
Efficient Private File Retrieval by Combining
ORAM and PIR

Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan

College of Computer and Information Science
Northeastern University, Boston MA-02115, USA

{travism,blass,ahchan}@ccs.neu.edu

Abstract. Recent research results on “bucketed” Oblivious RAM by Shi
et al. [12] reduce communication for an N -capacity storage with blocks
of size l bits to poly-logarithmic complexity O(l · log3(N)) in the worst-
case. The individual buckets, however, are constructed using traditional
ORAMs which have worst-case communication complexity being linear
in their size. PIR protocols are able to provide better worst-case bounds,
but have traditionally been less practical than ORAM due to the fact that
they require O(N) computation complexity on the server. This paper
presents Path-PIR, a hybrid ORAM construction, using techniques from
PIR, that overcomes the individual weaknesses of each. Path-PIR’s main
idea is to replace the individual buckets in the ORAM construction by
Shi et al. [12] with buckets backed by PIR. We show that this leads
to orders of magnitude smaller data transfer costs for practically sized
databases, compared to existing work, and achieves better asymptotic
communication O(l · log2 (N)) for large block sizes. Additionally, the
typically high computational cost of PIR is negated by the small size of
the individual buckets. We also show that Path-PIR has very low latency,
i.e., a low amount of data is required before a user receives the result of
his data request (approximately 4 times the block size). Using Amazon
EC2, we demonstrate that monetary cost induced by the server’s PIR
computation are far outweighed by the savings in data transfer.

1 Introduction

Cloud computing and cloud storage are becoming an attractive option for busi-
nesses and governmental organizations in need of scalable and reliable infrastruc-
tures. Cloud providers, e.g., Amazon or Google, have substantial expertise and
resources, allowing them to rent their services at very competitive prices. Cloud
users are drawn by the ability to pay for only what they need, but maintain
the ability to scale up if requirements change. Users can now take advantage of
highly reliable storage solutions without investing large amounts of money for
data centers upfront.

Unfortunately, there is a significant downside to storing data in the cloud. For
various reasons, cloud providers cannot always be fully trusted and may not treat
sensitive user data very carefully. Seeing news of high-profile hacking incidents

involving data theft has become commonplace [4, 14]. Encryption of data at
rest provides a partial solution to this problem, but it is not sufficient. Even
if the cloud (now the “adversary”) cannot read the encrypted data, it may be
able to learn valuable information based on when and how often a user accesses
their data. We call this information the user’s“access pattern”. As a motivating
example, consider a hospital that outsources their patient records to the cloud
in order to save on replication and IT costs. If the adversary sees that, e.g., an
oncologist accesses a patient’s data, he can learn with some degree of certainty
that this person has cancer. An adversary could slowly aggregate information on
data accesses to learn potentially important secrets. As it is generally difficult
to quantify what external knowledge adversaries may have and what inferences
they could make, it is important to hide a user’s access pattern as well as the
data being accessed.

There are traditionally two ways to hide a user’s access pattern, given only
a single server: Oblivious RAM (ORAM) [3] and Private Information Retrieval
(PIR) [6]. The approach taken by ORAM is to arrange the data in such a way
that the user never touches the same piece twice, without an intermediate “shuf-
fle” which erases the correlation between block locations. ORAMs have tradi-
tionally featured low amortized communication complexity and did not require
any computation on the server, but occasionally the user was required to down-
load and reshuffle the entire database. This could become impractical in cloud
scenarios, especially if the user is a low-powered or communication-constricted
device.

Private Information Retrieval, in contrast with ORAM, hides the target of
each individual query, independent of all previous queries. This can be accom-
plished by using a homomorphic encryption which the server uses to operate
over the entire database, selecting out the block of data that the user has re-
quested. The user generates encrypted requests and sends them to the server.
Since PIR does not try to hide a sequence of accesses, but each access indi-
vidually, the amortized cost is equal to the worst-case cost. Unfortunately, the
requirement that the server computes over the entire database for each query is
often impractical, especially for large databases.

Asymptotically efficient solutions exist, but until recently, there has been lit-
tle research into applying these schemes in practical situations. Many of them
only become efficient with astronomically large databases which would not be
feasible or useful with today’s hardware. Recent work by Stefanov et al. [13] man-
ages to achieve good performance for practically sized databases, but requires at
least square-root client memory. As we will discuss below, high client memory
can be impractical in many real-world situations, and is enough to make this
scheme potentially unusable. This paper focuses on ORAM techniques requiring
constant client memory complexity, which we believe to be a more interesting
model.

We present Path-PIR, a new ORAM construction combining ORAM and
PIR, thereby overcoming the individual drawbacks of each. Path-PIR’s strategy
is to augment the recently proposed bucketed ORAM by Shi et al. [12] using PIR.

Table 1. Communication complexity of Path-PIR and related constant-memory
schemes. Here, N is the ORAM capacity, e.g., the number of files, l is the bit-length
of each file, and k is the security parameter. Latency is the amount of communication
before the client has access to data. The “practical” setting is l ≥ 100 KB and N < 235.

Latency Worst-Case Practical Worst-Case

Shi et al. [12] O(l · log2(N)) O(l · log3(N)) O(l · log2(N))

Kushilevitz et al. [7] O(l·log2(N)
log log(N)

) O(l·log2(N)
log log(N)

) O(l · log3(N)

Path-PIR Linear O(k · log(N) + l) O(k · log3(N) + l · log2(N) O(l · log(N))

Path-PIR FHE O(k + l) O(k log(N) + l · log(N)) O(k + l)

Optimal O(log(N) + l) O(log(N) + l) O(log(N) + l)

As detailed later, we replace access to individual buckets of the ORAM by PIR
queries. As a result, we take advantage of PIR’s better worst-case communication
guarantees, while at the same time the general ORAM setup reduces the portion
of the database that PIR must compute over. In the medical example above, the
size of each patient record (“block size”) may be quite large, due to medical
images, test results, etc. Our scheme is especially suited to databases with large
block sizes, a setting which we believe is very important in the real world and
has not been thoroughly explored by related work.

Our contributions in this paper can be summarized as follows:

1. Path-PIR, a framework for replacing “bucket” ORAMs in the Shi et al. [12]
construction with a PIR-backed bucket.

2. an instantiation of our framework with a simple PIR scheme which achieves
very good performance for large block sizes. In a database that stores a total
of N files (entries), and each file is of bit length l, Path-PIR reduces from
O(l · log3(N) to O(log3(N) + l · log2 (N)). Path-PIR requires only constant
memory complexity. Path-PIR is especially efficient in many practical real-
world settings where e.g., l ≥ 100 KB and N < 235, i.e., total databases of
up to 3 PB size.

3. an improvement to Path-PIR which allows for optimal latency (the amount
of communication spent before the user has access to the requested data) in
retrieving blocks of size l > O(log2(N)) .

4. a real-world implementation of Path-PIR, along with an evaluation per-
formed on Amazon’s public EC2 cloud. Our evaluation shows that the ad-
ditional computation imposed by PIR is outweighed by the significant data
transfer savings. We show that Path-PIR allows for significantly faster and
cheaper operations than previous constructions.

2 Related Work

There exists a large body of work on improving Oblivious RAM since the original
concept by Goldreich and Ostrovsky [3]. For example, Pinkas and Reinman [11]

and Boneh et al. [2] have reduced amortized communication to poly-logarithmic
complexity. However, even if these constructions feature low amortized cost,
worst-case complexity is still O(N · l), which is prohibitive in many scenarios.
This is due to the fact that, after a certain number of operations, the entire
database needs to be downloaded and reshuffled by the user.

Recently, there have been several approaches that provide better-than-linear
worst-case bounds. Kushilevitz et al. [7] achieve this by deamortizing an existing
ORAM constructions and obtain O(l · log2(N)/ log log(N)) worst-case complex-
ity. Interestingly, for N less than 237 (any practically sized database) this scheme
actually degrades to O(log3(N)). In contrast, as we will see, our scheme actually
only approaches O(log2(N)) for extremely large databases and is, in practice,
much closer to O(log(N)). Our performance number will show that this leads
to very good performance for our scheme and poor performance for Kushilevitz
et al. [7] at the targeted database sizes.

Shi et al. [12] have proposed another ORAM with worst case bounds O(l ·
log3(N)) using an entirely new construction. Instead of deamortizing previous
schemes, Shi et al. [12] show that a large ORAM can be composed of many
smaller “bucket” ORAMs. For each operation, a small fraction of the buckets are
shuffled, so there is no need for one large, expensive shuffle of the entire database.
Using a recursive access technique, this scheme can even achieve constant client
memory. Path-PIR augments Shi et al. [12] as presented in Section 3.

Stefanov et al. [13] have shown that a bucket-based construction can actu-
ally achieve O(l · log(N)) amortized and worst-case complexity. However, this
is achieved only with either linear user memory complexity or with square-root
user memory complexity at the cost of additional communication complexity.
Achieving constant user memory is an important requirement, because it allows
applications with constrained devices like smart phones and embedded systems.
Additionally, the constants that govern user memory are significantly higher
with Stefanov et al. [13] than Shi et al. [12]: for example, a 1 TB database of
1 MB files consumes approximately 800 MB of user memory in the square-root
construction of Stefanov et al. [13] which is not available in many situations.
On the other hand, even in the linear client memory setting Shi et al. [12] re-
quire only 4 MB. This difference is caused by the fact that the Shi et al. [12]
scheme has client memory independent of the block size, while Stefanov et al.
[13] need a block cache which can be very large for large block sizes. The size of
the client memory in the linear setting is important because it will govern how
many recursive steps are needed in the constant-memory setting. Since linear-
memory requirements are, for practical sizes, very low, we will see that reducing
to constant-memory requires only a small number of recursive steps (usually just
one).

3 Oblivious RAM

Let N denote the capacity, i.e., maximum number of blocks that can be stored
in a database D = {d0, . . . , dN−1} at one time. We assume that all blocks are

of equal size, and let l denote the size of each block in bits. We assume that
l > c · log(N) for some c > 1.

Definition 1. An Oblivious RAM protocol is a set of interactions between a
user and a server comprised of the following user functions:

Read(x) : The user retrieves the value of the block with identifier x from the
server.
Write(x, y) : The user changes the value of the block with identifier x to y. If
block x is not present in the database, that block is added.

We also give a brief definition of ORAM security (obliviousness) and refer
readers to related work [2, 3, 7, 11–13] for details.

Definition 2 (Obliviousness). An Oblivious RAM construction is secure, iff
for any PPT adversary any two series of data accesses χ and γ, where |χ| = |γ|,
the corresponding access patterns AP (χ) and AP (γ) induced on the server are
computationally indistinguishable with probability 1−ϵ(k), where ϵ is a negligible
function, and k a sufficiently large security parameter.

3.1 Shi et al. [12] ORAM

Traditionally, ORAMs support two operations: Read(x), which reads the block
with identifier x, and Write(x, y), which writes value y to the block identified by
x.

However, Read(x) and Write(x, y) can be emulated with the following set of
operations:

1. ReadAndRemove(x) – Returns the value of the block with identifier x, or ⊥
if x identifies a dummy or if x does not exist in the ORAM. Additionally,
this operation removes block x from the ORAM.

2. Add(x, y) – Adds a block with identifier x and value y to the ORAM.
3. Pop() – Returns a real data block if the ORAM contains such a block and a

dummy otherwise.

A traditional Read can done by calling ReadAndRemove followed by Add
to put the block back in the ORAM. Similarly, Write can be emulated with a
ReadAndRemove (on a dummy value if the block does not exist in the ORAM yet)
and an Add with the new value of the block. Conceptually, this set of operations
is more conducive to an ORAM construction, because it hints at the idea that
when reading a block, there must be an active relocation of that block in order
to disassociate future accesses to it.

3.2 Tree Construction

Assume for simplicity that N is a power of two. In order to amortize the cost
of shuffling, Shi et al. [12] use a tree of 2N − 1 “bucket” ORAMs arranged in a
tree of depth log(N). These internal ORAMs are each fully-functioning ORAMs

with a capacity of n := log(N) “slots”. The buckets must have three properties:
(1) support a non-contiguous identifier space (2) support ReadAndRemove and
Add (3) have zero probability of failure. In Path-PIR, we will replace the bucket
ORAMs with PIR operations, so these are the three properties our construction
must have in order to be sound.

When blocks are added to the ORAM, they are inserted in the root bucket.
Each block is tagged with a random number t ∈ {0, . . . , N − 1}, which corre-
sponds to a leaf node towards which that block will be moving. The user stores
a map M which, for each block in the ORAM, contains the value t for that
block. M(x) denotes the value t for x, stored in the user memory. As this would
imply O(N) user memory, Shi et al. [12] show how this map can itself be re-
cursively stored in an ORAM to achieve O(1) client memory. However, for the
sake of clarity, we will assume O(N) user memory when presenting Path-PIR.
The recursive technique can be applied equally to our construction since it does
not depend on the makeup of the individual buckets. This adds a log(N) factor
to each query because there are at most log(N) recursive ORAMs to store that
map.

ReadAndRemove – Assuming that a block x starts at the root bucket and
moves down the tree towards its respective leaf node, block x will always be found
somewhere along the path from the root to M(x). Therefore, a ReadAndRemove
can be performed by executing ReadAndRemove(x) on every bucket along the
path from the root to M(x). One bucket will store block x. Block x will be
removed from this bucket, and all other buckets along the path will return ⊥.

Add – A new leaf node t← {0, . . . , N − 1} is randomly chosen, and the user
inserts block x with value y into the root bucket, tagged with leaf node t.

Every Read andWrite operation consists of one ReadAndRemove and one Add.
Two Read or Write operations to the same block will be completely independent,
because a new random t is chosen for each Add. Therefore, this construction
achieves obliviousness.

Tree balancing. To facilitate the movement of blocks towards leaf nodes,
and to prevent internal buckets from overflowing, the user must Evict blocks from
internal buckets to their children. At each level of the tree, the user randomly
picks ξ ∈ N buckets and executes Pop to read and remove one data block from
them. The user then writes to each of the child buckets, moving data blocks to-
ward the correct leaf nodes and performing dummy operations on those children
which are not on the correct path maintaining obliviousness. One can show that
ξ = 2 is sufficient to keep any buckets from overflowing with high probability, if
Evict is performed after every Read or Write operation [12].

Complexity. Assuming each bucket ORAM with individual capacity of
n = log(N) has communication complexity R(n) for its operations, we can cal-
culate the overall cost for this tree construction. ReadAndRemove performs one
operation on each of the log(N) buckets, so its cost is log (N) ·R(n). Add oper-
ates only on the root bucket, and so has complexity simply R(n). Evict operates
on 3 · ξ · n buckets (one parent and 2 children for each bucket evicted) and so
has cost 3 · ξ · log (N) ·R(n). For all bucket ORAMs, the worst-case cost is O(n).

For the individual buckets, n = log(N), so the worst-case cost for eviction (the
most expensive operation) is 3 ·ξ · log(N) · log(N). Therefore, regardless of which
bucket construction is used the overall worst-case complexity is O(l · log2(N)).
Recursively storing the user memory requires at most log(N) additional ORAMs,
adding another log(N) factor to the overall cost and resulting in O(l · log3(N)).

4 Path-PIR’s Hybrid Construction

Since PIR has sub-linear worst-case communication complexity, we replace the
bucket ORAMs with PIR queries to obtain better overall worst-case perfor-
mance. Our goal in Path-PIR is to create a “PIR-bucket” replacing the bucket
ORAMs at each node in the tree. However, it is not sufficient to simply replace
the ORAM buckets with PIR, because buckets must have the ability to add and
change blocks in order to support all the necessary ORAM operations. There-
fore, in addition to standard PIR reading, we also need an equivalently secure
writing protocol which we called “PIR-writing”. To begin, we will briefly define
PIR and discuss relevant details of the PIR protocol we will be using.

Definition 3. A Private Information Retrieval protocol is a set of interactions
between a user and a server comprised of the following functions:

PrepareQuery(x) : Given a private input x ∈ {1, 2, . . . , N}, the user generates a
query which is designed to retrieve the block at index x from the server.

ExecuteQuery(q) : The server receives query q prepared by the user and executes
it over the database. The response, which encodes the requested block, is sent
back to the user.

DecodeResponse(r) : The user receives the server’s response to its query and
decodes it to retrieve the requested block.

Along the same lines of “obliviousness” in ORAM, we briefly define security
(“Privacy”) for PIR. Details can be found in Ostrovsky and Skeith [10].

Definition 4 (Privacy). A Private Information Retrieval protocol is secure,
iff for any PPT adversary any two indices χ and γ, the corresponding queries
Q = PrepareQuery(χ) and Q′ = PrepareQuery(γ) are computationally indistin-
guishable with probability 1 − ϵ(k), where ϵ is a negligible function, and k a
sufficiently large security parameter.

We consider only single-server, computationally-secure PIR protocols.

Different from ORAM, PIR does not require keeping a state in between
queries. Consequently, it can also be used to retrieve data from a public, un-
encrypted database. Since PIR protocols are stateless, each invocation of the
protocol must cause the server to perform O(l ·N) computation. At a minimum,
the server must “touch” each of the blocks in the N -capacity database or it could
learn which blocks were not chosen by the user.

E(0)
E(0)
E(1)
E(0)
E(0)

*
*
*
*
*

d1,1
d2,1
d3,1
d4,1
d5,1

d1,2
d2,2
d3,2
d4,2
d5,2

d1,3
d2,3
d3,3
d4,3
d5,3

d1,4
d2,4
d3,4
d4,4
d5,4

=
=
=
=
=

E(0)
E(0)
E(d3,1)
E(0)
E(0)

E(0)
E(0)
E(d3,2)
E(0)
E(0)

E(0)
E(0)
E(d3,3)
E(0)
E(0)

E(0)
E(0)
E(d3,4)
E(0)
E(0)

Request Database

+
E(d3,1) E(d3,2) E(d3,3) E(d3,4)

n

l

Fig. 1. PIR using the linear scheme. The dot product of the request vector (size n)
and the database is computed. The result has size l.

Linear PIR Kushilevitz and Ostrovsky [6] have shown that a more efficient pro-
tocol can be constructed using an IND-CPA additively homomorphic encryption
scheme (K, E ,D). For a scheme to be additively homomorphic, it must satisfy
the following condition: (∃⊕)(∀x, y) : E(x)⊕ E(y) = E(x+ y), where ⊕ is an ef-
ficiently computable function. Note that, given this property, it is also true that
∀x, y : E(x) · y = E(x · y), where “·” denotes scalar multiplication, which can be
viewed as repeated application of ⊕. The above functions can be implemented
using an additively homomorphic cipher as follows:

1. PrepareRead(x) – The user generates a vector Q = {q0, ..., qn} where ∀i ̸= x :
qi = E(0) and qx = E(1).

2. ExecuteRead(q) – The server computes a dot product of Q with the vector D
(using the scalar multiply operator of the homomorphic cipher) and returns
the result, E(dx).

3. DecodeResponse(r) – The user computes m = D(r).

The above computations are sound, because: ∀x : E(0) · x = E(0) and ∀x :
E(1) · x = E(x). All blocks that the user is not interested in are “zeroed out”,
and the sum of the products will be equal to an encryption of the single block
requested. The communication cost for this protocol is O(l + k ·N), where k is
the block size of the cipher. The overall communication is a 1

N + k
l fraction of

the database. If l is large in relation to N , this protocol is actually very efficient,
because l is independent of N in the complexity. In our use case, N will be very
small (actually log(N) in the notation of the overall ORAM), so it is highly
likely that l will be large in comparison to it, particularly in our motivating case
of large block sizes. This is where our savings in communication comes from,
because retrieval requires only one full sized block to be transferred, while all
the “indexing” information is in small ciphertexts.

4.1 PIR-Writing

We define PIR-writing [8] as follows:

Definition 5. A PIR-writing protocol is a set of interactions between a user
and a server comprised of the following functions:

PrepareWrite(x, y) : Given a private input x ∈ {0, 1, ..., N}, the user generates
a query which is designed to update block at index x on the server with the new
value y.

ExecuteWrite(q) : The server receives query q prepared by the user and exe-
cutes it over the database, updating the corresponding block to its new value.

We stress that, in contrast to PIR, PIR-writing cannot be performed on
unencrypted databases. As with ORAM, if the database was unencrypted, the
server would learn immediately which record was changed. Still, PIR-writing has
one interesting feature which is not subsumed by ORAM: it is also stateless. PIR-
writing only requires a long-term key. In contrast, ORAM, even under constant
user memory, requires state to be updated with each operation.

Linear Path-PIR’s linear PIR protocol above can be adapted to a PIR-writing
protocol in a straightforward manner. If, instead of D, the server holds C =
{E(d1), . . . , E(dN)}, the protocol runs as follows:

1. PrepareQuery(x,y) – The user generates a vector Q = {q1, . . . , qn} where
∀i ̸= x : qi = E(0) and qx = E(1). Additionally, the user calculates y′ = y−dx
and returns the query (Q, y′).

2. ExecuteQuery(q) – The server computes ∆C = y′ ·Q and adds it to C com-
ponentwise.

As before, multiplying by encryptions of zero will result in encryptions of zero,
meaning that every block not being updated has an encryption of zero added to
it which corresponds to a re-encryption. The single block being updated has an
encryption of y′ added to it, resulting in a new value of y. This protocol requires
that the user knows the current value of dx, but this can be accomplished with
a prior execution of PIR.

An additional problem with this protocol is that the server learns y′, the
difference between the old value of dx and the new value. One might try to set
qi = y′−y to get around this, but then the size of each encryption becomes O(l)
and we lose any benefit from using PIR. If, however, the user first encrypts the
blocks with an IND-CPA encryption before applying the homomorphic encryp-
tion, the server sees only a difference between two ciphertexts. This is equivalent
to seeing two ciphertexts ((c1, c2 ⊕ c1)⇔ (c1, c2)), which gives the adversary no
information under IND-CPA encryption.

4.2 Replacing internal ORAM buckets with PIR

For the internal ORAM buckets, as stated above, we only need to provide a
PIR capable of performing ReadAndRemove and Add, and that allows for a non-
contiguous identifier space. This is because the bucket will be storing “sparse”
identifiers, i.e., there are N possible block identifiers and a random O(log(N))
subset of them will be in any given bucket. In order to support the Add operation
and the “remove” part of ReadAndRemove, any PIR construction requires also
PIR-writing. From a high level perspective, our idea in Path-PIR is to implement

ReadAndRemove and Add with one invocation of PIR and PIR-writing, respec-
tively. PIR does not naturally support a non-contiguous identifier space, because
it only retrieves a specific “row” from the server. In Path-PIR, we overcome this
by storing an encrypted map on the server which identifies the block in each slot
of a bucket. Again, let n designate the capacity of a bucket and N the capacity
of the entire ORAM. Let us assume the user has an IND-CPA additively homo-
morphic encryption scheme (E ,D,K), e.g., Paillier, and an IND-CPA symmetric
encryption scheme (E ′,D′,K′), e.g., AES-CBC with random IVs. We will first
show how to construct a basic PIR bucket, then discuss additional improvements
that can be made and interesting properties that arise from it.

It is sufficient to show that we can implement an oblivious bucket that sup-
ports ReadAndRemove and Add, and that allows for a non-contiguous identifier
space. By non-contiguous identifier space we mean that a bucket may hold n
items, but the identifiers for those items may be from the set {0, . . . , 2m} with
m > n. This is required for the tree construction, because there are, overall, N
elements in the ORAM, with N unique identifiers, and each bucket has capacity
only n = log(N). Therefore, there will be more possible identifiers than slots in
the bucket. Standard PIR does not support a non-contiguous identifier space,
as the “identifiers” are the row indices of each block in the database. We will
overcome this in Path-PIR by using a map, stored on the server, which relates
block identifiers to rows and allows us to use PIR with arbitrary identifiers.

Note that, in order to support the Add operation and the “remove” part of
ReadAndRemove, any construction attempting this will also have to use a PIR-
writing protocol to mask these operations. At a high level, the idea will be to
implement ReadAndRemove and Add with one invocation of PIR and PIR-writing
respectively. Let n designate the capacity of a bucket (as opposed to N for the
capacity of the entire ORAM). We construct a store for the internal ORAM
buckets meeting the above conditions for n blocks as follows:

Data storage The server will store n tuples (E ′(t), E ′(u), E(E ′(v))). t is the leaf
node that block is moving toward, u is the block identifier and v is the actual
data (“value”) of the block. If the slot is empty (i.e., no block is currently stored
there) then u is set to some canonical dummy value ⊥. The value for each block
is stored doubly-encrypted so that we can use the PIR-writing protocols outlined
above.

ReadAndRemove(x) The user reads all the encrypted u values from the server
(we will call these values the map) and learns in which slot block x resides in.
If the requested block is present in this store at slot i, the user changes its ui

value to ⊥, reencrypts all u values with fresh randomness and sends them back
to the server. This marks the row as a “dummy” and effectively performs the
“remove” part of ReadAndRemove. All rows in the map are reencrypted so the
server does not learn which block the user was actually interested in. The user
then executes PrepareRead(i) and sends it to the server. The server executes the
query over V = v1, ..., vn, returns the response, and the user decrypts it with

Algorithm 1: ReadAndRemove

Input: Identifier x of block to retrieve
Output: Value of block x or ⊥ if block does not exist
begin

Read and decrypt the map U = {u1, .., un} from the server
i← 0
exists← false
for j ∈ {1, ..., n} do

if uj = x then
i← j
uj ← ⊥
exists← true

end

end
Reencrypt U and send back to the server
Q← PrepareRead(i)
R← ExecuteRead(Q)
if exists then

return D′(D(DecodeResponse(R)))
else

return ⊥
end

end

D and D′ to obtain the value for block x. We do not have to remove or change
the value v corresponding to the block that we are reading, but only change its
identifier to ⊥. Future Add operations will simply overwrite the existing value.

Add(x,y) The user reads all encrypted u values from the server and selects an
empty block i where ui = ⊥. The user sets ui = x, reencrypts all u values and
sends them back to the server. The user then runs PrepareWrite(i,y) and the
server executes the PIR-writing query over V , changing the value in the ith slot
to y. Note that in order to calculate the query for PIR-writing, the user must
already know the old value of the block. Therefore, there is an implicit PIR
query that occurs as part of PrepareWrite, but it has the same communication
complexity as the PIR-writing query.

Complexity Analysis The communication complexity for Path-PIR’s “PIR-
bucket” is O(n·k+P (n)), where k is the block size of the additively homomorphic
encryption, and P (n) is the complexity of the underlying PIR protocol. For our
linear scheme above, the communication complexity is O(n · k+ l) so the overall
communication complexity of the bucket is just O(n · k + l). Unlike ORAM,
however, our PIR-bucket requires O(n · l) computation. When used in the larger
ORAM construction, n = log(N), so this computation is quite reasonable as we
will demonstrate in Section 5.

Algorithm 2: Add

Input: Identifier x of block to add and value y of said block
Output:
begin

Read and decrypt U = {u1, .., un} from the server
i← 0
/* First, find an empty block in the bucket */

for j ∈ {1, ..., n} do
if uj = ⊥ then

i← j
end

end
/* Mark that block with its new identifier */

ui ← x
Reencrypt U and send back to the server
/* Read the existing block value */

Q← PrepareRead(i)
R← ExecuteRead(Q)
/* Calculate the difference between the old and new values */

oldV alue← D(DecodeResponse(R)))
changeV alue← E ′(y)− oldV alue
/* Write the change back to the bucket */

Q← PrepareWrite(i, changeValue)
ExecuteQuery(Q)

end

Security The security proof by [12] requires that the buckets meet the security
requirements of an ORAM. It is easy to see that PIR, in combination with a
compatible PIR-writing protocol, form a bucket which makes any access patterns
indistinguishable, and hence satisfies the requirements of an ORAM. This follows
directly from the security definitions of PIR and PIR-writing, which guarantee
that any queries are indistinguishable. The only additional data structure we
add Path-PIR is the map. However, as we completely reencrypt (using an IND-
CPA cipher) the map with every bucket access, all the server sees are ciphertexts
which do not provide information about the row that was accessed and can be
efficiently simulated by an adversary. Additionally, the y values send during PIR-
writing are equivalent to independent IND-CPA encrypted ciphertexts and can
also be simulated. Therefore, our bucket construction composes with the overall
scheme to form a secure ORAM.

4.3 Improvements to the basic scheme

Lower latency An interesting property to consider of any ORAM is it’s data
latency, that is the amount of data that is transferred before the client has access
to the requested information. In our scheme, the client has access immediately
after ReadAndRemove. Although Evict can be quite expensive, it can be executed

in the background on the server without any user interaction, and the user does
not need to “wait” on it.. At the tree level, the cost for a ReadAndRemove
operation is log(N) · P (log(N)). With P (n) = O(n · k + l), this results in k ·
log2(N) + l · log(N). We can then save a factor of log(N) by executing another
PIR query over the results from each bucket in the path. As an example, if we
know that the block we want is in slot i of bucket j, we can retrieve it with
cost only O(log2(N) + l). We can send two PIR queries: the first selects the ith

row from every bucket, and the second selects the response from the jth bucket
(out of log(N) buckets in the path). The overall latency is now k · log2(N) + l,
which is optimal for any retrieval within the constant factor k. This leads to
very low latency in practical situations (lower than any other previous work,
even allowing for non-constant client memory).

Lower communication for Evict Path-PIR’s default approach to Evict using
its PIR-bucket is to simply execute a ReadAndRemove on the parent bucket and
two Add operations on the children. This requires three PIR queries and two
PIR-writing queries. Since the user knows which child node the block is going to
be added to, it can simply execute a “dummy” PIR query over the other child
node, where all the encryptions in the request vector are encryptions of zero. The
same change value can then be used for both children, but the dummy request
will simply result in an entire vector of zeroes and no change to the non-selected
child bucket. With this modification, Path-PIR can coalesce the two reads and
writes on the child nodes into one, saving a factor of 2 · l.

Fully homomorphic encryption (FHE). An interesting extension to our
scheme would be to use a more powerful homomorphic encryption (FHE). The
most communication intensive part of our scheme, which maintains a dependence
between N and l, is Evict. Unfortunately, since Evict is randomized, the user is
required to send at least the random choices of buckets to the server, of which
there may be many. Fortunately, there is no need to perform Evict in a random
way. Randomized eviction is only used originally to minimize client memory
(the client need not remember which buckets have been evicted recently). All
we need is a scheme where the expected number of operations that pass before
a bucket at level L is evicted is 2L. We can also realize Evict in a deterministic
way, independent of the user access pattern, by simply sweeping through the set
of buckets. The server remembers which bucket it has evicted last on each level,
and simply evicts the next one in line. We can see that this does not depend on
the user’s access pattern because it is deterministic, independent of any action
by the client.

Since the eviction process is deterministic, we can actually reach a commu-
nication complexity of zero given a fully-homomorphic encryption scheme. The
user can encode a circuit which evicts one block from a bucket to its children
and the server can run it on whichever bucket is queued for eviction at the time.
No input from the user is necessary. This would realize an ORAM with very
close to optimal communication complexity (l · log(N)), since the read/write
operations were already close to optimal and eviction would cost nothing. It

is not surprising that one can privately retrieve a block from a database with
good communication using FHE, since retrieval is equivalent to testing equality
over encrypted bit-strings which can be performed quite easily. It is interesting,
though, that using this tree construction we can achieve it while only computing
over a log(N) -sized fraction of the database. Any FHE-based approach is likely
to be bottlenecked by the expensive ciphertext operations, so it is very helpful
that computation only needs to be done over a small portion of the database
with each user operation. Unfortunately, fully-homomorphic encryption is still
too impractical to be used in this situation.

4.4 Summary: Complexity Analysis

Table 1 compares the communication complexity of related work with Path-PIR.
The last column shows the performance of each scheme in a setting with mod-
erately large blocks (l > 100 KB) and practically sized databases of up to 3 PB.
The two-bucket based schemes perform better in this setting because the depth
of recursion is limited to one (they lose a log(N) factor). Additionally, Path-PIR
performs especially well since all the ciphertexts that need to be transferred are
significantly less than the size of one block, so the communication is dominated
by the O(log(N)) blocks which are transferred during Evict.

In conclusion, Path-PIR reduces the expensive communication complexity
that depends on file length l by a factor of log (N) using a simple “linear” PIR
protocol. Although a reduction from log3 to log2 may look small, in practice, the
total savings can be substantial – as we will demonstrate in the next section.

5 Evaluation

First, note that, to become deployable in a practical, real-world cloud setting,
any ORAM protocol must be parallelizable. The only way to scale up in the cloud
is to expand to more nodes and CPUs in the cloud’s data center. Fortunately,
PIR as we have described is highly parallelizable. The scalar multiplication on
each file can be evaluated independently, so Path-PIR can take advantage of up
to O(log2(N)) independent CPUs.

Typically, public cloud providers such as Amazon charge users for both com-
munication/data transfer and CPU time [1]. As Path-PIR imposes additional
computational requirements, the question is how the additional computational
costs relate to the lower communication costs. Path-PIR’s should be cost ef-
fective compared to related work that does not require computation, but only
implies communication cost. Consequently, we have implemented Path-PIR in
Java and run simulations in Amazon’s EC2 cloud. We have used the additively-
homomorphic encryption scheme from Trostle and Parrish [15], because of its
conceptual simplicity and efficient homomorphism (adding two ciphertexts is
simply an integer addition). Similar results could be obtained with other ef-
ficient additively homomorphic ciphers such as NTRU [5]. We chose security
parameter k = 2048 as recommended by the authors.

Setup. To benchmark our PIR protocols, we have conducted our experi-
ments using a single High-CPU Extra Large instance. One hour of CPU time
with such an instance costs $0.58. To compare, Amazon charges $0.12 per GB
transferred [1] (for the first 12 TByte). The worst-case communication cost of
Shi et al. [12] and Path-PIR can be exactly computed based on N and l. Related
work requires no server computation, so we modeled cost based on communi-
cation alone. For the average-case of Shi et al. [12], we used the square-root
ORAM bucket, which has the best performance for the bucket sizes in question.
To estimate communication time (download/upload), we assume an 88 Mbps
connection, in line with the maximum speed one would expect when transfer-
ring from Amazon S3 [9]. This is a very generous estimate, and our scheme
compares even more favorably in bandwidth constrained environments. Compu-
tation time for Path-PIR is calculated by benchmarking on buckets of various
sizes (using EC2).

Figures 2, 3, and 4 show relative communication, time and monetary cost per
read/write operation for Shi et al. [12] and Path-PIR. We consider databases of
1 MB blocks, with total size between 1 and 16 TB. As the block size increases,
our scheme becomes more and more efficient relative to Shi et al. [12], but it
maintains lower worst-case communication even with small blocks of 500 bytes.

Although we think the constant-memory setting is important (and our bench-
marks were done in this setting), even with the linear client memory version of
our protocol the amount of memory required is quite low. For a 16 TB database,
only 40 MB of client memory is needed. This means that the number of recursive
steps required to reach constant memory is very small. In fact, up to approxi-
mately 3 PB (petabytes), only one level of recursion is needed when using 1 MB
blocks. We note that for smaller databases (less than 10 TB), it may be worth it
to use the linear client memory version (if enough memory is available) in order
to save on round complexity.

Latency Figure 5 shows the extremely low cost of ReadAndRemove operations
in our scheme. This latency property is important, because it represents the
amount of communication necessary before the client has access to their data.
The eviction, which takes up most of the communication, can be done in the
background without user interaction. We are able to obtain extremely low com-
munication requirements for this operation, since it requires transmitting only
one full block.

Discussion We observe in Path-PIR that, although the user needs to perform
one eviction for each read or write operation, these evictions are not required to
be performed immediately after the operation. The contribution of eviction is to
keep buckets from overflowing, but the correctness and security of the ORAM
remains independent of it. The user can actually conduct log(N) data accesses
without any evictions before the root node will overflow. Since ReadAndRemove
and Add are very efficient, and the overwhelming majority of communication is
consumed during Evict, this could be very useful when a user’s cost on communi-
cation may vary in different environments. For instance, a user with a cell phone

æ æ æ æ æ

à
à

à
à

à

ì ì ì ì ì

ò

ò

ò

ò

ò

0 5 10 15
0

2000

4000

6000

8000

10 000

Database Size HTBL

C
o
m

m
u
n
ic

at
io

n
HM

B
L

Communication

æ Path-PIR

à Shi et al Worst

ì Shi et al Average

ò Kushilevitz et al

Fig. 2. Communication for one read/write

æ æ æ æ æ

à
à

à
à

à

ì ì ì ì ì

ò

ò

ò

ò

ò

0 5 10 15
0

200

400

600

800

Database Size HTBL

C
o
m

m
u
n
ic

at
io

n
HM

B
L

Query Time

æ Path-PIR

à Shi et al Worst

ì Shi et al Average

ò Kushilevitz et al

Fig. 3. Time for one read/write

æ æ æ æ æ

à
à

à
à

à

ì ì ì ì ì

ò

ò

ò

ò

ò

0 5 10 15
0.0

0.2

0.4

0.6

0.8

Database Size HTBL

C
o
st

HU
S

D
L

Query Cost

æ Path-PIR

à Shi et al Worst

ì Shi et al Average

ò Kushilevitz et al

Fig. 4. Monetary cost for one read/write

æ æ æ æ æ

à
à

à
à

à

ì ì ì ì ì

ò

ò

ò

ò

ò

0 5 10 15
0

200

400

600

800

1000

Database Size HTBL
C

o
m

m
u
n
ic

at
io

n
HM

B
L

Latency

æ Path-PIR

à Shi et al Worst

ì Shi et al Average

ò Kushilevitz et al

Fig. 5. Communication ReadAndRemove

probably pays significantly more money for cellular data than WiFi data. In a
practical implementation of Path-PIR, one could defer evictions while they are
on expensive cellular data and choose to perform these operations later when
they are on cheap WiFi. This allows for extremely low communication require-
ments while Evict operations are being deferred. Additionally, the size of the
root bucket can be increased by any constant factor to allow for more deferred
operations without effecting the overall complexity.

6 Conclusion

Outsourcing sensitive data to untrusted clouds implies not only encryption, but
also hiding user access patterns in an efficient manner. Path-PIR demonstrates
that integrating PIR into recent ORAM mechanisms provides better communi-
cation without incurring unreasonably large computational burden on the cloud.
Through experiments, we are able to verify that Path-PIR’s cost savings from
the lowered communication complexity are significantly higher than the cost of
extra computation. Additionally, Path-PIR benefits from low latency that makes
it especially conducive to communication-constrained devices like cell phones or
embedded systems.

Bibliography

[1] Amazon. Amazon Elastic EC2 Pricing, 2013. http://aws.amazon.com/

ec2/pricing/.

[2] D. Boneh, D. Mazieres, and R.A. Popa. Remote Oblivious Storage: Making
Oblivious RAM Practical, 2011. URL http://dspace.mit.edu/handle/

1721.1/62006. Technical Report.

[3] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996. ISSN 0004-
5411.

[4] Google. A new approach to China, 2010. http://googleblog.blogspot.
com/2010/01/new-approach-to-china.html.

[5] J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Lecture
Notes in Computer Science. Springer Berlin, Heidelberg, 1998.

[6] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In , 38th Annual Symposium
on Foundations of Computer Science, 1997. Proceedings, pages 364 –373,
October 1997. doi: 10.1109/SFCS.1997.646125.

[7] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In Proceedings of Symposium
on Discrete Algorithms, pages 143–156, Kyoto, Japan, 2012.

[8] H. Lipmaa and B. Zhang. Two New Efficient PIR-Writing Protocols. In Pro-
ceedings of Applied Cryptography and Network Security Conference, pages
438–455, Beijing, China, 2010. ISBN 978-3-642-13707-5.

[9] Nasuni. State of Cloud Storage Providers Industry Benchmark Report,
2011. http://cache.nasuni.com/Resources/Nasuni_Cloud_Storage_

Benchmark_Report.pdf.

[10] R. Ostrovsky and W. Skeith. A Survey of Single-Database Private Infor-
mation Retrieval: Techniques and Applications. In Proceedings of Public
Key Cryptography –, pages 393–411, Beijing, China, 2007. ISBN 978-3-540-
71676-1.

[11] B. Pinkas and T. Reinman. Oblivious RAM Revisited. In Proceedings of
Advances in Cryptology – CRYPTO, pages 502–519, Santa Barbara, USA,
2010. ISBN 978-3-642-14622-0.

[12] E. Shi, T.-H.H. Hubert Chan, E. Stefanov, and M. Li. Oblivious RAM with
O(log3(N)) Worst-Case Cost. In Proceedings of Advances in Cryptology
– ASIACRYPT, volume 7073, pages 197–214, Seoul, South Korea, 2011.
ISBN 978-3-642-25384-3.

[13] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In
Proceedings of Network and Distributed System Security Symposium, San
Diego, USA, 2012.

[14] Techcrunch. Google Confirms That It Fired Engineer For Breaking
Internal Privacy Policies, 2010. http://techcrunch.com/2010/09/14/

google-engineer-spying-fired/.
[15] J. Trostle and A. Parrish. Efficient computationally private information

retrieval from anonymity or trapdoor groups. In Proceedings of Conference
on Information Security, pages 114–128, Boca Raton, USA, 2010.

