
Square Root Algorithm in Fq for q ≡ 2s + 1 (mod 2s+1)

Namhun Koo, Gook Hwa Cho, and Soonhak Kwon
Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

komaton@skku.edu, achimheasal@nate.com, shkwon@skku.edu

Abstract

We present a square root algorithm in Fq which generalizes Atkins’s square root al-
gorithm [6] for q ≡ 5 (mod 8) and Kong et al.’s algorithm [8] for q ≡ 9 (mod 16). Our
algorithm precomputes a primitive 2s-th root of unity ξ where s is the largest positive
integer satisfying 2s|q − 1, and is applicable for the cases when s is small. The proposed
algorithm requires one exponentiation for square root computation and is favorably com-
pared with the algorithms of Atkin, Müller and Kong et al.

Keywords : square root algorithm, finite field, Tonelli-Shanks algorithm, Cipolla-Lehmer
algorithm

1 Introduction

There are two well-known algorithms for square root computation in finite field Fq; the Tonelli-
Shanks algorithm [1, 2] and the Cipolla-Lehmer [3, 4] algorithms. The Tonelli-Shanks algorithm
depends on the exponent s of 2 satisfying 2s|q − 1 and 2s+1 ̸ |q − 1, which makes the worst
case complexity of the Tonelli-Shanks O(log4 q) [5] while the Cipolla-Lehmer can be executed
in O(log3 q) [3, 4]. However, due to the cumbersome extension field arithmetic needed for
the Cipolla-Lehmer algorithm, the Tonelli-Shanks algorithm performs better than the Cipolla-
Lehmer for small exponents s, and related research can be found in [5, 9, 10, 11].

On the other hand, when the exponent s is small, there are some approaches for finding
a square root using one or two exponentiations, which are faster than the Tonelli-Shanks for
some cases. One such example is a square root of c in Fq with q ≡ 3 (mod 4). That is, when c

is a quadratic residue in Fq, then a square root of c is given as c
q+1
4 since one can directly verify

(c
q+1
4)2 = c. When s = 2, 3, there are similar approaches due to Atkin [6], Müller [7] and Kong

et al. [8], and their methods have better performance when compared with the Tonelli-Shanks
and the Cipolla-Lehmer.

However it seems that, these ’exponentiation only’ approach is not well exploited for square
root extraction problem in Fq. Our aim is to generalize this ’exponentiation only’ approach
for square root extraction and give concrete examples. We present a new square root algo-
rithm using a precomputed primitive element and show that our algorithm requires only one
exponentiation in Fq.

1

2 Existing square root algorithms for small exponent

2.1 Atkin’s algorithm

There is no known square root algorithm using one exponentiation for the case q ≡ 1 (mod 4).
However, if q ≡ 5 (mod 8), a special case of q ≡ 1 (mod 4), there is an efficient square root
algorithm [6] due to Atkin which uses only one exponentiation.

Algorithm 1 Atkin’s algorithm when q ≡ 5 (mod 8)

Input : A square a in Fq

Output : x satisfying x2 = a in Fq

1: b← (2a)
q−5
8

2: i← 2ab2

3: x← ab(i− 1)
4: return x.

The Algorithm 1 uses the fact that 2 is a quadratic nonresidue in Fq when q ≡ 5 (mod 8)

and hence 2a is also a quadratic nonresidue. So one can see that (2a)
q−1
2 = −1 and (2a)

q−1
4 =√

−1. This algorithm also uses the fact that (
√
−1 − 1)2 = −2

√
−1. Algorithm 1 needs 1

exponentiation and 4 multiplications, and is more efficient than the Tonelli-Shank’s or the
Cipolla-Lehmer.

2.2 Müller’s generalization

Müller [7] extended Atkin’s idea to the case q ≡ 9 (mod 16). In this case, 2 is no longer a

quadratic nonresidue in Fq. However, since (2a)
q−1
4 is 1 or −1, Atkin’s idea can be extended

if we have another parameter; a quadratic nonresidue when (2a)
q−1
4 = 1 and a quadratic

residue when (2a)
q−1
4 = −1. Müller’s algorithm is probabilistic and requires 2 exponentiations.

Details of the algorithm is given in Algorithm 2. Note that the probabilistic step finds d ∈ Fq

satisfying η(d) = −b, where the quadratic character η satisfies η(d) = 1 if d is a square in Fq,
and η(d) = −1 if not.

Algorithm 2 Müller’s algorithm when q ≡ 9 (mod 16)

Input : A square a in Fq

Output : x satisfying x2 = a in Fq

1: b← (2a)
q−1
4

2: Find randomly d satisfying −b = η(d)

3: u← (2ad2)
q−9
16

4: i← 2u2d2a
5: x← uda(i− 1)
6: return x.

2

2.3 Kong et al.’s algorithm

Müller’s algorithm requires 2 exponentiations in Fq. If (2a)
q−1
4 = −1, then Müller’s algorithm

can be improved further and it is realized in Kong’s algorithm shown in Algorithm 3. Since

the case (2a)
q−1
4 = −1 is similar to the Atkin’s algorithm, one needs only one exponentiation

in step 1-4 of Kong’s algorithm. If (2a)
q−1
4 = 1, then the step 6-9 of Kong’s algorithm finds

a square root in a similar manner with Müller’s algorithm. Hence Kong et al.’s algorithm is
about 2 times faster than Müller’s algorithm with probability 1

2 . That is, Kong’s algorithm
needs 1.5 exponentiations on average and is about 25% efficient than Müller’s algorithm. Note
that Kong et al.’s algorithm is also probabilistic since one needs a quadratic nonresidue in step
6.

Algorithm 3 Kong el al.’s algorithm when q ≡ 9 (mod 16)

Input : A square a in Fq

Output : x satisfying x2 = a in Fq

1: b← (2a)
q−9
16

2: i← 2ab2, r ← i2

3: if r = −1 then
4: x← ab(i− 1)
5: else
6: Find a quadratic nonresidue d ∈ Fq

7: u← bd
q−9
8

8: i← 2u2d2a
9: x← uda(i− 1)

10: end if
11: return x.

3 New square root formula for Fq with q ≡ 2s + 1 (mod 2s+1)

Let q be a power of an odd prime and let s be the largest positive integer satisfying 2s|q − 1.
Since q−1

2s ≡ 1 (mod 2), one has q ≡ 2s + 1 (mod 2s+1). That is, for any odd prime power q,
there exists unique positive integer s satisfying q ≡ 2s + 1 (mod 2s+1), where s is the largest
positive integer satisfying 2s|q − 1.

For given square c in Fq, define

b = c
q−(2s+1)

2s+1 (1)

and

ζ = c
q−1
2s = c · c

q−(2s+1)
2s = c{c

q−(2s+1)

2s+1 }2 = cb2 (2)

Since c is a square in Fq, ζ is a primitive 2t-th root of unity in Fq for some uniquely determined
t ≤ s− 1, that is, there is t < s satisfying

ζ2
t
= 1, ζ2

t−1
= −1 (3)

3

Let ξ be a primitive 2s-th root of unity in Fq, which will be computed once and will be fixed

throughout this paper. Such ξ can be found by letting ξ = d
q−1
2s where d is a quadratic

nonresidue in Fq. Therefore our method is also probabilistic (i.e., randomized).

Since ξ2
s−t

is a primitive 2t-th root of unity, there exist unique i and j determined (mod 2t)
such that

ξ2
s−t

= ζi, (ξ2
s−t

)j = ζ (4)

From ξ2
s−t

= ζi = (ξ2
s−t

)ij , we have

ij ≡ 1 (mod 2t) (5)

Now we present our new theorem which states that a square root can be found using one
exponentiation under suitable conditions.

Theorem 1. Define u as u ≡ j(2t − 1)2s−t−1 (mod 2s−1). Then a square root of c in Fq is
given as cbξu.

Proof. Letting x = cbξu,
x2 = c · cb2 · ξ2u = c · ζ · ξ2u

Since u = j(2t − 1)2s−t−1 + 2s−1k for some integer k and using ξ2
s
= 1,

ζξ2u = (ξ2
s−t

)j · ξ2u = ξj·2
s−t+2u (6)

= ξj·2
s−t+j(2t−1)2s−t+2sk (7)

= ξj·2
s−t+j(2t−1)2s−t

= ξj·2
s−t(1+2t−1) (8)

= ξj·2
s
= 1 (9)

Therefore one has x2 = c · ζξ2u = c.

Finding i or j in the equation (5) is difficult if 2t is large. So our method is useful only
when t is relatively small, and can be viewed as a parallelized version of the Tonelli-Shanks
algorithm.

Example 1. Square root for q ≡ 3 (mod 4): This is the case s = 1. Therefore ζ = c
q−1
2 = 1

and thus t = 0. Also one has ξ = −1 and u = 0. Thus a square root of c is given as

cb = c · c
q−3
4 = c

q+1
4 , which is well-known.

Example 2. Square root for q ≡ 5 (mod 8): This is the case s = 2. Therefore ζ = c
q−1
4 =

±1 and thus t = 0 or 1. Also ξ is a primitive 22-th root of unity satisfying ξ2
2−t

= ζi for some
i (mod 2t). Thus a square root of c is given as cbξu where u ≡ j(2t − 1)21−t (mod 2). When
t = 0, one has u = 0 and x = cb is a square root, and when t = 1, one has i = j = 1 and also
u = 1 and a square root is given x = cbξ.

Example 3. Square root for q ≡ 9 (mod 16): This is the case s = 3. Therefore ζ = c
q−1

23

has order 2t with t = 0, 1, 2. Also ξ is a primitive 23-th root of unity satisfying ξ2
3−t

= ζi

for some i (mod 2t) with ij ≡ 1 (mod 2t). Thus a square root of c is given as cbξu where
u ≡ j(2t − 1)22−t (mod 22). To summarize,

4

• When t = 0, one has u = 0 and x = cb is a square root.

• When t = 1, then one has i = j = 1 and also u ≡ 2j ≡ 2 (mod 22) and a square root is
given as x = cbξ2.

• When t = 2, then, from ξ2 = ζi, one has (i, j) = (1, 1), (3, 3) and also u ≡ 3j (mod 22).
Therefore a square root is given as x = cbξ3j where ξ2 = ζj . That is,

– When ξ2 = ζ, then a square root is given as x = cbξ3.

– When ξ2 = ζ3 (i.e., ζ = −ξ2), then a square root is given as x = cbξ.

Example 4. Square root for q ≡ 17 (mod 32): This is the case s = 4. Therefore ζ = c
q−1

24

has order 2t with t = 0, 1, 2, 3. Also ξ is a primitive 24-th root of unity satisfying ξ2
4−t

= ζi

for some i (mod 2t) with ij ≡ 1 (mod 2t). Thus a square root of c is given as cbξu where
u ≡ j(2t − 1)23−t (mod 23). To summarize,

• When t = 0, one has u = 0 and x = cb is a square root.

• When t = 1, then from ξ8 = ζ with ζ2 = 1, one has i = j = 1 and also u ≡ 4j ≡ 4
(mod 23) and a square root is given x = cbξ4.

• When t = 2, then, from ξ4 = ζi, one has (i, j) = (1, 1), (3, 3) (mod 22) and also u ≡ 6j
(mod 23) and a square root is given x = cbξ6j where ξ4 = ζj . That is,

– When ξ4 = ζ, then a square root is given as x = cbξ6.

– When ξ4 = ζ3 (i.e., ζ = −ξ4), then a square root is given as x = cbξ2.

• When t = 3, then, from ξ2 = ζi, one has (i, j) = (1, 1), (3, 3), (5, 5), (7, 7) (mod 23) and
also u ≡ 7j (mod 23) and a square root is given x = cbξ7j where ξ2 = ζj . That is,

– When ξ2 = ζ, then a square root is given as x = cbξ7.

– When ξ2 = ζ3 (i.e., ζ = ξ6), then a square root is given as x = cbξ5.

– When ξ2 = ζ5 (i.e., ζ = −ξ2), then a square root is given as x = cbξ3.

– When ξ2 = ζ7 (i.e., ζ = −ξ6), then a square root is given as x = cbξ.

Our examples are realized in the following square root algorithms 4,5,6. All the algorithms
need a primitive 2s-th root of unity ξ which can be precomputed and fixed once q is given.
Our proposed algorithms need only one exponentiation (that is, for computing b in step 1).
On the other hand, Müller’s algorithm needs 2 exponentiations (in step 1 and 3) and Kong’s
algorithm needs 1.5 exponentiations on average.

Note that no precomputation (to further improve the complexity) is possible in both
Müller’s and Kong’s algorithms. It should also be mentioned that the cost of multiplica-
tions in each algorithm is negligible compared to the cost of exponentiations. For example, in
Algorithm 6, one needs at most 7 multiplications (5 multiplications in step 2 and at most 2
multiplications in the searching step 3-10), and this cost is negligible compared to the cost of
one exponentiation.

5

Algorithm 4 Our square root algorithm when q ≡ 5 (mod 8)

Input : A square c in Fq

Output : x satisfying x2 = c in Fq

1: b← c
q−5
8 .

2: ζ ← cb2

3: if ζ = 1, then x← cb
4: else then x← cbξ
5: return x.

Algorithm 5 Our square root algorithm when q ≡ 9 (mod 16)

Input : A square c in Fq

Output : x satisfying x2 = c in Fq

1: b← c
q−9
16

2: ζ ← cb2

3: if ζ = 1 then x← cb
4: else if ζ = −1 then x← cbξ2

5: else if ζ = ξ2 then x← cbξ3

6: else then x← cbξ
7: return x.

Algorithm 6 Our square root algorithm when q ≡ 17 (mod 32)

Input : A square c in Fq

Output : x satisfying x2 = c in Fq

1: b← c
q−17
32

2: X ← cb, ζ ← Xb,A← ξ,B ← A2, C ← B2, D ← BC
3: if ζ = 1 then x← X
4: if ζ = −1 then x← XC
5: if ζ = B then x← XAD
6: if ζ = −B then x← XAB
7: if ζ = C then x← XD
8: if ζ = −C then x← XB
9: if ζ = D then x← XAC

10: if ζ = −D then x← XA
11: return x.

6

4 Conclusion

We proposed a new square root algorithm in Fq for q ≡ 2s + 1 (mod 2s+1) which can be
successfully implemented for small s. We presented our algorithm for the cases s = 2, 3, 4
and all the given algorithms need only one exponentiation, while the Algorithm 2 in [7] needs
2 exponentiations and the Algorithm 3 in [8] needs 1.5 exponentiations. The technique of
precomputation is not possible in [7, 8] while our algorithm supports it. Also, the case s = 4
(i.e., Algorithm 6 with q ≡ 17 (mod 32)) has not been previously considered in [6, 7, 8]. Our
algorithm is useful for relatively small values of s since the number of cases we need to consider
is 2s−1, which will increase exponentially as s gets larger.

References

[1] D. Shanks ”Five Number-Theoretic Algorithms,” Proceeding of Second Manitoba Confer-
ence of Numerical Mathematics, pp.51-70, 1972.

[2] A. Tonelli, ”Bemerkung über die Auflösung Quadratischer Congruenzen”, Göttinger
Nachrichten, pp.344-346, 1891.

[3] M. Cipolla, “Un metodo per la risolutione della congruenza di secondo grado”, Rendiconto
dell‘Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, vol. IX, pp. 154-163, 1903.

[4] D. H. Lehmer, “Computer technology applied to the theory of numbers”, In Studies in
Number Theory, Prentice-Hall Enblewood Cliffs, NJ pp.117-151, 1969.

[5] S. Lindhurst, ”An Analysis for Computing Square Roots in Finite Fields”, CRM Proceed-
ing and Lecture Notes, vol. 19, pp. 231-242, 1999.

[6] A. O. L. Atkin, “Probabilistic primality testing”, summary by F. Morain, Inria Research
Report 1779, pp.159-163, 1992.

[7] S. Müller, “On the Computation of Square Roots in Finite Fields”, Designs, Codes and
Cryptography, vol. 31, pp. 301-312, 2004.

[8] F. Kong, Z. Cai, J. Yu, and D. Li, “Improved Generalized Atkin Algorithm for Computing
Square Roots in Finite Fields”, Information Processing Letters, vol. 98, no. 1, pp. 1-5,
2006.

[9] D. Han, D. Choi, and H. Kim, ”Improved Computation of Square roots in Specific Finite
Fields”, IEEE Transactions on Computers, vol. 58, no. 2, pp.188-196, 2009.

[10] N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo, ”A remark on the computation of
cube roots in finite fields”, preprint, available at http://eprint.iacr.org/2009/457.pdf.

[11] G. Adj, and F. Rodŕıguez-Henŕıquez, ”Square root computation over even extension
fields”, preprint, available at http://eprint.iacr.org/2012/685.pdf.

7

