
Secure Signatures and Chosen Ciphertext Security
in a Post-Quantum World

Dan Boneh Mark Zhandry

Stanford University
{dabo,zhandry}@cs.stanford.edu

Abstract
We initiate the study of quantum-secure digital signatures and quantum chosen ciphertext

security. In the case of signatures, we enhance the standard chosen message query model
by allowing the adversary to issue quantum chosen message queries: given a superposition of
messages, the adversary receives a superposition of signatures on those messages. Similarly,
for encryption, we allow the adversary to issue quantum chosen ciphertext queries: given a
superposition of ciphertexts, the adversary receives a superposition of their decryptions. These
adversaries model a natural post-quantum environment where end-users sign messages and
decrypt ciphertexts on a personal quantum computer.

We construct classical systems that remain secure when exposed to such quantum queries. For
signatures we construct two compilers that convert classically secure signatures into signatures
secure in the quantum setting and apply these compilers to existing post-quantum signatures.
We also show that standard constructions such as Lamport one-time signatures and Merkle
signatures remain secure under quantum chosen message attacks, thus giving signatures whose
quantum security is based on generic assumptions. For encryption, we define security under
quantum chosen ciphertext attacks and present both public-key and symmetric-key constructions.

Keywords: Quantum computing, signatures, encryption, post-quantum security

1 Introduction

Recent progress in building quantum computers [IBM12] gives hope for their eventual feasibility.
Consequently, there is a growing need for post-quantum cryptosystems, namely classical systems
that remain secure against quantum computers. Post quantum cryptography generally studies the
settings where the adversary is armed with a quantum computer, but users only have classical
machines. In this paper we go a step further and study the eventuality where end-user machines are
quantum. In these settings an attacker may interact with honest parties using quantum queries,
as discussed below, potentially giving the attacker more power. The challenge is to construct
cryptosystems that remain secure when exposed to such quantum queries. We emphasize that all
the systems we consider are classical and can be easily implemented on a classical computer. Our
goal is to construct classical systems that remain secure even when implemented on a quantum
computer thereby potentially giving the attacker the ability to issue quantum queries.

Along these lines, Zhandry [Zha12b] showed how to construct pseudorandom functions (PRFs)
that remain secure even when the adversary is allowed to issue quantum queries to the PRF. A

1

quantum query is a superposition of inputs
∑
x ψx |x〉 of the attacker’s choice. The response

is a superposition
∑
x ψx |x, F (k, x)〉 where F (k, x) is the value of the PRF at a point x under

key k. Zhandry showed that certain PRFs are secure even under such a powerful query model.
More recently, Boneh and Zhandry [BZ13] showed how to construct message authentication codes
(MACs) that remain secure even when the attacker is allowed to issue quantum chosen message
queries. That is, for a superposition of messages

∑
m ψm |m〉 of the attacker’s choice, the attacker is

given
∑
m ψm |m,S(k,m)〉 where S(k,m) is the tag on message m using key k. They showed that

some classically secure MACs become insecure under quantum chosen message queries and they
constructed several quantum-secure MAC families.

Our contributions. In this paper, we construct the first quantum-secure signatures and quantum-
secure chosen ciphertext encryption systems.

We begin by defining security for digital signatures under a quantum chosen message attack.
A quantum chosen message query [BZ13] gives the attacker the signatures on all messages in a
quantum superposition. In more detail, a quantum chosen message query is the transformation∑

m

ψm
∣∣m〉 −→

∑
m

ψm
∣∣m, S(sk,m)

〉
where S(sk, x) is the signature on x using signing key sk. The attacker can sample the response
to such a query and obtain one valid message-signature pair. After q such queries, it can obtain q
valid message-signature pairs. We say that a signature scheme is existentially unforgeable under a
quantum chosen message attack if, after q quantum chosen message queries, the attacker cannot
produce q + 1 valid message-signature pairs.

Next, we present several compilers that convert a signature scheme that is secure under classical
queries into one secure under quantum queries. In particular, we give the following constructions:

• Using a chameleon hash [KR00], we show that any existentially unforgeable signature secure
under a classical random message attack can be made existentially unforgeable under a quantum
chosen message attack. We apply this conversion to several existing signature schemes, giving
constructions whose quantum security is based on the quantum hardness of lattice problems.

• We show that any universally unforgeable signature under a classical random message attack
can be made existentially unforgeable under a quantum chosen message attack in the random
oracle model. For example, this conversion applies to a randomized variant of GPV signa-
tures [GPV08], proving security of the scheme even under a quantum chosen message attack.
We also separately show that the basic deterministic GPV scheme is secure in this setting.

• Finally, we prove that classical constructions such as Lamport one-time signatures and Merkle
signatures are existentially unforgeable under a quantum chosen message attack. The proofs
together show how to build quantum-secure signatures from any collision resistant hash
function. We leave open the problem of basing security on one-way functions. We also note
that the version of Lamport signatures that we prove secure are non-optimized, and can
potentially be made more efficient using standard combinatorial techniques. Unfortunately,
we cannot prove that these simple optimizations are quantum-secure and leave that as an
interesting open problem.

2

Turning to encryption, we first explain how to adapt the chosen ciphertext security game to the
quantum setting. In the classical game, the attacker is given classical access to a decryption oracle
used to answer chosen ciphertext queries and to an encryption oracle used to create the challenge
ciphertext. In the quantum settings, the decryption oracle accepts a superposition of ciphertexts
and returns a superposition of their decryptions:∑

m

ψc
∣∣c〉 −→

∑
c

ψc
∣∣c, D(sk, c)

〉
.

One might also try to allow quantum access to the encryption oracle — however, as we show, that
avenue results in unsatisfiable definitions. We therefore restrict the encryption oracle to be classical.

Armed with this definition of security, we construct quantum-secure chosen ciphertext systems
in both the public-key and symmetric-key settings:

• Our symmetric-key construction is built from any secure PRF, and follows the encrypt-then-
MAC paradigm. The classical proof that encrypt-then-MAC is secure for generic encryption
and generic MAC schemes does not carry over to the quantum setting, but we are able to
prove security for our specific construction.

• We show that public-key quantum chosen ciphertext security can be obtained from any identity-
based encryption scheme that is selectively secure under a quantum chosen identity attack.
Such an identity-based encryption scheme can, in turn, be built from lattice assumptions.

Motivation. Allowing the adversary to issue quantum queries is a natural and conservative
security model and is therefore an interesting one to study. Constructing signature and encryption
schemes that remain secure in these models gives confidence in the event that end-user computing
devices eventually become quantum. Nevertheless, one might imagine that in a future where
computers are quantum, the last step in a signature or decryption procedure is to sample the final
quantum state so that the results are always classical. The quantum query model ensures that even
if the attacker can bypass this last “classicalization” step, the cryptosystem remains secure.

Other related work. Several recent works study the security of cryptographic primitives when
the adversary can issue quantum queries. Boneh et al. [BDF+11] and Zhandry [Zha12a] prove the
classical security of signatures, encryption, and identity-based encryption schemes in the quantum
random oracle model, where the adversary can query the random oracle on superpositions of inputs.
In these papers, the interaction with the challenger is classical. These results show that many, but
not all, random oracle constructions remain secure in the quantum random oracle model. The
quantum random oracle model has also been used to prove security of Merkle’s Puzzles in the
quantum settings [BS08, BHK+11]. Meanwhile, Damård et al. [DFNS11] examine secret sharing
and multiparty computation in a model where an adversary may corrupt a superposition of subsets
of players, and build zero knowledge protocols that are secure, even when a dishonest verifier can
issue challenges on superpositions.

Some progress toward identifying sufficient conditions under which classical protocols are also
quantum immune has been made by Unruh [Unr10] and Hallgren et al. [HSS11]. Unruh shows that
any scheme that is statistically secure in Cannetti’s universal composition (UC) framework [Can01]
against classical adversaries is also statistically secure against quantum adversaries. Hallgren et al.
show that for many schemes, this is also true in the computational setting. These results, however,
do not apply to cryptographic primitives such as signatures and encryption.

3

2 Preliminaries: Background and Techniques

We will let [n] denote the set {1, ..., n}. Functions will be denoted by capital letters (such as F),
and sets by capital script letters (such as X). Given a function F : X → Y and a subset S ⊆ X , the
restriction of F to S is the function FS : S → Y where FS(x) = F (x) for all x ∈ S. A distribution
D on F induces a distribution DS on FS . We say that D is k-wise independent if each of the
distributions DS are truly random distributions on functions from S to Y, for all sets S of size at
most k. A set F of functions from X to Y is k-wise independent if the uniform distribution on F is
k-wise independent.

2.1 Quantum Computation

We give a short introduction to quantum computation. A quantum system A is a complex Hilbert
space H together with and inner product 〈·|·〉. The state of a quantum system is given by a vector
|ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given quantum systems H1 and H2, the joint quantum system is
given by the tensor product H1 ⊗H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, the product state is given
by |ψ1〉|ψ2〉 ∈ H1 ⊗H2. Given a quantum state |ψ〉 and an orthonormal basis B = {|0〉, ..., |d− 1〉}
for H, a measurement of |ψ〉 in the basis B results in the vector |bi〉 with probability |〈bi|ψ〉|2.

A unitary transformation over a d-dimensional Hilbert space H is a d× d matrix U such that
UU† = Id, where U† represents the conjugate transpose. A quantum algorithm operates on a
product space Hin⊗Hout⊗Hwork and consists of n unitary transformations U1, ...,Un in this space.
Hin represents the input to the algorithm, Hout the output, and Hwork the work space. A classical
input x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then, the unitary
transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is then measured, obtaining (a, b, c) with probability |〈a, b, c|ψx〉|
2. The output

of the algorithm is b. We say that a quantum algorithm is efficient if each of the unitary matrices
Ui come from some fixed basis set, and n, the number of unitary matrices, is polynomial in the size
of the input.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a unitary transfor-
mation O where

O|x, y, z〉 = |x, y +O(x), z〉

where + : X × X → X is some group operation on X . Suppose we have a quantum algorithm that
makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉 be the state of the algorithm before any
queries, and let U1, ...,Uq be the unitary transformations applied between queries. The final state
of the algorithm will be

UqOq...U1O1|ψ0〉

We can also have an algorithm make classical queries to Oi. In this case, the input to the oracle
is measured before applying the transformation Oi.

Fix an oracle O : X → Y. Let O(q) : X q → Yq be the oracle that maps x into O(y) =
(O(x1), O(x2), ..., O(xq)). Observe that any quantum query to O(q) can be implemented using q
quantum queries to O, where the unitary transformations between queries just permute the registers.
We say that an algorithm that makes a single query to O(q) makes q non-adaptive queries to O.

4

Tools. Next we state several lemmas and definitions that we will use throughout the paper. Some
have been proved in other works, and the rest are proved in Appendix B. The first concerns partial
measurements, and will be used extensively throughout the paper:

Lemma 2.1. Let A be a quantum algorithm, and let Pr[x] be the probability that A outputs x. Let
A′ be another quantum algorithm obtained from A by pausing A at an arbitrary stage of execution,
performing a partial measurement that obtains one of k outcomes, and then resuming A. Let Pr′[x]
be the probability A′ outputs x. Then Pr′[x] ≥ Pr[x]/k.

This lemma means, for example, that if you measure just one qubit, the probability of a particular
output drops by at most a factor of two. We also make use of the following lemma, proved by
Zhandry [Zha12a], which allows us to simulate random oracle efficiently using k-wise independent
functions:

Lemma 2.2 ([Zha12a]). Let H be an oracle drawn from a 2q-wise independent distribution. Then
H looks like a random function to any quantum algorithm making at most q quantum queries to H.

The next definition and lemma are given by Zhandry [Zha12b] and allow for the efficient
simulation of an exponentially-large list of samples, given only a polynomial number of samples:

Definition 2.3 (Small-range distributions [Zha12b]). Fix sets X and Y and a distribution D on Y.
Fix an integer r. Let y = (y1, ..., yr) be a list of r samples from D and let P be a random function
from X to [r]. Then the distribution of functions H : X → Y defined by H(x) = yP (x) is called a
small-range distribution with r samples of D.

Lemma 2.4 ([Zha12b]). There is a universal constant C0 such that, for any sets X and Y,
distribution D on Y, any integer `, and any quantum algorithm A making q queries to an oracle
H : X → Y, the following two cases are indistinguishable, except with probability less than C0q

3/`:

• H(x) = yx where y is a list of samples of D of size |X |.

• H is drawn from the small-range distribution with ` samples of D.

We use Lemma 2.4 to prove the following corollary:

Lemma 2.5. Let X and Y be sets, and for each x ∈ X , let Dx and D′x be distributions on Y such
that |Dx − D′x| ≤ ε for some fixed ε. Let O : X → Y be a function where, for each x, O(x) is
drawn from Dx, and let O′(x) be a function where, for each x, O′(x) is drawn form D′x. Then any
quantum algorithm making at most q queries to either O or O′ cannot distinguish the two, except
with probability at most

√
8C0q3ε.

Zhandry [Zha12b] proves this corollary for the special case where all of the Dx distributions are
the same and all of the D′x distributions are the same. Lastly, we need the following lemma:

Lemma 2.6. Fix sets X and Y, and a distribution D on Y. Let H be a function from X to Y
where each output is drawn independently according to D. Let F be a function from Y to some set Z.
Then any quantum algorithm making q quantum queries to H and an arbitrary number of queries to
F ◦H can only produce q+ 1 input/output pairs of H with probability at most (q+ 1)/

⌊
2H∞

⌋
, where

H∞ be the minimum over all z ∈ Z of the min-entropy of the distribution D on y conditioned on
F (y) = z.

5

A special case of this theorem is when F is a constant function and D is uniform. In this case,
Lemma 2.6 reduces to the following result of Boneh and Zhandry [BZ13]: any quantum algorithm
making q queries to a random oracle H from X to Y can output q+ 1 input/output pairs of H with
probability at most (q + 1)/|Y|. We prove Lemma 2.6 by reducing the general case to this special
case with |Y| =

⌊
2H∞

⌋
.

3 Signatures

We first define signatures in the quantum setting and what it means for them to be secure.

Definition 3.1. A signature scheme S is a tuple of algorithms (G, Sign,Ver) where

• G(λ) generates a private/public key pair (sk, pk).
• Sign(sk,m) is a potentially stateful algorithm that generates a signature σ. If Sign is stateful,

we require that the state does not depend in any way on the messages that have been signed.
• Ver(pk,m, σ) either accepts or rejects. We require that valid signatures always accept, that is

Ver(pk,m,Sign(sk,m)) accepts.

The requirement that the state of the signing algorithm does not depend on previously signed
messages is new relative to classical definitions for stateful signatures. This is necessary for the
state of the signing algorithm to remain classical when signing a superposition of messages. Our
definition of security for signatures will be similar to the security notion for message authentication
codes defined by Boneh and Zhandry [BZ13]:

Definition 3.2 (Quantum Security). A signature scheme S = (G,Sign,Ver) is strongly existentially
unforgeable under a quantum chosen-message attack (EUF-qCMA secure) if, for any efficient
quantum algorithm A and any polynomial q, A’s probability of success in the following game is
negligible in λ:

Key Gen The challenger runs (sk, pk)← G(λ), and gives pk to A.
Signing Queries The adversary makes a polynomial q chosen message queries. For each query,

the challenger chooses randomness r, and responds by signing each message in the query using
r as randomness:∑

m,t

ψm,t
∣∣m, t〉 −→

∑
m,t

ψm,t
∣∣m, t⊕ Sign(sk,m; r)

〉
Forgeries The adversary is required to produce q + 1 message/signature pairs. The challenger then

checks that all the signatures are valid, and that all message/signature pairs are distinct. If
so, the challenger reports that the adversary wins.

We also give some weaker security definitions. The first is for random message security:

Definition 3.3. S is existentially unforgeable under a random message attack (EUF-RMA secure)
if the adversary is not allowed any signing queries, but instead receives q message/signature pairs
for random messages at the beginning of the game.

We can weaken the security definition even further, to get universal unforgeability:

6

Definition 3.4. S is universally unforgeable under a random message attack (UUF-RMA secure) if,
in addition to receiving q message/signature pairs for random messages, the adversary also receives
n random messages, and all of the messages forged must be among the q + n messages received.

All of the above security definition also have weak variants, where in addition to requiring the
message/signature forgery pairs to be distinct, we require all the messages themselves to be distinct.
Finally, all of the above security definitions also have k-time variants for any constant k, where
the value of q is bounded to at most k. When the distinction is required, we refer to the standard
variants as many-time security.

3.1 Quantum-Secure Signatures from Classically-Secure Signatures

In this section, we show a general transformation from classically secure signatures to quantum secure
signatures. The building blocks for our construction are chameleon hash functions and signatures
that are secure against a classical random message attack. First, we will define a chameleon hash
function. The definition we use is slightly different from the original definition from Krawczyk and
Rabin [KR00], but is satisfied by the known lattice constructions:

Definition 3.5. A chameleon hash function H is a tuple of algorithms (G,H, Inv,Sample) where:

• G(λ) generates a secret/public key pair (sk, pk).
• H(pk,m, r) maps messages to some space Y
• Sample(λ) samples r from some distribution such that, for every pk and m, H(pk,m, r) is

uniformly distributed.
• Inv(sk, h,m) produces an r such that H(pk,m, r) = h, and r is distributed negligibly-close to

Sample(λ) conditioned on H(pk,m, r) = h

We say that a chameleon hash function is collision resistant if no efficient quantum algorithm,
given only pk, can find collisions in H(pk, ·, ·). Cash et al.[CHKP10] build a simple lattice-based
chameleon hash function, and prove that it is collision resistant, provided that the Shortest Integer
Solution problem (SIS) is hard for an appropriate choice of parameters. In what follows, for any
randomized algorithm A, we let A(x; r) denote running A on input x with randomness r.

Construction 3.6. Let H = (GH ,H, Inv) be a chameleon hash function, and Sc = (Gc, Signc,Verc)
a signature scheme. Let Q and R be families of pairwise independent functions mapping messages to
randomness used by Inv and Signc, respectively. We define a new signature scheme S = (G, Sign,Ver)
where:

G(λ) : (skH , pkH) R←−GH(λ), (skc, pkc)
R←−Gc(λ)

output sk = (pkH , skc), pk = (pkH , pkc)

Sign((pkH , skc),m) : Q R←−Q, R R←−R
r ← Sample(λ;R(m)), s← Q(m), h← H(pkH ,m, r)
σ ← Sign(pkc, h; s), output (r, σ)

Ver((pkH , pkc),m, (r, σ)) : h← H(pkH ,m, r), output Ver(pkc, h, σ)

7

We note that the chameleon secret key is not used in Construction 3.6, though it will be used
in the security proof. Classically, this method of hashing with a chameleon hash and then signing
converts any non-adaptively secure scheme into an adaptive one. We show that the resulting scheme
is actually secure against an adaptive quantum chosen message attack.

Theorem 3.7. If Sc is weakly (resp. strongly) EUF-RMA secure and H is a secure chameleon hash
function, then S in Construction 3.6 is weakly (resp. strongly) EUF-qCMA secure. Moreover, if Sc
is only one-time secure, then S is also one-time secure.

Theorem 3.7 shows that we can take a classically EUF-RMA secure signature scheme, combine
it with a a chameleon hash, and obtain a quantum-secure signature scheme. In particular, the
following constructions will be quantum secure, assuming SIS is hard:

• The signature scheme of Cash et al. [CHKP10], which combines their chameleon hash function
with an EUF-RMA secure signature scheme.
• A modification of the signature scheme of Agrawal, Boneh, and Boyen [ABB10], where we

hash the message using a chameleon hash before applying the signature.

We now prove Theorem 3.7:

Proof. We first sketch the proof idea: given an Sc signature σ on a random hash h, we can
construct an S signature on any given message m by using the chameleon secret key skH to
compute a randomness r such that H(pkH ,m, r) = h, and outputting the signature (r, σ). This fact
yields a simple proof of classical chosen message security. When quantum queries are considered,
however, we need to sign an exponential sized set of messages, so using this technique directly would
require signing an exponential number of random hashes. We can use small-range distributions and
Lemma 2.4 to reduce the number of signed hashes to a polynomial. The problem is that the number
of hashes signed is still a very large polynomial, whereas the number of signatures produced by our
adversary is only q + 1, so we cannot rely on the pigeon-hole principle to argue that one of the S
forgeries is in fact a Sc forgery. We instead pick a random query, and perform a particular partial
measurement on that query superposition, to obtain one of polynomially many outcomes. Lemma 2.1
shows that the adversary’s advantage is reduced by only a polynomial factor. Our measurement is
performed in such a way that the adversary only sees a single signature for that query. Since the
adversary produced more forgeries than queries, two of the forgeries must correspond to the same
query. If this is the query that we measured, then one of the S forgeries is actually a forgery for Sc.

We now give the complete proof. There are four variants to the theorem (one-time vs many
time, strong vs weak). We will prove the many-time strong security variant, the other proofs being
similar. Let A be an adversary breaking the EUF-qCMA security of S in Construction 3.6 with
non-negligible probability ε. We prove security through a sequence of games.

Game 0. This is the standard attack experiment, where A receives pkc and pkH , and is allowed
to make a polynomial number of quantum chosen message queries. For query i, the challenger
produces pairwise independent functions R(i) and Q(i), and responds to each message in the query
superposition as follows:

• Let r(i)
m = Sample(λ;R(i)(m)) and s

(i)
m = Q(i)(m).

8

• Compute h(i)
m = H(m, r(i)

m)

• Compute σ(i)
m = Signc(skc, h

(i)
m ; s(i)

m)

• Respond with the signature (r(i)
m , σ

(i)
m).

In the end, A must produce q+1 distinct triples (m∗k, r∗k, σ∗k) such that Ver(pkc,H(pkH ,m∗k, r∗k), σ∗k)
accepts. By definition, A wins with probability ε, which is non-negligible. Therefore, there is some
polynomial p(λ) such that p(λ) > 1/ε(λ) for infinitely-many λ.

Game 1. We make two modifications: first, we choose R(i) and Q(i) as truly random functions,
which amounts to generating r

(i)
m ← Sample(λ) and picking s

(i)
m at random for each i,m. The

adversary cannot tell the difference according to Lemma 2.2. Second, we modify the conditions
in which A wins by requiring that no two (m∗k, r∗k) pairs form a collision for H. The security of H
implies that A succeeds in Game 1 with probability at least ε− negl.

Game 2. Generate s(i)
m as before, but now draw h

(i)
m uniformly at random, as we as randomness

t
(i)
m . We will sample r(i)

m from the set of randomness making H(pk,m, r(i)
m) = h

(i)
m . That is, let

r
(i)
m = Inv(sk, h(i)

m ,m; t(i)m). The only difference from A’s perspective is the distribution of the r(i)
m

values. For each m, the distribution of r(i)
m is negligibly-close to that of Game 1, so the oracles

mapping m to r(i)
m are indistinguishable from those in Game 1 by Lemma 2.5. Therefore, the success

probability is at least ε− negl.

Game 3. Let ` = 2C0qp where C0 is the constant from Lemma 2.4. At the beginning of the
game, for i = 1, ..., q and j = 1, ..., `, sample values ĥ(i)

j and let σ̂(i)
j = Signc(skc, ĥ

(i)
j). Also pick q

random functions Oi mapping m to [`]. Then let h(i)
m = ĥ

(i)
Oi(m) and σ(i)

m = σ̂
(i)
Oi(m). Let Ti be random

functions, and let t(i)m = Ti(m). The only difference between Game 2 and Game 3 is that the h(i)
m

and σ(i)
m values were generated by q small-range distributions on ` samples. Each of the small-range

distributions is only queried once, so Lemma 2.4 implies that the success probability is still at least
ε− negl− 1/2p.

Game 4. Let the Oi and Ti be pairwise independent functions. The adversary cannot tell the
difference.

Notice that Game 4 can now be simulated efficiently, and A wins in this game with probability
ε− negl− 1/2p. Let h∗k = H(pk,m∗k, r∗k) be the hashes of the forgeries. Since we have no collisions in
H, the pairs (h∗k, σ∗k) are distinct. Let H(i) = {ĥ(i)

j } and H be the union of the H(i). There are two
possibilities:

• At least one of the h∗k is not in H, or two of them are equal. In this case, we can obtain a
forger B0 for Sc, which is given pkc and simulates Game 4 exactly: To generate the (ĥ(i)

j , σ̂
(i)
j)

pairs, B0 asks its own challenger for signatures on q` random messages. When A responds
with forgeries (m∗k, r∗k, σ∗k), B0 computes h∗k = H(pkH ,m∗k, r∗k), and finds the k value such that
h∗k /∈ H, or the k0, k1 such that h∗k0

= h∗k1
. In the latter case, one of the σ∗kb

was not the result
of a signing query, so let k = kb. It then outputs the pair (h∗k, σ∗k). Then B0 never received

9

the signature σ∗k on h∗k, so this is a valid forgery. Therefore, this event happens with negligible
probability.

• All of the h∗k values distinct and lie in H. In this case, there is some i such that two h∗k values
are in H(i) for the same i. Notice that this event happens, and all the forgeries are valid, with
probability ε− negl− 1/2p.

Game 5. Now we pick a random query i∗ add a check that all the h∗k values lie in H, and that
two of them are distinct and lie in H(i∗). Without loss of generality, assume these two h∗ values are
h∗0 and h∗1. A then wins in this game with probability ε/q − negl− 1/2pq. Let j∗b be the j such that
hb = ĥ

(i∗)
j∗

b
for b = 0, 1.

Game 6. On query i∗, measure the value of Oi(m), to get a value j∗. Oi takes values in [`], so the
adversary’s success probability is still at least ε/q`− negl− 1/2pq`. Notice now that for query i∗,
the challenger only needs to sign ĥ

(i∗)
j∗ , and therefore, one of the hb = ĥ

(i∗)
j values was never signed.

Game 7. Now guess at the beginning of the game the value of j∗. For j 6= j∗, generate ĥ(i∗)
j

randomly and do not sign them. For the rest of the ĥ(i)
j , query the RMA challenger for Sc for

random message/signature pairs. Simulate game 6, except abort if we did not guess j∗ correctly.
The adversary still wins with probability at least ε/q`2 − negl − 1/4pq`2, and if it does, we now
have a forgery on h∗b for some b. The security of Sc implies therefore that ε/q`2 − negl− 1/2pq`2
is negligible. Thus ε− 1/2p is negligible. Since ε > 1/p infinitely often, we then have 1/2p < negl
infinitely often, a contradiction. Therefore, ε is negligible.

We note that for one-time security, this security reduction signs only a single message, so we
only need to rely on the one-time security of Sc.

3.2 Signatures in the Quantum Random Oracle Model

In this section, we demonstrate a generic conversion from a classical signature scheme to one that is
secure against an adaptive quantum chosen message attack in the quantum random oracle model.
In the quantum random oracle model, all parties can issue quantum queries to a random function
H. The idea of our construction is simple: use the random oracle to hash the message along with a
random salt, and send the signature on the hash, together with the salt:

Construction 3.8. Let Sc = (Gc,Signc,Verc) be a signature scheme, H be a hash function, and Q
be a family of pairwise independent functions mapping messages to the randomness used by Signc,
and k some polynomial in λ. Define S = (G,Sign,Ver) where:

G(λ) = Gc(λ)

Sign(sk,m) : Q R←−Q, r R←−{0, 1}k

s← Q(m), h← H(m, r), σ ← Signc(sk, h; s), output (r, σ)

Ver(pk,m, (r, σ)) : h← H(m, r), output Verc(pk, h, σ)

10

We note that Construction 3.8 is similar to Construction 3.6: instead of the chameleon hash
H(pk, ·, ·) we have a random oracle H(·, ·), and instead of generating a different r for each message
in the superposition, we just generate a single r for the entire superposition. We can achieve
security for Construction 3.8, assuming only a very weak form of security for Sc, namely, universal
unforgeability under a random message attack (UUF-RMA security):

Theorem 3.9. If Sc is strongly (resp. weakly) UUF-RMA secure, then S in Construction 3.8 is
strongly (resp. weakly) EUF-qCMA secure in the quantum random oracle model. Moreover, if Sc is
only one-time secure, then S is also one-time secure.

Before proving Theorem 3.9, we explain how to realize the strong UUF-RMA notion of security.
We note that any strongly EUF-RMA or EUF-CMA secure signature scheme satisfies this security
notion. We also note that some weaker primitives do as well. The first is pre-image sampleable
functions, defined by Gentry et al. [GPV08]:

Definition 3.10 (PSF). A pre-image sampleable trapdoor function (PSF) is a tuple of algorithms
PSF = (G,Sample, F, F−1) with the following properties:

• G(λ) generates a secret/public key pair (sk, pk).
• F (pk, ·) is a function from set Xλ to set Yλ.
• Sample(λ) samples an x from some on Xλ, such that F (pk, x) is uniform over Yλ.
• F−1(sk, y) takes an image y ∈ Yλ, and outputs an x such that F (pk, x) = y, and x is

distributied negligibly-close to Sample(λ) conditioned on F (pk, x) = y.

The two general notions of security we are interested in for PSFs are one-wayness and collision
resistance. If we let Sign(sk,m) = F−1(sk,m) and Ver(pk,m, σ) = F (pk, σ) == m, then one-wayness
plus collision resistance implies strong UUF-RMA security.

Corollary 3.11. If PSF is a collision resistant and one-way PSF, then Construction 3.8 instantiated
with PSF is strongly EUF-qCMA secure in the quantum random oracle model.

Gentry et al. [GPV08] show how to construct a PSF that is collision-resistant and one-way under
the assumption that SIS is hard. Therefore, we can construct efficient signatures in the quantum
random oracle model based on SIS. At the end of this section, we also show that the basic GPV
signature scheme is secure in the quantum random oracle model, though the proof is very different.

A trapdoor permutation is a PSF where Dλ is the uniform distribution and F (pk·) is bijective.
Trapdoor permutations are trivially collision resistant, since they have no collisions.

Corollary 3.12. If F is a one-way trapdoor permutation, then Construction 3.8 instantiated with
F is strongly EUF-qCMA secure in the quantum random oracle model.

We now sketch the proof of Theorem 3.9. The complete proof is in Appendix A.1.

Proof sketch. Given the similarities between Constructions 3.6 and 3.8, the proof is similar to that
of Theorem 3.7. For classical security in the classical random oracle model, the adversary only sees a
polynomial number of outputs of H. We can set these outputs to be exactly the messages produced
by the Sc challenger. Moreover, we can set the outputs in a way so that we can answer signing
queries using the signatures provided by the Sc challenger with non-negligible probability. For

11

quantum security in the quantum random oracle model, using this approach directly would require
the Sc challenger to output exponentially many random messages, and sign an exponential number
of them. Similar to the proof of Theorem 3.7, we can overcome this difficulty using small-range
distributions. However, now the number of signatures received from the Sc challenger is a large
polynomial, whereas the adversary only produces q+ 1 S forgeries. To show that one of the forgeries
still corresponds to an Sc forgery, we perform a partial measurement on one of the queries, so
that the adversary only sees a single signature for that query. Since the adversary produced q + 1
forgeries, two of them must correspond to the same query, so one of the S forgeries must actually
be an Sc forgery.

Before completing this section, we show that the basic deterministic GPV signature scheme is
secure. For completeness, we present the GPV signature scheme built from pre-image sampleable
functions and PRFs, and prove its security:

Construction 3.13. Let PSF = (Gpsf ,Sample, F, F−1) be a pre-image sampleable function, PRF
be a pseudorandom function, and H a hash function. Let S = (G, Sign,Ver) where

G(λ) : (sk′, pk′) R←−Gpsf (λ), k R←−{0, 1}λ

output sk = (sk′, k), pk = pk′

Sign((sk, k),m) : r ← PRF(k,m) h← H(m), output σ = F−1(sk, h; r)

Ver(pk,m, σ) : h← H(m), h′ ← F (pk, σ), accept if and only if h = h′

We say that PSF has large pre-image min-entropy if, for all pk,

max
y∈Y

Pr[x← Sample(λ) : F (pk, x) = y] < 2−ω(log λ)

We note that the PSF given by Gentry et al. [GPV08] has large pre-image min-entropy.

Theorem 3.14. If PSF is collision resistant and has large pre-image min-entropy, then S from
Construction 3.13 is EUF-qCMA secure.

Proof. We prove security via a sequence of games:

Game 0. This is the standard security game. The adversary wins with probability ε.

Game 1. Replace PRF with a truly random function. The security of PRF implies that the
adversary wins with probability at least ε− negl.

Game2. We change the way we answer signing queries and oracle queries as follows: Pick a
random function J that maps messages to the randomness used by Sample(λ). We implement
the signing oracle as S(m) = Sample(λ; J(m)). That is, signatures are random samples from Dλ,
where the randomness used in the sampling is obtained by J(m). We implement the random
oracle as H(m) = F (pk, S(m)). The adversary wins if he can produce q + 1 (mi, σi) pairs where
H(mi) = F (pk, σi). This corresponds to F (pk, S(mi)) = F (pk, σi). In other words, S(mi) and σi
form a collision. By the collision resistance of PSF, we must have S(mi) = σi for all i, except with
negligible probability. This means that we make q queries to the oracle S and a polynomial number

12

of queries to the oracle F (pk, S(·)), and output q + 1 input/output pairs of S with probability
ε− negl.

Game 2 satisfies the conditions of Lemma 2.6 with H = S, F (·) = F (pk, ·), and H∞ = ω(log λ).
Therefore, the probability A wins in Game 2 is at most (q + 1)/

⌊
2H∞

⌋
< (q + 1)2−ω(log λ), which is

negligible. Therefore, A wins in Game 0 with negligible probability, as desired.

3.3 Signatures from Generic Assumptions

In this section, we show how to construct signatures from generic assumptions. We first construct
one-time signatures from one-way functions using the basic Lamport construction. We then expand
the message space to handle arbitrary-length messages using collision resistance, and finally plug
these one-time signatures into the Merkle signature scheme. The end result is a signature scheme
whose quantum security relies only on the existence of collision-resistant functions:

Theorem 3.15. If there exists a collision-resistant hash function, then there exists a strongly
EUF-qCMA secure signature scheme.

We now give the basic Lamport scheme and prove its security:

Construction 3.16. Let F be a one-way function. We define the following signature scheme for
n-bit messages:

G(λ) : for each i ∈ [n], b ∈ {0, 1}, xi,b
R←−{0, 1}λ, yi,b ← F (xi)

output sk = (xi,b)i∈[n],b∈{0,1}, pk = (yi,b)i∈[n],b∈{0,1}

Sign(sk,m) : write sk = (xi,b)i∈[n],b∈{0,1}

output (xi,mi)i∈[n]

Ver(pk,m, σ) : write pk = (yi,b)i∈[n],b∈{0,1}, σ = (x′i)i∈[n]

accept if and only if F (x′i) = yi,mi for all i ∈ [n]

Theorem 3.17. If F is one-way (resp. second pre-image resistant), then the Lamport signature
scheme built form F is weakly (resp. strongly) one-time EUF-CMA secure.

Proof. We prove the weak security case; the strong security case is almost identical. Let A be an
adversary that makes a single quantum query to Sign and outputs a pair of valid message/signature
pairs for different messages with probability ε. We prove security through a sequence of games.

Game 0. This is the standard attack game, where A wins with probability ε.

Game 1. Pick a random value i∗ ∈ [n]. Abort if both messages in A’s forgery are the same for
index i∗. A still wins with probability ε/n.

Game 2. For the quantum chosen message query, measure the bit i∗ of the message superposition.
Lemma 2.1 shows that A still wins with probability ε/2n.

13

Game 3. At the beginning of the game, guess a bit b∗ at random, and abort if the outcome of
the measurement in Game 2 is b∗. A still wins with probability ε/4n.

We can now describe an adversary B that inverts F . On input y, B guesses i∗ ∈ [n] and
b∗ ∈ {0, 1}, and sets yi∗,b∗ = y. For (i, b) 6= (i∗, b∗), B picks xi,b at random, and lets yi,b = F (xi,b).
Now B simulates Game 3. With probability at least ε/4n, A produces valid forgeries whose messages
differ on bit i∗. This means A produces pre-images x′i∗,0, x′i∗,1 for yi∗,0, yi∗,1. B outputs x′i∗,b∗ , which
is a valid pre-image for yi∗,b∗ = y.

The signatures from Construction 3.16 have public keys that are much longer than the messages
being signed. In order to use Lamport signatures in the Merkle signature scheme, we need to be
able to sign much larger messages. In the classical setting, it is possible to expand the message
space using target collision resistant functions. These can in turn be built from one-way functions,
showing that classical signatures can be built from the minimal assumption of one-way functions.
Unfortunately, the notion of target collision resistance no longer makes sense in the quantum setting,
and we therefore have to resort to collision resistance. Therefore, we can build one-time signatures
for arbitrary-length messages assuming only collision resistance.

Now we show how to use such signatures to build many-time signatures. We will have a tree
of depth d, where each non-leaf node contains a pair of private/public key pairs for the one-time
signature scheme, one for each child. The private/public keys for the system will be the keys for the
root. To sign a message, a random leaf node is chosen. For each non-leaf node in the path from
root to leaf, sign the node’s public keys with the corresponding secret key of the parent. Then use
the correct secret key from the leaf’s parent to sign the message. This tree is exponential in size, so
we will use a PRF to generate the keys. In more detail:

Construction 3.18. Let Sot = (Got,Signot,Verot) be a one-time signature scheme. Also let F be a
secure PRF. The stateless Merkle signature scheme S = (G, SignVer) is defined as follows:

• G(λ): run Got twice to get two secret/public key pairs (skb, pkb) for b = 0, 1. Also choose a
random λ-bit string k. The secret key is sk = (sk0, sk1, k) and the public key is pk = (pk0, pk1).

• Sign(sk,m): to sign a message m, first pick a random bit string a in {0, 1}d. Then for
i = 1, ..., d− 1,

– Let (r(a[1,i],0), r(a[1,i],1), sa[1,i]) = F (k,a[1,i]).
– Let (sk(a[1,i],b), pk(a[1,i],b)) = Got(λ; r(a[1,i],b)) for b = 0, 1.

– Let σa[1,i] = Signot(ska[1,i] , (pk(a[1,i],0)
, pk(a[1,i],1)

); sa[1,i])

Let Σa = (a, (pk(a1,0), pk(a1,1), σa1), ..., (pk(a[1,d−1],0), pk(a[1,d−1],1))),
and let σa(m) = Signot(ska,m). Output the signature (Σa, σa(m)).

• Ver(pk,m,Σ, σ): parse Σ as (a, (pk(a1,0), pk(a1,1), σa1), ..., (pk(a[1,d−1],0), pk(a[1,d−1],1))). For i =
1, ..., d− 1,

– If Verot(pka[1,i]
, (pk(a[1,i],0), pk(a[1,i],1))) rejects, then reject and stop.

Then output the output of Verot(pka,m, σ).

14

We note that if we allow state, we can pick the random bit string a incrementally for each query.
Then we can actually save the sk(a[1,i],b), pk(a[1,i],b)), σa[1,i] values until we do not need them any more,
and remove the need for a PRF to generate randomness. In this way, we obtain the stateful Merkle
signature scheme.

Theorem 3.19. If Sot is weakly (resp. strongly) one-time EUF-qCMA secure, then both the stateless
and stateful Merkle Signatures built from Sot are weakly (resp. strongly) EUF-qCMA secure.

Proof sketch. The proof is very similar to the classical proof. Notice that each secret key
in all but the bottom level are used to sign exactly one message: the pair of public keys in the
corresponding child. Moreover, the secret keys on the bottom level are used to answer only one
(potentially quantum) signature query. Therefore, the security of the one-time signature scheme
implies that no adversary can forge messages for the Merkle signature scheme. For completeness,
we give the complete proof in Appendix A.2.

4 Encryption Schemes

We now turn to encryption schemes where we first discuss an adequate notion of security under
quantum queries. In what follows, we will discuss symmetric key schemes; the discussion for public
key schemes is similar. We start by developing a notion of CPA security where encryption queries
are allowed to be quantum. Since defining an attainable definition is non-trivial we present a few
alternatives and converge on a reasonable definition. Once we arrive at a suitable definition for CPA
security, we will generalize it to a corresponding CCA security definition.

Definition 4.1. A symmetric key encryption scheme E = (Enc,Dec) is indistinguishable under a
fully quantum chosen plaintext attack (IND-fqCPA secure) if no efficient adversary A can win the
following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.
Encryption Queries A is allowed to make chosen message queries on superpositions of message

pairs. For each such query, the challenger chooses randomness r, and encrypts the appropriate
message in each pair using r as randomness:∑

m0,m1,c

ψm0,m1,c

∣∣m0, m1, c
〉

−→
∑

m0,m1,c

ψm0,m1,c

∣∣m0, m1, c⊕ Enc(k,mb; r)
〉

Guess A produces a bit b′, and wins if b = b′.

Definition 4.1 captures a scheme where we can encrypt a superposition of messages by encrypting
each message in the superposition separately, and no efficient adversary can learn anything about
the plaintext superposition. Unfortunately, this definition is not achievable:

Theorem 4.2. No encryption scheme E satisfies the security notion of Definition 4.1.

Proof. We construct a generic adversary A. A prepares three registers: two plaintext registers
and a ciphertext register. A puts a uniform superposition of all messages in the first register, and
0 in the second plaintext and ciphertext registers. A submits these three registers as a chosen
message query. If b = 0, the ciphertext register will contain the encryptions of the messages in the

15

superposition. If b = 1, it will contain the encryption of 0. A then measures the ciphertext register.
If b = 0, the resulting state will be the purely classical state (m, 0,Enc(k,m)) for a random message
m. If b = 1, the measurement does nothing, so the first register still contains a superposition of
all messages. A now performs the quantum Fourier transform to the first message register and
measures. If b = 0, the transform will place a uniform superposition of all messages in the first
register, and measuring will give a random message. If b = 1, the transform will place 0 in the first
register. Thus, A distinguishes b = 0 from b = 1 with probability exponentially-close to 1.

The problem with Definition 4.1 is that the message query is entangled with the ciphertext
response, and this entanglement depends on which register gets encrypted. Another reasonable idea
is to encrypt both registers, but flip which register each ciphertext is written to depending on the
value of b:

Definition 4.3. A symmetric key encryption scheme E = (Enc,Dec) is indistinguishable under a
fully quantum chosen left-right plaintext attack (IND-lrCPA secure) if no efficient adversary A can
win in the following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.
Encryption Queries A is allowed to make chosen message queries. For each such query, the

challenger chooses randomness r0, r1, and responds with the encryptions of both messages in
the pair, but in an order determined by b:∑

m0,m1,c1,c2

ψm0,m1,c1,c2

∣∣m0, m1, c1, c2
〉

−→

∑
m0,m1,c1,c2

ψm0,m1,c1,c2

∣∣m0, m1, c1 ⊕ Enc(k,mb; r0), c2 ⊕ Enc(k,m1−b; r1)
〉

Guess A produces a bit b′, and wins if b = b′.

Unfortunately, this definition turns out to be at least as strong as Definition 4.1, and so it is
also unattainable:

Theorem 4.4. No encryption scheme E satisfies the notion of security in Definition 4.3. In
particular, any encryption scheme that is secure in the sense of Definition 4.3 is also secure in the
sense of Definition 4.1.

Proof. Suppose we have an adversary A for Definition 4.1. We will convert it into an adversary
B for Definition 4.3. B simulates A forwarding encryption queries as follows: When A makes an
encryption query, B adds a second ciphertext register, and puts into it a uniform superposition
over all ciphertexts. B then sends the resulting state to its challenger as its encryption query. The
answer to this query does not affect the second ciphertext register, so B can uncompute it. B then
passes the resulting state back to A. B perfectly simulates A’s view, and therefore B breaks the
security of E under Definition 4.3

Our attempts to make the entire security game quantum lead to an adversary that can always
win. Therefore, we must allow encryption queries to be classical. We do, however, wish to allow the
adversary to encrypt superpositions of messages, but not have the response depend in any way on b.
Therefore, we propose separating encryption queries into classical challenge queries and quantum
encryption queries. This gives the following definition:

16

Definition 4.5. A symmetric key encryption scheme E = (Enc,Dec) is indistinguishable under
a quantum chosen message attack (IND-qCPA secure) if no efficient adversary A can win in the
following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.
Queries A is allowed to make two types of queries:

Challenge queries A sends two messages m0,m1, to which the challenger responds with
c∗ = Enc(k,mb).

Encryption queries For each such query, the challenger chooses randomness r, and encrypts
each message in the superposition using r as randomness:∑

m,c

ψm,c
∣∣m, c〉 −→

∑
m,c

ψm,c
∣∣m, c⊕ Enc(k,m; r)

〉
Guess A produces a bit b′, and wins if b = b′.

This definition has another advantage: since challenge queries are classical, when we move to
CCA security, we can actually check if a ciphertext was the result of a challenge query. This gives
us the following notion of CCA security:

Definition 4.6. A symmetric key encryption scheme E = (Enc,Dec) is indistinguishable under a
quantum chosen message attack (IND-qCCA secure) if no efficient adversary A can win in the
following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b. It also creates a list C which
will store challenger ciphertexts.

Queries A is allowed to make three types of queries:

Challenge queries A sends two messages m0,m1, to which the challenger responds with
c∗ = Enc(k,mb). The challenger also adds c∗ to C.

Encryption queries For each such query, the challenger chooses randomness r, and encrypts
each message in the superposition using r as randomness:∑

m,c

ψm,c
∣∣m, c〉 −→

∑
m,c

ψm, c
∣∣m, c⊕ Enc(k,m; r)

〉
Decryption queries For each such query, the challenger decrypts all ciphertexts in the

superposition, except those that were the result of a challenge query:∑
c,m

ψc,m
∣∣c, m〉 −→

∑
c,m

ψc,m
∣∣c, m⊕ f(c)

〉
where

f(c) =
{
⊥ if c ∈ C
Dec(k, c) otherwise

Guess A produces a bit b′, and wins if b = b′.

It is straightforward to modify the above definition for public key encryption schemes.

17

4.1 Symmetric CCA Security

In this section, we construct symmetric-key CCA secure encryption. We will follow the encrypt-
then-MAC paradigm. Ideally, we would like to show that encrypt-then-MAC, when instantiated
with any IND-qCPA-secure encryption scheme and any EUF-qCMA MAC, would be CCA secure.
However, it is not obvious how to prove security, as the reduction algorithm has no way to tell
which ciphertexts the adversary received as the result of an encryption query, and no way to decrypt
the ciphertexts if it has received them. To remedy these problems, we choose a specific encryption
scheme and MAC and leave the general security proof as an open question. The encryption scheme
allows us to efficiently check if the adversary has seen a particular ciphertext as a result of an
encryption query, and to decrypt in this case. The construction is as follows:

Construction 4.7. Let F and G be pseudorandom functions. We construct the following encryption
scheme E = (Enc,Dec) where:

Enc((k1, k2),m) : r R←−{0, 1}λ

c1 ← F (k1, r)⊕m, c2 ← G(k2, (r,m))
output (r, c1, c2)

Dec((k1, k2), (r, c1, c2)) : m← c1 ⊕ F (k1, r), c′2 ← G(k2, (r,m))
if c2 6= c′2, output ⊥
otherwise, output m

For security, we require F to be a classically secure PRF, and G to be quantum secure — secure
against queries on a superposition of inputs. Zhandry [Zha12b] shows how to construct PRFs
meeting this strong notion of security.

Theorem 4.8. If F and G are quantum-secure pseudrandom functions, then E in Construction 4.7
is qCCA-secure.

As demonstrated by Zhandry [Zha12b], quantum-secure pseudorandom functions can be built
from any one-way function. Therefore, Theorem 4.8 shows that quantum chosen ciphertext security
can be obtained from the minimal assumption that one-way functions exist. We now give the proof
of Theorem 4.8:

Proof. We first sketch the proof: we can replace F and G with random functions and only negligibly
affect the success probability. Since each encryption query receives a single r for the entire query
superposition, we can answer any encryption query by making a single query to F on r. It is easy
to check if a ciphertext (r′, c1, c2) was computed during an encryption query: just check if r = r′.
We can also decrypt such a ciphertext, since we have seen F (k1, r). Including c2 = G(k2, (r,m)) in
the ciphertext guarantees with overwhelming probability that the adversary can only submit valid
ciphertexts if they were ciphertexts received during an encryption query, so we might as well reject
all ciphertexts (r′, c1, c2) where r′ was not the randomness used in any encryption query. Now, the
value of mb in the challenge query becomes perfectly hidden, which means that the distinguishing
probability is 0.

We now give the complete security proof: assume we have an adversary A that breaks the
indistinguishability of E in Construction 4.7 with probability ε. We prove security through a sequence
of games.

18

Game 0. This is the standard attack game where A makes qe encryption queries which are
answered using randomness values ri, qc challenge queries which are answered using randomness r∗i ,
and qd decryption queries. Let (m∗i,0,m∗i,1) denote the ith challenger query, and (r∗i , c∗i , d∗i) be the
response.

Game 1. Replace F and G with truly random functions. That is, answer the ith encryption query
by mapping m to (ri, F (ri)⊕m,G(ri,m)), the ith challenge query with (r∗i , F (r∗i)⊕m∗i,b, G(r∗i ,m∗i,b)),
and answer decryption queries accordingly. Since F and G are quantum-secure pseudorandom
functions, the advantage of A in Game 1 is at least ε− negl.

Game 2. Now we abort if there is a collision among any of the ri or r∗i . The probability of a
collision is at most (qe + qc)2/2|R| where R is the randomness space. This quantity is negligible, so
A’s advantage is still ε− negl.

Notice that we can pick the ri values and r∗i value at the start of the game, and query F on
these values. Let Ti = {rj : j ≤ i} and T ∗i = {r∗j : j ≤ i}. Also let T = Sqe and T ∗ = S∗qc

. Notice
that at any point, A never gets to see G(r,m) for any m if r /∈ Ti

⋃
T ∗j where i is the number of

encryption queries made so far and j is the number of challenge queries made so far. Note also that
A only gets to see G(r∗k,m) where m = m∗k,b).

Game 3. For a decryption query on a superposition of ciphertexts (r, c, d), let ne be the number
of encryption queries made so far and nc the number of challenge queries. Check that r ∈ Tne , and
respond with ⊥ for that slot otherwise. We now consider the ciphertexts that would be accepted in
Game 2 but rejected in Game 3. Such ciphertexts come in two forms:

• r ∈ T ∗nc
: Then r = r∗i for some i. In order to not be rejected in Game 2, we must have c 6= c∗i

or d 6= d∗i . In the first case, (r, c, d) is an encryption of a message m 6= m∗i,b, so the value of
G(r∗i ,m) is hidden to the adversary. Therefore, the probability (r, c, d) is a valid ciphertext is
negligible. In the second case, (r, c, d) is an encryption of m∗i,b, but then d is not a valid MAC,
so decryption fails.

• r /∈ Tne

⋃
T ∗nc

: Then the value of G(r,m) is completely hidden from the adversary, so the
probability d is a valid MAC is negligible.

Therefore, the probability of rejection for any ciphertext in Game 3 is only negligibly higher than
that in Game 2. This means that with overwhelming probability, we only changed the decryption
oracle on a negligible fraction of inputs, so A can only distinguish Games 2 and 3 with negligible
probability. Therefore, A’s advantage is still ε− negl.

Game 4. Now notice that F is never queried except on the points ri and r∗i . Therefore, at the
start of the game, we can pick random values fi and f∗i to correspond to F (ri) and F (r∗i). We can
also pick random values g∗i that correspond to G(r∗i ,m∗i,b) (since we only query G on this point
once). The adversary’s view in this game is unchanged, so A’s advantage is at least ε− negl.

Notice that we answer the ith challenge query with (r∗i , f∗i ⊕m∗i,b, g∗i), and that the values of
f∗i and g∗i are never used again. This means that m∗i,b is statistically hidden from the adversary.
Therefore, A’s advantage in Game 4 is identically 0, so ε = negl.

19

4.2 Public-key CCA Security

In this section, we construct CCA-secure signatures in the public-key setting. The basic idea is to
first build a selectively secure identity-based encryption scheme — whose security can be based
on the Learning With Errors (LWE) Problem — and then adapt the generic transformation to
CCA-security to the quantum setting:

Let Eibe = (Gibe,Encibe,Decibe,Ext) be an IBE scheme that is selectively secure against quan-
tum queries. It is straightforward to show that the basic IBE scheme of Agrawal, Boneh, and
Boyen [ABB10] meets this security notion assuming LWE is hard. Let S = (Gs,Sign,Ver) be a
strongly EUF-CMA secure one-time signature scheme (quantum security is unnecessary). We now
construct an encryption scheme using the generic transformation from IBE to CCA security due to
Boneh et al.[BCHK04]:

Construction 4.9. E = (G,Enc,Dec) where

G(λ) : Gibe(λ)
Enc(mpk,m) : (sk, vk)← Gs(λ)

c← Encibe(mpk, vk,m), σ ← Sign(sk, c)
output (vk, c, σ)

Dec(msk, (vk, c, σ)) : if Ver(vk, c, σ) rejects, output ⊥
skvk ← Ext(msk, vk), m← Decibe(skvk, c), output m

It is not difficult to adapt the classical security proof to the quantum setting, showing that the
above construction achieves quantum CCA security:

Theorem 4.10. If the LWE problem is hard for quantum computers, then there exists a public key
encryption scheme that is IND-qCCA secure.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. Proceedings of EUROCRYPT, pages 1–40, 2010.

[BCHK04] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security
from Identity-Based Encryption. Proceedings of EUROCRYPT, pages 1–31, 2004.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random Oracles in a Quantum World. In Proceedings of ASIACRYPT,
2011.

[BHK+11] Gilles Brassard, Peter Høyer, Kassem Kalach, Marc Kaplan, Sophie Laplante, and Louis
Salvail. Merkle Puzzles in a Quantum World. Proceedings of CRYPTO, pages 391–410,
2011.

[BS08] Gilles Brassard and Louis Salvail. Quantum Merkle Puzzles. Second International
Conference on Quantum, Nano and Micro Technologies (ICQNM 2008), pages 76–79,
February 2008.

20

[BZ13] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In
Proceedings of Eurocrypt (to appear), 2013. Full version available at the Electronic
Colloquium on Computational Complexity: http://eccc.hpi-web.de/report/2012/
136.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of FOCS. IEEE, 2001.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai Trees, or How to
Delegate a Lattice Basis. Proceedings of EUROCRYPT, pages 523–552, 2010.

[DFNS11] Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposition
attacks on cryptographic protocols. CoRR, abs/1108.6313, 2011.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard Lattices
and New Cryptographic Constructions. Proceedings of the 40th Annual ACM symposium
on Theory of computing (STOC), page 197, 2008.

[HSS11] Sean Hallgren, Adam Smith, and Fang Song. Classical cryptographic protocols in a
quantum world. In Proceedings of CRYPTO, LNCS. Springer, 2011.

[IBM12] IBM Research. IBM research advances device performance for quantum computing, Feb.
2012. http://www-03.ibm.com/press/us/en/pressrelease/36901.wss.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures. In Proc. of NDSS,
pages 1–22, 2000.

[Unr10] Dominique Unruh. Universally Composable Quantum Multi-Party Computation. Pro-
ceedings of EUROCRYPT, pages 486–505, 2010.

[Zha12a] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Proceedings of CRYPTO, 2012. Full version available at the Cryptology ePrint Archives:
http://eprint.iacr.org/2012/076/.

[Zha12b] Mark Zhandry. how to construct quantum random functions. In Proceedings of FOCS,
2012. Full version available at the Cryptology ePrint Archives: http://eprint.iacr.
org/2012/182/.

A Signature Proofs

A.1 Proof of Theorem 3.9

Proof. Suppose we have an adversary A that breaks the security of S from Construction 3.8. Let
qS be the number of signing queries made by A, and qH be the number of hash queries (including
those used in signing). We will prove security through a sequence of games.

21

http://eccc.hpi-web.de/report/2012/136
http://eccc.hpi-web.de/report/2012/136
http://www-03.ibm.com/press/us/en/pressrelease/36901.wss
http://eprint.iacr.org/2012/076/
http://eprint.iacr.org/2012/182/
http://eprint.iacr.org/2012/182/

Game 0. This is the standard attack game. A makes q quantum chosen message queries, and
succeeds if it produces q+ 1 valid message/signature tuples (m∗j , r∗j , σ∗j). Let ri be the random value
produced in the ith query, and Qi be the pair-wise independent functions. A’s success probability
is, by assumption, some non-negligible quantity ε. Then there is some polynomial p(λ) such that
p(λ) > 1/ε(λ) infinitely often.

Game 1. Replace the Ri with a truly random function, and abort if any of the ri values are
identical. Then the success probability is at least ε− q2/2k+1 ≥ ε− negl. Notice that if all the ri are
distinct, we can replace Qi(m) with Q(m, ri) for a random oracle Q that is fixed across all queries.
That is, we sign the ith query with the oracle that maps m to (ri,Signc(sk, H(m, ri);Q(m, ri))).
Notice that the function H ′(m, r) = (H(m, r), Q(m, r)) is a random function.

Game 2. Let ` = 6C0pq
3
H . We now change how H ′ is generated. Pick three random oracles U , V

and W , where the codomain of U and V is [`] , and let H ′(m, r) = W (U(m,V (r)), V (r)). What
this distribution represents is, for each V (r) value, picking a random small-range function on `
samples. In essence, we have a small-range distribution on small-range distributions. A simple
generalization of Lemma 2.4 shows that this is indistinguishable from Game 1 except with probability
C0q

3
H/` = 1/3p.

Game 3. Pick the ri values up front, and let R be the set of ri values. Abort if V (ri) = V (rj)
for any i 6= j. We can assume without loss of generality that V (ri) = i. The probability of this
abort is at most q2

S/2` ≤ 1/12C0qHp < 1/3p. Therefore, A wins in Game 3 with probability at least
ε− 2/3p.

The following modifications are indistinguishable to the adversary: before the start of the
game, draw `2 different ĥi,j values. Sign each of them with i ≤ qS using S to get σ̂i,j . Then let
H(m, r) = ĥV (r),U(m,V (r)) and sign the ith query my mapping m to (ri, σ̂i,U(m,i)). We can also
generate V and U from 2qH -wise independent functions, and the adversary cannot tell.

Game 4. Pick a random ri0 from R. Add the condition that if the r∗j all lie in R, that the two
that are equal must be ri0 . This condition is independent of the view of the adversary, so the
adversary wins with probability at least (ε− 2/3p)/qS .

Game 5. Measure the value of U(m, i0) for the i0th query. The adversary still wins with probability
at least (ε− 2/3p)/qS`.

Game 6. Pick a random j0 ∈ [`], and abort if the result of the measurement in Game 5 does not
yield j0. We guess right with probability 1/`, so the adversary still wins with probability at least
(ε− 2/3p)/qS`2. Now, if we succeed, we never need the values of σ̂i0,j except for σ̂i0,j0 , so we don’t
need to ever sign the others.

We can now describe an adversary B that that attacks the UUF-RMA security of Sc. B simulates
the entire Game 6, except for generating the ĥi,j and σ̂i,j . For these, B asks its S challenger for
q = (qS − 1)`+ 1 random message/signature pairs, and n = `2 − q additional random messages. It
assigns the q message/signature pairs to ĥi,j and σ̂i,j for i ∈ [qS] \ {i0} and σ̂i0,j0 . The rest of the
ĥi,j it sets to the n additional messages. When A outputs its qS + 1 forgery candidates, there are
several possibilities:

22

• r∗j1 lies outside R for some j1. In this case, since there are no collisions among the (m∗j , r∗j),
h∗j1 = H(m∗j1 , r

∗
j1) was never signed. Therefore, σ∗j1 is a signature on a fresh message, so B

wins.

• All of the r∗j lie in R, and two of them are equal. Assume without loss of generality that
r∗0 = r∗1 = ri0 . If m∗0 = m∗1, then we must have σ∗0 6= σ∗1, so one of these is a fresh signature. If
m∗0 6= m∗1, then h∗0 6= h∗1, so one of h∗0 and h∗1 was never signed. Therefore, B also wins.

Since S is secure, B wins with negligible probability, meaning (ε− 2/3p)/qS`2 < negl. This is
equivalent to ε− 2/3p < negl. Since ε is bounded by 1/p infinitely often, we have that 1/3p < negl
infinitely often, contradicting the fact that p is a polynomial.

We note that, for one-time security, q = 1, so we only need to rely on the one-time security of Sc.

A.2 Proof of Theorem 3.19

Proof. We prove security for the stateless case, the stateful case being almost identical. Suppose
we have an adversary A that breaks the EUF-qCMA security of S with non-negligible probability ε.
We will prove security through a sequence of games.

Game 0. This is the standard attack game, where A makes q quantum queries. For j = 1, ..., q,
let aj be the vector generated for query j.

Notice that for any b with |b| ≤ d− 1, we only use the secret key skb to sign a single classical
message.

Game 1. We now replace F (k, ·) with a truly random function. The security of F implies that A
still wins with probability negligibly-close to ε.

Game 2. Now re remove the random function all together. Instead, we keep a table mapping
strings b to tuples (sk(b,0), sk(b,1), pk(b,0), pk(b,1), σb). To answer the jth query, pick a random aj .
For each i = 1, ..., d− 1,

• Let b = aj[1,i], and look up the tuple for b.

• If the tuple exists, we do nothing.

• If the tuple does not exist:

– Sample (sk(b,b), pk(b,b)) = Got(λ) for b = 0, 1.
– Obtain skb by looking up the tuple for b[1,i−1].
– Generate σb = Signot(skb, (pk(b,0), pk(b,1)))
– Associate b with the tuple (sk(b,0), sk(b,1), pk(b,0), pk(b,1), σb).

23

Game 3. In this game, we abort if we ever have aj = aj′ for j′ 6= j. There are a total of q different
aj vectors, and they are drawn form a set of size 2d. Therefore, the probability of abort is at most
q2/2d+1, which is negligible. Therefore, A still wins with probability negligibly close to ε.

Notice that in Game 3, since all of the aj are distinct, we are only using any particular ska
key at most once. The adversary produces q + 1 distinct (m`,Σ`, σ`) pairs. There are two distinct
possibilities:

• One or more of the Σ` is outside all of the Σaj . In this case, one of the signatures in Σ` is a
forgery for one of the public keys generated in answering the signing queries. We can construct
a forger for Sot by randomly guessing which of the public keys will be forged, plugging the
given public key into that key, and randomly generating all of the other keys ourselves. Such
an forger will successfully forge with probability only polynomially smaller than the probability
Σ` lies outside of the Σaj . The assumption that Sot is secure shows that this probability is
therefore negligible.

• Two of the Σ` are identical. In this case, there is an a such that we have two forgeries relative
to ska. We can similarly construct a forger for Sot by guessing a random a, and plugging
in the given public key as pka, and generating the rest of the keys itself. Such a forger will
successfully forge with probability only polynomially-smaller than the probability that two of
the σ` are identical. The security of Sot shows that this probability is also negligible.

Therefore, the probability that A wins in Game 3 is negligible, meaning ε is negligible. Hence, S
is secure.

B Technical Proofs

B.1 Proof of Lemma 2.1

We prove Lemma 2.1, which states that taking a partial measurement obtaining one of k outcomes
during a computation only decreases any output’s probability by at most a factor of k.

Proof. Let |ψ〉 be the final state of A, and let
∣∣∣ψy〉 be the final state of A′ when the outcome of

the partial measurement is y. Let Pr[y] be the probability that the partial measurement obtains y.
It is straightforward to show that |ψ〉 =

∑
y

√
Pr[y]αy

∣∣∣ψy〉 for some αy of unit norm. Then we have

Pr[x] = |〈x|ψ〉|2 =
∣∣∣∣∣∑
y

√
Pr[y]αy〈x

∣∣∣ψy〉
∣∣∣∣∣
2

≤ k
∑
y

Pr[y]
∣∣∣〈x∣∣∣ψy〉∣∣∣2 = kPr ′[x]

B.2 Proof of Lemma 2.5

Recall that we have two sets X and Y, and for each x ∈ X , distributions Dx and D′x on Y such
that |Dx −D′x| ≤ ε for all x. Let O : X → Y be a function where, for each x, O(x) is drawn from
Dx, and let O′(x) be a function where, for each x, O′(x) is drawn form D′x. We wish to bound the
distinguishing probability of the functions O and O′.

24

We first suppose that each of the probabilities in each of the distributions Dx and D′x are
rational.

Claim B.1. If each of the probabilities in Dx and D′x are rational, then any quantum algorithm
making q quantum queries can only distinguish O from O′ with probability

√
8C0q3ε.

Before proving this claim, we explain how it proves Lemma 2.5. Fix any quantum algorithm A.
The distinguishing probability for any rational collection of distributions Dx and D′x is bounded by√

8C0q3 maxx |Dx −D′x|. But the distinguishing probability of A is a continuous function of the
probabilities in the distributions Dx and D′x, and the pairs of rational distributions are dense in
the set of all pairs of distributions. Therefore, the bound of

√
8C0q3 maxx |Dx −D′x| applies for all

pairs of distributions.
Now we prove the claim:

Proof. Let r be the smallest integer such that each of the probabilities in each of the distributions
Dx and D′x can be represented as a rational number with denominator r. Observe that we can
take ε to be an integer times 2/r, say 2s/r. Let Z = [s + r]. Let E be the uniform distribution
on [r] and E′ the uniform distribution on [r] + s = {s+ 1, ..., s+ r}. The probabilities in E and
E′ are the same on [s] + (r − s) = {s, ..., r}, and are 1/r on[s] and [s] + r respectively. Therefore
|E −E′| = 2s/r. We now construct functions fx such that if z ← E, fx(y) is distributed according
to Dx and if z ← E′, fx(y) is distributed according to D′x. For each y ∈ Y , let p/r be the probability
under Dx and p′/r the probability under D′x. Suppose p ≤ p′. Then we will choose p elements of
[s] + (r − s) that have not been chosen before, and let fx evaluate to y on those elements. We will
also choose p′ − p elements of [s] + r and let fx be y on those elements as well. We treat the p′ < p
case similarly. Then fx evaluates to y with the desired probabilities, so it remains to show that we
never run out elements. Since |Dx −D′x| ≤ 2s/r, we will never run out of elements in [s] + r or [s].
If |Dx−D′x| < 2s/r, we will run out of elements in [s] + (r− s). When we run out, however, instead
of picking an element in [s] + (r − s), we can pick two elements, one in each of [s] and [s] + r, and
still have the correct probability.

Now that we can generate Dx = fx ◦ E and D′x = fx ◦ E′, we can generate O and O′ differently.
Let P be the set of oracles from X to Z where each output is drawn according to E, and let P ′
be the set of oracles where each output is drawn from E′. Then letting O(x) = fx(P (x)) and
O′(x) = fx(P ′(x)) gives the correct distributions for O and O′. Suppose A distinguishes O from O′

with probability σ. Then we can easily construct an algorithm B that distinguishes P and P ′ with
probability σ.

Let ` be some integer to be chosen later. We replace P and P ′ with small-range distributions on
` samples of E and E′ respectively. Applying Lemma 2.4 twice shows that B must still distinguish
P and P ′ with probability at least σ − 2C0q

3/`. But now the difference between the distribution P
and P ′ is only ` samples of either E or E′, so the distinguishing probability is at most `ε. Thus
σ ≤ `ε + 2C0q4/` for any `. Setting ` =

√
2C0q3/ε minimizes this quantity, yielding

√
8C0q3ε as

desired.

B.3 Proof of Lemma 2.6

Recall that we have sets X and Y, and a distribution D on Y. Let H be a function from X to Y
where each output is drawn independently according to D. Let F be a function from Y to some
set Z, and let H∞ be the minimum over all z ∈ Z of the min-entropy of the distribution D on y

25

conditioned on F (y) = z. Let A be a quantum algorithm making q queries to H and any number of
queries to F ◦H. We wish to show that A can only produce q + 1 distinct input/output pairs with
probability (q + 1)/

⌊
2H∞

⌋
We proceed by converting an algorithm violating Lemma 2.6 to an algorithm violating the

following lemma proved by Boneh and Zhandry [BZ13]

Lemma B.2 ([BZ13]). Fix sets X and Y, and let H be a random function from X to Y. Then
any quantum algorithm making q quantum queries can only produce q + 1 input/output pairs with
probability at most (q + 1)/|Y|.

First, we need the following technical lemma:

Lemma B.3. Fix and integer r. Let D be a distribution of a set X such that Pr[x ← D] < 1/r
for all x. Then we can construct a distribution D′ on injective functions from [r] into X with the
property that Pr[x : f R←−D′, i R←−[s], x ← f(i)] = Pr[x : x R←−D] for all y. In other words, we can
generate x according D by drawing a random value i in [r], a random injective function f from D′,
and evaluating f(i).

Proof. Pick an arbitrary ordering of elements in X . Then there is a one-to-one correspondence
between subsets of X of size r and strictly monotonically increasing functions from [r] to X . Therefore,
it suffices to show how do sample subsets T ⊆ X of size r such that sampling T and then picking a
random element of T simulates the distribution D. We give the algorithm SampleSubset, which
takes as input a set X , a distribution D on X , and an integer r such that where Pr[x← D] ≤ 1/r,
and samples from a distribution of subsets of size r with the desired properties:

We now prove that SampleSubsets works as promised. We need to show that D′ and D′′ are
distributions. Since p∗ is at most the smallest probability in D, all the probabilities in D′ are
non-negative. Moreover, by adding up all the probabilities in D′, we see that they sum to 1, so D′
is in fact a distribution. This means all the probabilities in D′′ are non-negative as well. Using the
fact that all elements in F have probability 1/r under D′, we see that the probabilities in D′′ also
sum to 1, so D′′ is also a distribution. The fact that D′ is a distribution also shows that |F| ≤ r,
since otherwise the probabilities would sum to greater than 1.

Next, we explain why the recursive call to SampleSubset is valid. That is, that Pr[x← D′′] ≤ 1
r′

where r′ = r − |F|. For D′, the maximum probability is at most

pH
1− rp∗ ≤

pH

1− (1
r − pH)

= r

r + (r − 1)/pH
≤ r

r + (r − 1)r = 1
r

For D′′, the maximum probability is less than 1/r
1−|F|/r = 1

r−|F| = 1
r′ , as desired. Also,

SampleSubset is never called with r′ = 0, since in this case we would have already outputted F .
Now, we need to show that this sampling algorithm actually terminates. We look at two cases:

• p∗ = pL. Let xL be an element in T with Pr[xL ← D] = pL. Observe that under D′ and hence
D′′, xL has probability 0.

• p∗ = 1
r − pH . Let xH be an element with Pr[xH ← D] = pH . Under D′, Pr[xH ← D′] = 1

r , so
xH is included in F . Therefore, under D′′, xH has probability 0.

26

Algorithm 1 SampleSubset(X , D, r)
If r = 1, draw x← D, output {x}, and exit.
Otherwise, let pL be the smallest non-zero probability in D.
Let pH be the largest probability in D.
Let p∗ ← min(pL, 1

r − pH).
Let T be the set of the r elements in X with the smallest non-zero probabilities.
With probability rp∗, output T and exit.
Otherwise, let D′ be the distribution where

Pr[x← D′] =

Pr[x←D]−p∗

1−rp∗ if x ∈ T
Pr[x←D]

1−rp∗ otherwise

Let F be the set of x such that Pr[x← D′] = 1
r .

If |F| = r, then output F and exit.
Otherwise, let D′′ be the distribution where

Pr[x← D′′] =

0 if x ∈ F
Pr[x←D′]
1−|F|/r otherwise

Sample T0 from SampleSubset(X , D′′, r − |F|)
Output T0 ∪ F .

This means that in each recursive call to SampleSubset, the number of x with positive probability
decreases by at least 1. Since X is finite, eventually, the number of x with positive probability will
equal r (it cannot be less since all probabilities in D are at most than 1/r, meaning there are at
least r such elements).

It remains to be proven that our sampling algorithm gives the desired distribution. In the case
r = 1, then we just output sets {x} where x← D, which is correct. Otherwise, with probability rp∗,
we output T . In this case, drawing a random value from T gives us each element with probability
p∗. Since p∗ is at most pL, we have not over-sampled any element. If we do not output T , we then
need to sample subsets to match the distribution D′. If any x has Pr[x ← D′] = 1

r , then x must
be in every subset, so we set it aside in the set F . We then need to drawn r′ = r − |F| additional
elements not in F to match the correct distribution. It is straightforward to show that this is
achieved by calling SampleSubset(X , D′′, r − |F|).

We are now ready to prove Lemma 2.6:

Proof. Recall that we have an algorithm making q queries to a random oracle H where outputs
are drawn from a distribution D, and an arbitrary number of queries to F ◦H, and produces q + 1
input/output pairs with probability ε. Additionally, for all z, Pr[y : y ← D,F (y) = z] ≤ p = 2−H∞ .

We now generate the two oracles in a different way: Let O(x) be an oracle with the same
distribution as F ◦H. Fix some arbitrary ordering on Y. Let G(z, i) output the ith value y ∈ Y
such that F (y) = z. We then generate H as H(x) = G(O(x), RO(x)) where RO(x) is an oracle

27

(dependent on O) mapping X to the positive integers, where for each x, the output distribution is
chosen so that G(O(x), RO(x)) has the distribution matching D, conditioned on F (y) = O(x).

Thus H and O have the correct distributions, and A is a quantum algorithm making q queries
to H and many queries to O, and outputting q+ 1 pairs xi, yi where yi = H(xi) = G(O(xi), RO(xi))
with probability ε. Notice from yi, we can recover RO(xi) by just counting how many y ≤ yi have
F (y) = F (yi).

Next, we change how RO(x) is drawn. Notice that, by the min-entropy assumption, RO(x) = j
with probability at most p for any j. Let r = b1/pc. Then RO(x) = j with probability at most 1/r.
Therefore, according to Lemma B.3, we can drawn RO(x) by first drawing an injective function
SO,x : [r] → Z from an appropriate distribution (where the distribution depends on O and x),
picking a random k ∈ [r], and outputting SO,x(k). Doing this for all x, we can generate H as
H(x) = G(O(x), SO,x(P (x))) where P is a random function from X to [r].

From RO(xi) = SO,xi(P (xi)), we can recover P (xi) since SO,xi is injective. Notice that to answer
all the queries requires only q queries to P , and we can produce q + 1 input output pairs of P with
probability ε. Lemma B.2 gives us the bound ε ≤ (q + 1)/r, which completes the proof.

28

	Introduction
	Preliminaries: Background and Techniques
	Quantum Computation

	Signatures
	Quantum-Secure Signatures from Classically-Secure Signatures
	Signatures in the Quantum Random Oracle Model
	Signatures from Generic Assumptions

	Encryption Schemes
	Symmetric CCA Security
	Public-key CCA Security

	Signature Proofs
	Proof of Theorem 3.9
	Proof of Theorem 3.19

	Technical Proofs
	Proof of Lemma 2.1
	Proof of Lemma 2.5
	Proof of Lemma 2.6

