rq, for some modulus q, we need the canonical embedding norm reduced modulo q:

|a|canq = min{‖a′‖can∞ : a′ ∈ R and a′ ≡ a (mod q)}.

To map from norms in the canonical embedding to norms on the coefficients of the polynomials defining the
elements in R we note that we have ‖a‖∞ ≤ cm · ‖a‖can∞ , where cm is the ring constant. Since we fix the
choice of our base field polynomial as a 2kth cyclotomic polynomial, we have cm = 1.

B.2 The Basic L-levelled Packed BGV-type Cryptosystem

We review the BGV L-levelled Packed SHE scheme. The scheme is parametrized by a security parameter
κ, for a fixed number of levels L + 1. Note, we use L + 1 levels in our scheme description to make the
presentation consistent with the abstract scheme from Appendix A. For l = 0, . . . , L, fix a chain of moduli
ql =

∏l
i=0 pi, with pi a prime number. Encryption generates level L ciphertexts with respect to the largest
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modulus qL. In the lth level of the scheme ciphertexts consist of two elements inRql , l = 0, . . . , L. Through-
out homomorphic evaluation we will force a universal bound B on the noise contained in ciphertexts (when
measured in the canonical embedding norm reduced modulo q) after a SHE.LowerLevel execution. Since
‖a‖∞ ≤ ‖a‖can∞ ≤ B this provides an upper bound also on the coefficients used in the underlying decryp-
tion algorithm, for such outputs of SHE.LowerLevel. For a description of the algorithm SHE.LowerLevel see
[27]; where it is called modulus switching.

However, when applying decryption, or distributed decryption, we will apply the procedure to a cipher-
text which is not the direct output of a SHE.LowerLevel operation. In particular we assume that the canonical
norm of the noise of an element passed to the decryption procedure will be bounded byBdec. The decryption
procedures will then return the correct output if we have Bdec ≤ q0/2. For distributed decryption we will
need to “boost” this bound to 2exp · Bdec, where exp is a “closeness parameter” relating to the statistical
security parameter sec. Thus distributed decryption will be work if and only if 2exp · Bdec < q0/2. Below
we specify the basic algorithms for the BGV scheme; we will then discuss the extensions to cope with the
full syntax of our scheme in Definition 2.

Before presenting the methods we need to pause briefly to remind the reader about modulus switching:
A ciphertext at level l is given by a pair c = (c0, c1) ∈ R2

ql
and the decryption procedure computes, for the

global secret key sk ∈ R,
[c0 − sk · c1]ql = c0 − sk · c1 (mod ql)

where we take the symmetric modular operation in the range [−ql/2, . . . , ql/2]. The value [c0 − sk · c1]ql
can be interpreted as an element in R, and the associated noise value of the ciphertext is the canonical
norm of this element. After each homomorphic operation the norm of the noise in the ciphertexts increases.
To reduce it the modulus switching technique ([10, 9]) is used. This procedure takes as input a ciphertext
c = (c0, c1) ∈ R2

ql
, with estimated noise ν and transforms it into a ciphertext c′ ∈ R2

ql′
at level l′, with noise

magnitude ν ′, by scaling down c by a factor ql′/ql and then rounding to get back an integer ciphertext. The
ciphertext c′ = (c′0, c

′
1) satisfies [c0−sk ·c1]ql ≡ [c′0−sk ·c′1]ql′ mod p and ν ′ < ν. This modulus switching

operation corresponds to our operation SHE.LowerLevel from Definition 2.

1. SHE.KeyGen(1κ) → (pk, ek, sk): Outputs a secret key sk ← HWT (h,N), a common public key
pk = (a, b) such that a← Us(qL, N) and b = a · sk + p · e, with e← DG(σ2, N). This algorithm also
outputs the evaluation key ek which consists of N + 1 public “key-switching matrices” Wsk2→sk and
Wσi(sk)→sk and σi ∈ Gal for i = 1, . . . , N . See [27] for how these are defined.

2. SHE.Encpk(m) → (c, L): Given a plaintext m ∈ Rp, the encryption algorithm samples (v, e0, e1) ←
RCs(0.5, σ2, N) and then computes in RqL ,

c0 = b · v + p · e0 + m and c1 = a · v + p · e1.

3. SHE.Decsk(c, l) → m′: Note, this algorithm is never called in our scheme, we just present it here so as
to define correctness and to define what we mean by a message associated to a ciphertext. The algorithm
takes as input a ciphertext c = (c0, c1) ∈ R2

ql
and outputs a plaintext m′ ∈ Rp. This algorithm uses the

secret key sk to compute

µ = c0 − sk · c1 = m′ + p · (e · v + e0 − s · e1) = m′ + p · u

in Rql and then obtains m′ = (µ mod p). We denote by ν the estimated noise magnitude obtained
by using the canonical embedding norm and we require that ν < Bdec. This decryption procedure will
correctly work if Bdec < ql/2.
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4. SHE.Evalek(C
sub, (c1, l

in
1 ), . . . , (c`in , l

in
`in

)) → (ĉ1, l
out
1 ), . . . , (ĉ`out , l

out
`out

): This consists of three sepa-
rate algorithm SHE.Add, SHE.Mult and SHE.ScalarMult for homomorphically evaluating addition and
multiplication gates.

– SHE.Addek((c1, l1), (c2, l2)): It produces a ciphertext cAdd in R2
ql

, with l = min{l1, l2}. This is
performed by first applying c′i = SHE.LowerLevelek((ci, li), l) and then taking the coordinate-wise
addition of c′1 and c′2. The noise magnitude of the resulting ciphertext is at most the sum of the noise
in c1 and c2.

– SHE.Multek((c1, l1), (c2, l2)): This produces a ciphertext cMult inR2
ql

, with l = min{l1, l2}−1. This
is done in one of two ways (so as to minimize the overall parameter sizes in our scheme).
• If l 6= 1 then one first applies c′i = SHE.LowerLevelek((ci, li), l), then the resulting ciphertexts

are tensored. This results in a ciphertext c̃ is a vector of higher dimension ([11]) and corre-
sponding to a valid ciphertext of the SIMD-product of the associated plaintexts m1 ·m2 with
respect to a secret key sk′ that is the tensor product of the secret key sk with itself. The Key
Switching procedure ([27]) is then applied, using the matrix Wsk2→sk, to obtain a valid cipher-
text cMult ∈ R2

ql
with respect to the original secret key sk. The noise magnitude in cMult is at

approximately product of norms of the noise in c′1 and c′2.
• If l = 1 then one applies the tensor operation to c1 and c2 directly, then the key switching is

performed and only then is a SHE.LowerLevel operation performed. This results in us needing a
larger prime p1 than one would otherwise need, but more importantly a smaller p0.

– SHE.ScalarMultek((c, l),a): If c = (c0, c1) then one can obtain a homomorphic scalar multiplication
by evaluating c′ = (a · c0,a · c1). This procedure increases the noise, but not by as much as a normal
multiplication. Therefore we shall ignore the noise increase produced by scalar multiplication in our
analysis.

Using the evaluation key we can also define an addition homomorphic operation as in [26, 27],

– SHE.Permuteek((c, l), σ) → (ĉPermute, l): Given σ ∈ Gal and a ciphertext c = (c0, c1) ∈ R2
ql

, corre-
sponding to a plaintext m ∈ Rp, this generates a ciphertext ĉPermute = (ĉ0, ĉ1) ∈ R2

ql
corresponding to

σ(m), with respect to the secret key σ(sk). Key switching is then applied, using the keyswitching matrix
Wσ(sk)→sk to produce a ciphertext, ĉPermute decryptable under sk.

B.3 Defining SHE.Pack and SHE.Unpack for BGV

Despite our scheme being a packed SHE scheme it can still evaluate unpacked ciphertexts; indeed many of
the instances of packed SHE schemes were originally conceived in the unpacked case by taking the map χ
to be χ(m) = (m,m, . . . ,m), i.e. the diagonal embedding. For example this is the case with the schemes
in [37, 11, 10, 8] etc all of which have packed counterparts. However, such a choice of χ is not efficient if
one is interested in packing and unpacking encryptions of elements in Fp. We wish to define two functions
SHE.Pack and SHE.Unpack; the first of which takes N ciphertexts ci at level li with the associated plaintext
vector χ(mi) for mi ∈ Fp, and produces a single ciphertext c at level min(li) with the associated plaintext
vector m = (m1, . . . ,mN ) ∈M. The second function performs the reverse operation.

In what follows we let ei denote the i-th unit vector inM, i.e. the element which is zero except for a
one in the i-th position. To ease notation we let ⊕ and ⊗ denote the operations of applying the SHE.Add
and SHE.Mult/SHE.ScalarMult operations respectively, we also let σ(c) denote applying the SHE.Permute
operation to a ciphertext c and map σ ∈ Gal. If we define χ by the diagonal embedding then SHE.Pack can
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be defined in the following way

SHE.Pack(c1, . . . , cN ) =
N⊕
i=1

ei ⊗ ci,

i.e. SHE.Pack is an O(N) operation. However, SHE.Unpack needs to be performed as follows for i =
1, . . . , N ,

SHE.Unpack(c) =

 N⊕
j=1

σ1→j(e1 ⊗ c), . . . ,
N⊕
j=1

σN→j(eN ⊗ c)


i.e. SHE.Unpack is anO(N2) operation. On the other hand, if we define χ to be the map χ(m) = (m, 0, . . . , 0)
then we can define SHE.Pack and SHE.Unpack by the following O(N) operations;

SHE.Pack(c1, . . . , cN ) =

N⊕
i=1

σi→j(ci), SHE.Unpack(c) = (e1 ⊗ c, σ2→1(e2 ⊗ c), . . . , σN→1(eN ⊗ c)) .

Thus we will utilize the mapping χ(m) = (m, 0, . . . , 0) in our proposal.

B.4 Distributed Decryption Protocol

All that remains to define our Threshold L-levelled Packed SHE system based on BGV is to present the dis-
tributed decryption protocol. Note that we do not use the key-homomorphic properties of RLWE schemes as
previously used in [1, 33, 2]. Instead, we follow the approach of [5], where the authors construct a threshold
variant of Regev’s cryptosystem ([36]); we adapt this method to our situation.

At a high level the method works as follows: we modify the SHE.KeyGen algorithm so that it also
outputs for each party Pi a key dki for performing distributed decryption. The key dki consists of two
components; i.e. dki = (ski,ki). The values ski form a Shamir sharing over the ring Rq0 of the secret key
sk, with threshold t. The value ki are the associated keys for the PRSS described above. Given a common
ciphertext c = (c0, c1) ∈ Rql as input (for decryption), the parties first apply SHE.LowerLevel to reduce the
ciphertext to level zero. Then each party Pi computes a decryption share µ̄i using his private ski and a PRSS
over Rq0 as described earlier. The underlying PRF we assume produces values in the range[

− (2exp − 1) ·Bdec

p ·
(
n
t

) ,
(2exp − 1) ·Bdec

p ·
(
n
t

) ]
,

where Bdec is the bound on the canonical norm of an element being decrypted mentioned earlier, and hence
an upper bound on the size of the coefficients of the noise polynomial reconstructed during the standard
decryption procedure. See Appendix C for a detailed discussion of Bdec. The choice of this range of the
underlying PRF family means that the values output by the PRSS will be shares of elements in Rql whose
coefficients lie in the range [−(2exp − 1) · Bdec/p, (2

exp − 1) · Bdec/p]. Note, that
(
n
t

)
for t ≈ n/2 grows

very fast, and so the for the above range of the PRF to be suitably large we require that n is small. In our
discussion we implicitly assume n to be small, say n < 10.

Recall distributed decryption is defined by two algorithms SHE.ShareDec and SHE.ShareCombine.
These are defined by the following procedures:

– SHE.ShareDecdki((c, l))→ µ̄i:
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1. Apply SHE.LowerLevelek((c, l), 0) to obtain the ciphertext (c0, c1) at level zero (unless c is already
at level zero).

2. Compute µi = [µ]i = [c0 − sk · c1]i = c0 − ski · c1 where the computation is in Rq0 .
3. Execute the PRSS, using the PRF keys ki, to obtain a Shamir’s share ri of a “random” value r ∈ Rq0

such that r =
∑

kA
ψkA(t) and ‖r‖∞ < ((2exp − 1) · Bdec)/p, for some agreed vector of values t

which are a function of the input ciphertext c.
4. Compute µ̄i = [µ̄]i = [µ+ p · r]i = µi + p · ri and output µ̄i as the decryption share.

– SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: given a set n of decryption shares µ̄i and (in the mali-
cious setting) an error correction procedure, reconstruct µ̄ = µ + p · r by applying the error correction
procedure to {µ̄i}i∈[1...,n] and output m′ = (µ̄ mod p).

Note decryption will work as long as the reconstructed value µ̄ is less than q0/2, i.e. we require 2exp ·Bdec <
q0/2 (see the next section for details).

We pause to note the different situations where one obtains correct message recovery from the algorithm
SHE.ShareCombine. In the case of passive adversaries we will show (in the next section) that the above
distributed decryption procedure is secure as long as t < n. Since we are using Shamir sharing, in the
presence of t < n/3 active corruptions, using the natural error correction properties (namely Reed-Solomon
(RS) error correction), we can correctly recover the message at the end of SHE.ShareCombine.

When t < n/2 a little more work is involved; if an adversary sends an incorrect share then this can
be detected, again because we are using Shamir as the underlying secret sharing scheme. At this point the
parties execute a party elimination strategy in which they require each other to prove in zero-knowledge that
the provided share is correct. Once the cheater party(s) have been determined they are eliminated from the
protocol and the protocol resumes. Thus for active adversaries and t < n/2 we may require a grand total
of an extra n2 · t zero-knowledge proofs to be constructed, irrespective of the size of the circuit in our main
protocol; see Appendix F for more details.

B.5 Security of Our Threshold BGV Instantiation

Recall from earlier we require four security properties:

– Key Generation Security.
– Semantic Security.
– Correct Share Decryption.
– Share Simulation Indistinguishability.

We now discuss each of these in turn.

Key Generation Security: The required properties of the keys produced by the key generation algorithm
follow from the security properties of the Shamir secret sharing scheme used to share sk. We note in our
main protocol we assume an ideal functionality to distribute such keys, and so there is no “Key Generation”
protocol to analyse.

Semantic Security: The follows from the standard semantic security of the BGV scheme. However, we need
to deal with the fact that the adversary has access to shares of the underlying secret key and the keys to the
PRSS. A standard simulation shows that security in our setting reduces to that in the standard setting.

Correct Share Decryption: The infinity norm of the element µ̄ = µ + p · r produced by the algorithm
SHE.ShareCombine is bounded by Bdec + p · (2exp − 1) ·Bdec/p ≈ 2exp ·Bdec. If 2exp ·Bdec < q0/2 then
correct decryption will result.
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Share Simulation Indistinguishability: We need to present a PPT algorithm (simulator) SHE.ShareSim which
when given a ciphertext c ∈ R2

ql
with associated plaintext m ∈ Rp, a subset I ⊂ {1, . . . , n} such that

|I| = t, and a set of t decryption shares {µ̄i}i∈I , where µ̄i = SHE.ShareDecdki((c, l)), can simulate the
remaining (n − t) decryption shares {µ̄∗j} in such a way that the following two following distributions are
statistically indistinguishable: (

{µ̄i}i∈I , {µ̄∗j}j∈Ī
) s
≈
(
{µ̄i}i∈I , {µ̄j}j∈Ī

)
,

where Ī = {1, . . . , n} \ I . i.e. one cannot distinguish the real shares for the set Ī (as computed by
SHE.ShareDec algorithm) with ones produced by the simulator. Moreover, we require the statistical dis-
tance between the two distributions to be bounded by 2−sec. The simulator is constructed as follows:

1. Let k(I)
A denote the set of keys for the PRSS that have been given to parties Pi where i ∈ I , and let k(Ī)

A

denote the set of keys for the PRSS held by Pj , for j ∈ Ī .
2. The simulator first computes

r′ =
∑

k∈k(I)
A

ψk(t) +
∑

k∈k(Ī)
A

rk,

where each rk ∈ Rql is chosen such that

‖rk‖∞ <
(2exp − 1) ·Bdec

p ·
(
n
t

) .

In this way ‖r′‖∞ < (2exp−1)·Bdec

p .

3. Let µ̄∗ = m + p · r′. For each j ∈ Ī , the simulator outputs µ̄∗j such that
(
{µ̄∗j}j∈Ī , {µ̄i}i∈I

)
is a

consistent vector of shares of µ̄∗; i.e. the simulator deterministically computes consistent shares for the
honest parties via Lagrange interpolation of the t+ 1 values, µ̄∗ and {µ̄i}i∈I .

Before proving the properties of the simulation, we recall the following lemma from [2]:

Lemma 1 (Smudging Lemma [2]). Let B1 and B2 be positive integers and let e1 ∈ [−B1, B1] be a fixed
integer and let e2 ∈ [−B2, B2] be chosen uniformly and randomly. Then the statistical distance between the
distribution of e2 and e2 + e1 is B1/B2.

To prove the properties of the simulation, we first note that similar to the last stage of the simulation
above, the real shares for the honest parties can be constructed (deterministically) from µ̄ and the shares held
by the t dishonest parties. Thus, to prove indistinguishability of the real and simulated shares, it suffices to
prove that µ̄∗ = m + p · r′ and µ̄ = µ + p · r are statistically close3. To see this is indeed the case, we
first note that µ + p · r and µ + p · r′ are indistinguishable (by construction) and that r′ is uniform in an
exponentially larger range than µ (recall that ‖µ‖∞ < Bdec and ‖r′‖∞ < (2exp−1)·Bdec

p ). By application of
the Smudging lemma, the statistical distance between the distribution of µ+p·r′ and the uniform distribution
of polynomials with coefficients in [−(2exp − 1) ·Bdec, (2

exp − 1) ·Bdec] is exactly N/(2exp − 1).
To conclude the proof, we next claim that the distribution of m + p · r′ is statistically indistinguishable

from the uniform distribution of polynomials with coefficients [−(2exp − 1) · Bdec, (2
exp − 1) · Bdec]. This

follows from the fact that the statistical distance between the two distributions is N ·p
Bdec·(2exp−1) (which itself

3 For statistically close distributions X
s
≈ Y and any deterministic procedure A applied to those distributions it is the case that

A(X)
s
≈ A(Y ).
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follows from the Smudging Lemma and the fact that m ∈ Rp). It follows from the triangle inequality that
the overall statistical distance between the distribution of µ̄∗ = m+p ·r′ and µ̄ = µ+p ·r is upper bounded
by N ·(p+Bdec)

Bdec·(2exp−1) . Choose

exp = sec + max

(
log2

(
N · (p+Bdec)

Bdec

)
, log2(N)

)
.

Since p < Bdec this simplifies to exp = sec + log2(N) + 1, and we can therefore ensure the statistical
distance is bounded by 2−sec which can be made arbitrarily small by our choice of exp.

B.6 Batch Distributed Decryption

Using a well known technique presented in [3, 18], we can perform a batch of t + 1 = Θ(n) distributed
decryption, and hence evaluate a batch of t+ 1 Refresh gates at the communication cost of performing two
distributed decryptions. The following technique applies to our main MPC protocol if the batch of refresh
gates are independent, meaning the output wire of one does not lead to the input of the other.

Given a value shared among the parties, its public reconstruction requires each party to send the share
(of the value) it holds to every other party. This requires n · (n− 1) pair-wise communication of shares. So
for t+ 1 shared values, the public reconstruction will require O(n3) pair-wise communication of shares. In
what follows, it is shown how the above can be achieved with the same cost of public reconstruction of a
single value, namely with a communication of 2 · n · (n − 1) = O(n2) shares. The idea was used in the
information theoretically secure MPC protocols of [3, 18].

Let u(1), . . . , u(t+1) be t + 1 shared values. First the t + 1 shared values are “expanded” to n shared
values, say v(1), . . . , v(n) by applying a linear function locally. Specifically, if the underlying LSS is Shamir,
then we can interpret u(1), . . . , u(t+1) as the coefficients of a polynomial of degree at most t, say u(·) and
let v(1), . . . , v(n) be the n distinct points on this polynomial. Now notice that obtaining v(1), . . . , v(n) from
u(1), . . . , u(t+1) is a linear function and by (locally) applying the same linear function on the sharings of
u(1), . . . , u(t+1), the parties can obtain sharings of v(1), . . . , v(n). Now each v(i) is reconstructed only to Pi
and this costs O(n2) communication of shares. Finally every Pi sends v(i) to every other party (which costs
another O(n2) communication) and then every party can reconstruct u(·) and hence u(1), . . . , u(t+1).

In our setting all of the above sharing is done using Shamir over the ring Rq0 . It is easy to see that the
above can be carried out with no change to the underlying SHE scheme. Thus assuming our initial circuit
is large enough, i.e. there are enough independent Refresh gates at each level, we can obtain a performance
improvement of (t+ 1)/2.

C Parameter Calculation

In [27] a concrete set of parameters for the BGV SHE scheme was given for the case of binary message
spaces, and arbitrary L. In [16] this was adapted to the case of message space Rp for 2-power cyclotomic
rings, but only for the schemes which could support one level of multiplication gates (i.e. for L = 1). In this
section we combine these analyses to produce parameter estimations for the case we require of arbitrary L
and messages defined by a “large prime”, e.g. p ≈ 232, 264 or 2128. We assume in this section that the reader
is familiar with the analysis and algorithms from [27]; we mainly point out the differences in estimates for
our case.

Our analysis will make extensive use of the following fact: If a ∈ R be chosen from a distribution such
that the coefficients are distributed with mean zero and standard deviation σ, then if ζm is a primitive mth
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root of unity, we can use 6 ·σ to bound a(ζm) and hence the canonical embedding norm of a. If we have two
elements with variances σ2

1 and σ2
2 , then we can bound the canonical norm of their product with 16 · σ1 · σ2.

Recall from Appendix B that we require a chain of moduli q0 < q1 . . . < qL corresponding to each
level of the scheme, where qL = q0 ·

∏i=L
i=1 pi. Note that we evaluate a depth L circuit from a chain of

L + 1 moduli. Also note, that we apply a SHE.LowerLevel (a.k.a. modulus switch) algorithm before a
multiplication operation, except when multiplying at level one. This often leads to lower noise values in
practice (which a practical instantiation can make use of). In addition it eliminates the need to perform a
modulus switch after encryption.

We utilize the following constants described in [16], which are worked out for the case of message
space defined modulo p (the constants in [16] make use of an additional parameter n, arising from the key
generation procedure. In our case we can take this constant equal to one).

BClean =N · p/2 + p · σ ·
(

16 ·N√
2

+ 6 ·
√
N + 16 ·

√
h ·N

)
BScale =p ·

√
3 ·N ·

(
1 +

8

3
·
√
h

)
BKs =p · σ ·N ·

(
1.49 ·

√
h ·N + 2.11 · h+ 5.54 ·

√
h+ 1.96

√
N + 4.62

)
The constants are used in the following manner: A freshly encrypted ciphertext at level L has noise bounded
by BClean. In the worst case, when applying SHE.LowerLevel to a ciphertext at level l with noise bounded
by B′ one obtains a new ciphertext at level l− 1 with noise bounded by

B′

pl
+BScale.

When applying the tensor product multiplication operation to ciphertexts of a given level l of noise B1 and
B2 one obtains a new ciphertext with noise given by

B1 ·B2 +
BKs · ql
P

+BScale,

where P is a value to be determined later. As in [27] we define a small “wiggle room” ξ which we set to be
equal to eight; this is set to enable a number of additions to be performed without needing to individually
account for them in our analysis.

A general evaluation procedure begins with a freshly encrypted ciphertext at level L with noise BClean.
When entering the first multiplication operation we first apply a SHE.LowerLevel operation to reduce the
noise to our universal bound B. We therefore require

ξ ·BClean

pL
+BScale ≤ B,

i.e.
pL ≥

8 ·BClean

B −BScale
. (1)

We now turn to dealing with the SHE.LowerLevel operation which occurs before a multiplication gate
at level l ∈ [2, . . . , L − 1]. We perform a worst case analysis and assume that the input ciphertexts are at
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level l− 1. We can then assume that the input to the tensoring operation in the previous multiplication gate
(just after the previous SHE.LowerLevel ) was bounded by B, and so the output noise from the previous
multiplication gate for each input ciphertext is bounded by B2 +BKs · ql/P +BScale. This means the noise
on entering the SHE.LowerLevel operation is bounded by ξ times this value, and so to maintain our invariant
we require

ξ ·B2 + ξ ·BScale

pl
+
ξ ·BKs · ql
P · pl

+BScale ≤ B.

Rearranging this into a quadratic equation in B we have

ξ

pl
·B2 −B +

(
ξ ·BScale

pl
+
ξ ·BKs · ql−1

P
+BScale

)
≤ 0.

We denote the constant term in this equation by Rl−1. We now assume that all primes pl are of roughly
the same size, and noting the we need to only satisfy the inequality for the largest modulus l = L − 1.
We now fix RL−2 by trying to ensure that RL−2 is close to BScale · (1 + ξ/pL−1) ≈ BScale, so we set
RL−2 = (1− 2−3) ·BScale(1 + ξ/pL−1), and obtain

P ≈ 8 · ξ ·BKs · qL−2

BScale
, (2)

since BScale · (1 + ξ/pL−1) ≈ BScale.
To ensure we have a solution we require 1− 4 · ξ ·RL−2/pL−1 ≥ 0, which implies we should take, for

i = 2, . . . , L− 1,
pi ≈ 4 · ξ ·RL−2 ≈ 32 ·BScale. (3)

Recall that the final multiplication is executed in a different manner. We do not modulus switch before
the multiplication, but afterwards. We analyse the implication of this, for the size of p1, from the point of
view of our concrete application to our MPC protocol. The final multiplication will be of a ciphertext with
noise

ξ · (B2 +BScale) +
ξ ·BKs · q1

P
,

and a ciphertext with noise B (namely c1). The input to the final key switch will have noise value approx-
imately ξ · B3; we make this simplifying assumption which makes little difference to the final values. The
output noise from the keyswitch is then equal to

ξ ·B3 +BScale +
BKs · q1

P
.

We then perform a modulus switch to obtain a ciphertext as output of the multiplication gate with noise
bounded by

ξ ·B3 +BScale

p1
+
BKs · p0

P
+BScale.

We again require this to be less than B, so we have now the cubic equation

ξ

p1
·B3 −B +

(
BScale

p1
+
BKs · p0

P
+BScale

)
≤ 0.
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Substituting in our existing estimate for P , namely 8 · ξ ·BKs · qL−2/BScale we find the inequality is roughly
equivalent to, assuming L > 2 and p1 � BScale (i.e. qL−2 � BScale · p0),

ξ

p1
·B3 −B +

BScale

p1
+BScale ≈

ξ

p1
·B3 −B +

(
BScale

p1
+
BScale · p0

8 · qL−2
+BScale

)
≤ 0.

If we set B ≈ 2 ·BScale, then this means we have (approximately)

ξ

p1
· 8 ·B3

Scale −BScale +
BScale

p1
≤ 0,

and so
p1 ≈ 8 · (ξ + 1) ·B2

Scale (4)

will therefore guarantee the result.

We now need to estimate the size of p0. Due to the above choice of p1 the ciphertext to which we apply
the distributed decryption has norm bound by B, to which we add on a random encryption of zero at level
L. To do this we need to apply LowerLevel to this encryption of zero, and hence the noise level of the
ciphertext we finally pass into SHE.ShareDec in our main MPC protocol has noise bounded byBdec = 2 ·B
This means that we require

q0 = p0 ≥ 2sec +2 ·B, (5)

to ensure a valid distributed decryption.

Finally, set the Hamming weight h of the secret key sk to be 64 as in [27, 16]. Plugging this into our
equations (1), (2), (3), (4), and (5), we obtain

p0 ≈ 309 · 2sec · p ·
√
N,

p1 ≈ 107736 · p2 ·N,

pi ≈ 1237 · p ·
√
N, for 2 ≤ i ≤ L− 1,

pL ≈ 2.34 · σ ·
√
N,

P ≈ 0.404 · 1237L · σ · 2exp · pL ·N (L+3)/2,

qL−1 ≈ 21.76 · 1237L · 2exp · pL+1 ·N (L+1)/2.

The largest modulus used in our key switching matrices, i.e. the largest modulus used in an LWE instance,
is given by QL−1 = P · qL−1; where using the above estimates we have

QL−1 ≈ 8.79 · 12372·L · σ · 4exp · p2·L+1 ·NL+2.

Recall from Appendix B.5 we have the following relationship between exp and our statistical security pa-
rameter sec; exp = sec + log2(N). To ensure security we use the estimates of Lindner and Peikert [32], we
require at the κ-bit security level we require

N > (κ+ 110) · log(QL−1/σ)/7.2.
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D The UC Security Model

We work in the standard Universal Composability (UC) framework of Canetti [12], with static corruption.
The UC framework introduces a PPT environment Z that is invoked on the security parameter 1κ and an
auxiliary input z and oversees the execution of a protocol in one of the two worlds. The “ideal” world
execution involves dummy parties P1, . . . , Pn, an ideal adversary S who may corrupt some of the dummy
parties, and a functionality F . The “real” world execution involves the PPT parties P1, . . . , Pn and a real
world adversary A who may corrupt some of the parties. In either of these two worlds, a PPT adversary can
corrupt t parties out of the n parties. The environment Z chooses the input of the parties and may interact
with the ideal/real adversary during the execution. At the end of the execution, it has to decide upon and
output whether a real or an ideal world execution has taken place.

We let IDEALF ,S,Z(1κ, z) denote the random variable describing the output of the environment Z
after interacting with the ideal execution with adversary S, the functionality F , on the security param-
eter 1κ and z. Let IDEALF ,S,Z denote the ensemble {IDEALF ,S,Z(1κ, z)}κ∈N,z∈{0,1}∗ . Similarly let
REALΠ,A,Z(1κ, z) denote the random variable describing the output of the environment Z after interacting
in a real execution of a protocol Π with adversary A, the parties P , on the security parameter 1κ and z. Let
REALΠ,A,Z denote the ensemble {REALΠ,A,Z(1κ, z)}κ∈N,z∈{0,1}∗ .

Definition 3. For n ∈ N, let F be an n-ary functionality and let Π be an n-party protocol. We say that Π
securely realizes F if for every PPT real world adversary A, there exists a PPT ideal world adversary S,
corrupting the same parties, such that the following two distributions are computationally indistinguishable:

IDEALF ,S,Z
c
≈ REALΠ,A,Z .

We consider the above definition where it quantifies over different adversaries: passive or active, that corrupts
only certain number of parties.

E Semi-honest Security

Proof of Theorem 1. We prove the theorem with respect to a generic L-levelled SHE scheme and first
consider the correctness. Suppose in the protocol party Pi has input xi ∈ Fp. Then we claim the fol-
lowing invariant to hold for each wire w of the circuit Caug during the execution of the protocol: if (c, l)
is the ciphertext associated with w during the execution of the protocol where level l ∈ [1, . . . , L], then
SHE.Decsk(c, l) = χ(z), where z ∈ Fp is the value that would have been associated with w during the
evaluation of Caug with input x = (x1, . . . , xn). Before proving the claim, we first recall that due to the
introduction of the Refresh gates in Caug and the way circuit is evaluated, every wire in the circuit Caug has
label in the range [1, . . . , L] and the corresponding ciphertext associated with the wire (during the protocol
execution) has level in the range [1, . . . , L]. In addition the level of the ciphertext associated to a wire is
equal to the label of the wire.

Our invariant is clearly true for the input wires. Assuming that the evaluation of the refresh gates is
correct, the invariant is also true for the output of the Refresh gates. That the invariant holds for the rest
of the circuit follows from the homomorphic property of the SHE scheme. Finally, the correctness of the
refresh gate evaluation follows from the correctness of SHE.Pack, SHE.Unpack, the homomorphic of the
underlying SHE; and the fact that all the ciphertexts that are used in evaluating a refresh gate have levels in
the range [0, . . . , L].

We next prove the security. Let A be a real-world semi-honest adversary corrupting t < n parties and
let T ⊂ P denote the set of corrupted parties. We now present an ideal-world adversary (simulator) SSH

f for
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A in Figure 6. The high level idea for the simulator is the following: the simulator takes the input {xi}Pi∈T
and interacts withFf to obtain the function output y. The simulator then invokesAwith the inputs {xi}Pi∈T
and simulates each message that A would have received in the protocol Π SH

f from the honest parties and
from the functionality FSETUPGEN, stage by stage.

Simulator S SH
f

Let SHE be an L-levelled SHE scheme. The simulator plays the role of the honest parties and simulates each step of the
protocol Π SH

f as follows. The communication of the Z with the adversary A is handled as follows: Every input value re-
ceived by the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environmentZ). The simulator then does the following for the session ID sid:

Offline Computation:

– On receiving the message (sid, i) to FSETUPGEN from A for each Pi ∈ T , the simulator invokes (pk, ek, sk,
dk1, . . . , dkn) = SHE.KeyGen(1κ, 1sec, n, t), computes (c0, 1) = SHE.LowerLevelek(SHE.Encpk(0, ·), 1), and on the behalf
of FSETUPGEN sends (sid, pk, ek, {dki}Pi∈T , (c0, 1)) to A.

– For each Pj 6∈ T , the simulator computes (cmjk , L) = SHE.Encpk(mj,k, ·) for k ∈ [1, . . . , ζ] for a randomly chosen
mj,k ∈M and sends (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) to A on the behalf of the honest parties.

– On receiving (sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) from A for every Pi ∈ T , the simulator decrypts the ciphertexts to get
their associated plaintexts mi,1, . . . ,mi,ζ ; i.e. mi,k = SHE.Decsk(cmi,k , L). The simulator then applies SHE.Add on
(cm1,k , L), . . . , (cmn,k , L) and sets the resultant ciphertext as the kth offline ciphertext. Furthermore it sets mk = m1,k +
. . .+ mn,k as the kth offline plaintext.

Online Computation:

– Input Stage: For every party Pj ∈ P \ T , the simulator computes a random encryption (cxj , 1) =
SHE.LowerLevelek(SHE.Encpk(χ(0), ·), 1) and sends (sid, j, (cxj , 1)) to A on the behalf of every Pj ∈ P \ T . The sim-
ulator receives (sid, i, (cxi , 1)) from A and obtains the associated plaintext xi. On the behalf of the parties Pi ∈ T , the
simulator sends (sid, i, xi) to the functionality Ff and receives y, where xi = χ−1(xi) ∈ Fp,

– Computation Stage: The simulator performs the local computation (required for the addition, multiplication and refresh gates)
as specified in the protocol in order to be synchronized with the adversary with respect to the ciphertexts associated with the
wires in the circuit. For the refresh gates, the simulator simulates to A the communication from the honest parties as follows:
• Refresh Gate: Let this be the kth refresh gate and let (cmk , L) be the kth offline ciphertext with the associated plaintext

mk, which are known to the simulator while simulating the offline computation. Let (c, 0) be the ciphertext obtained after
the masking operation. Since c1 is replaced by c0 in the simulation, c is associated with message mk. For each Pi ∈ T ,
on receiving (sid, i, µ̄i) fromA as the decryption shares of (c, 0), the simulator computes the simulated decryption shares
{µ̄∗j}Pj 6∈T = SHE.ShareSim((c, 0),mk, {µ̄i}Pi∈T ). The simulator then sends the simulated shares {µ̄∗j}Pj 6∈T to A as
the decryption shares on the behalf of the honest parties.

– Output Stage:
• Randomization: On receiving (sid, i, (ci, L)) for every Pi ∈ T from A, the simulator computes encryptions of χ(0) for

every honest party, except for one honest party, say Ph, it encrypts χ(y). The simulator sends these ciphertexts to A on
the behalf of the honest parties and then follows the protocol steps to obtain (̂c, 0) corresponding to the output wire. Note
that the plaintext associated with ĉ is χ(y), since c1 is replaced by c0 in the simulation and one of the ciphertexts on the
behalf of an honest party (for randomization) encrypts χ(y).

• On receiving the decryption share (sid, i, γ̄i) for every Pi ∈ T from A, the simulator computes the simulated decryp-
tion shares {γ̄∗j }Pj∈P\T = SHE.ShareSim((̂c, 0), χ(y), {γ̄i}Pi∈T ) for the the honest parties Pj ∈ P \ T and sends
(sid, j, γ̄∗j ) as the decryption shares to A.

The simulator then outputs A’s output.

Fig. 6. Simulator for the semi-honest adversary A corrupting t parties in the set T ⊂ P .
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We will now prove that IDEALFf ,SSH
f ,Z

c
≈ REALΠSH

f ,A,Z via a series of hybrids. The output of each
hybrid is always just the output of the environment Z . Starting with HYB0 = REALΠSH

f ,A,Z , we gradually
make changes to define HYB1, HYB2, HYB3 and HYB4.

HYB1: Same as HYB0, except that the decryption shares of the honest parties corresponding to the
ciphertext ĉ associated with the output wire (obtained after the randomization) are computed using
SHE.ShareSim, by inputting to it the decryption shares of the corrupted parties corresponding to ĉ,
the ciphertext ĉ and the plaintext χ(y), where y is the function output.

HYB2: Same as HYB1, except that c1 obtained from FSETUPGEN is replaced by c0 and the circuit is com-
puted as in protocol with c0 being used in place of c1. Moreover, during the randomization step while
performing the distributed decryption of the output wire ciphertext, the randomizing ciphertext (ci, L)
of one of the honest parties (which is an encryption of 0), say Ph, is replaced by a random encryption of
χ(y) .

HYB3: Same as HYB2, except that SHE.ShareSim is used while computing the decryption shares of the
honest parties for performing the distributed decryption during the evaluation of the refresh gates.

HYB4: Same as HYB3, except that the real inputs of the honest parties are replaced by χ(0) during the
Input Stage and the circuit is evaluated using encryptions of the χ(0)s as the encrypted inputs of the
honest parties.

Our proof will conclude, as we show that every two consecutive hybrids are computationally indistinguish-
able and HYB4 = IDEALFf ,SSH

f ,Z .

HYB0
c
≈ HYB1: This follows from the share simulation indistinguishability property of SHE.

HYB1
c
≈ HYB2: To show the indistinguishability, we rely on the semantic security of SHE. In fact, we

use a variant of the semantic security notion, where the adversary gives two pairs of messages to the
challenger and the challenger picks a random pair and gives the encryptions for that pair to the adversary.
We call this as the double message semantic security. It follows by a standard hybrid argument that a
scheme offering semantic security also offers double message semantic security with a security loss of
a factor of two.
We now show how a distinguisher Z for the hybrids HYB1 and HYB2 can be used to break the dou-
ble message semantic security of the underlying SHE. Let R be the attacker that wants to break the
double message semantic security of the underlying SHE; R uses Z to do so as follows: R receives
the public key pk, evaluation key ek and t keys corresponding to the corrupted parties for performing
the distributed decryption. The attacker R then invokes Z (in her head), which gives back the input set
(x1, . . . , xn) ∈ Fnp for all the parties. Using this output R computes the function output y and prepares
two pairs of messages for the challenger, (1,0) and (0, χ(y)) and hands them over to the challenger.
Let R receive back the encrypted pair (c′, L), (c, L) from the challenger. The algorithm R now applies
SHE.LowerLevel to reduce the first of these to level one, (by abuse of notation we shall still refer to it as
c′). Now R evaluates the circuit by generating offline data honestly and using (c′, 1) in place of (c1, 1)
(that was to be returned by FSETUPGEN) and (c, L) in place of the randomization ciphertext (namely an
encryption of 0) on the behalf of the honest party Ph (which Ph would have given to randomize the
output wire ciphertext). FinallyR outputs what Z outputs.
It is easy to note that if the challenger had given encryptions of the first pair of messages, namely (1,0),
then Z is in HYB1, else it is in HYB2. Thus the distinguishing probability of Z is translated to the
winning probability of R in the double message semantic security game. This implies that our claim is
true and there exists no PPT distinguisher Z for the above two hybrids.
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HYB2
c
≈ HYB3: This can be shown by relying on the share simulation indistinguishability property of

SHE and by defining GR hybrids over the number of refresh gates, where the ith hybrid is same as
HYB2, except that SHE.ShareSim is invoked for the first i refresh gates (assuming topological ordering
of the gates) to compute the decryption shares of the honest parties and for the (i+ 1)th refresh gate on-
wards, the decryption shares of the honest parties are computed as in real protocol using SHE.ShareDec.

HYB3
c
≈ HYB4: We resort to the semantic security of the underlying SHE scheme. We let H = |P \ T |

denote the number of honest parties and without loss of generality assume that the first H parties are the
honest parties. We introduce H + 1 hybrids HYB0

3 = HYB3,HYB1
3, . . . ,HYBH3 = HYB4 over the

number of honest parties so that the ith hybrid HYBi3 is same as the (i − 1)th hybrid HYBi−1
3 , except

that the input of the ith honest party is replaced by χ(0). We now show that HYBi−1
3

c
≈ HYBi3 for

i ∈ [1, . . . ,H] which will let us conclude that HYB3
c
≈ HYB4. We fix an i and show that any Zi that

tells apart HYBi−1
3 and HYBi3 can be turned into an attacker that can break semantic security of the

SHE scheme.

Let R be the attacker that wants to break the semantic security of the SHE. The attacker participates
in the semantic security game and receives from the challenger pk, ek and t keys corresponding to the
corrupted parties for performing the distributed decryption. It then invokes Zi (in head) to receive the
inputs for the parties, say (x1, . . . , xn) and computes the function output y. The attacker prepares two
messages, χ(0) and χ(xi) for the challenger, the latter being received from Zi as the input of Pi (namely
xi). In return, the attacker gets back (cxi , L) which either encrypts χ(0) or χ(xi). Now the attacker
computes encryptions of χ(0) for the first (i − 1) parties, for Pi the attacker uses cxi received from
the challenger and for the remaining parties, the attacker computes encryptions of χ(xi+1), . . . , χ(xn).
The attackerR then honestly evaluates the circuit on these encrypted inputs, ensuring all the similarities
between HYBi−1

3 and HYBi3. Namely, the the attacker performs the offline computation honestly and
uses (c0, 1) (an encryption of 0) instead of (c1, 1) (as received from the FSETUPGEN). Moreover, while
performing the randomization during the distributed decryption of the output wire ciphertext, the attacker
uses an encryption of χ(y) as the randomizing ciphertext on the behalf of the honest party Ph (instead
of an encryption of 0), so as to make the output wire ciphertext an encryption of χ(y). Furthermore, the
attacker uses SHE.ShareSim to compute the decryption shares for the honest parties while performing
the distributed decryption for the refresh gates and for the output wire. Note that the attacker will know
the plaintext associated with the ciphertext to be decrypted (both for the refresh gates as well as for the
output wire) while using SHE.ShareSim, even without knowing the actual circuit input of the party Pi
(namely the plaintext associated with the challenge ciphertext (cxi , L)) used for the circuit evaluation.
This is because now c0 (instead of c1) is multiplied with the ciphertexts that are to be decrypted in
the protocol and so the post-multiplication ciphertexts have associated plaintext 0, irrespective of the
actual circuit inputs. This allows R to invoke SHE.ShareSim on a ciphertext for which it knows the
associated plaintext even without knowing the inputs to the circuit. More specifically, for every refresh
gate, R now knows the plaintext associated with the ciphertext to be decrypted, since it solely depends
on the data created in offline computation which will be known to R. On the other hand, for the output
wire, R knows the plaintext associated with the ciphertext to be decrypted, since it is nothing but the
circuit output χ(y). Finally at the end of the circuit evaluation as above,R outputs what Zi outputs.

Now note that if the challenge ciphertext (cxi , L) is an encryption of χ(xi), then Zi is in HYBi−1
3 , else

it is in HYBi3. The above reduction thus shows that R can distinguish between encryptions of χ(xi)
and χ(0) with the same probability with which Zi can distinguish between HYBi−1

3 and HYBi3. This
implies that our claim is true.
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HYB4
s
≈ IDEALFf ,SSH

f ,Z : Follows from the inspection that the following steps have been performed in
HYB4 as well IDEALFf ,SSH

f ,Z : (1) c1 is replaced by c0, (2) the inputs of the honest parties are replaced
by χ(0)s, (3) SHE.ShareSim is invoked to compute the decryption shares of the honest parties corre-
sponding to all the refresh gates as well as in the output computation stage and (4) One of the honest
party’s randomizing ciphertext is an encryption of χ(y) instead of an encryption of 0.

Thus we have proved the following claim that in turn concludes the theorem.

Claim. IDEALFf ,SSH
f ,Z

c
≈ REALΠSH

f ,A,Z .

2

F Active Security

In this section we first discuss how to achieve a robust SHE.ShareCombine for our precise SHE scheme,
then present a modified offline phase with linear communication overhead and then we go on to present the
proof of Theorem 2.

F.1 Robust SHE.ShareCombine

Recall that in our concrete SHE scheme, the SHE.ShareCombine algorithm takes as input a set of shares
obtained via Shamir Secret sharing over the ring Rq0 . From this observation it is clear, by the standard error
correction properties of the Reed-Solomon codes (upon which the Shamir secret sharing is based), that one
can obtain a robust SHE.ShareCombine algorithm immediately in the case of t < n/3.

All that remains is to present a robust SHE.ShareCombine for the case t < n/2. We present the protocol
(note that SHE.ShareCombine will be now a protocol instead of a local algorithm as it may involve inter-
action among the parties) in Figure 7 that uses the dispute-control framework proposed in [4] and the fact
that Reed-Solomon codes can detect up to t < n/2 errors. The protocol also invokes the ZK functionality
for the relation Rsharedec a limited number of times for the proof of correct (distributed) decryption, where
Rsharedec is given below.

Rsharedec = {(((c, l), µ̄i), dki) | µ̄i = SHE.ShareDecdki(c, l)}

Unlike the functionality FRZK defined in Figure 4 that treats all the parties in P as the verifiers, it is enough if
the functionality for Rsharedec is defined in a single prover and a single verifier settings. However we avoid
elaborating more on this to keep simplicity.

Our robust SHE.ShareCombine realizes the following idea: For distributed decryption, as usual, every
party sends the decryption shares to every other party. A party Pi on receiving the decryption shares first
check whether all of them lie on a unique polynomial of degree at most t (namely error detection). If no error
is detected then the secret can be safely reconstructed. However if some error is detected then Pi “complains”
to the parties, asking them to prove the correctness of their respective decryption shares sent earlier; the
parties respond back with ZK proofs by calling the FRsharedecZK functionality. Now Pi can “identify” the
incorrect decryption share providers and ignore their shares in the future instances of distributed decryption.
Each party Pi keeps a list Hi of the parties who it believes to be honest so far. Proper care has to be taken
to ensure that the honest parties do not respond back “too many times” to the “false” complaints issued by
the corrupted parties. This is resolved via keeping counters for the complaints. The idea is that an honest Pj
will complain to an honest Pi at most t times and thus all the complaints from Pj after tth complaint clearly
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indicates that the complaint is false and Pj is corrupted. It is now easy to see that by using this trick, the
total number of calls to FRsharedecZK in the MPC protocol will be O(n3), which is independent of the circuit
size; this is because a party may have to provide ZK proof to another party (by calling FRsharedecZK ) in at most
t instances of distributed decryption. For large circuit sizes the extra communication cost to obtain a robust
SHE.ShareCombine in the case n/3 ≤ t < n/2 can be safely ignored.

SHE.ShareCombine

Each party Pi maintains its local copy Hi of a list all the parties which it currently assumed to be honest. Initially each Hi =
{P1, . . . , Pn}. Apart from this, every party Pi maintains n counters cnti,1, . . . , cnti,n, where cnti,j is used to maintain a count
of number of times an error message has been received from the party Pj ; initially all these counters are set to 0. To execute an
SHE.ShareCombine((c, l), {µ̄j}j∈{1...,n}) operation, where µ̄j has been sent by Pj , party Pi performs the following steps:

– Ignore all µ̄j wherePj 6∈ Hi. If the remaining µ̄js lie on a unique polynomial of degree at most t, then output the corresponding
secret (namely the constant term of the polynomial). Otherwise, send a message (sid, i,Errori, (c, l)) to every party Pj ∈ Hi.

– If an error message (sid, j,Errorj , (c, l)) has been received from some Pj ∈ Hi then check whether cnti,j < t. If cnti,j < t,
then call FRsharedecZK with the message (sid, i, j, (((c, l), µ̄i), dki)) and set cnti,j := cnti,j + 1. Else if cnti,j ≥ t then remove
Pj from the listHi.

– If an error message (sid, i,Errori, (c, l)) has been sent in the first step, then execute the following: receive
(sid, j, i, ((c, l), µ̄j)) from FRsharedecZK for every Pj ∈ Hi. If for some Pj ∈ Hi, the message (sid, j, i,⊥) is received from
FRsharedecZK then remove Pj from Hi. Using the µ̄js corresponding to the Pj ∈ Hi, interpolate the polynomial of degree at
most t, output its constant term as the secret.

Fig. 7. Robust SHE.ShareCombine For t < n/2

F.2 An Improved Offline Phase (sketch)

From the analysis in Section 6, we find that the online communication complexity of our protocol is Cost =
O(n · |GM |) (in the asymptotic sense). We now sketch that how we can modify our offline computation so
that asymptotically the communication complexity of the offline phase is O(n · ζ), where ζ > GR is the
number of random ciphertexts generate in the offline phase. We need the following three tools:

– Multi-valued Broadcast with O(n) Overhead [25]: This protocol allows a sender Sen ∈ {P1, . . . , Pn}
to send a message m of size ` “identically” to all the n parties (even if Sen is corrupted). The pro-
tocol can tolerate upto t < n/2 faults (even if the adversary is computationally unbounded) and has
communication complexity O(n`) provided ` = Ω(n3).

– Randomness Extraction [31, 18]: Given a set of n encryptions of random values t of which may be
known to the adversary, the randomness extraction algorithm based on superinvertible matrix [31] or
Vandermonde matrix [18] allows the parties to (locally) compute encryptions of (n− t) random values
unknown to the adversary.

– Non-interactive Zero Knowledge Proofs: We require UC-secure instantiation of FRencZK , such that a party
Pi ∈ {P1, . . . , Pn} on computing encryptions of ` random values can publicly prove to anyone that it
knows the associated plaintexts by “attaching” a proof of size O(`). Such proofs can be obtained, for
example using the techniques of [2].

Now the offline phase protocol will proceed as follows: every party Pi computes encryptions of L random
elements along with a NIZK proof that it knows the associated plaintexts where L = ζ

(n−t) . Party Pi then
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broadcasts the ciphertexts along with the proof by acting as a Sen and invoking the instance of a multi-valued
broadcast protocol. The ciphertexts received from the different parties are then perceived as L batches of
ciphertexts, where the lth batch consists of the lth ciphertext broadcasted by each party for l ∈ [1, . . . ,L].
Finally, the randomness extraction algorithm on each batch of ciphertext to obtain (n−t) random ciphertexts
from each batch and in total L·(n−t) = ζ ciphertexts. Assuming L = Ω(n3), the total communication cost
for the offline phase is now O(n · ζ): each instance of broadcast protocol has communication complexity
O(n · L) = O(L), as (n − t) = Θ(n). It is easy to see that the output ciphertexts are indeed random as
there exists at least (n − t) honest parties corresponding to each batch of ciphertexts. Note that we do not
require any powerful (but somewhat complex) tools like player elimination, as used in the MPC protocol of
[31] (whose communication complexity is also O(n · ζ)).

F.3 Proof of Theorem 2

Since the robust SHE.ShareCombine works correctly even in the presence of t active corruptions, the cor-
rectness of our MPC protocol follows from the properties of FRencZK and FRzeroencZK by using the same ar-
guments as used in Theorem 1. More specifically, the properties of FRencZK ensures that during the offline
computation, each corrupted Pi knows the plaintext mik associated with the ciphertext cmik

. Due to the
same reason, each corrupted Pi knows the plaintext (namely the input) χ(xi) associated with the ciphertext
cxi . Moreover, the property of FRzeroencZK ensures that each corrupted Pi has indeed contributed an encryp-
tion of 0 as a randomizing ciphertext during the distributed decryption of the output wire ciphertext. The
homomorphic property of the SHE ensures that the addition and multiplication gates are evaluated correctly.
We next argue that even the refresh gates are evaluated correctly. This follows because once the parties have
access to the offline data, each refresh gate can be evaluated correctly if the parties are able to decrypt the
corresponding masked ciphertext cz+m. However since SHE.ShareCombine works even in the presence of
t active corruptions, it follows that the parties can decrypt cz+m. Due to the same reason, the parties will be
able to decrypt the ciphertext associated with the output wire and hence can obtain the function output.

We next prove the security. Let A be a real-world active adversary up to t parties and let T ⊂ P denote
the set of corrupted parties. We now present an ideal-world adversary (simulator) SMAL

f forA in Figure 8; for
simplicity, we assume that an SHE with a robust, non-interactive SHE.ShareCombine (i.e. for t < n/3) has
been used in the MPC protocol. The indistinguishability between the real and ideal world now follows mostly
by the similar arguments given for semi-honest case (see the proof of Theorem 1 provided in Appendix E).

35



Simulator SMAL
f

Let SHE be a threshold L-levelled SHE scheme. The simulator plays the role of the honest parties and simulates each step of the
protocol ΠMAL

f as follows. The communication of the Z with the adversary A is handled as follows: Every input value received by
the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its output tape is copied to the
simulator’s output tape (to be read by the environment Z). The simulator then does the following for session ID sid:

Offline Computation:

– On receiving the message (sid, i) to FSETUPGEN from A for each Pi ∈ T , invoke (pk, ek, sk, dk1, . . . , dkn) =
SHE.KeyGen(1κ, n), compute (c0, 1) = SHE.LowerLevelek(SHE.Encpk(0, ·), 1), and send (sid, pk, ek, {dki}Pi∈T , (c0, 1))
to A.

– For each party Pj 6∈ T and k ∈ [1, . . . , ζ], compute (cmjk , L) = SHE.Encpk(mjk, ·) for a randomly chosen mjk ∈ M and
send (sid, j, (cmjk , L)) toA on the behalf ofFRencZK . For each Pi ∈ T on receiving (sid, i, (cmik , L), (mik, rik)) as a message

to FRencZK from A for k ∈ [1, . . . , ζ], verify if (cmik , L)
?
= SHE.Encpk(mik, rik). If the verification fails for some Pi ∈ T

then send (sid, i,⊥) ζ times (corresponding to ζ ciphertexts) to A and set ζ publicly known level L encryptions of random
values fromM as (cmik , L) for k ∈ [1, . . . , ζ] . Compute the kth ciphertext and the kth plaintext of the offline phase as in
ΠMAL
f . The later can be computed by the simulator since it knows all the plaintexts.

Online Computation:

– Input Stage:
• For every party Pj ∈ P \ T , compute a random encryption (cxj , 1) = SHE.LowerLevelek(SHE.Encpk(χ(0), ·), 1) and

send (sid, j, (cxj , 1)) to A on the behalf of FRencZK . For each Pi ∈ T on receiving (sid, i, (cxi , 1), (χ(xi), ri)) as a

message to FRencZK from A, verify (cxi , 1)
?
= SHE.LowerLevelek(SHE.Encpk(χ(xi), ri)) and send (sid, i,⊥) to A if

verification fails. Use publicly known ciphertext (cxi , 1) encrypting xi = χ(0) on the behalf of any such Pi.
• Send (sid, i, xi) to Ff on the behalf of each Pi ∈ T and receive the function output y.

– Computation Stage: The simulator acts in the same way as in S SH
f except that whenever A sends the decryption shares

corresponding to the parties in T during the evaluation of the refresh gates, the simulator ignores them; instead it computes the
decryption shares by itself using the keys dki (for the distributed decryption) corresponding to Pi ∈ T (the simulator knows
dki for every Pi ∈ T since it generated them by itself). These new decryption shares are then fed to SHE.ShareSim to obtain
the simulated decryption shares corresponding to the honest parties, which the simulator then sends to A on behalf of the
honest parties.

– Output Stage:
• Randomization: Let H = P \ T be the set of honest parties and let Ph be some party in H . For every Pj ∈ H \ {Ph}

compute a random encryption (cj , L) = SHE.Encpk(0, ·), while for Ph ∈ H compute a random encryption (ch, L) =
SHE.Encpk(χ(y), ·). For every Pj ∈ H , send (sid, j, (cj , L)) to A on the behalf of FRzeroencZK .

• For each Pi ∈ T on receiving (sid, i, (ci, L), (0, r′i)) as a message to FRzeroencZK from A, verify if (ci, L)
?
=

SHE.Encpk(0, r
′
i). If the verification fails for some Pi ∈ T then send (sid, i,⊥) to A and consider a publicly known

level L encryption of 0 as (ci, L) for such a Pi.
• On receiving the decryption shares from A corresponding to the parties Pi ∈ T , the simulator ignores them and instead

recomputes them using the dkis and feed them to SHE.ShareSim to compute the simulated decryption shares for the
honest parties. Finally it sends the simulated shares to A on behalf of the honest parties.

The simulator then outputs A’s output.

Fig. 8. Simulator for the active adversary A corrupting t parties in the set T ⊂ P .
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