
Between a Rock and a Hard Place: Interpolating
Between MPC and FHE

A. Choudhury, J. Loftus, E. Orsini, A. Patra and N.P. Smart

Dept. Computer Science,
University of Bristol,

United Kingdom.
{Ashish.Choudhary,Emmanuela.Orsini,Arpita.Patra}@bristol.ac.uk,

{loftus,nigel}@cs.bris.ac.uk

Abstract. We present a computationally secure MPC protocol for threshold ad-
versaries which is parametrized by a value L. When L = 2 we obtain a classical
form of MPC protocol in which interaction is required for multiplications, as L
increases interaction is reduced, in that one requires interaction only after com-
puting a higher degree function. When L approaches infinity one obtains the FHE
based protocol of Gentry, which requires no interaction. Thus one can trade com-
munication for computation in a simple way. Our protocol is based on an inter-
active protocol for “bootstrapping” a somewhat homomorphic encryption (SHE)
scheme. The key contribution is that our presented protocol is highly communi-
cation efficient enabling us to obtain reduced communication when compared to
traditional MPC protocols for relatively small values of L.

1 Introduction

In the last few years computing on encrypted data via either Fully Homomorphic En-
cryption (FHE) or Multi-Party Computation (MPC) has been subject to a remarkable
number of improvements. Firstly, FHE was shown to be possible [23]; and this was
quickly followed by a variety of applications and performance improvements [6, 9, 8,
24, 25, 29, 30]. Secondly, whilst MPC has been around for over thirty years, only in
the last few years we have seen an increased emphasis on practical instantiations; with
some very impressive results [5, 18, 28].

We focus on MPC where n parties wish to compute a function on their respective
inputs. Whilst the computational overhead of MPC protocols, compared to computing
“in the clear”, is relatively small (for example in practical protocols such as [20, 28]
a small constant multiple of the “in the clear” cost), the main restriction on practical
deployment of MPC is the communication cost. Even for protocols in the preprocess-
ing model, evaluating arithmetic circuits over Fp, the communication cost in terms of
number of bits per multiplication gate and per party is a constant multiple of the bit
length, log p, of the data being manipulated for a typically large value of the constant.

c©IACR 2013. This article is the final version submitted by the author(s) to the IACR and to
Springer-Verlag on August 24 2013. The version published by Springer-Verlag is available at
http://dx.doi.org/10.1007/978-3-642-42045-0_12.

This is a major drawback of MPC protocols since communication is generally more
expensive than computation. Theoretical results like [15] (for the computational case)
and [16] (for the information theoretic case) bring down the per gate per party com-
munication cost to a very small quantity; essentially O(logn

n · log |C| · log p) bits for a
circuit C of size |C|. While these results suggest that the communication cost can be
asymptotically brought down to a constant for large n, the constants are known to be
large for any practical purpose. Our interest lies in constructing efficient MPC protocols
where the efficiency is measured in terms of exact complexity rather than the asymptotic
complexity.

In his thesis, Gentry [22] showed how FHE can be used to reduce the communica-
tion cost of MPC down to virtually zero for any number of parties. In Gentry’s MPC
protocol all parties encrypt to each other their inputs under a shared FHE public key.
They then compute the function homomorphically, and at the end perform a shared de-
cryption. This implies an MPC protocol whose communication is limited to a function
of the input and output sizes, and not to the complexity of the circuit. However, this
reduction in communication complexity comes at a cost, namely the huge expense of
evaluating homomorphically the function. With current understanding of FHE technol-
ogy, this solution is completely infeasible in practice.

A variant of Gentry’s protocol was presented by Asharov et al. in [1] where the
parties outsource their computation to a server and only interact via a distributed de-
cryption. The key innovation in [1] was that independently generated (FHE) keys can
be combined into a “global” FHE key with distributed decryption capability. We do
not assume such a functionality of the keys (but one can easily extend our results to
accommodate this); instead we focus on using distributed decryption to enable efficient
multi-party bootstrapping. In addition the work of [1], in requiring an FHE scheme, as
opposed to the SHE scheme of our work, requires the assumption of circular security
of the underlying FHE scheme (and hence more assumptions).

In [20], following on the work in [4], the authors propose an MPC protocol which
uses an SHE scheme as an “optimization”. Based in the preprocessing model, the au-
thors utilize an SHE scheme which can evaluate circuits of multiplicative depth one to
optimize the preprocessing step of an essentially standard MPC protocol. The optimiza-
tions, and use of SHE, in [20] are focused on the case of computational improvements.
In this work we invert the use of SHE in [20], by using it for the online phase of the MPC
protocol, so as to optimize the communication efficiency for any number of parties.

In essence we interpolate between the two extremes of traditional MPC protocols
(with high communication but low computational costs) and Gentry’s FHE based solu-
tion (with high computation but low communication costs). Our interpolation is depen-
dent on a parameter, which we label as L, where L ≥ 2. At one extreme, for L = 2 our
protocol resembles traditional MPC protocols, whilst at the other extreme, for L = ∞
our protocol is exactly that of Gentry’s FHE based solution. We emphasize that our
construction is general in that any SHE can be used which supports homomorphic com-
putation of depth two circuits and threshold decryption. Thus the requirements on the
underlying SHE scheme are much weaker than the previous SHE (FHE) based MPC
protocols, such as the one by Asharov et al. [1], which relies on the specifics of LWE

(learning with errors) based SHE i.e. key-homomorphism and demands homomorphic
computation of depth L circuits for big enough L to bootstrap.

The solution we present is in the preprocessing model; in which we allow a prepro-
cessing phase which can compute data which is neither input, nor function, dependent.
This preprocessed data is then consumed in the online phase. As usual in such a model
our goal is for efficiency in the online phase only. We present our basic protocol and
efficiency analysis for the case of passive threshold adversaries only; i.e. we can toler-
ate up to t passive corruptions where t < n. We then note that security against t active
adversaries with t < n/3 can be achieved for no extra cost in the online phase. For the
active security case, essentially the same communication costs can be achieved even
when t < n/2, bar some extra work (which is independent of |C|) to eliminate the
cheating parties when they are detected. The security of our protocols are proven in the
standard UC framework [10].

Finally we note that our results on communication complexity, both in a practi-
cal and in an asymptotic sense, in the computational setting are comparable (if not
better) than the best known results in the information theoretic and computational set-
tings. Namely the best known optimally resilient statistically secure MPC protocol with
t < n/2 has (asymptotic) communication complexity of O(n) per multiplication [3],
whereas ours is O(n/L) (see Section 6 for the analysis of our protocol). With near
optimal resiliency of t < (1

3 − ε)n, the best known perfectly secure MPC protocol has
(asymptotic) communication complexity of O(polylog n) per multiplication [16], but
a huge constant is hiding under the O. In the computational settings, with near optimal
resiliency of t < (1

2 − ε)n, the best known MPC protocol has (asymptotic) communi-
cation complexity ofO(polylog n) per multiplication [15], but again a huge constant is
hiding under the O. All these protocols can not win over ours when exact communica-
tion complexity is compared for even small values of L.

Overview: Our protocol is intuitively simple. We first take an L-levelled SHE scheme
(strictly it has L + 1 levels, but can evaluate circuits with L levels of multiplications)
which possesses a distributed decryption protocol for the specific access structure re-
quired by our MPC protocol. We assume that the SHE scheme is implemented over a
ring which supports N embeddings of the underlying finite field Fp into the message
space of the SHE scheme. Almost all known SHE schemes support such packing of the
finite field into the plaintext slots in an SIMD manner [24, 30]; and such packing has
been crucial in the implementation of SHE in various applications [17, 20, 25].

Clearly with such a setup we can implement Gentry’s MPC solution for circuits
of multiplicative depth L. All that remains is how to “bootstrap” from circuits with
multiplicative depth L to arbitrary circuits. The standard solution would be to bootstrap
the FHE scheme directly, following the blueprint outlined in Gentry’s thesis. However,
in the case of applications to MPC we could instead utilize a protocol to perform the
bootstrapping. In a nutshell that is exactly what we propose.

The main issue then is show how to efficiently perform the bootstrapping in a dis-
tributed manner; where efficiency is measured in terms of computational and communi-
cation performance. Naively performing an MPC protocol to execute the bootstrapping
phase will lead to a large communication overhead, due to the inherent overhead in
dealing with homomorphic encryptions. But on its own this is enough to obtain our

asymptotic interpolation between FHE and MPC; we however aim to provide an effi-
cient and practical interpolation. That is one which is efficient for small values of L. It
turns out that a special case of a suitable bootstrapping protocol can be found as a sub-
procedure of the MPC protocol in [20]. We extract the required protocol, generalise it,
and then apply it to our MPC situation.

To ease exposition we will not utilize the packing from [24] to perform evaluations
of the depth L sub-circuits; we see this as a computational optimization which is or-
thogonal to the issues we will explore in this paper. In any practical instantiation of the
protocol of this paper such a packing could be used, as described in [24], in evaluating
the circuit of multiplicative depth L. However, we will use this packing to perform the
bootstrapping in a communication efficient manner.

The bootstrapping protocol runs in two phases. In the first (offline) phase we re-
peatedly generate sets of ciphertexts, one set for each party, such that all parties learn
the ciphertexts but only the given party learns their underlying messages (which are
assumed to be packed). The offline phase can be run in either a passive, covert or ac-
tive security model, irrespective of the underlying access structure of the MPC protocol
following ideas from [18]. In the second (online) phase the data to be bootstrapped
is packed together, a random mask is added (computed from the offline phase data),
a distributed decryption protocol is executed to obtain the masked data which is then
re-encrypted, the mask is subtracted and then the data is unpacked. All these steps are
relatively efficient, with communication only being required for the distributed decryp-
tion.

To apply our interactive bootstrapping method efficiently we need to make a mild
assumption on the circuit being evaluated; this is similar to the assumptions used in [15,
16, 21]. The assumption can be intuitively seen as saying that the circuit is relatively
wide enough to enable packing of enough values which need to be bootstrapped at each
respective level. We expect that most circuits in practice will satisfy our assumption,
and we will call the circuits which satisfy our requirement “well formed”.

We pause to note that the ability to open data within the MPC protocol enables one
to perform more than a simple evaluation of an arithmetic circuit. This observation is
well known in the MPC community, where it has been used to obtain efficient proto-
cols for higher level functions [11, 14]. Thus enabling a distributed bootstrapping also
enables one to produce more efficient protocols than purely FHE based ones.

We instantiate our protocol with the BGV scheme [7] and obtain sufficient param-
eter sizes following the methodology in [18, 25]. Due to the way we utilize the BGV
scheme we need to restrict to MPC protocols for arithmetic circuits over a finite field
Fp, with p ≡ 1 (mod m) with m = 2 · N and N = 2r for some r. The distributed
decryption method uses a “smudging” technique (see the full version of the paper)
which means that the modulus used in the BGV scheme needs to be larger than what
one would need to perform just the homomorphic operations. Removing this smudging
technique, and hence obtaining an efficient protocol for distributed decryption, for any
SHE scheme is an interesting open problem; with many potential applications including
that described in this paper.

We show that even for a very small value of L, in particular L = 5, we can achieve
better communication efficiency than many practical MPC protocols in the preprocess-

ing model. Most practical MPC protocols such as [5, 20, 28] require the transmission of
at least two finite field elements per multiplication gate between each pair of parties. In
[20] a technique is presented which can reduce this to the transmission of an average of
three field elements per multiplication gate per party (and not per pair of parties). Note
the models in [5] (three party, one passive adversary) and [20, 28] (n party, dishonest
majority, active security) are different from ours (we assume honest majority, active
security); but even mapping these protocols to our setting of n party honest majority
would result in the same communication characteristics. We show that for relatively
small values of L, i.e. L > 8, one can obtain a communication efficiency of less than
one field element per gate and party (details available in Section 6).

Clearly, by settingL appropriately one can obtain a communication efficiency which
improves upon that in [15, 16]; albeit we are only interested in communication in the
online phase of a protocol in the preprocessing model whilst [15, 16] discuss total com-
munication cost over all phases. But we stress this is not in itself interesting, as Gentry’s
FHE based protocol can beat the communication efficiency of [15, 16] in any case. What
is interesting is that we can beat the communication efficiency of the online phase of
practical MPC protocols, with very small values of L indeed. Thus the protocol in this
paper may provide a practical tradeoff between existing MPC protocols (which con-
sume high bandwidth) and FHE based protocols (which require huge computation).

Our protocol therefore enables the following use-case: it is known that SHE schemes
only become prohibitively computationally expensive for large L; indeed one of the
reasons why the protocols in [18, 20] are so efficient is that they restrict to evaluating
homomorphically circuits of multiplicative depth one. With our protocol parties can a
priori decide the value of L, for a value which enables them to produce a computation-
ally efficient SHE scheme. Then they can execute an MPC protocol with communica-
tion costs reduced by effectively a factor of L. Over time as SHE technology improves
the value of L can be increased and we can obtain Gentry’s original protocol. Thus
our methodology enables us to interpolate between the case of standard MPC and the
eventual goal of MPC with almost zero communication costs.

2 Well Formed Circuits

In this section we define what we mean by well formed circuits, and the pre-processing
which we require on our circuits. We take as given an arithmetic circuit C defined over
a finite field Fp. In particular the circuitC is a directed acyclic graph consisting of edges
made up of nI input wires, nO output wires, and nW internal wires, plus a set of nodes
being given by a set of gates G. The gates are divided into sets of Add gates GA and
Mult gates GM , with G = GA ∪ GM , with each Add/Mult gate taking two wires (or
a constant value in Fp) as input and producing one wire as output. The circuit is such
that all input wires are open on their input ends, and all output wires are open on their
output ends, with the internal wires being connected on both ends. We let the depth of
the circuit d be the length of the maximum path from an input wire to an output wire.
Our definition of a well formed circuit is parametrized by two positive integer values N
and L.

We now associate inductively to each wire in the circuit an integer valued label as
follows. The input wires are given the label one; then all other wires are given a label
according to the following rule (where we assume a constant input to a gate has label
L)

Label of output wire of Add gate = min(Label of input wires),
Label of output wire of Mult gate = min(Label of input wires)− 1.

Thus the minimum value of a label is 1−d (which is negative for a general d). Looking
ahead, the reason for starting with an input label of one is when we match this up with
our MPC protocol this will result in low communication complexity for the input stage
of the computation.

We now augment the circuit, to produce a new circuitCaug which will have labels in
the range [1, . . . , L], by adding in some special gates which we will call Refresh gates;
the set of such gates are denoted as GR. A Refresh gate takes as input a maximum of
N wires, and produces as output an exact copy of the specified input wires. The input
requirement is that the input wires must have label in the range [1, . . . , L], and all that
the Refresh gate does is relabel the labels of the gate’s input wires to be L. At the end of
the augmentation process we require the invariant that all wire labels in Caug are then
in the range [1, . . . , L], and the circuit is now essentially a collection of “sub-circuits”
of multiplicative depth at most L− 1 glued together using Refresh gates. However, we
require that this is done with as small a number of Refresh gates as possible.

Definition 1 (Well Formed Circuit). A circuit C will be called well formed if the num-
ber of Refresh gates in the associated augmented circuit Caug is at most 2·|GM |

L·N .

We expect that “most” circuits will be well formed due to the following argument: We
first note that the only gates which concern us are multiplication gates; so without loss
of generality we consider a circuit C consisting only of multiplication gates. The circuit
has d layers, and let the width of C (i.e. the number of gates) at layer i be wi. Consider
the algorithm to produce Caug which considers each layer in turn, from i = 1 to d and
adds Refresh gates where needed. When reaching level i in our algorithm to produce
Caug we can therefore assume (by induction) that all input wires at this layer have
labels in the range [1, . . . , L]. To maintain the invariant we only need to apply a Refresh
operation to those input wires which have label one. Let pi denote the proportion of
wires at layer i which have label one when we perform this process. It is clear that the
number of required Refresh gates which we will add into Caug at level i will be at most
d2 · pi · wi/Ne, where the factor of two comes from the fact that each multiplication
gate has two input wires.

Assuming a large enough circuit we can assume for most layers that this proportion
pi will be approximately 1/L, since wires will be refreshed after their values have
passed through L multiplication gates. So summing up over all levels, the expected
number of Refresh gates in Caug will be:

d∑
i=1

⌈
2 · wi
L ·N

⌉
≈ 2
L ·N

·
d∑
i=1

wi =
2 · |GM |
L ·N

.

Note, we would expect that for most circuits this upper bound on the number of Refresh
gates could be easily met. For example our above rough analysis did not take into ac-
count the presence of gates with fan-out greater than one (meaning there are less wires
to Refresh than we estimated above), nor did it take into account utilizing unused slots
in the Refresh gates to refresh wires with labels not equal to one.

Determining an optimum algorithm for moving from C to a suitable Caug, with
a minimal number of Refresh gates, is an interesting optimization problem which we
leave as an open problem; however clearly the above outlined greedy algorithm will
work for most circuits.

3 Threshold L-Levelled Packed Somewhat Homomorphic
Encryption (SHE)

In this section, we present a detailed explanation of the syntax and requirements for
our Threshold L-Levelled Packed Somewhat Homomorphic Encryption Scheme. The
scheme will be parametrized by a number of values; namely the security parameter
κ, the number of levels L, the amount of packing of plaintext elements which can be
made into one ciphertext N , a statistical security parameter sec (for the security of the
distributed decryption) and a pair (t, n) which defines the threshold properties of our
scheme. In practice the parameter N will be a function of L and κ. The message space
of the SHE scheme is defined to beM = FNp , and we embed the finite field Fp intoM
via a map χ : Fp −→M.

Let C(L) denote the family of circuits consisting of addition and multiplication gates
whose labels follow the conventions in Section 2; except that input wires have label L
and whose minimum wire label is zero. Thus C(L) is the family of standard arithmetic
circuits of multiplicative depth at most L which consist of 2-input addition and mul-
tiplication gates over Fp, whose wire labels lie in the range [0, . . . , L]. Informally, a
threshold L-levelled SHE scheme supports homomorphic evaluation of any circuit in
the family C(L) with the provision for distributed (threshold) decryption, where the
input wire values vi are mapped to ciphertexts (at level L) by encrypting χ(vi).

As remarked in the introduction we could also, as in [24], extend the circuit family
C(L) to include gates which process N input values at once as

N -Add (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 + v1, . . . , uN + vN 〉,
N -Mult (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 × v1, . . . , uN × vN 〉.

But such an optimization of the underlying circuit is orthogonal to our consideration.
However, the underlying L-levelled packed SHE scheme supports such operations on
its underlying plaintext (we will just not consider these operations in our circuits being
evaluated).

We can evaluate subcircuits in C(L); and this is how we will describe the homomor-
phic evaluation below (this will later help us to argue the correctness property of our
general MPC protocol). In particular if C ∈ C(L), we can deal with sub-circuits Csub

of C whose input wires have labels lin1 , . . . , l
in
`in

, and whose output wires have labels
lout1 , . . . , lout`out

, where lini , l
out
i ∈ [0, . . . , L]. Then given ciphertexts c1, . . . , c`in encrypt-

ing the messages m1, . . . ,m`in , for which the ciphertexts are at level lin1 , . . . , l
in
`in

,

the homomorphic evaluation function will produce ciphertexts ĉ1, . . . , ĉ`out , at levels
lout1 , . . . , lout`out

, which encrypt the messages corresponding to evaluating Csub on the
components of the vectors m1, . . . ,m`in in a SIMD manner. More formally:

Definition 2 (Threshold L-levelled Packed SHE). An L-levelled public key packed
somewhat homomorphic encryption (SHE) scheme with the underlying message space
M = FNp , public key space PK, secret key space SK, evaluation key space EK, ci-
phertext space CT and distributed decryption key space DKi for i ∈ [1, . . . , n] is a
collection of the following PPT algorithms, parametrized by a computational security
parameter κ and a statistical security parameter sec:

1. SHE.KeyGen(1κ, 1sec, n, t)→ (pk, ek, sk, dk1, . . . , dkn): The key generation algo-
rithm outputs a public key pk ∈ PK, a public evaluation key ek ∈ EK, a secret key
sk ∈ SK and n keys (dk1, . . . , dkn) for the distributed decryption, with dki ∈ DKi.

2. SHE.Encpk(m, r) → (c, L): The encryption algorithm computes a ciphertext c ∈
CT , which encrypts a plaintext vector m ∈ M under the public key pk using
the randomness1 r and outputs (c, L) to indicate that the associated level of the
ciphertext is L.

3. SHE.Decsk(c, l)→ m′: The decryption algorithm decrypts a ciphertext c ∈ CT of
associated level l where l ∈ [0, . . . , L] using the decryption key sk and outputs a
plaintext m′ ∈M. We say that m′ is the plaintext associated with c.

4. SHE.ShareDecdki(c, l) → µ̄i: The share decryption algorithm takes a ciphertext
c with associated level l ∈ [0, . . . , L], a key dki for the distributed decryption, and
computes a decryption share µ̄i of c.

5. SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: The share combine algorithm
takes a ciphertext c with associated level l ∈ [0, . . . , L] and a set of n decryption
shares and outputs a plaintext m′ ∈M.

6. SHE.Evalek(Csub, (c1, lin1), . . . , (c`in , l
in
`in

))→ (ĉ1, lout1), . . . , (ĉ`out , l
out
`out

): The ho-
momorphic evaluation algorithm is a deterministic polynomial time algorithm (poly-
nomial in L, `in, `out and κ) that takes as input the evaluation key ek, a sub-
circuit Csub of a circuit C ∈ C(L) with `in input gates and `out output gates
as well as a set of `in ciphertexts c1, . . . , c`in , with associated level lin1 , . . . , l

in
`in

,
and outputs `out ciphertexts ĉ1, . . . , ĉ`out , with associated levels lout1 , . . . , lout`out

re-
spectively, where each lini , l

out
i ∈ [0, . . . , L] is the label associated to the given

input/output wire in Csub.
Algorithm SHE.Eval associates the input ciphertexts with the input gates of Csub

and homomorphically evaluates Csub gate by gate in an SIMD manner on the com-
ponents of the input messages. For this, SHE.Eval consists of separate algorithms
SHE.Add and SHE.Mult for homomorphically evaluating addition and multiplica-
tion gates respectively. More specifically, given two ciphertexts (c1, l1) and (c2, l2)
with associated levels l1 and l2 respectively where l1, l2 ∈ [0, . . . , L] then2:

1 In the paper, unless it is explicitly specified, we assume that some randomness has been used
for encryption.

2 Without loss of generality we assume that we can perform homomorphic operations on cipher-
texts of different levels, since we can always deterministically downgrade the ciphertext level
of any ciphertext to any value between zero and its current value using SHE.LowerLevelek.

– SHE.Addek((c1, l1), (c2, l2))→ (cAdd,min (l1, l2)): The deterministic polyno-
mial time addition algorithm takes as input (c1, l1), (c2, l2) and outputs a ci-
phertext cAdd with associated level min (l1, l2).

– SHE.Multek((c1, l1), (c2, l2)) → (cMult,min (l1, l2) − 1): The deterministic
polynomial time multiplication algorithm takes as input (c1, l1), (c2, l2) and
outputs a ciphertext cMult with associated level min (l1, l2)− 1.

– SHE.ScalarMultek((c1, l1),a) → (cScalar, l1): The deterministic polynomial
time scalar multiplication algorithm takes as input (c1, l1) and a plaintext
a ∈M and outputs a ciphertext cScalar with associated level l1.

7. SHE.Packek((c1, l1), . . . , (cN , lN)) → (c,min(l1, . . . , lN)): If ci is a ciphertext
with associated plaintext χ(mi), then this procedure produces a ciphertext (c,min(l1,
. . . , lN)) with associated plaintext m = (m1, . . . ,mN).

8. SHE.Unpackek(c, l) → ((c1, l), . . . , (cN , l)): If c is a ciphertext with associated
plaintext m = (m1, . . . ,mN), then this procedure produces N ciphertexts (c1, l),
. . . , (cN , l) such that ci has associated plaintext χ(mi).

9. SHE.LowerLevelek((c, l), l′) → (c, l′): This procedure, for l′ < l, produces a ci-
phertext with the same associated plaintext as (c, l), but at level l′. 2

We require the following homomorphic property to be satisfied:

– Somewhat Homomorphic SIMD Property: Let Csub : F`inp → F`outp be any sub-
circuit of a circuitC in the family C(L) with respective inputs m1, . . . ,m`in ∈M,
such that Csub when evaluated N times in an SIMD fashion on the N components
of the vectors m1, . . . ,m`in , producesN sets of `out output values m̂1, . . . , m̂`in ∈
M. Moreover, for i ∈ [1, . . . , `in] let ci be a ciphertext of level lini with associated
plaintext vector mi and let (ĉ1, lout1), . . . , (ĉ`out , l

out
`out

) = SHE.Evalek(Csub, (c1, lin1),
. . . , (c`in , l

in
`in

)). Then the following holds with probability one for each i ∈ [1, . . . ,
`out]:

SHE.Decsk(ĉi, louti) = m̂i.

We also require the following security properties:

– Key Generation Security: Let S and Di be the random variables which denote the
probability distribution with which the secret key sk and the ith key dki for the dis-
tributed decryption is selected from SK andDKi by SHE.KeyGen for i = 1, . . . , n.
Moreover, for a set I ⊆ {1, . . . , n}, let DI denote the random variable which de-
note the probability distribution with which the set of keys for the distributed de-
cryption, belonging to the indices in I , are selected from the corresponding DKis
by SHE.KeyGen. Then the following two properties hold:
• Correctness: For any set I ⊆ {1, . . . , n} with |I| ≥ t+ 1, H(S|DI) = 0. Here
H(X|Y) denotes the conditional entropy of a random variable X with respect
to a random variable Y [13].

• Privacy: For any set I ⊂ {1, . . . , n} with |I| ≤ t, H(S|DI) = H(S).
– Semantic Security: For every set I ⊂ {1, . . . , n} with |I| ≤ t and all PPT adver-

saries A, the advantage of A in the following game is negligible in κ:
• Key Generation: The challenger runs SHE.KeyGen(1κ, 1sec, n, t) to obtain (pk,

ek, sk, dk1, . . . , dkn) and sends pk, ek and {dki}i∈I to A.

• Challenge: A sends plaintexts m0,m1 ∈ M to the challenger, who randomly
selects b ∈ {0, 1} and sends (c, L) = SHE.Encpk(mb, r) for some randomness
r to A.

• Output: A outputs b′.
The advantage of A in the above game is defined to be | 12 − Pr[b′ = b]|.

– Correct Share Decryption: For any (pk, ek, sk, dk1, . . . , dkn) obtained as the output
of SHE.KeyGen, the following should hold for any ciphertext (c, l) with associated
level l ∈ [0, . . . , L]:

SHE.Decsk(c, l) = SHE.ShareCombine((c, l), {SHE.ShareDecdki(c, l)}i∈[1,...,n]).

– Share Simulation Indistinguishability: There exists a PPT simulator SHE.ShareSim,
which on input a subset I ⊂ {1, . . . , n} of size at most t, a ciphertext (c, l) of
level l ∈ [0, . . . , L], a plaintext m and |I| decryption shares {µ̄i}i∈I outputs
n − |I| simulated decryption shares {µ̄∗j}j∈I with the following property: For
any (pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, any sub-
set I ⊂ {1, . . . , n} of size at most t, any m ∈ M and any (c, l) where m =
SHE.Decsk(c, l), the following distributions are statistically indistinguishable:

({µ̄i}i∈I ,SHE.ShareSim((c, l),m, {µ̄i}i∈I))
s
≈
(
{µ̄i}i∈I , {µ̄j}j∈I

)
,

where for all i ∈ [1, . . . , n], µ̄i = SHE.ShareDecdki(c, l). We require in particu-
lar that the statistical distance between the two distributions is bounded by 2−sec.
Moreover

SHE.ShareCombine((c, l), {µ̄i}i∈I ∪ SHE.ShareSim((c, l),m, {µ̄i}i∈I))

outputs the result m. Here I denotes the complement of the set I; i.e. I = {1, . . . ,
n} \ I .

In the full version we instantiate the abstract syntax with a threshold SHE scheme based
on the BGV scheme [7]. We pause to note the difference between our underlying SHE,
which is just an SHE scheme which supports distributed decryption, and that of [1]
which requires a special key homomorphic FHE scheme.

4 MPC from SHE – The Semi-honest Settings

In this section we present our generic MPC protocol for the computation of any arbitrary
depth d circuit using an abstract threshold L-levelled SHE scheme. For the ease of
exposition we first concentrate on the case of semi-honest security, and then we deal
with active security in Section 5.

Without loss of generality we make the simplifying assumption that the function f
to be computed takes a single input from each party and has a single output; specifi-
cally f : Fnp → Fp. The ideal functionality Ff presented in Figure 1 computes such
a given function f , represented by a well formed circuit C. We will present a protocol
to realise the ideal functionality Ff in a hybrid model in which we are given access to

Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-input
function f : Fnp → Fp.

– Upon receiving (sid, i, xi) from the party Pi for every i ∈ [1, . . . , n] where xi ∈ Fp,
compute y = C(x1, . . . , xn), send (sid, y) to all the parties and the adversary S and halt.
Here C denotes the (publicly known) well formed arithmetic circuit over Fp representing
the function f .

Fig. 1. The Ideal Functionality for Computing a Given Function

an ideal functionality FSETUPGEN which implements a distributed key generation for the
underlying SHE scheme. In particular the FSETUPGEN functionality presented in Figure 2
computes the public key, secret key, evaluation key and the keys for the distributed de-
cryption of an L-levelled SHE scheme, distributes the public key and the evaluation key
to all the parties and sends the ith key dki (for the distributed decryption) to the party
Pi for each i ∈ [1, . . . , n]. In addition, the functionality also computes a random en-
cryption c1 with associated plaintext 1 = (1, . . . , 1) ∈M and sends it to all the parties.
Looking ahead, c1 will be required while proving the security of our MPC protocol. The
ciphertext c1 is at level one, as we only need it to pre-multiply the ciphertexts which
are going to be decrypted via the distributed decryption protocol; thus the output of a
multiplication by c1 need only be at level zero. Looking ahead, this ensures that (with
respect to our instantiation of SHE) the noise is kept to a minimum at this stage of the
protocol.

Functionality FSETUPGEN

FSETUPGEN interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an
L-levelled SHE scheme.

– Upon receiving (sid, i) from the party Pi for every i ∈ [1, . . . , n], com-
pute (pk, ek, sk, dk1, . . . , dkn) = SHE.KeyGen(1κ, 1sec, n, t) and (c1, 1) =
SHE.LowerLevelek((SHE.Encpk(1, r), 1) for 1 = (1, . . . , 1) ∈ M and some ran-
domness r. Finally send (sid, pk, ek, dki, (c1, 1)) to the party Pi for every i ∈ [1, . . . , n]
and halt.

Fig. 2. The Ideal Functionality for Key Generation

4.1 The MPC Protocol in the FSETUPGEN-hybrid Model

Here we present our MPC protocol Π SH
f in the FSETUPGEN-hybrid model. Let C be the

(well formed) arithmetic circuit representing the function f and Caug be the associated
augmented circuit (which includes the necessary Refresh gates). The protocol Π SH

f (see
Figure 3) runs in two phases: offline and online. The computation performed in the
offline phase is completely independent of the circuit and (private) inputs of the parties
and therefore can be carried out well ahead of the time (namely the online phase) when
the function and inputs are known. If the parties have more than one input/output then
one can apply packing/unpacking at the input/output stages of the protocol; we leave
this minor modification to the reader.

In the offline phase, the parties interact with FSETUPGEN to obtain the public key,
evaluation key and their respective keys for performing distributed decryption, corre-
sponding to a threshold L-levelled SHE scheme. Next each party sends encryptions of
ζ random elements and then additively combines them (by applying the homomorphic
addition to the ciphertexts encrypting the random elements) to generate ζ ciphertexts
at level L of truly random elements (unknown to the adversary). Here ζ is assumed to
be large enough, so that for a typical circuit it is more than the number of refresh gates
in the circuit, i.e. ζ > GR. Looking ahead, these random ciphertexts created in the of-
fline phase are used in the online phase to evaluate refresh gates by (homomorphically)
masking the messages associated with the input wires of a refresh gate.

During the online phase, the parties encrypt their private inputs and distribute the
corresponding ciphertexts to all other parties. These ciphertexts are transmitted at level
one, thus consuming low bandwidth, and are then elevated to level L by the use of a
following Refresh gate (which would have been inserted by the circuit augmentation
process). Note that the inputs of the parties are in Fp and so the parties first apply the
mapping χ (embedding Fp into the message spaceM of SHE) before encrypting their
private inputs.

The input stage is followed by the homomorphic evaluation of Caug as follows: The
addition and multiplication gates are evaluated locally using the addition and multi-
plication algorithm of the SHE. For each refresh gate, the parties execute the following
protocol to enable a “multiparty bootstrapping” of the input ciphertexts: the parties pick
one of the random ciphertext created in the offline phase (for each refresh gate a differ-
ent ciphertext is used) and perform the following computation to refresh N ciphertexts
with levels in the range [1, . . . , L] and obtain N fresh level L ciphertexts, with the
associated messages unperturbed:

– Let (c1, l1), . . . , (cN , lN) be theN ciphertexts with associated plaintexts χ(z1), . . . ,
χ(zN) with every zi ∈ Fp, that need to be refreshed (i.e. they are the inputs of a
refresh gate).

– The N ciphertexts are then (locally) packed into a single ciphertext c, which is then
homomorphically masked with a random ciphertext from the offline phase.

– The resulting masked ciphertext is then publicly opened via distributed decryption,
This allows for the creation of a fresh encryption of the opened value at level L.

– The resulting fresh encryption is then homomorphically unmasked so that its asso-
ciated plaintext is the same as original plaintext prior to the original masking.

Protocol Π SH
f

Let Caug denote an augmented circuit for a well formed circuit C over Fp representing f and let
SHE be a threshold L-levelled SHE. Moreover, let P = {P1, . . . , Pn} be the set of n parties For
the session ID sid the parties do the following:

Offline Computation: Every party Pi ∈ P does the following:
– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Randomly select ζ plaintexts mi,1, . . . ,mi,ζ ∈ M, and compute (cmi,k , L) =

SHE.Encpk(mi,k, ri,k). Send (sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) to all parties in P .
– Upon receiving (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) from all parties Pj ∈ P , apply SHE.Add

for 1 ≤ k ≤ ζ, on (cm1,k , L), . . . , (cmn,k , L), set the resultant ciphertext as the kth offline
ciphertext cmk with the (unknown) associated plaintext mk = m1,k + · · ·+ mn,k.

Online Computation: Every party Pi ∈ P does the following:
– Input Stage: On having input xi ∈ Fp, compute (cxi , 1) =

SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness ri and send (sid, i, (cxi , 1))
to each party. Receive (sid, j, (cxj , 1)) from each party Pj ∈ P .

– Computation Stage: Associate the ciphertexts received with the corresponding input wires
of Caug and then homomorphically evaluate the circuit Caug gate by gate as follows:
• Addition Gate and Multiplication Gate: Given (c1, l1) and (c2, l2) associated with

the input wires of the gate where l1, l2 ∈ [1, . . . , L], locally compute (c, l) =
SHE.Addek((c1, l1), (c2, l2)) with l = min (l1, l2) for an addition gate and (c, l) =
SHE.Multek((c1, l1), (c2, l2)) with l = min (l1, l2) − 1 for a multiplication gate; for
the multiplication gate, l1, l2 ∈ [2, . . . , L], instead of [1, . . . , L]. Associate (c, l) with
the output wire of the gate.

• Refresh Gate: For the kth refresh gate in the circuit, the kth offline ciphertext (cmk , L)
is used. Let (c1, l1), . . . , (cN , lN) be the ciphertexts associated with the input wires of
the refresh gate where l1, . . . , lN ∈ [1, . . . , L]:
∗ Packing: Locally compute (cz, l) = SHE.Packek({(ci, li)}i∈[1,...,N]) where l =

min (l1, . . . , lN).
∗ Masking: Locally compute (cz+mk , 0) = SHE.Addek(SHE.Multek((cz, l),

(c1, 1)), (cmk , L))
∗ Decrypting: Locally compute the decryption share µ̄i = SHE.ShareDecdki(

cz+mk , 0) and send (sid, i, µ̄i) to every other party. On receiving
(sid, j, µ̄j) from every Pj ∈ P , compute the plaintext z + mk =
SHE.ShareCombine((cz+mk , 0), {µ̄j}j∈[1,...,n]).

∗ Re-encrypting: Locally re-encrypt z + mk by computing (ĉz+mk , L) =
SHE.Encpk(z + mk, r) using a publicly known (common) randomness r, (This
can simply be the zero string for our BGV instantiation, we only need to map the
known plaintext into a ciphertext element).

∗ Unmasking: Locally subtract (cmk , L) from (ĉz+mk , L) to obtain (ĉz, L).
∗ Unpacking: Locally compute (ĉ1, L), . . . , (ĉN , L) = SHE.Unpackek(ĉz, L) and

associate (ĉ1, L), . . . , (ĉN , L) with the output wires of the refresh gate.
– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where

l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 =

(0, . . . , 0) and send (sid, i, (ci, L)) to every other party. On receiving (sid, j, (cj , L))
from every Pj ∈ P , apply SHE.Add on {(cj , L)}j∈[1,...,n] to obtain (c0, L). Compute
(ĉ, 0) = SHE.Addek(SHE.Multek((c, l), (c1, 1)), (c0, L)).

• Output Decryption: Compute γ̄i = SHE.ShareDecdki(ĉ, 0) and send (sid, i, γ̄i)
to every party. On receiving (sid, j, γ̄j) from every Pj ∈ P , compute y =
SHE.ShareCombine((ĉ, 0), {γ̄j}j∈[1,...,n]), output y and halt, where y = χ−1(y).

Fig. 3. The Protocol for Realizing Ff against a Semi-Honest Adversary in the FSETUPGEN-hybrid
Model

– This fresh (unmasked) ciphertext is then unpacked to obtain N fresh ciphertexts,
having the same associated plaintexts as the original N ciphertexts ci but at level
L.

By packing the ciphertexts together we only need to invoke distributed decryption once,
instead of N times. This leads to a more communication efficient online phase, since
the distributed decryption is the only operation that demands communication. Without
affecting the correctness of the above technique, but to ensure security, we add an ad-
ditional step while doing the masking: the parties homomorphically pre-multiply the
ciphertext c with c1 before masking. Recall that c1 is an encryption of 1 ∈ M gener-
ated by FSETUPGEN and so by doing the above operation, the plaintext associated with
c remains the same. During the simulation in the security proof, this step allows the
simulator to set the decrypted value to the random mask (irrespective of the circuit in-
puts), by playing the role ofFSETUPGEN and replacing c1 with c0, a random encryption of
0 = (0, . . . , 0). Furthermore, this step explains the reason why we made provision for
an extra multiplication during circuit augmentation by insisting that the refresh gates
take inputs with labels in [1, . . . , L], instead of [0, . . . , L]; the details are available in
the simulation proof of security of our MPC protocol.

Finally, the function output y is obtained by another distributed decryption of the
output ciphertext. However, this step is also not secure unless the ciphertext is random-
ized again by pre-multiplication by c1 and adding n encryptions of 0 where each party
contributes one encryption. In the simulation, the simulator gives encryption of χ(y)
on behalf of one honest party and replaces c1 by c0, letting the output ciphertext corre-
spond to the actual output y, even though the circuit is evaluated with zero as the inputs
of the honest parties during the simulation (the simulator will not know the real inputs
of the honest parties and thus will simulate them with zero). A similar idea was also
used in [19]; details can be found in the security proof.

Intuitively, privacy follows because at any stage of the computation, the keys of
the honest parties for the distributed decryption are not revealed and so the adversary
will not be able to decrypt any intermediate ciphertext. Correctness follows from the
properties of the SHE and the fact that the level of each ciphertext in the protocol
remains in the range [1, . . . , L], thanks to the refresh gates. So even though the circuit
C may have any arbitrary depth d > L, we can homomorphically evaluate C using an
L-levelled SHE.

Definition 3. For n ∈ N, let F be an n-ary functionality and let Π be an n-party
protocol. We say that Π securely realizes F if for every PPT real world adversary A,
there exists a PPT ideal world adversary S, corrupting the same parties, such that the
following two distributions are computationally indistinguishable:

IDEALF,S,Z
c
≈ REALΠ,A,Z .

We consider the above definition where it quantifies over different adversaries: passive
or active, that corrupts only certain number of parties.

Theorem 1. Let f : Fnp → Fp be a function over Fp represented by a well formed
arithmetic circuit C of depth d over Fp. Let Ff (presented in Figure 1) be the ideal

functionality computing f and let SHE be a threshold L-levelled SHE scheme. Then
the protocol Π SH

f UC-secure realizes Ff against a static, semi-honest adversary A,
corrupting upto t < n parties in the FSETUPGEN-hybrid Model.

The proof is given in the full version of the paper.

5 MPC from SHE – The Active Setting

The functionalities from Section 4 are in the passive corruption model. In the presence
of an active adversary, the functionalities will be modified as follows: the respective
functionality considers the input received from the majority of the parties and performs
the task it is supposed to do on those inputs. For example, in the case of Ff , the func-
tionality considers for the computation those xis, corresponding to the Pis from which
the functionality has received the message (sid, i, xi); on the behalf of the remaining
Pis, the functionality substitutes 0 as the default input for the computation. Similarly
for FSETUPGEN, the functionality performs its task if it receives the message (sid, i) from
the majority of the parties. These are the standard notions of defining ideal functionali-
ties for various corruption scenarios and we refer [26] for the complete formal details;
we will not present separately the ideal functionality Ff and FSETUPGEN for the mali-
cious setting.

A closer look at Π SH
f shows that we can “compile” it into an actively secure MPC

protocol tolerating t active corruptions if we ensure that every corrupted party “proves”
in a zero knowledge (ZK) fashion that it constructed the following correctly: (1) The
ciphertexts in the offline phase; (2) The ciphertexts during the input stage and (3) The
randomizing ciphertexts during the output stage.

Apart from the above three requirements, we also require a “robust” version of the
SHE.ShareCombine method which works correctly even if up to t input decryption
shares are incorrect. In the full version we show that for our specific SHE scheme, the
SHE.ShareCombine algorithm (based on the standard error-correction) is indeed robust,
provided t < n/3. For the case of t < n/2 we also show that by including additional
steps and zero-knowledge proofs (namely proof of correct decryption), one can also
obtain a robust output. Interestingly the MPC protocol requires the transmission of at
most O(n3) such additional zero-knowledge proofs; i.e. the communication needed to
obtain robustness is independent of the circuit. We stress that t < n/2 is the optimal
resilience for computationally secure MPC against active corruptions (with robustness
and fairness) [12, 27]. To keep the protocol presentation and its proof simple, we as-
sume a robust SHE.ShareCombine (i.e. for the case of t < n/3), which applies error
correction for the correct decryption.

The actively secure MPC protocol is given in Figure 4, it uses an ideal ZK func-
tionality FRZK, parametrized with an NP-relation R. We apply this ZK functionality to
the following relations to obtain the functionalities FRencZK and FRzeroencZK . We note that
UC-secure realizations of FRencZK and FRzeroencZK can be obtained in the CRS model,
similar techniques to these are used in [2]. Finally we do not worry about the instanti-
ation of FSETUPGEN as we consider it a one time set-up, which can be done via standard
techniques (such as running an MPC protocol).

Functionality FRZK

FRZK interacts with a prover Pi ∈ {P1, . . . , Pn} and the set of n verifiers P = {P1, . . . , Pn} and
the adversary S.

– Upon receiving (sid, i, (x,w)) from the prover Pi ∈ {P1, . . . , Pn}, the functionality sends
(sid, i, x) to all the verifiers in P and S if R(x,w) is true. Else it sends (sid, i,⊥) and halts.

Fig. 4. The Ideal Functionality for ZK

Protocol ΠMAL
f

Let C be the well formed arithmetic circuit over Fp representing the function f , let Caug denote
an augmented circuit associated with C, and let SHE be a threshold L-levelled SHE scheme. For
session ID sid the parties in P = {P1, . . . , Pn} do the following:

Offline Computation: Every party Pi ∈ P does the following:

– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Same as in the offline phase of Π SH

f , except that for every message mik for k ∈ [1, . . . , ζ]

and the corresponding ciphertext (cmik , L) = SHE.Encpk(mik, rik), call FRencZK with
(sid, i, ((cmik , L), (mik, rik))). Receive (sid, j, (cmjk , L)) from FRencZK for k ∈ [1, . . . , ζ]

corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then
consider ζ publicly known level L encryptions of random values fromM as (cmjk , L) for
k ∈ [1, . . . , ζ].

Online Computation: Every party Pi ∈ P does the following:

– Input Stage: On having input xi ∈ Fp, compute level L ciphertext (cxi , 1) =
SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness ri and call FRencZK with the
message (sid, i, ((cxi , 1), (χ(xi), ri))). Receive (sid, j, (cxj , 1)) from FRencZK correspond-
ing to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider a
publicly known level 1 encryption of χ(0) as (cxj , 1) for such a Pj .

– Computation Stage: Same as Π SH
f , except that now the robust SHE.ShareCombine is used.

– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where
l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 =

(0, . . . , 0) and call FRzeroencZK with the message (sid, i, ((ci, L), (0, r′i))). Receive
(sid, j, (cj , L)) from FRzeroencZK corresponding to each Pj ∈ P . If (sid, j,⊥) is re-
ceived from FRzeroencZK for some Pj ∈ P , then consider a publicly known level L
encryption of 0 as (cj , L) for such a Pj .

• The rest of the steps are same as in Π SH
f , except that now the robust

SHE.ShareCombine is used.

Fig. 5. The Protocol for Realizing Ff against an Active Adversary in the
(FSETUPGEN,FRencZK ,FRzeroencZK)-hybrid Model

– Renc = {((c, l), (x, r)) | (c, l) = SHE.Encpk(x, r) if l = L ∨ (c, l) =
SHE.LowerLevelek(SHE.Encpk(x, r), 1) if l = 1}: we require this relation to hold
for the offline stage ciphertexts (where l = L) and for the input stage ciphertexts
(where l = 1).

– Rzeroenc = {((c, L), (x, r)) | (c, L) = SHE.Encpk(x, r) ∧ x = 0}: we require
this relation to hold for the randomizing ciphertexts during the output stage.

We are now ready to present the protocol ΠMAL
f (see Figure 5) in the (FSETUPGEN,

FRencZK ,FRzeroencZK)-hybrid model and assuming a robust SHE.ShareCombine based on
error-correction (i.e. for the case t < n/3).

Theorem 2. Let f : Fnp → Fp be a function represented by a well-formed arithmetic
circuit C over Fp. Let Ff (presented in Figure 1) be the ideal functionality computing
f and let SHE be a threshold L-levelled SHE scheme such that SHE.ShareCombine
is robust. Then the protocol ΠMAL

f UC-secure realises Ff in the (FSETUPGEN,FRencZK ,

FRzeroencZK)-hybrid Model against a static, active adversary A corrupting t parties.

See the full version for a proof of this theorem.

6 Estimating the Consumed Bandwidth

In the full version we determine the parameters for the instantiation of our SHE scheme
using BGV by adapting the analysis from [18, 25]. In this section we use this parameter
estimation to show that our MPC protocol can in fact give improved communication
complexity compared to the standard MPC protocols, for relatively small values of the
parameter L. We are interested in the communication cost of our online stage compu-
tation. To ease our exposition we will focus on the passively secure case from Section
4; the analysis for the active security case with t < n/3 is exactly the same (bar the
additional cost of the exchange of zero-knowledge proofs for the input stage and the
output stage). For the case of active security with t < n/2 we also need to add in the
communication related to the dispute control strategy outlined in the full version for at-
taining robust SHE.ShareCombine with t < n/2; but this is a cost which is proportional
to O(n3).

To get a feel for the parameters we now specialise the BGV instantiation from the
full version of this paper to the case of finite fields of size p ≈ 264, statistical security
parameter sec of 40, and for various values of the computational security level κ. We
estimate in Table 1 the value of N , assuming a small value for n (we need to restrict to
small n to ensure a large enough range in the PRF needed in the distributed decryption
protocol; see the full version).

Since a Refresh gate requires the transmission of n−1 elements (namely the decryp-
tion shares) in the ring Rq0 from party Pi to the other parties, the total communication
in our protocol (in bits) is

|GR| · n · (n− 1) · |Rq0 |,

L κ = 80 κ = 128 κ = 256

2 16384 16384 32768
3 16384 16384 32768
4 16384 32768 32768
5 32768 32768 65536
6 32768 32768 65536
7 32768 32768 65536
8 32768 65536 65536
9 32768 65536 65536

10 65536 65536 65536

Table 1. The value of N for various values of κ and L

where |Rq0 | is the number of bits needed to transmit an element in Rq0 , i.e. N · log2 p0.
Assuming the circuit meets our requirement of being well formed, this implies that total
communication cost for our protocol is

2 · |GM | · n · (n− 1) ·N · log2 p0

L ·N
=

2 · n · (n− 1) · |GM |
L

· log2(309 · 2sec · p ·
√
N).

Using the batch distributed decryption technique (of efficiently and parallely evaluat-
ing t + 1 independent Refresh gates simultaneously) from the full version this can be
reduced to

Cost =
4 · n · (n− 1) · |GM |

L · (t+ 1)
· log2(309 · 2sec · p ·

√
N).

We are interested in the overhead per multiplication gate, in terms of equivalent num-
bers of finite field elements in Fp, which is given by Cost/(|GM | · log2 p), and the cost
per party is Cost/(|GM | · n · log2 p).

At the 128 bit security level, with p ≈ 264, and sec = 40 (along with the above
estimated values of N), this means for n = 3 parties, and at most t = 1 corruption, we
obtain the following cost estimates:

L 2 3 4 5 6 7 8 9 10
Total Cost Cost/(|GM | · log2 p) 12.49 8.33 6.31 5.05 4.21 3.61 3.19 2.84 2.55

Per party Cost Cost/(|GM | · n · log2 p) 4.16 2.77 2.10 1.68 1.40 1.20 1.06 0.94 0.85

Note for L = 2 our protocol becomes the one which requires interaction after every
multiplication, for L = 3 we require interaction only after every two multiplications
and so on. Note that most practical MPC protocols in the preprocessing model have a
per gate per party communication cost of at least 2 finite field elements, e.g. [20]. Thus,
even when L = 5, we obtain better communication efficiency in the online phase than
traditional practical protocols in the preprocessing model with these parameters.

7 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-
CRIPTO, by EPSRC via grant EP/I03126X, and by Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement
number FA8750-11-2-00793. The second author was supported by an Trend Micro Ltd,
and the fifth author was supported by in part by a Royal Society Wolfson Merit Award.

References

1. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty
computation with low communication, computation and interaction via threshold FHE. In
EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 483–501, 2012.

2. G. Asharov, A. Jain, and D. Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. IACR Cryptology ePrint Archive, 2011:613,
2011.

3. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In CRYPTO, volume 7417 of Lecture Notes in Com-
puter Science, pages 663–680, 2012.

4. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT, volume 6632 of Lecture Notes in Computer Sci-
ence, pages 169–188, 2011.

5. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In ESORICS, volume 5283 of Lecture Notes in Computer Science,
pages 192–206, 2008.

6. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 868–886,
2012.

7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, pages 309–325. ACM, 2012.

8. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106. IEEE, 2011.

9. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and se-
curity for key dependent messages. In CRYPTO, volume 6841 of Lecture Notes in Computer
Science, pages 505–524, 2011.

10. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

11. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial
Cryptography, volume 6052 of Lecture Notes in Computer Science, pages 35–50, 2010.

12. R. Cleve. Limits on the security of coin flips when half the processors are faulty (Extended
abstract). In STOC, pages 364–369. ACM, 1986.

13. T. M. Cover and J. A. Thomas. Elements of Information theory. Wiley, 2006.

3 The US Government is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

14. I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In TCC,
volume 3876 of Lecture Notes in Computer Science, pages 285–304, 2006.

15. I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, and A. Smith. Scalable multiparty compu-
tation with nearly optimal work and resilience. In CRYPTO, volume 5157 of Lecture Notes
in Computer Science, pages 241–261, 2008.

16. I. Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In EUROCRYPT, volume 6110 of Lecture
Notes in Computer Science, pages 445–465, 2010.

17. I. Damgård, M. Keller, E. Larraia, C. Miles, and N.P. Smart. Implementing AES via an
actively/covertly secure dishonest-majority mpc protocol. In SCN, volume 7485 of Lecture
Notes in Computer Science, pages 241–263, 2012.

18. I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly
secure mpc for dishonest majority – or: Breaking the SPDZ limits, 2013.

19. I. Damgård and J. B. Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 247–264, 2003.

20. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 643–662, 2012.

21. I. Damgård and S. Zakarias. Constant-overhead secure computation for boolean circuits in
the preprocessing model. In TCC, volume 7785 of Lecture Notes in Computer Science, pages
621–641, 2013.

22. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

23. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178.
ACM, 2009.

24. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482, 2012.

25. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 850–867, 2012.

26. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

27. M. Hirt and J.B. Nielsen. Robust multiparty computation with linear communication com-
plexity. In CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 463–482,
2006.

28. J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S.S. Burra. A new approach to practical active-
secure two-party computation. In CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 681–700, 2012.

29. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key
and ciphertext sizes. In PKC, volume 6056 of Lecture Notes in Computer Science, pages
420–443, 2010.

30. N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. To Appear in Designs,
Codes and Cryptography, 2012.

