
Functional Encryption Supporting Recursive Languages

Somindu C. Ramanna
Indian Statistical Institute, Kolkata

somindu_r@isical.ac.in

Palash Sarkar
Indian Statistical Institute, Kolkata

palash@isical.ac.in

Abstract

We provide a construction for functional encryption over the set of recursive languages. In this
scheme, a secret key SKM encodes a halting double-stack deterministic pushdown automaton (2DPDA)
M that accepts by final state. Encryption algorithm takes a message m and a string w as input and
outputs a ciphertext C. A user possessing SKM can decrypt C only if M accepts w. Halting 2DPDAs
can simulate halting deterministic Turing machines and hence our construction essentially covers all
recursive languages.

The construction is built upon Waters’ bilinear pairing-based functional encryption scheme over
regular languages. The main technical novelty is in handling stack contents and λ-transitions (i.e.,
transitions that do not advance the input pointer) of the automata. This is reflected both in the
construction and the security arguments. The scheme is shown to be selectively secure based on the
decision `-expanded bilinear Diffie-Hellman exponent assumption introduced by Waters.

1 Introduction

Functional encryption is a new form of public key encryption that provides sophisticated access control
based on certain policies and also ability to compute functions over encrypted data. In a functional
encryption (FE) system, a sender encrypts a message x to a ciphertext C = Encrypt(PP, x), where PP
denotes the public parameters of the system. A trusted authority called the private key generator (PKG)
issues secret keys to users. A secret key SKf enables computation of the function f(·). Decryption
algorithm computes f(x) given the encryption C of x. The decrypting entity cannot learn anything more
than f(x) about x. A formal treatment of functional encryption, its definition and security models can be
found in [BSW12].

In systems requiring access control, the plaintext x is of the form (m,Ψ) where m is the message and
Ψ is an index that describes a user’s credentials. The access policy would be defined via a predicate. The
function f(·) takes in a ciphertext encrypting (m,Ψ) and returns m if the predicate evaluates to true on
input Ψ; and ⊥ otherwise. In this work we only look at the public index model, where the index Ψ is
not hidden. The form of FE described above is called key-policy functional encryption since the policy is
encoded in the key. A complementary form called ciphertext-policy FE is also studied where the function
is hard coded in the ciphertext and index in the key.

Functional encryption schemes with different kinds of functionalities have been studied. These include
attribute-based encryption [SW05, GPSW06, OSW07, BSW07, Wat11], inner-product encryption [KSW08,
OT09, OT10, LOS+10] and many others in both the ciphertext-policy and key-policy settings. All of these
schemes have one property in common – the functions only deal with fixed-size inputs. Waters [Wat12]
went beyond the realm of fixed-size inputs and proposed a functional encryption scheme that operates over

1

arbitrary sized inputs. A secret key is associated with a deterministic finite automaton (DFA)M and the
index Ψ is a string w over the input alphabet of the DFA. Decryption succeeds ifM accepts w. The set of
langauges the system can deal with is restricted to the class of regular languages. A natural question put
forward in [Wat12] is whether it is possible to obtain a construction which works with a Turing Machine
(TM) instead of a DFA?

Our Contributions. We construct a functional encryption scheme over recursive languages. A language
is recursive if there is a halting TM which accepts it. It has been indicated in [Wat12] that achieving this
is difficult since one approach to building FE based on Turing machines requires the ability to tackle non-
determinism; and handling non-determinism is not straightforward due to backtracking attacks (described
in [Wat12]). On the other hand, it is well-known that at the top of the language hierarchy, both determinism
and non-determinism have the same power. Keeping this in mind, we move up the hierachy and obtain a
scheme which works with deterministic Turing machines without having to tackle with non-determinism
at all and also the resulting backtracking attacks. A two-step approach was followed.

• First, the scheme of Waters [Wat12] was extended to work over deterministic pushdown automata
(DPDA). The main challenge was to devise ways to handle the stack contents and λ-transitions (here
λ is the empty string and the transition does not read any input symbol). The resulting scheme is
secure in the selective model under the expanded `-BDHE assumption that was introduced by Waters
in [Wat12] to prove security of the DFA-based FE scheme.

• The next step was to consider automata equipped with two stacks. A two-stack determinitic push-
down automaton can simulate a deterministic Turing machine and hence we are done. Moving from
one stack to two stacks was relatively easy.

While our construction can handle any recursive language, the proof only holds for languages recognisable
in polynomial time (i.e., all recursive languages in the class P). The reason is that the attacker does not
have unbounded resources. More specifically, the adversary is a probabilistic algorithm running in time
bounded by a polynomial in the security parameter. There could be automata that take exponential time
(in security parameter) to decide and halt. Allowing such automata in the proof provides exponential time
to the adversary for attacking the scheme. Therefore, within this framework, it is not possible to obtain a
meaningful proof covering the set of all recursive languages.

We only present the more general two-stack version in Section 4 along with a security proof in the
selective identity model. Definitions of DPDA-based functional encryption and the corresponding security
model are provided in Section 3 along with some background on pushdown automata and langauges.

Related Work. A special case of functional encryption is identity-based encryption [BF03, Coc01] where
the function is just an equality test for the identities corresponding to the secret key and the ciphertext.
More complex access policies can be supported by more sophisticated functionalities. For example, in
an attribute-based encryption system [SW05, GPSW06], a set of attributes define users’ credentials and
the function encodes an access struture which is nothing but a boolean formula over these attributes.
Other classes of functional encryption include spatial encryption [Ham11] and inner-product encryp-
tion [OT09, OT10, KSW08]. More generally, Sahai and Waters [SW12] constructed an attribute-based en-
cryption scheme for general circuits using multi-linear maps [GGH12]. Further, Goldwasser et.al. [GKP+12]
addresses the problem of constructing functional encryption for any general function by combining a public
index predicate encryption scheme with homomorphic encryption. None of these works seem to subsume
the result in Waters [Wat12] and by extension neither do they subsume the result of the current work.

2

2 Pushdown Automata

We start with a brief overview of pushdown automata, double-stack machines and languages.

Definition 2.1. A pushdown automaton (PDA) M is a 7-tuple (Q,Σ,Γ, q0, Z0, F, δ) where

• Q 6= ∅ is a finite set of states,

• Σ 6= ∅ denotes the input alphabet,

• Γ 6= ∅ is the stack alphabet,

• q0 ∈ Q is the start state,

• Z0 ∈ Γ is a special symbol marking bottom of the stack,

• ∅ 6= F ⊆ Q is the set of final states and

• δ : Q× Σ ∪ {λ} × Γ→ P(Q× Γ∗) is called the transition function.

An instantaneous description (ID) describes the configuration of a PDA (state and stack contents) at a
given instant. An ID is a triple (q, w, γ) where q is a state, w and γ are strings over Σ and Γ respectively. Let
M = (Q,Σ,Γ, q0, Z0, F, δ) be a PDA, a ∈ Σ∪ {λ}, w ∈ Σ∗, q, q′ ∈ Q, Z ∈ Γ and γ, β ∈ Γ∗. Here λ denotes
the empty string. We write (q, aw, Zγ) M (q′, w, βγ) if (q′, β) ∈ δ(q, a, Z). The notation M

∗
denotes the

reflexive and transitive closure of M. We say that M accepts a string w ∈ Σ∗ if (q0, w, Z0) M
∗

(qx, λ, γ)
for some qx ∈ F and γ ∈ Γ∗. In other words, M accepts w if there is sequence of transitions so that on
reading the string w,M enters a final state. This notion of acceptance is termed acceptance by final state.
Another definition used is that of acceptance by empty stack in which an automaton M accepts string w
if (q0, w, Z0) M

∗
(qx, λ, λ) for some qx ∈ Q. In this context, the set of final states F is the empty set.

Given a PDA M = (Q,Σ,Γ, q0, Z0, F, δ), define the language accepted by M by final state as

L(M) = {w ∈ Σ∗ :M accepts w by final state},

and similarly the language accepted by M by empty stack to be

N (M) = {w ∈ Σ∗ :M accepts w by empty stack}.

The two notions of acceptance are equivalent and hence for any PDA M, L(M) = N (M′) for some PDA
M′. The class of languages accepted by PDAs {L ⊆ Σ∗ : there exists a PDA M such that L = L(M)} is
precisely the set of all context-free languages (CFLs).

Determinism. A pushdown automaton M is said to be deterministic if it satisfies the following two
conditions.

• For any q ∈ Q, σ ∈ Σ ∪ {λ} and Z ∈ Γ, the set δ(q, σ, Z) has at most one element.

• For any q ∈ Q, Z ∈ Γ, if δ(q, λ, Z) 6= ∅ then δ(q, σ, Z) = ∅ for every σ ∈ Σ.

Acceptance by a DPDA can be defined in two ways as discussed earlier, but the two notions are not
equivalent. The class of languages accepted by final state are called deterministic context-free languages
(DCFLs). Languages accepted by empty stack are DCFLs with the additional property that no string in
a language is a prefix of another string in the language.

3

2-Stack Machines. A 2-stack PDA (2PDA) M is an 8-tuple (Q,Σ,Γ1,Γ2, q0, Z
(1)
0 , Z

(2)
0 , F, δ) where all

the parameters are defined as for the single stack PDA with the following differences.

• Γ1, Γ2 are the alphabets for stack 1 and 2 respectively.

• The bottom-of-stack markers for the two stacks are Z
(1)
0 ∈ Γ1 and Z

(2)
0 ∈ Γ2.

• The transition function is now of the form δ : Q× Σ ∪ {λ} × Γ1 × Γ1 → P(Q× Γ∗1 × Γ∗2)

An ID for a 2-stack PDA is a quadruple (q, w, γ1, γ2) where q is a state, w is the input string to be
read and γ1, γ2 are strings over Γ1,Γ2. We write (q, aw, Z1γ1, Z2γ2) M (q′, w, β1γ1, β2γ2) if (q′, β1, β2) ∈
δ(q, a, Z1, Z2) (here β1 ∈ Γ∗1, β2 ∈ Γ∗2). The two stacks may have the same stack alphabet. In the rest of

the paper, we use the same alphabet for both the stacks i.e., Γ1 = Γ2 = Γ and set Z
(1)
0 = Z

(2)
0 = Z0. Also

the two stacks could have two different symbols from Γ as the bottom-of-stack markers. Determinism and
acceptance are defined in a manner similar to the single-stack PDAs.

More generally, one can define the notion of k-stack PDA in a manner similar to that of 2-stack PDA.

Turing Machines (TMs). The most powerful model of computation is that of a TM. Here, we do not
formally define TMs since we will not require the definition and instead refer to [HMU00] for the definition.
The class of languages accepted by TMs is the class of recursively enumerable (r.e.) languages. It is well
known that for TM, non-determinism does not provide addtional power, i.e., for any r.e. language there
is a deterministic TM (DTM) which accepts it. So, we will only consider DTMs. A language is said to be
recursive if there is a DTM which accepts the language and always halts. The class of recursive languages
is a proper subset of the class of r.e. languages.

TMs and PDAs. It is known that a TM can be simulated by a 2-stack PDAs [HMU00, Chapter 8].
Essentially the tape is simulated by two stacks with the contents to the left of the head on one stack and
the contents to the right of the head on the other stack. The connection between TMs and 2-stack PDAs
extends to the deterministic versions: Given a deterministic TM (DTM) it is easy to construct a 2-stack
deterministic PDA (DPDA) which simulates the DTM. In view of this, the class of languages accepted by
2-stack DPDAs is also the class of r.e. languages.

Halting 2-stack DPDAs. The most powerful (or expressive) form would be to work with arbitrary
2-stack DPDAs. This, however, causes a problem. On certain inputs, a given machine may never halt.
This would mean that the decryption algorithm of the functional encryption scheme does not terminate.
To ensure that the decryption algorithm always terminates we require the 2-stack DPDA to halt on all
inputs. So, halting 2-stack DPDAs accept the class of recursive languages.

Issue about Halting Time. In the security proof, we require the DPDAs that are queried during
the key extraction phase to halt and decide in polynomial time (in the security parameter) due to the
following reason. The adversary is modeled as a probabilistic t-time algorithm where t is a polynomial in
the security parameter. The reduction exploits the adversary’s advantage in breaking the scheme in solving
some computationally hard problem. If the DPDAs for which the adversary requests keys do not halt and
decide in polynomial time then the simulator (or the algorithm interacting with the attacker to solve the
hard problem) itself runs does not run in polynomial time since it has to check whether the challenge

4

string is accepted by the queried automaton or not. This allows more time to the adversary which could
eventually break the scheme.

Hence the construction works for any recursive language but the proof only holds for functional en-
cryption schemes supporting polynomial-time-recognisable recursive languages. In fact, it is not possible
to prove security for all recursive languages based on any computational assumption.

Reading the entire input. A halting 2-stack DPDA may accept an input before reading it completely.
This causes problems in the construction of the decryption algorithm. Hence, we require the 2-stack DPDA
to read the full input before halting and deciding whether to accept or reject.

In the sequel, we write 2DPDA to denote “a 2-stack DPDA that reads the entire input, halts and
accepts by final state”. We provide construction for FE over 2DPDA.

3 Definitions and Notation

Provided here are some notation and definitions of DPDA-based functional encryption followed by the
security model.

3.1 Notation.

The following notation is used for any 2DPDA M.

Accept(M, w) =

{
1 if M accepts w;
0 otherwise.

Transitions of an automaton M = (Q,Σ,Γ, q0, Z0, Z0, F, δ) are represented as 5-tuples of the form t =
(qx, qx′ , σ, Zy1 , Zy2 , Zy′1 , Zy′2) where δ(qx, σ, Zy1 , Zy2) = {(qx′ , γ1, γ2)} for some γ1, γ2 ∈ Γ∗ and Zy′1 ,Zy′2 are
the elements at the top of the two stacks after the transition. T denotes the set of all transition tuples t.

The notation [a, b] represents the set {x : a ≤ x ≤ b} for two integers a < b. For a set X , the notation
x1, . . . , xk ∈R X indicates that x1, . . . , xk are independent random elements of X with some distribution

R and x1, . . . , xk
R←− X symbolises x1, . . . , xk being sampled independently from X according to R. The

uniform distribution is denoted by U. For a (probabilistic) algorithm A, x←− A(·) means that x is chosen
according to the output distribution of A (which of course may be determined by its input).

A (symmetric) pairing is represented as a tuple (p,G,GT , e, P) where p is a prime, |G| = |GT | = p,
G = 〈P 〉 and e : G×G→ GT is the pairing function.

3.2 Functional Encryption based on 2DPDAs

We provide a definition of functional encryption specific to 2DPDAs rather than following the general def-
inition given in [BSW12]. A functional encryption (FE) scheme over 2DPDAs consists of four probabilistic
algorithms - Setup, KeyGen, Encrypt and Decrypt.

• Setup: takes as input a security parameter κ, generates the public parameters PP and the master
secret MSK based on λ and the input alphabet Σ. Σ is part of PP.

5

• KeyGen: receives the description of a 2DPDA M and master secret MSK and outputs a secret key
SKM corresponding to M.

• Encrypt: inputs a message m, a string w = w1w2 · · ·w` over Σ and returns a ciphertext C (which also
contains w).

• Decrypt: inputs a ciphertext C and secret key SKM. If Accept(M, w) = 1, the algorithm returns m;
otherwise, returns ⊥ indicating failure.

3.3 Security

Security proofs for our schemes are based on the notion of indistinguishability of ciphertexts under a chosen
plaintext attack (CPA). It is defined via a game ind-cpa between an adversary A and a challenger consisting
of several stages.

Setup: The challenger runs the Setup algorithm of the FE scheme and gives the public parameters to A .

Phase 1: A makes a number of key extraction queries adaptively. For a query on automaton M, the
challenger runs the KeyGen algorithm of the FE scheme and returns its output SKM to A .

Challenge: A provides two messages pairs m0,m1 and a challenge string w∗ = w∗1w
∗
2 · · ·w∗` subject to

the condition that A does not request keys for any automaton that accepts w∗ in Phase 1 or Phase 2.

The challenger then picks β
U←− {0, 1} and returns an encryption C∗ of mβ under the string w∗ to A .

Phase 2: A issues more key extraction queries as in Phase 1 with the restriction that none of the
automata that are queried accept w∗.

Guess: A outputs a bit β′.

In the selective model, there is a stage Initialise before Setup in which the adversary commits to the
input alphabet Σ and the challenge string w∗. Call this game ind-s-cpa.

If β = β′, then A wins the game. The advantage of A in breaking the security of the FE scheme in
the ind-cpa game is given by

Advind-cpa
FE (A) =

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣ .
The FE scheme is said to be (ε, t, ν)-IND-STR-CPA secure1 (secure under chosen plaintext attack) if for every
adversary A making at most ν queries and whose running time is t, it holds that AdvIND-STR-CPA

FE (A) ≤ ε.

Security in the selective model (IND-sSTR-CPA-security) is defined in a similar manner with respect to
ind-s-cpa game.

4 Realizing FE over Recursive Languages

A construction for functional encryption over 2-stack deterministic pushdown automata (2DPDA) is pro-
vided here. Security is proved using the expanded `-BDHE assumption.

1The abbreviation “STR” stands for string. “sSTR” denotes that the challenge string is chosen selectively.

6

4.1 Construction

Setup(Σ, κ): Generate a symmetric pairing G = (p,G,GT , e, P) according to the security parameter κ.

Choose elements P1, Hstart, Hend, Hλ, {Hσ}σ∈Σ
U←− G and α

U←− Zp. The public parameters and master
secret are given by

PP : (G,Σ, P1, Hstart, Hend, Hλ, {Hσ}σ∈Σ, e(P, P)α),
MSK: −αP .

Encrypt(PP, w = w1 · · ·w`,m): Choose randomizers s0, s1, . . . , s`
U←− Zp. Compute the ciphertext elements

as follows.

Cm = m · e(P, P)αs` ,
C0,1 = Cstart,1 = s0P, Cstart,2 = s0Hstart,
Ci,1 = siP, Ci,2 = siHwi + si−1P1, Ci,3 = si−1Hλ + si−1P1 for i = 1, . . . , `,
Cend,1 = s`P, Cend,2 = s`Hend.

The ciphertext is given by C = (Cm, Cstart,1, Cstart,2, {Ci,1, Ci,2, Ci,3}i∈[1,`], Cend,1, Cend,2, w).

KeyGen(MSK,M = (Q,Σ,Γ, q0, Z0, Z0, F, δ)): For each (x, y1, y2) ∈ Z|Q|×Z|Γ|×Z|Γ|, pick Dx,y1,y2
U←− G.

Also, choose elements rstart, for all t ∈ T , rt and for all qx ∈ F,Zy1 , Zy2 ∈ Γ, rend(x,y1,y2)
uniformly and

independently at random from Zp. Compute the elements of the key as follows.

Kstart,1 = D0,0,0 + rstartHstart, Kstart,2 = rstartP,

for all t ∈ T with t = (qx, qx′ , σ, Zy1 , Zy2Zy′1 , Zy′2) and σ ∈ Σ ∪ {λ},
Kt,1 = −Dx,y1,y2 + rtP1, Kt,2 = rtP, Kt,3 = Dx′,y′1,y

′
2

+ rtHσ,

for all qx ∈ F and for all Zy1 , Zy2 ∈ Γ,
Kend(x,y1,y2)

,1 = −αP +Dx,y1,y2 + rend(x,y1,y2)
Hend, Kend(x,y1,y2)

,2 = rend(x,y1,y2)
P.

The secret key for automaton M is given by SKM = (Kstart,1,Kstart,2, {Kt,1,Kt,2,Kt,3}t∈T ,
{Kend(x,y1,y2)

,1,Kend(x,y1,y2)
,2}qx∈F,Zy1 ,Zy2∈Γ).

Decrypt(C,SKM): Suppose that Accept(M, w) = 1. Then there exists a sequence of transitions
t1, t2, . . . , tk with ti = (qxi−1 , qxi , σi, Zy1,i−1 , Zy2,i−1 , Zy1,i , Zy2,i) where x0 = 0, y1,0 = y2,0 = 0, x1, . . . , xk ∈
Z|Q|, y1,i, y2,i ∈ Z|Γ| and (σi = λ) ∧ (σi = wj) for some j. Decryption consists of several stages of com-
putation. Each stage computes an intermediate value Ai,j = e(P,Dxi,y1,i,y2,i)

sj marking the end of i-th
transition and j many input symobls being read. At the beginning A0,0 is computed as

A0,0 = e(Cstart,1,Kstart,1)e(Cstart,2,Kstart,2)−1

= e(s0P,D0,0,0 + rstartHstart)e(s0Hstart, rstartP)−1

= e(P,D0,0,0)s0e(P,Hstart)
s0rstarte(Hstart, P)−s0rstart

= e(P,D0,0,0)s0 .

Ai,j ’s are computed at the end of each transition. For i = 1, . . . , k, depending on whether ti is a λ-transition
or not, two cases are considered.

7

Case 1: σi = wj and j − 1 symbols have been read.
In this case, Ai,j is given by

Ai,j = Ai−1,j−1 · e(Cj−1,1,Kti,1)e(Cj,2,Kti,2)−1e(Cj,1,Kti,3)

= e(P,Dxi−1,y1,i−1,y2,i−1)sj−1e(sj−1P,−Dxi−1,y1,i−1,y2,i−1 + rtiP1)

· e(sjHwj + sj−1P1, rtiP)−1e(sjP,Dxi,y1,i,y2,i + rtiHσi)

= e(P,Dxi−1,y1,i−1,y2,i−1)sj−1e(P,Dxi−1,y1,i−1,y2,i−1)−sj−1e(P, P1)sj−1rti

· e(Hwj , P)−sjrtie(P1, P)−sj−1rtie(P,Dxi,y1,i,y2,i)
sje(P,Hσi)

sjrti

= e(Hwj , P)−sjrtie(P,Dxi,y1,i,y2,i)
sje(P,Hwj)

sjrti

= e(P,Dxi,y1,i,y2,i)
sj .

Case 2: σi = λ and j symbols have been read.
Compute Ai,j as

Ai,j = Ai−1,j · e(Cj,1,Kti,1)e(Cj+1,3,Kti,2)−1e(Cj,1,Kti,3)

= e(P,Dxi−1,y1,i−1,y2,i−1)sje(sjP,−Dxi−1,y1,i−1,y2,i−1 + rtiP1)

· e(sjHλ + sjP1, rtiP)−1e(sjP,Dxi,y1,i,y2,i + rtiHλ)

= e(P,Dxi−1,y1,i−1,y2,i−1)sje(P,Dxi−1,y1,i−1,y2,i−1)−sje(P, P1)sjrti

· e(Hλ, P)−sjrtie(P1, P)−sjrtie(P,Dxi,y1,i,y2,i)
sje(P,Hλ)sjrti

= e(P,Dxi,y1,i,y2,i)
sj .

At the end, Ak,` = e(P,Dxk,y1,k,y2,k)s` is used to unmask the message as shown below.

Cm · e(Cend,1,Kend(xk,yk),1) · e(Cend,2,Kend(xk,yk),2)−1 ·A−1
k,`

= m · e(P, P)αsl · e(s`P,−αP +Dxk,y1,k,y2,k + rendxk,y1,k,y2,k
Hend)

· e(s`Hend, rendxk,y1,k,y2,k
P)−1 · e(P,Dxk,y1,k,y2,k)−s`

= m · e(P, P)αsl · e(P, P)−αs`e(P,Dxk,y1,k,y2,k)s`e(P,Hend)
s`rendxk,y1,k,y2,k

· e(Hend, P)
−s`rendxk,y1,k,y2,k · e(P,Dxk,y1,k,y2,k)−s`

= m

Suppose w is accepted by M. By construction, if the acceptance occurs before M completely reads
w, then the decryption will not work. This is because the randomiser in the mask e(P, P)αs` is s` which
is provided with the component of the ciphertext corresponding to the last symbol w` of w. This is the
reason why we require M to completely read the input string before halting.

Discussion. We outline the main differences between our construction and that of Waters [Wat12].

1. In a pushdown automata, we need to keep track of both states and stack contents. This is done
by choosing group elements Dx,y1,y2 corresponding to all combinations of state and top-of-stacks
(x, y1, y2) where x represents the state and y1, y2 represent tops of the two stacks. Note that it is not
required to keep track of all the stack contents. The transitions are determined depending only on
what is at the top.

8

2. A new element Hλ is introduced in the public parameters that corresponds to the empty string.
Ciphertext for a string w contains ` extra elements Ci,3 = si−1Hλ+si−1P1 for 0 ≤ i ≤ `−1. The key
components corresponding to λ-transitions will have the same structure as that for any other input
symbol σ ∈ Σ except that Hλ is used in constructing them (instead of Hσ). Consider decryption of
a ciphertext C encrypted to w = w1 · · ·w` by a secret key SKM. With the presence of λ-transitions,
the number of transitions that M makes during decryption may be greater than `. Suppose that
there are k transitions. At the end of the k-th transition, we must have the intermediate value
e(P,Dxk,y1,k,y2,k)sj if j symbols have been read. Now look at the (k + 1)-st transition. If it is a
λ-transition, then the input pointer is not advanced and hence the exponent must remain sj even
though the state changes. Otherwise it is not possible to cancel it out when the next symbol is read
since the group element corresponding to the next symbol Hwj+1 is randomised by sj+1. This is why
we provide the third component Ci,3 for every i and it consists of Hλ randomised with si−1 so that
the exponent remains unchanged.

Note 4.1. As discussed earlier, to cover the class recursive languages it is sufficient to be able to handle
2DPDAs. We note though that the above construction easily extends to k-stack DPDAs for any k ≥ 1.
This will not require any change in the public parameters or the ciphertext. The only change will be in the
key generation where the D’s will have to be subscripted by a (k + 1)-length vector. One possible reason
for preferring a DPDA with more stacks could be that the time taken to halt (and hence by the decryption
algorithm) may be faster.

4.2 `-XBDHE Assumption

Provided here is a description of the eXpanded `-Bilinear Diffie-Hellman Exponent (`-XBDHE) assumption
used in [Wat12]. Let G = (p,G,GT , e, P) be a symmetric pairing and a, b, c0, . . . , c`+1, s, d be elements
chosen uniformly and independently at random from Zp. Define a distribution D as consisting of the
following elements.

P, aP, bP, (ab/d)P, (b/d)P

∀i ∈ [0, 2`+ 1] \ {`+ 1},∀j ∈ [0, `+ 1], aisP, (aibs/cj)P

∀i ∈ [0, `+ 1], (aib/ci)P, ciP, a
idP, (abci/d)P, (bci/d)P

∀i ∈ [0, 2`+ 1], ∀j ∈ [0, `+ 1], (aibd/cj)P

∀i, j ∈ [0, `+ 1], i 6= j, (aibcj/ci)P.

For an algorithm A that returns a bit, define its advantage in solving the `-XBDHE problem as

Adv`-XBDHE
G (A) =

∣∣∣Pr[A (D, e(P, P)a
i+1bs) = 1]− Pr[A (D, XT) = 1]

∣∣∣ ,
where XT ∈U GT . The (t, ε)-`-XBDHE assumption is said to hold if for every algorithm A running in
time at most t, Adv`-XBDHE

G (A) ≤ ε.

4.3 Security in the Selective Model

We prove security of the above construction in the selective model under the `-XBDHE assumption. The
structure of the proof is similar to that of [Wat12]. Important changes are mainly in the key extraction
phase where the simulator has to handle stack contents as well as λ-transitions of the queried automata.

9

Theorem 4.1. If the (t, ε)-`-XBDHE assumption holds then the FE scheme of Section 4.1 is
(ε′, t′, ν)-IND-STR-CPA secure, where ε′ ≤ ε and t′ = t − O(ν`∗|Σ|ρ) (ρ denotes the time required for
one scalar multiplication in G).

Proof. Let Gamereal denote the actual selective security game ind-s-cpa as defined in Section 3.3. Define
Gamerandom to be similar to Gamereal except that the challenge ciphertext returned to the adversary is an
encryption of a random message.

Initialise: The adversary commits to an input alphabet Σ and a challenge string w∗ = w∗1 · · ·w∗`∗ .

Setup: The simulator B obtains an instance of the `∗-XBDHE assumption consisting of D, XT where D
is as defined in Section 4.2 and XT is an element of GT whose distribution B is supposed to guess. Let

w∗0 = $ and w∗`∗+1 = $. B chooses v1, vstart, vend, vλ, {vσ}σ∈Σ
U←− Zp and sets the parameters as follows:

e(P, P)α = e(aP, bP), P1 = v1P + (ab/d)P, Hλ = vλP − (ab/d)P

Hstart = vstartP −
`∗∑
j=1

(ajb/cj)P, Hend = vendP −
`∗+1∑
j=2

(ajb/cj)P,

for all σ ∈ Σ, Hσ = vσP − (b/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−jb/c`∗+1−j)P,

implicitly setting α = ab. B provides the public parameters to A . Note that all the elements required
to construct the parameters are available in the problem instance. Also, the Hσ’s are well-defined and
properly distributed. Each Hσ will certainly contain the terms (ab/c0)P and (a`

∗+1b/c`∗+1)P . The choice
of vλ and v1 ensures that elements Hλ and P1 are uniformly and independently distributed.

Key Generation Phases 1 and 2: The adversary makes several (at most ν) key extraction queries.
Let M = (Q,Σ,Γ, q0, Z0, Z0, F, δ) be an automaton for which the adversary requests a key. B creates a
key for M only if Accept(M, w∗) = 0. Now we describe how the key is constructed. Define index sets
Sx,y1,y2 for (x, y1, y2) ∈ Z|Q| × Z|Γ| × Z|Γ| as

Sx,y1,y2 = {i ∈ [0, `∗] : Accept(Mx,y1,y2 , w
∗(i)) = 1}.

Here w∗(i) denotes the suffix of length i of w∗ (i.e., the string containing last i symbols of w∗). The
automaton Mx,y1,y2 is identical to M except that the start state is qx and the bottom-of-stack symbols
are Zy1 and Zy2 for the two stacks respectively. Set Dx,y1,y2 =

∑
i∈Sx,y1,y2

ai+1bP for all pairs (x, y1, y2) ∈
Z|Q|×Z|Γ|×Z|Γ|. Observe that none of the Dx,y1,y2 ’s are known. The other randomisers must be properly
chosen from the instance so as to cancel out these elements.

The simulator then computes the different components of the key. It implicitly sets rstart =
∑

i∈S0,0,0
ci+1

and computes

Kstart,2 =
∑

i∈S0,0,0

ci+1P, Kstart,1 = vstartKstart,2 −
∑

j∈[1,`∗]
i∈S0,0,0

j 6=i+1

(ajbci+1/cj)P.

The terms of the summation in Kstart,1 with j = i+ 1 i.e., cj = ci+1 get canceled with the terms in D0,0,0

10

as shown in the following computation.

Kstart,1 = D0,0,0 + rstartHstart

=
∑

i∈S0,0,0

ai+1bP +

 ∑
i∈S0,0,0

ci+1

vstartP −
`∗∑
j=1

(ajb/cj)P

=

∑
i∈S0,0,0

ai+1bP + vstart

∑
i∈S0,0,0

ci+1P −
∑

j∈[1,`∗]
i∈S0,0,0

(ajbci+1/cj)P

=
∑

i∈S0,0,0

ai+1bP + vstart

∑
i∈S0,0,0

ci+1P −
∑

i∈[0,`∗−1]
i∈S0,0,0

ai+1bP −
∑

j∈[1,`∗]
i∈S0,0,0

j 6=i+1

(ajbci+1/cj)P

=
∑

i∈S0,0,0

ai+1bP + vstart

∑
i∈S0,0,0

ci+1P −
∑

i∈S0,0,0

ai+1bP −
∑

j∈[1,`∗]
i∈S0,0,0

j 6=i+1

(ajbci+1/cj)P

= vstartKstart,2 −
∑

j∈[1,`∗]
i∈S0,0,0

j 6=i+1

(ajbci+1/cj)P

We used the fact that the condition (i ∈ [0, `∗− 1])∧ (i ∈ S0,0,0) is equivalent to i ∈ S0,0,0. This is because
S0,0,0 does not contain `∗; otherwise, the automatonM0,0,0 (=M) would accept w∗(`

∗) = w∗ and the game
disallows such queries.

Next, B implicitly sets rend(x,y1,y2)
=

∑
i∈Sx,y1,y2

i 6=0

ci+1 for all qx ∈ F and Zy1 , Zy2 ∈ Γ and computes

Kend(x,y1,y2)
,2 =

∑
i∈Sx,y1,y2

i 6=0

ci+1P, Kend(x,y1,y2)
,1 = vendKend(x,y1,y2)

,2 −
∑

j∈[2,`∗+1]
i∈Sx,y1,y2
j 6=i+1
i 6=0

(ajbci+1/cj)P.

Again, the terms in the summation above with j = i + 1 and i 6= 0 get canceled with those in Dx,y1,y2 .
The only term in Dx,y1,y2 that remains is a1bP . However, this gets canceled with −αP = −abP . Element
Dx,y1,y2 does contain abP since qx is a final state and consequently, the suffix of length 0 i.e., the empty

11

string is accepted by Mx,y1,y2 . Detailed calculations are provided below.

Kend(x,y1,y2)
,1 = −αP +Dx,y1,y2 + rend(x,y1,y2)

Hend

= −abP +
∑

i∈Sx,y1,y2

ai+1bP +

 ∑
i∈Sx,y1,y2

i 6=0

ci+1

vendP −

`∗+1∑
j=2

(ajb/cj)P

= −abP + abP +

∑
i∈Sx,y1,y2

i 6=0

ai+1bP + vend

∑
i∈Sx,y1,y2

i 6=0

ci+1P −
∑

j∈[2,`∗+1]
i∈Sx,y1,y2

i 6=0

(ajbci+1/cj)P

=
∑

i∈Sx,y1,y2
i 6=0

ai+1bP + vend

∑
i∈Sx,y1,y2

i 6=0

ci+1P −
∑

j∈[2,`∗+1]
i∈Sx,y1,y2
j=i+1
i 6=0

(ajbci+1/cj)P −
∑

j∈[2,`∗+1]
i∈Sx,y1,y2
j 6=i+1
i 6=0

(ajbci+1/cj)P

=
∑

i∈Sx,y1,y2
i 6=0

ai+1bP + vend

∑
i∈Sx,y1,y2

i 6=0

ci+1P −
∑

i∈Sx,y1,y2
i 6=0

ai+1bP −
∑

j∈[2,`∗+1]
i∈Sx,y1,y2
j 6=i+1
i 6=0

(ajbci+1/cj)P

= vendKend(x,y1,y2)
,2 −

∑
j∈[2,`∗+1]
i∈Sx,y1,y2
j 6=i+1
i 6=0

(ajbci+1/cj)P

The next step is to construct the elements Kt,1,Kt,2,Kt,3 for each t = (x, x′, σ, y1, y2, y
′
1, y
′
2) ∈ T .

Kt,1 and Kt,3 consist of the elements Dx,y1,y2 =
(∑

i∈Sx,y1,y2
ai+1b

)
and Dx′,y′1,y

′
2

=

(∑
i∈Sx′,y′1,y

′
2

ai+1b

)
respectively. These elements cannot be computed since ai+1b (for i ∈ [0, `∗]) are not available from the
problem instance. The trick is to compute Kt,1,Kt,2,Kt,3 even without knowing the D’s. The only thing
that we can choose is the randomiser rt and an appropriate choice makes it possible to compute Kt,·’s.
For each i ∈ [0, `∗], we choose a sub-randomiser rt,i so that ai+1b and aib (or ai+1b if t is a λ-transition),
if present in Dx,y1,y2 and Dx′,y′1,y

′
2

(respectively), are cancelled out. Also, it must be possible to construct
Kt,2 = rtP =

∑
i∈[0,`∗] rt,iP using elements provided in the instance. The sum of these sub-randomisers

gives us rt (i.e, rt =
∑

i∈[0,`∗] rt,i).

Let Kt,·,i denote the component of Kt,· corresponding to rt,i. The elements Kt,1,Kt,3 are now given by

Kt,1 =
`∗∑
i=0

Kt,1,i, Kt,3 =
`∗∑
i=0

Kt,3,i.

We now move on to choosing the sub-randomisers rt,i depending on whether t is a λ-transition or not. If
t is not a λ-transition, i.e., if σ 6= λ, then there four possible cases.

Case 1: (i /∈ Sx,y1,y2) ∧ (i− 1 /∈ Sx′,y′1,y′2)

In this case, there are no terms to cancel out. We set rt,i = 0 and hence Kt,1,i = Kt,2,i = Kt,3,i = 0.

12

Case 2: (i ∈ Sx,y1,y2) ∧ (i− 1 ∈ Sx′,y′1,y′2)

The terms ai+1bP and aibP are present in Dx,y1,y2 and Dx′,y′1,y
′
2

(resp.) and in order to eliminate

them, we set rt,i = aid and Kt,2,i = aidP . The other components are set as follows.

Kt,1,i = v1Kt,2,i, Kt,3,i = vσKt,2,i −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−j+ibd/c`∗+1−j)P.

Recall that Dx,y1,y2 (resp. ai+1bP) appears with a negative sign in Kt,1 (resp. Kt,1,i). The calculations
given below explain how the terms −ai+1bP and aibP are canceled out in Kt,1,i and Kt,2,i.

Kt,1,i = −ai+1bP + rt,iP1

= −ai+1bP + aid (v1P + (ab/d)P)

= −ai+1bP + v1(aidP) + ai+1bP

= v1Kt,2,i

Kt,3,i = aibP + rt,i(Hσ)

= aibP + aid

vσP − (b/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−jb/c`∗+1−j)P

= aibP + vσ(aidP)− aibP −

∑
j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−j+ibd/c`∗+1−j)P

= vσKt,2,i −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−j+ibd/c`∗+1−j)P

Case 3: (i /∈ Sx,y1,y2) ∧ (i− 1 ∈ Sx′,y′1,y′2)

Suppose that w`∗+1−i (the first symbol of w∗(i)) is equal to σ. ThenMx,y1,y2 , on reading input symbol
σ, must arrive at state qx′ with the top of stacks being Zy′1 and Zy′2 . By definition, i − 1 ∈ Sx′,y′1,y′2
indicates that Mx′,y′1,y

′
2

accepts w∗(i−1). This would in turn imply that Mx,y1,y2 accepts the string

w∗(i), which clearly violates the condition i /∈ Sx,y1,y2 . Therefore, w∗`∗+1−i 6= σ.

Set rt,i = ci, Kt,2,i = ciP and the remaining two components as

Kt,1,i = v1Kt,2,i + (abci/d)P, Kt,3,i = vσKt,2,i − (bci/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

j 6=`∗+1−i

(a`
∗+1−jbci/c`∗+1−j)P.

13

The well-formedness of these components can be verified via the following calculations.

Kt,1,i = rt,iP1 = ciP1 = ci(v1P + (ab/d)P) = v1Kt,2,i + (abci/d)P

Kt,3,i = aibP + rt,iHσ

= aibP + ciHσ

= aibP + ci

vσP − (b/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−jb/c`∗+1−j)P

= aibP + vσciP − (bci/d)P − aibP −

∑
j∈[0,`∗+1]
w∗j 6=σ

j 6=`∗+1−i

(a`
∗+1−jbci/c`∗+1−j)P

= vσKt,2,i − (bci/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

j 6=`∗+1−i

(a`
∗+1−jbci/c`∗+1−j)P

Case 4: (i ∈ Sx,y1,y2) ∧ (i− 1 /∈ Sx′,y′1,y′2)

Due to a similar reason as explained in Case 3, it must hold that w∗`∗+1−i 6= σ. The randomiser rt,i
is set to aid− ci and components of the key are computed as follows.

Kt,2,i = aidP − ciP, Kt,1,i = v1Kt,2,i − (abci/d)P,

Kt,3,i = vσKt,2,i + (bci/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−j+ibd/c`∗+1−j)P +

∑
j∈[0,`∗+1]
w∗j 6=σ

j 6=`∗+1−i

(a`
∗+1−jbci/c`∗+1−j)P.

This case can be seen as a combination of cases 2 and 3. We set rt,i = aidP which cancels out with
ai+1bP present in Dx,y1,y2 . But this results in an extra term −aibP in Kt,3,i that cannot be canceled
out by Dx′,y′1,y

′
2

since it does not contain aibP . Therefore, the −ci is added to rt,i in order to eliminate

14

the extra term. Detailed calculations are given below.

Kt,1,i = −ai+1bP + rt,iP1

= −ai+1bP + (aid− ci)P1

= −ai+1bP + (aid− ci) (v1P + (ab/d)P)

= −ai+1bP + v1(aid− ci)− (abci/d)P + ai+1bP

= v1Kt,2,i − (abci/d)P

Kt,3,i = rt,iHσ

= (aid− ci)Hσ

= (aid− ci)

vσP − (b/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−jb/c`∗+1−j)P

= (aid− ci)vσP − aibP + (bci/d)P −

∑
j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−j+ibd/c`∗+1−j)P

+
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−jbci/c`∗+1−j)P

= vσKt,2,i − aibP + (bci/d)P −
∑

j∈[0,`∗+1]
w∗j 6=σ

(a`
∗+1−j+ibd/c`∗+1−j)P

+ aibP +
∑

j∈[0,`∗+1]
w∗j 6=σ

j 6=`∗+1−i

(a`
∗+1−jbci/c`∗+1−j)P

We next consider the the possiblity of t being a λ-transition i.e., σ = λ. Only one of the following two
cases can occur.

Case 1: (i /∈ Sx,y1,y2) ∧ (i /∈ Sx′,y′1,y′2)

Neither Dx,y1,y2 nor Dx′,y′1,y
′
2

would contain the term ai+1bP and hence we set rt,i = 0 and Kt,1,i =
Kt,2,i = Kt,3,i = 0.

Case 2: (i ∈ Sx,y1,y2) ∧ (i ∈ Sx′,y′1,y′2)

Both Dx,y1,y2 and Dx′,y′1,y
′
2

contain the term ai+1bP and to cancel it out we set Kt,2,i = aidP ,

Kt,1,i = v1Kt,2,i and Kt,3,i = vλKt,2,i with rt,i = aid. Note that the components are well-formed as
shown below.

Kt,1,i = −ai+1bP + rt,iP1 = −ai+1bP + aid(v1P + (ab/d)P) = v1Kt,2,i

Kt,2,i = ai+1bP + rt,iHλ = ai+1bP + aid(vλP − (ab/d)P) = vλKt,2,i

Let SKM = (Kstart,1,Kstart,2, {Kt,1,Kt,2,Kt,3}t∈T , {Kend(x,y1,y2)
,1,Kend(x,y1,y2)

,2}qx∈F,Zy1 ,Zy2∈Γ). It is
clear that the components of SKM are not properly distributed. B must re-randomise them suitably

15

before providing them to the adversary. We use an algorithm ReRandK described in Section 4.4 that
re-randomises keys. The key returned to A is the output of ReRandK(SKM).

Challenge Phase: A provides two messages m0,m1 to B. The simulator chooses β
U←− {0, 1} and

encrypts mβ under the challenge string w∗. The randomiser si is implicitly set to ais for each i = 0, . . . , `∗.

Cm = mβ ·XT ,

Cstart,1 = sP, Cstart,2 = vstart(sP)−
`∗∑
j=1

(ajbs/cj)P,

For i = 1, . . . , `∗,
Ci,1 = aisP, Ci,3 = (v1 + vλ)(ai−1sP),

Ci,2 = vw∗i (aisP) + v1(ai−1sP)−
∑

j∈[0,`∗+1]
w∗j 6=w∗i

(a`
∗+1−j+ibs/c`∗+1−j)P,

Cend,1 = a`
∗
sP, Cend,2 = vend(a`

∗
sP)−

`∗+1∑
2

(aj+`
∗
bs/cj)P.

Let C be the ciphertext containing the above elements. The following comptuation shows the well-
formedness of Ci,2 and Ci,3.

Ci,3 = si−1Hλ + si−1P1

= ai−1s (vλP − (ab/d)P) + ai−1s (v1P + (ab/d)P)

= (v1 + vλ)(ai−1sP)

Ci,2 = siHwi + si−1P1

= aisP

vw∗i P − (b/d)P −
∑

j∈[0,`∗+1]
w∗j 6=w∗i

(a`
∗+1−jb/c`∗+1−j)P

+ ai−1sP (v1P + (ab/d)P)

= vw∗i (aisP)− (aisb/d)P −
∑

j∈[0,`∗+1]
w∗j 6=w∗i

(a`
∗+1−j+ibs/c`∗+1−j)P + v1(ai−1sP) + (aisb/d)P

= vw∗i (aisP) + v1(ai−1sP)−
∑

j∈[0,`∗+1]
w∗j 6=w∗i

(a`
∗+1−j+ibs/c`∗+1−j)P

Since w∗j 6= w∗i implies j 6= i, the term a`
∗+1bs/c`∗+1−j (absent in the problem instance) does not appear

in the summation of Ci,2. The other components of C are also well-formed. The components, however, do
not have the right distribution. To obtain the proper distribution, B uses an algorithm ReRandCT that
rerandomises the ciphertext. A description is provided in Section 4.4. Now B computes C∗ ← ReRandCT(C)
and returns C∗ to A .

Guess: A returns its guess β′ of β.

If T = a`
∗+1bsP , then the C∗ will be a properly distributed ciphertext. In this case B plays Gamereal.

Otherwise, if T ∈U GT , then C∗ will be an encyrption of a random message and hence B plays Gamerandom.

16

The simulator returns 1 if β = β′ and 0 otherwise. We have

Adv`
∗-XBDHE
G (B) =

∣∣∣Pr[B(D, e(P, P)a
i+1bs) = 1]− Pr[B(D, XT) = 1]

∣∣∣
=
∣∣∣Pr[β = β′|T = e(P, P)a

i+1bs]− Pr[β = β′|T ∈U GT]
∣∣∣

=

∣∣∣∣Pr[A wins in Gamereal]−
1

2

∣∣∣∣
= AdvIND-STR-CPA

FE (A)

Therefore, ε′ ≤ ε.

4.4 Algorithms for Re-Randomization

As mentioned in the security proof, the challenge ciphertext and responses to key extraction queries are
constructed using elements given in the problem instance in a way resulting in improper distribution. The
simulator must re-randomise them suitably before providing them to the adversary. To this end, we use
two algorithms ReRandCT and ReRandK that re-randomise the ciphertext and keys respectively.

ReRandCT(C): This algorithm picks s′0, s
′
1, . . . , s

′
`

U←− Zp and modifies the ciphertext elements as shown
below.

Cm ← Cm · e(P, P)αs
′
` ,

Cstart,1 ← Cstart,1 + s′0P, Cstart,2 ← Cstart,2 + s′0Hstart,

For i = 1, . . . , `,
Ci,1 ← Ci,2 + s′iP, Ci,2 ← Ci,2 + s′iHwi + s′i−1P1, Ci,3 ← Ci,3 + s′i−1Hλ + s′i−1P1,

Cend,1 ← Cend,1 + s′`P, Cend,2 ← Cend,2 + s′`Hend.

The new randomisers for the ciphertext will be si + s′i (i = 0, . . . , `). The string w remains the same.

ReRandK(SKM): Choose uniform and independent random scalars r′start, for all t ∈ T , r′t and for all

qx ∈ F,Zy1 , Zy2 ∈ Γ, r′end(x,y1,y2)
from Zp. Also choose D′x,y1,y2

U←− G for every (x, y) ∈ Z|Q| × Z|Γ|.
Reconstruct components of the key as follows.

Kstart,1 ← Kstart,1 +D′0,0,0 + r′startHstart, Kstart,2 ← Kstart,2 + r′startP

∀t ∈ T with t = (qx, qx′ , σ, Zy1 , Zy2 , Zy′1 , Zy′2) and σ ∈ Σ ∪ {λ} ,

Kt,1 ← Kt,1 −D′x,y1,y2 + r′tP1, Kt,2 ← Kt,2 + r′tP, Kt,3 ← Kt,3 +D′x′,y′1,y′2
+ r′tHσ,

∀qx ∈ F, ∀Zy1 , Zy2 ∈ Γ,
Kend(x,y1,y2)

,1 ← Kend(x,y1,y2)
,1 +D′x,y1,y2 + r′end(x,y1,y2)

Hend ,

Kend(x,y1,y2)
,2 ← Kend(x,y1,y2)

,2 + r′end(x,y1,y2)
P.

Similar to ciphertext re-randomisation, this algorithm does additive re-randomisation.

17

References

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. SIAM
J. Comput., 32(3):586–615, 2003. Earlier version appeared in the proceedings of CRYPTO
2001.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society,
2007.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, 2012.

[Coc01] Clifford Cocks. An identity-based encryption scheme based on quadratic residues. In Bahram
Honary, editor, IMA Int. Conf., volume 2260 of Lecture Notes in Computer Science, pages
360–363. Springer, 2001.

[GGH12] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
Cryptology ePrint Archive, Report 2012/610, 2012. http://eprint.iacr.org/.

[GKP+12] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Succinct functional encryption and applications: Reusable garbled circuits and beyond.
Cryptology ePrint Archive, Report 2012/733, 2012. http://eprint.iacr.org/.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sab-
rina De Capitani di Vimercati, editors, ACM Conference on Computer and Communications
Security, pages 89–98. ACM, 2006.

[Ham11] Mike Hamburg. Spatial encryption. Cryptology ePrint Archive, Report 2011/389, 2011. http:
//eprint.iacr.org/.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 2 edition, 2000.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT, volume
4965 of Lecture Notes in Computer Science, pages 146–162. Springer, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 62–91. Springer, 2010.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM Conference on Computer and Communications Security, pages 195–
203. ACM, 2007.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-
products. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer
Science, pages 214–231. Springer, 2009.

18

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO, volume 6223
of Lecture Notes in Computer Science, pages 191–208. Springer, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 457–473. Springer,
2005.

[SW12] Amit Sahai and Brent Waters. Attribute-based encryption for circuits from multilinear maps.
arXiv preprint arXiv:1210.5287, 2012.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and prov-
ably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages
53–70. Springer, 2011.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 218–235.
Springer, 2012.

19

