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Abstract

We propose a new notion of secure multiparty computation aided by a computationally-
powerful but untrusted “cloud” server. In this notion that we call on-the-fly multiparty compu-
tation (MPC), the cloud can non-interactively perform arbitrary, dynamically chosen computa-
tions on data belonging to arbitrary sets of users chosen on-the-fly. All user’s input data and
intermediate results are protected from snooping by the cloud as well as other users. This ex-
tends the standard notion of fully homomorphic encryption (FHE), where users can only enlist
the cloud’s help in evaluating functions on their own encrypted data.

In on-the-fly MPC, each user is involved only when initially uploading his (encrypted) data
to the cloud, and in a final output decryption phase when outputs are revealed; the complexity
of both is independent of the function being computed and the total number of users in the
system. When users upload their data, they need not decide in advance which function will be
computed, nor who they will compute with; they need only retroactively approve the eventually-
chosen functions and on whose data the functions were evaluated.

This notion is qualitatively the best possible in minimizing interaction, since the users’
interaction in the decryption stage is inevitable: we show that removing it would imply generic
program obfuscation and is thus impossible.

Our contributions are two-fold:

1. We show how on-the-fly MPC can be achieved using a new type of encryption scheme that
we call multikey FHE, which is capable of operating on inputs encrypted under multiple,
unrelated keys. A ciphertext resulting from a multikey evaluation can be jointly decrypted
using the secret keys of all the users involved in the computation.

2. We construct a multikey FHE scheme based on NTRU, a very efficient public-key encryp-
tion scheme proposed in the 1990s. It was previously not known how to make NTRU fully
homomorphic even for a single party. We view the construction of (multikey) FHE from
NTRU encryption as a main contribution of independent interest. Although the transfor-
mation to a fully homomorphic system deteriorates the efficiency of NTRU somewhat, we
believe that this system is a leading candidate for a practical FHE scheme.
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1 Introduction

We are fast approaching a new digital era in which we store our data and perform our expensive
computations remotely, on powerful servers — the “cloud”, in popular parlance. While the cloud
offers numerous advantages in costs and functionality, it raises grave questions of confidentiality,
since data stored in the cloud could be vulnerable to snooping by the cloud provider or even by
other cloud clients [RTSS09]. Since this data often contains sensitive information (e.g., personal
conversations, medical information and organizational secrets), it is prudent for the users to en-
crypt their data before storing it in the cloud. Recent advances in fully homomorphic encryption
(FHE) [Gen09b, vDGHV10, BV11b, BV11a, GH11, BGV12] make it possible to perform arbitrary
computations on encrypted data, thus enabling the prospect of personal computers and mobile
devices as trusted but weak interfaces to a powerful but untrusted cloud on which the bulk of
computing is performed.

FHE is only suitable in settings where the computations involve a single user, since it requires
inputs to be encrypted under the same key. However, there are many scenarios where users, who
have uploaded their large data stores to the cloud in encrypted form, then decide to compute some
joint function of their data. For example, they may wish the cloud to compute joint statistical
information on their databases, locate common files in their collections, run a computational agent
to reach a decision based on their pooled data (without leaking anything but the final decision), or
generally, in contexts where multiple (mutually distrusting) users need to pool together their data
to achieve a common goal.

The multiparty scenario is significantly more complex, and comes with a set of natural but
stringent requirements. First, the participants involved in the computation and the function to
be computed may be dynamically chosen on-the-fly, well after the data has been encrypted and
uploaded to the cloud. Secondly, once the function is chosen, we should not expect the users to be
online all the time, and consequently it is imperative that the cloud be able to perform the bulk of
this computation (on the encrypted data belonging to the participants) non-interactively, without
consulting the participants at all. Finally, all the burden of computation should indeed be carried
by the cloud: the computational and communication complexity of the users should depend only on
the size of the individual inputs and the output, and should be independent of both the complexity
of the function computed and the total number of users in the system, both of which could be very
large.

On-the-Fly Multiparty Computation. Consider a setting with a large universe of computationally-
weak users and a powerful cloud. An on-the-fly multiparty computation protocol proceeds thus:

1. The numerous users each encrypt their data and upload them to the cloud, unaware of the
identity or even the number of other users in the system. Additional data may arrive directly
to the cloud, encrypted under users’ public keys (e.g., as encrypted emails arriving to a
cloud-based mailbox).

2. The cloud decides to evaluate an arbitrary dynamically chosen function on the data of ar-
bitrary subset of users chosen on-the-fly. (The choice may be by some users’ request, or
as a service to compute the function on the data of parties fulfilling some criterion, or by
a need autonomously anticipated by the cloud provider, etc.) The cloud can perform this
computation non-interactively, without any further help from the users. The result is still
encrypted.
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3. The cloud and the subset of users whose data was used in the computation interact in a
decryption phase. At this point the users retroactively approve the choice of function and the
choice of peer users on whose data the function was evaluated, and cooperate to retrieve the
output.

Crucially, the computation and communication of all the users (including the cloud) in the
decryption phase should be independent of both the complexity of the function computed, and the
size of the universe of parties (both of which can be enormous). Instead, the effort expended by
the cloud and the users in this phase should depend only on the size of the output and the number
of users who participated in the computation. Also crucially, the users need not be online at all
during the bulk of the computation; they need to “wake up” only when it is time to decrypt the
output.

We call this an on-the-fly multiparty computation (or on-the-fly MPC in short) to signify the fact
that the functions to be computed on the encrypted data and the participants in the computation
are both chosen on-the-fly and dynamically, without possibly even the knowledge of the participants.
Protocols following this framework have additional desirable features such as the ability for users
to “join” a computation asynchronously.

Possible Approaches (and Why They Do Not Work). The long line of work on secure
multiparty computation (MPC) [GMW87, BGW88, CCD88, Yao82] does not seem to help us
construct on-the-fly MPC protocols since the computational and communication complexities of
all the parties in these protocols depends polynomially on the complexity of the function being
computed.1 In contrast, we are dealing with an asymmetric setting where the cloud computes a
lot, but the users compute very little. (Nevertheless, we will use the traditional MPC protocols to
interactively compute the decryption function at the end.)

Fully homomorphic encryption (FHE) is appropriate in such an asymmetric setting of computing
with the cloud. Yet, traditional FHE schemes are single-key in the sense that they can perform
(arbitrarily complex) computations on inputs encrypted under the same key. In our setting, since
the parties do not trust each other, they will most certainly not want to encrypt their inputs using
each other’s keys. Nevertheless, Gentry [Gen09a] proposed the following way of using single-key
FHE schemes in order to do multiparty computation: first, the parties run a (short) MPC protocol
to compute a joint public key, where the matching secret key is secret-shared among all the parties.
The parties then encrypt their inputs under the joint public key and send the ciphertexts to the
cloud who then uses the FHE scheme to compute an encryption of the result. Finally, the parties run
yet another (short) MPC protocol to recover the result. A recent work by Asharov et al. [AJL+12]
extends this schema and makes it efficient in terms of the concrete round, communication and
computational complexity.

This line of work does not address the dynamic and non-interactive nature of on-the-fly MPC.
In particular, once a subset of parties and a function are chosen, the protocols of [Gen09a, AJL+12]
require the parties to be online and run an interactive MPC protocol to generate a joint public key.
In contrast, we require that once the function and a subset of parties is chosen, the cloud performs
the (expensive) computations non-interactively, without help from any of the users. It would
also be unsatisfactory to postpone the (lengthy) computation of the function until the interactive

1The works of Damg̊ard et al. [DIK+08, DIK10] are an exception to this claim. However, it is not clear how to
build upon these results to address the dynamic and non-interactive nature of on-the-fly MPC.
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decryption phase; indeed, we require that once the users “wake up” for the decryption phase, the
running time of all parties is independent of the complexity of the function being computed. Thus,
even the feasibility of on-the-fly MPC is not addressed by existing techniques.

Our Solution. We present a new notion of fully homomorphic encryption (FHE) that we call
a multikey FHE that permits computation on data encrypted under multiple unrelated keys; a
new construction of multikey FHE based on the NTRU encryption scheme (originally proposed by
Hoffstein, Pipher and Silverman [HPS98]); and a new method of achieving on-the-fly multiparty
computation (for any a-priori bounded number of users) using a multikey FHE scheme. Although
the number of users involved in any computation has to be bounded in our solution, the total
number of users in the system is arbitrary.

1.1 Our Results and Techniques

New Notion: Multikey Homomorphic Encryption. An N -key Fully Homomorphic En-
cryption scheme is the same as a regular FHE scheme with two changes. First, the homomorphic
evaluation algorithm takes in polynomially many ciphertexts encrypted under at most N keys,
together with the corresponding evaluation keys, and produces a ciphertext. Second, in order to
decrypt the resulting ciphertext, one uses all the involved secret keys.

A multikey FHE scheme is indeed the right tool to perform on-the-fly MPC as shown by
the following simple protocol: the users encrypt their inputs using their own public keys and
send the ciphertexts to the cloud, the cloud then computes a dynamically chosen function on
an arbitrary subset of parties using the multikey property of the FHE scheme, and finally, the
users together run an interactive MPC protocol in order to decrypt. Note that the users can be
offline during the bulk of the computation, and they need to participate only in the final cheap
interactive decryption process. Note also that participants in the protocol need not be aware of
the entire universe of users, but only those users that participate in a joint computation. This
simple protocol provides us security against a semi-honest collusion of the cloud with an arbitrary
subset of parties. We then show how to achieve security against a malicious adversary, using tools
such as verifiable computation protocols [GKR08, GGP10, CKV10, AIK10] or succinct argument
systems [Kil92, Mic94, BCCT12a, GLR11].

The computation of the decryption function can itself be outsourced to the cloud. In particular,
using the cloud-assisted MPC protocol of Asharov et al. [AJL+12] yields a 5-round on-the-fly MPC
protocol (one offline round, and four online rounds to perform decryption). As an additional benefit,
in the resulting on-the-fly protocol, the parties may communicate with the server concurrently at
each stage. The only disadvantage of this approach is that it requires a CRS setup. This does not,
however, affect the on-the-fly nature of the procotol since only an apriori bound N on the number
of computing parties needs to be known when creating the CRS.

(Multikey) Fully Homomorphic Encryption from NTRU. The starting point of our main
construction of multikey FHE is the NTRU encryption scheme of Hoffstein, Pipher and Silver-
man [HPS98] (more precisely, the slightly modified version due to Stehlé and Steinfeld [SS11]).
NTRU is one of the earliest lattice-based public-key encryption schemes, together with the Ajtai-
Dwork cryptosystem [AD97] and the Goldreich-Goldwasser-Halevi cryptosystem [GGH97]. We
first observe that NTRU can be made (single-key) fully homomorphic using the recent techniques
of [BV11a, BGV12]. Using some additional tricks, we then show that the scheme is multikey fully
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homomorphic for a bounded number of users at essentially the same cost. Previously, it was not even
known whether NTRU could be turned into a (regular, single-key) fully homomorphic encryption
scheme.2

This construction is one of our main contributions and we believe it to be of independent interest.
Our construction is particularly interesting since the NTRU scheme was originally proposed as an
efficient public-key encryption scheme, meant to replace RSA and elliptic curve cryptosystems in
applications where computational efficiency is at a premium (for example, applications that run on
smart cards and embedded systems). Although the transformation to a fully homomorphic system
deteriorates the efficiency of NTRU somewhat, we believe that this system is a leading candidate for
a practical FHE scheme. What’s more, as we show, the scheme supports homomorphic operations
on encryptions under multiple keys.

Theorem 1.1 (Informal). For every N ∈ N, there is an N -user multikey fully homomorphic
encryption scheme under the assumption that the NTRU encryption scheme (described below) is
semantically secure and circular secure. The size of the keys and ciphertexts in the scheme grow
polynomially with N .

We briefly sketch here our variant of the NTRU encryption scheme and the ideas in turning
it into a multikey fully homomorphic encryption scheme. The reader is referred to Section 3 and
Section 4 for a detailed exposition.

The main differences between the original NTRU scheme and our variant are threefold: (1)
Whereas the original NTRU scheme adds a deterministic noise to the ciphertext, the variant con-
sidered here adds noise chosen from a distribution with bounded support (specifically, a discrete
Gaussian distribution), a modification recently introduced by Stehlé and Steinfeld [SS11]. It seems
that this could only improve security; indeed, the purpose of the Stehlé-Steinfeld work was to prove
the security of NTRU based on worst-case hardness assumptions on ideal lattices, (2) We do all our
operations modulo xn + 1 where n is a power of 2 as in [SS11], as opposed to xn− 1 in the original
NTRU. (3) Our parameters are more aggressive than in [HPS98, SS11] to support homomorphisms.
As a result, the worst-case to average-case connection shown by [SS11] does not carry over to our
setting of parameters.

For security parameter κ, the scheme is parametrized by a prime number q = q(κ), and a
B-bounded error distribution χ over the ring R ≡ Z[x]/〈xn + 1〉 (i.e., χ is a distribution over
polynomials whose coefficients are all at most B(κ) in absolute value). The parameters n, q and χ
are public. We show how to encrypt bits using the scheme. All operations in the scheme take place
in the ring Rq ≡ R/qR.

Keygen(1κ): Sample “bounded” polynomials f ′, g ← χ and set f := 2f ′+1 so that f ≡ 1 (mod 2).
Set the public key pk := h = 2gf−1 ∈ Rq and the secret key sk = f ∈ R. (If f is not invertible
over Rq, resample f ′).

Enc(pk,m): Sample “bounded” polynomials s, e← χ. Output the ciphertext c := hs+2e+m ∈ Rq.

Dec(sk, c): Let µ = fc ∈ Rq. Output µ (mod 2) as the message.

2The observation that NTRU can be made single-key fully homomorphic was made concurrently by Gentry et
al. [GHL+11].

5



Decryption works since

fc (mod q) = f(hs + 2e + m) (mod q)
= 2(gs + ef) + fm (mod q)
= 2(gs + ef) + fm

where the last equality is true since |2(gs + ef) + fm| < q/2.3 Taking this quantity mod 2 then
gives us the message m since f ≡ 1 (mod 2).

The multikey homomorphic properties of the scheme are best seen through the lens of the
decryption equation (as in [BV11a, BV11b]). In particular, consider ciphertexts c1 = h1s1 + 2e1 +
m1 ∈ Rq and c2 = h2s2 + 2e2 + m2 ∈ Rq that encrypt messages m1 and m2 under public keys
h1 and h2 respectively, with noise terms e1 and e2. A little algebraic manipulation shows that
cadd = c1 + c2 and cmult = c1c2 are ciphertexts that encrypt the sum and product of m1 and m2,
respectively, albeit with larger error terms. Namely, decrypting c1 + c2 and c1c2 with the “joint
secret key” f1f2 (which is simply a product of the two secret keys f1 and f2) gives us:

f1f2(c1 + c2) = 2(f1f2(e1 + e2) + f2g1s1 + f1g2s2) + f1f2(m1 + m2)
∆= 2Eadd + f1f2(m1 + m2)

This shows that decrypting c1 + c2 using the joint secret key f1f2 results in the sum of the two
messages, assuming that the error does not grow to be too large. Likewise, we have:

f1f2(c1c2) = 2(2g1g2s1s2 + g1s1f2(2e2 + m2) + g2s2f1(2e1 + m1) +
f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

∆= 2Emult + f1f2(m1m2)

This shows that decrypting c1c2 using the joint secret key f1f2 results in the product of the two
messages, assuming that the error does not grow to be too large.

Extending this to circuits, we observe that the effective secret key required to decrypt a ci-
phertext c resulting from evaluating a multivariate polynomial function on the inputs of N users is∏N

i=1 fdi
i where di is the degree of the ith variable in the polynomial function. This makes the secret

key required to decrypt c dependent on the circuit evaluated, which is unacceptable even for some-
what homomorphic encryption. We use the relinearization technique from [BV11a] to transform
the ciphertext into one that can be decrypted using the secret key

∏N
i=1 fi (namely, reduce all the

exponents from di to 1), after every operation. In effect, this ensures that the secret key is related
to the number of users N involved in the computation, and not to the function being computed.
With the use of relinearization, one can show that the scheme is multikey somewhat homomorphic,
i.e., capable of evaluating circuits of depth ε log n for some small constant ε < 1. (For more details,
see Section 3).

To turn this into a fully homomorphic encryption scheme, we use the technique of modu-
lus reduction from the work of Brakerski and Vaikuntanathan [BV11a], later refined in [BGV12].
Modulus reduction shows how to reduce the magnitude of the error (while simultaneously reducing

3We associate Zq with the set {−bq/2c, . . . , bq/2c} throughout this work.
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the size of the modulus). This technique works transparently in the multikey setting. The bottom
line is that we can evaluate functions on N users as long as N ≈ log q/polylog(n). Put another
way, for any number N of users, we get a N -user multikey FHE by setting q to be a large enough
function of N . This gives us a leveled multikey FHE scheme. Finally, to turn this into a full-fledged
multikey FHE scheme (whose complexity is independent of the complexity of the function being
computed), we use (a multikey analog of) Gentry’s bootstrapping technique [Gen09b].

Our construction based on the NTRU encryption scheme raises a natural question: can any
of the other FHE schemes be made multikey? It turns out that the schemes of [Gen09a, SV10,
vDGHV10, BV11b, BV11a] can be made N -key fully homomorphic for a constant N , or sometimes
even N = O(log n). See Appendix A for more details.

Completely Non-Interactive On-the-Fly MPC? Our results raise the natural question of
whether the protocols can be made completely non-interactive, namely the users do not ever have to
talk to each other, even in the decryption phase. We know from [HLP11] that in the non-interactive
setting, the server can always evaluate the circuit multiple times, keeping some parties’ inputs but
plugging in fake inputs of its choosing for the other parties. However, even if we accept this as the
ideal functionality, we show that a non-interactive protocol cannot be achieved by drawing on the
impossibility of program obfuscation. Thus, our notion is qualitatively “the best possible” in terms
of interaction. See Appendix B for a formal theorem statement.

Other Related Work. The basic idea of using homomorphic encryption schemes in conjunction
with threshold decryption to boost the efficiency of MPC protocols was first noticed by Cramer,
D̊amgard and Nielsen [CDN01]. The idea of using a cloud to alleviate the computational efforts
of parties was recently explored in the work on “server-aided MPC” by Kamara, Mohassel and
Raykova [KMR11]. Their protocols, however, require some of the parties to do a large amount of
computation, essentially proportional to the size of the function f being computed. Halevi, Lindell
and Pinkas [HLP11] recently considered the model of “secure computation on the web” wherein
the goal is to minimize interaction between the parties. While their definition requires absolutely
no interaction among the participants in the protocols (the participants interact with the server
only), they show that this notion can only be achieved for a small class of functions. Our goal, on
the other hand, is to compute arbitary functions with the assistance of a cloud.

Organization. In Section 2 we formally define multikey FHE and on-the-fly MPC, and show
our construction of on-the-fly MPC from multikey FHE. In Section 3 we show how to instantiate
multikey somewhat homomorphic encryption from the NTRU encryption scheme, and then show
how to achieve full homomorphism in Section 4. Finally, in Appendix B, we show the impossibility
of a completely non-interactive on-the-fly MPC protocol.

Notation. In the remainder of the paper, we use the following notation. We use κ to denote the
security parameter. For an integer n, we use the notation [n] to denote the set [n] = {1, . . . , n}.
For a randomized function f , we write f(x; r) to denote the unique output of f on input x with
random coins r. We write f(x) to denote a random variable for the output of f(x; r) over uniformly
random coins r. For a distribution or random variable X, we write x← X to denote the operation
of sampling a random x according to X. For a set S, we overload notation and use s← S to denote
sampling s from the uniform distribution over S. We use y := f(x) to denote the deterministic
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evaluation of f on input x with output y. For two distributions D and D′, D
c
≈ D′ denotes

computational indistinguishability.

2 On-the-Fly MPC from Multikey FHE

We consider the problem of a server or cloud, denoted by S, storing the data of U different parties
P1, . . . , PU . We wish to ensure that the data of each party is kept private, but also allow the server
S to compute any joint function of the data of any subset V ⊆ [U ] of the parties. We also wish to
ensure that the server is able to do this with minimal participation from the parties in V , and no
interaction at all from the rest of the parties [U ]\V . Furthermore, the communication complexity
and the computation time of each party Pi should be independent of the complexity of the function
since we rely on the computation power of the server, who will carry out the entire computation of
the joint function F . The computation should remain secure even if the server or any set of parties
are corrupted. We formalize this below.

For a class C of functions with at most U inputs, an on-the-fly multiparty protocol Π for C
is a protocol between U + 1 interactive Turing Machines P1, . . . , PU , S, such that for all inputs
~x = (x1, . . . , xU ), all functions F ∈ C, if F is an N -input function then for all ordered subsets
V ⊆ [U ] such that |V | = N , the output of Π in an execution where Pi is given xi as input (S does
not receive an input), and F, V are chosen for the computation, is y = F ({xi}i∈V ). An on-the-fly
multiparty protocol consists of two phases, an offline phase that is performed before the function
F ∈ C is chosen, and an online phase that begins once F is chosen together with a subset V of
inputs on which F will be evaluated. All parties P1, . . . , PU , S participate in the offline phase, but
only the server S and parties in V participate in the online phase. After the function is selected,
the server ignores all offline messages from non-computing parties (i.e. those in [U ]\V ).

Unlike in standard MPC, we require the communication complexity of the protocol, as well as
the computation time of parties P1, . . . , PU to be independent of the complexity of the function F .
Furthermore, we let the computation time of parties Pi for i ∈ V depend on the party’s input and
the output size of the F but require the computation time of parties Pi for i ∈ [U ]\V to depend
only on the size of the party’s input and be independent of the output size of F . On the other
hand, the computation time of the server S must be linear in the circuit-size of F .

Security. We prove security of an on-the-fly MPC protocol in the Ideal/Real paradigm. Let
F ({xi}i∈V ) for V ⊆ [U ] be the function to be computed, and let N = |V |. For ease of notation,
we assume w.l.o.g. that V = [N ]. In the ideal world, the computation of F is performed through
a trusted functionality F that receives input xi from each party Pi for i ∈ [U ], computes y =
F (x1, . . . , xN ) (ignoring all inputs xi for i /∈ V ) and gives y to parties P1, . . . , PN , S, while parties
Pi for i ∈ [U ]\V do not get an output. Thus, in the ideal world, parties learn nothing more than
y. In the real world, however, this trusted functionality does not exist and so in order to compute
y = F (x1, . . . , xN ), parties P1, . . . , PU , S run a protocol Π.

An adversary corrupting a party (resp. the server) receives all messages directed to the corrupted
party (resp. the server) and controls the messages that it sends. Since the server ignores messages
from parties outside V , we assume w.l.o.g. that an adversary only corrupts computing parties, i.e.
parties in V , and possibly the server.

We use IDEALF ,S(~x) to denote the joint output of the ideal-world adversary S and the outputs
of the server S and the parties P1, . . . , PN in an ideal execution with functionality F and inputs ~x =
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(x1, . . . , xU ). Similarly, we use REALΠ,A(~x) to denote the joint output of the real-world adversary
A and the outputs of parties P1, . . . , PN and server S in an execution of protocol Π with inputs
~x = (x1, . . . , xU ). We say that a protocol Π securely realizes F if for every real-world adversary
A corrupting any t < N parties (and possibly the server), there exists an ideal-world adversary S
with black-box access to A such that for all input vectors ~x, IDEALF ,S(~x)

c
≈ REALΠ,A(~x).

2.1 Multikey Fully Homomorphic Encryption

In this section, we define multikey fully homomorphic encryption. Intuitively, multikey FHE allows
us to evaluate any circuit on ciphertexts that might be encrypted under different public keys. To
guarantee semantic security, decryption requires all of the corresponding secret keys.

We introduce a parameter N , which is the number of distinct keys that a scheme can tolerate.
We let all algorithms depend polynomially on N . This is similar to the definition of “leveled”
FHE from [BGV12]. However, we note that in our definition, the algorithms depend on N but
are independent of the depth of circuits that the scheme can evaluate. Thus, we consider schemes
that are “leveled” with respect to the number of keys N , but fully homomorphic (“non-leveled”)
with respect to the circuits that are evaluated. The construction of multikey FHE schemes that
are not leveled with respect to the number of keys (i.e., where all algorithms are independent of
N) remains an open problem.

We now define multikey FHE as follows, for restricted circuit classes and for arbitrary circuits.

Definition 2.1. (Multikey C-Homomorphic Encryption) Let C be a class of circuits. A family
{E(N) = (Keygen, Enc,Dec,Eval)}N>0 of algorithms is a multikey C-homomor-phic encryption
scheme family if for all integers N > 0, E(N) has the following properties:

• (pk, sk, ek)← Keygen(1κ), for a security parameter κ, outputs a public key pk, a secret key sk
and a (public) evaluation key ek.

• c← Enc(pk,m), given a public key sk and message m, outputs a ciphertext c.

• m′ := Dec(sk1, . . . , skN , c), given N secret keys ski and a ciphertext c, outputs a message m′.

• c∗ := Eval(C, (c1, pk1, ek1), . . . , (ct, pkt, ekt)), given a (description of) a boolean circuit C along
with t tuples (ci, pki, eki), each comprising of a ciphertext ci, a public key pki, and an evalu-
ation key eki, outputs a ciphertext c∗.

We require absence of decryption failures and compactness of ciphertexts. Formally: for
every circuit C ∈ C, all sequences of N key tuples {(pk′j , sk

′
j , ek

′
j)}j∈[N ] each of which is in

the support of Keygen(1κ), all sequences of t key tuples {(pki, ski, eki)}i∈[t] each of which is in
{(pk′j , sk

′
j , ek

′
j)}j∈[N ], and all plaintexts (m1, . . . , mt) and ciphertexts (c1, . . . , ct) such that ci

is in the support of Enc(pki,mi), Eval satisfies the following properties:

Correctness: Let c∗ := Eval(C, (c1, pk1, ek1), . . . , (ct, pkt, ekt)). Then Dec(sk′1, . . . , sk
′
N , c∗) =

C(m1, . . . ,mt). 4

4Note that correctness still holds even if the circuit C completely ignores all ciphertexts encrypted under a public
key pki

′, or if none of the original ciphertexts were encrypted under this key. In other words, using superfluous keys
in the decryption process does not affect its correctness (as long as decryption uses at most N keys).
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Compactness: Let c∗ := Eval(C, (c1, pk1, ek1), . . . , (ct, pkt, ekt)). There exists a polynomial
P such that |c∗| ≤ P (κ, N). In other words, the size of c∗ is independent of t and |C|.
Note, however, that we allow the evaluated ciphertext to depend on the number of keys,
N .

Definition 2.2. (Multikey FHE) A family of encryption schemes {E(N) = (Keygen,Enc,Dec,Eval)}N>0

is multikey fully homomorphic if it is multikey C-homomorphic for the class C of all circuits.

Semantic security of a multikey FHE follows directly from the semantic security of the under-
lying encryption scheme in the presence of the evaluation key ek. This is because given ek, the
adversary can compute Eval himself. Note that taking N = 1 in Definition 2.1 and Definition 2.2
yield the standard definitions of C-homomorphic and fully homomorphic encryption schemes.

2.2 The Basic Protocol

Let {E(N) = (Keygen,Enc,Dec,Eval)}N>0 be a multikey fully-homomorphic family of encryption
schemes. We construct the following on-the-fly MPC protocol Πsh secure against semi-honest
adversaries.

Step 1: For i ∈ [U ], party Pi samples a key tuple

(pki, ski, eki)← Keygen(1κ)

and encrypts its input xi under pki:

ci ← Enc(pki, xi)

It sends (pki, eki, ci) to the server S.

At this point a function F , represented as a circuit C, has been selected on inputs {xi}i∈V for some
V ⊆ U . Let N = |V |. For ease of notation, assume w.l.o.g. that V = [N ]. The parties proceed as
follows.

Step 2: The server S computes

c∗ := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN ))

and broadcasts c∗ to parties P1, . . . , PN .

Step 3: The parties P1, . . . , PN run a secure MPC protocol Πdec
sh to compute Dec(sk1, . . . , skN , c∗).

Theorem 2.1. Let {E(N) = (Keygen,Enc,Dec,Eval)}N>0 be a multikey fully-homomorphic encryp-
tion scheme, and let Πdec

sh be an N -party MPC protocol for computing the decryption function
Dec(sk1, . . . , skN , c∗). If E is semantically secure, and Πdec

sh is secure against semi-honest adver-
saries corrupting t < N parties, then the above construction is an on-the-fly MPC protocol secure
against semi-honest adversaries corrupting t parties and possibly the server S.

See Appendix D for the proof of Theorem 2.1.
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2.3 Security Against Malicious Adversaries

The protocol described in Section 2.2 is not secure against malicious adversaries. Our first step in
handling this type of attack is to replace our decryption protocol with one that is secure against
malicious adversaries, which we will denote Πdec

mal. Next, we will apply general MPC techniques
to the rest of our protocol (Steps 1 and 2) to ensure parties do not deviate from the protocol. This
requires coin-flipping and zero-knowledge proofs. However, there are two subtleties to consider.

1. First, recall that in our model, parties do not communicate with each other until the de-
cryption phase. In particular, parties do not communicate with each other (or even know
about the existance of other parties) during Step 1. Therefore, coin-flipping in Step 1 is out
of the question. Fortunately, the correctness property (from Definition 2.1) guarantees that
the scheme is secure against corrupt parties that follow the protocol in Step 1 but adap-
tively choose their random coins. This means that parties do not need to coin-flip for each
other’s random coins. Furthermore, since the server’s computation throughout the protocol
is deterministic, the parties do not need to coin-flip for the server’s random coins.

We therefore only need to add zero-knowledge proofs of knowledge5 to ensure that the parties
indeed follow the protocol. The intuition behind this is that correctness will guarantee that
the simulator can extract the input x̃i for a corrupted party and therefore obtain the correct
value ỹ from the ideal functionality, regardless of the coins used by the adversary.

2. Second, we wish to ensure that the computation time and communication complexity of the
parties is small. This means that the server must be able to prove that he carried out the
computation of Eval correctly in such a way that the parties can verify the validity of the
proof in time that is much less than linear in the circuit size. To solve this problem, we use
techniques from verifiable computation. We offer several solutions, each with its own benefits
and drawbacks.

Verification for Small Inputs. We first consider the case where the ciphertexts (c1, . . . , cN ) are
small enough to be broadcast to the N parties in V (i.e., allowing communication complexity linear
in the total input size of the participating parties). In this case, the server needs to convince the
participating parties that “c∗ = Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN ))”, i.e., that a deterministic
circuit of size poly(|C|, κ) accepts. For any uniform circuit C (i.e., computable by a poly(κ)-time
Turing machine), the following offer poly(κ, log(|C|)) communcation and verification efficiency.6

1. Use the argument system of Kilian [Kil92, Kil95], yielding interactive 4-round verification. It
relies on expensive PCPs.

5There is a subtely here. We assume a rushing adversary, that is, we assume that the adversary can choose his
messages adaptively, depending on the messages from the honest players. Because of this, in the proof the simulator
will have to provide simulated proofs for the honest parties and still be able to extract from the proofs created by the
adverary on behalf of corrupt players. We therefore need to use simulation-extractable ZK proofs (SE-ZK) [Gro06],
instead of ordinary ZK proofs of knowledge (ZK-POKs). However, in the interest of clarity, we choose to present the
construction above with ZK-POKs instead of SE-ZK. See Appendix C for a precise definition of simulation-extractable
proofs.

6For any given family of C, |C| = poly(κ), and thus, poly(κ, log(|C|)) = poly(κ); but the degree of this polynomial
depends on the circuit family.
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2. Use Micali’s CS proofs [Mic94]. This reduces interaction to one round, but assumes a random
oracle. It also relies on expensive PCPs.

3. Use the succint non-interactive arguments (SNARGs and SNARKs) of Bitansky et al. [BCCT12a,
BCCT12b] or Goldwasser at al. [GLR11]. These are 1-round and hold in the standard model,
but require a non-falsifiable assumption [Nao03].7 Some variants rely on PCPs, PIR or FHE.

In case that the evaluation circuit is in logspace-uniform NC, we have another alternative:

4. Use the argument system of Goldwasser et al. [GKR08] for a 2-round solution. It relies on
PIR.

In the case of arbitrary nonuniform poly(κ)-size circuits, one can use the technique of [BSCGT12,
Section 5.4]. First, in a preparatory phase, the circuit C is written down and its collision-
resistant hash digest d is computed by a trusted party or via an MPC protocol. Then, in step
3, the server proves the NP statement “there exists a circuit C̃ whose digest is d and c∗ =
Eval(C̃, (c1, pk1, ek1), . . . , (cN , pkN , ekN ))”. This requires a succint argument system that is proof of
knowledge and supports nondeterministic uniform circuits. This is satisfied by Micali’s construction
of CS proofs under Valiant’s analysis [Mic94, Val08], and by SNARKs [BCCT12a, BCCT12b].

Verification for Large Inputs. We can make communication and verification complexities de-
pend merely polylogarithmically on the size of the relevant inputs x1, . . . , xN . In the aforementioned
proofs of knowledge for nondeterministic statements [Mic94, Val08, BCCT12a, BCCT12b], the com-
plexity depends polynomially on the size of statement being proven (expressed as a nondeterministic
Turing machine and its input), but merely polylogarithmically on the size of the witness for the
statement, and in particular, the nondeterministic choices made by the Turing machine. We thus
move ci from the instance into the witness. To recognize the correct ci, each party Pi remembers
the digest of ci under a collision-resistant hash function family H = {Hhk : {0, 1}∗ → {0, 1}κ}.

In the offline stage, every party Pi draws hash key hki and computes the digest di = Hhki
(ci, π

enc
i ),

where πenc
i is the corresponding zero-knowledge proof of plaintext knowledge. Pi then sends

(ci, π
enc
i , hki, di) to the cloud. Each party Pi remembers its own (hki, di) but can forget the poten-

tially long xi, ci, π
enc
i . In the online stage, the server broadcasts (hk1, d1), . . . , (hkN , dN ) and proves

the following NP statement: “there exist c̃1, π̃
enc
1 , . . . , c̃N , π̃enc

N such that di = Hhki
(c̃i, π̃

enc
i ) and

c∗ = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )) and πenc
i is a valid proof”.

This is secure, since whenever the server convinces the clients, it actually “knows” such c̃1, π̃
enc
1 ,

. . . , c̃N , π̃enc
N which can be efficiently extracted from the server (by the arguments’ proof of knowl-

edge property). For an honest party, the extracted c̃i must be the one originally sent by the party
(by the collision-resistance of H). For a corrupt party, the extracted c̃i must be a valid ciphertext
and its plaintext can be efficiently extracted from π̃enc

i (by the proof of knowledge property of
π̃enc

i ).
We remark that the proceedings version of this work does not include the proof of plaintext

knowledge πenc
i in the digest. Unfortunately, we do not know how to prove the resulting protocol

secure if only the ciphertext ci is included in the digest. This stems from the fact that each party
chooses its own digest key hki, and thus we cannot guarantee that Hhki

is collision-resistant if Pi

7A non-falsifiable assumption is necessary for the argument system to be non-interactive and secure in the standard
model [GW11]. Note that we indeed require adaptive security, since the prover (ie. the server) is free to choose the
statement to be proven (ie. the function to be computed).
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is corrupt. This potentially enables a corrupt server to find a (possibly invalid) ciphertext c̃′i and
prove that di = Hhki

(c̃′i) and c∗ = Eval(C, (c̃1, pk1, ek1), . . . , (c̃′i, pki, eki), . . . , (c̃N , pkN , ekN )). This
defeats the purpose of having a proof of plaintext knowledge πenc

i in the first place, and in short,
implies that a malicious party can potentially evaluate the joint function on an unknown input.
Including the proof of knowledge πenc

i guarantees that this attack is not possible (see the security
proof in Appendix D for more details).

Protocol for Malicious Adversaries. The protocol for fully malicious adversaries is given
below. Let {E(N) = (Keygen,Enc,Dec,Eval)}N>0 be a multikey fully-homomorphic family of en-
cryption schemes, and let H = {Hhk : {0, 1}∗ → {0, 1}κ} be a family of collision-resistant hash
functions. The following construction is an on-the-fly MPC protocol Πmal secure against malicious
adversaries.

Step 1: For i ∈ [U ], party Pi samples a key tuple

(pki, ski, eki) := Keygen(1κ ; ri)

and encrypts its input xi under pki:

ci := Enc(pki, xi ; si)

It computes zero-knowledge proofs of knowledge πgen
i , πenc

i showing it computed these steps
correctly. The proofs πgen

i , πenc
i attest to these relations.

Rgen = { ( (pki, eki) , (ski, ri) ) | (pki, ski, eki) := Keygen(1κ ; ri) }
Renc = { ( (pki, ci) , (xi, si) ) | ci = Enc(pki, xi ; si) }

It also samples a hash key hki and computes the digest of the ciphertext and the proof of
plaintext knowledge

di = Hhki
(ci, π

enc
i )

Party Pi sends the tuple (pki, eki, hki, π
gen
i , πenc

i , ci, di) to the server S. The server verifies all
proofs {πgen

i , πenc
i }i∈[U ].

From this point forward, party Pi can forget its (potentially long) input xi, ciphertext ci, and
proof πenc

i . It need only remember the hash key hki and digest di.

A function F , represented as a circuit C, is now selected on inputs {xi}i∈V for some V ⊆ U .
Let N = |V |. For ease of notation, we assume w.l.o.g. that V = [N ].

Step 2: The server S computes

c∗ := Eval(C, (c1, pk1, ek1), . . . , (cN , pkN , ekN ))

and a short argument ϕ proving that

“∃ (c̃1, π̃
Enc
1 ) , . . . , (c̃N , π̃Enc

N ) s.t. di = Hhki
(c̃i, π̃

Enc
i ) and Verifyenc( (pki, ci) , πEnc

i ) = 1
and c∗ = Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN ))”

It broadcasts (c∗, ϕ) to parties P1, . . . , PN , together with

{(pki, eki, hki, di, π
gen
i )}i∈[N ]
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Step 3: The parties P1, . . . , PN verify the argument ϕ and all proofs {πgen
i }i∈[N ]. The parties run

an MPC protocol Πdec
mal to compute Dec(sk1, . . . , skN , c∗).

Theorem 2.2. Let {E(N) = (Keygen,Enc,Dec,Eval)}N>0 be a multikey fully-homomorphic encryp-
tion scheme, and let Πdec

mal be an N -party MPC protocol for computing the decryption function
Dec(sk1, . . . , skN , c∗). Let H = {Hhk : {0, 1}∗ → {0, 1}κ} be a family of collision-resistant hash
functions. If E is semantically secure, and Πdec

mal is secure against malicious adversaries cor-
rupting t < N parties, then the above construction is an on-the-fly MPC protocol secure against
malicious adversaries corrupting t parties and possibly the server S.

See Appendix D for the proof of Theorem 2.2.

3 Multikey Somewhat Homomorphic Encryption based on NTRU

We show how to construct a multikey somewhat homomorphic encryption scheme based on the
NTRU encryption system first proposed by Hoffstein, Pipher, and Silverman [HPS98]. More pre-
cisely, we rely on a variant of the NTRU scheme proposed by Stehlé and Steinfeld[SS11].

In Section 3.1, we first review definitions and facts from the literature that we use extensively.
In Section 3.2, we describe the encryption scheme. In Section 3.3, we discuss its security, and in
Section 3.4 show that it is multikey somewhat homomorphic.

3.1 Preliminaries for the NTRU Instantiation

We work over rings R
.= Z[x]/ 〈φ(x)〉 and Rq

.= R/qR for some degree n integer polynomial
φ(x) ∈ Z[x] and a prime integer q ∈ Z. Note that Rq ≡ Zq[x]/ 〈φ(x)〉, i.e., the ring of degree n
polynomials modulo φ(x) with coefficients in Zq. Addition in these rings is done component-wise in
their coefficients (thus, their additive group is isomorphic to Zn and Zn

q respectively). Multiplication
is simply polynomial multiplication modulo φ(x) (and also q, in the case of the ring Rq). Thus an
element in R (or Rq) can be viewed as a degree n polynomial over Z (or Zq). We represent such
an element using the vector of its n coefficients, each in the range {−

⌊ q
2

⌋
, ...,

⌊ q
2

⌋
}. For an element

a(x) = a0 + a1x + . . . + an−1x
n−1 ∈ R, we let ‖a‖∞ = max |ai| denote its `∞ norm.

In this work, we set φ(x) = xn + 1 to be the nth cyclotomic polynomial, where n is a power
of two. We use distributions over the ring Z[x]/ 〈xn + 1〉. To show the homomorphic properties of
the scheme, the only property of these distributions we use is the magnitude of the polynomials’
coefficients. Hence, we define a B-bounded distribution to be a distribution over R where the
`∞-norm of a sample is bounded.

Definition 3.1. (B-Bounded Polynomial) A polynomial e ∈ R is called B-bounded if ‖e‖∞ ≤
B.

Definition 3.2. (B-Bounded Distribution) A distribution ensemble {χn}n∈N , supported over
R, is called B-bounded (for B = B(n)) if for all e in the suport of χn, we have ‖e‖∞ < B. In
other words, a B-bounded distribution over R outputs a B-bounded polynomial.

We present some elementary facts about the Gaussian distribution and multiplication over
the ring Z[x]/ 〈xn + 1〉. The first fact shows that the discrete Gaussian distribution over Zn with
standard deviation r, denoted by DZn,r, outputs a (r

√
n)-bounded polynomial with high probability.
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This allows us to define a truncated Gaussian distribution that is (r
√

n)-bounded and statistically
close to the discrete Gaussian. The second says that multiplication in the ring Z[x]/ 〈xn + 1〉
increases the norm of the constituent elements only by a small amount.

Lemma 3.1 (see [MR07], Theorem 4.4). Let n ∈ N. For any real number r > ω(
√

log n), we have

Pr
x←DZn,r

[||x|| > r
√

n] ≤ 2−n+1

Define the truncated discrete Gaussian distribution to be one that samples a polynomial accord-
ing to the discrete Gaussian DZn,r and repeat the sampling if the polynomial is not (r

√
n)-bounded.

By Lemma 3.1, this distribution is statistically close to the discrete Gaussian.

Lemma 3.2. (see [LM06, Gen09b]) Let n ∈ N, let φ(x) = xn + 1 and let R
.= Z[x]/ 〈φ(x)〉.

For any s, t ∈ R,

||s · t (mod φ(x))|| ≤
√

n · ||s|| · ||t||
||s · t (mod φ(x))||∞ ≤ n · ||s||∞ · ||t||∞

Lemma 3.2 yields the following corollary.

Corollary 3.3. Let n ∈ N, let φ(x) = xn + 1 and R
.= Z[x]/ 〈φ(x)〉. Let χ be a B-bounded

distribution over the ring R and let s1, . . . , sk ← χ. Then
∏k

i=1 si is (nk−1Bk)-bounded.

The Ring LWE Assumption. We describe a special case of the “ring learning with errors”
assumption of Lyubaskevsky, Peikert and Regev [LPR10], which we will call RLWE. The RLWE
assumption is analogous to the standard “learning with errors” (LWE) assumption, first defined
by Regev [Reg05, Reg09] (generalizing the learning parity with noise assumption of Blum et
al. [BFKL93]).

The RLWEφ,q,χ assumption is that for a random ring element s ← Rq, given any polynomial
number of samples of the form (ai, bi = ai · s + ei) ∈ (Rq)2, where ai is uniformly random in Rq

and ei is drawn from the error distribution χ, the bi’s are computationally indistinguishable from
uniform in Rq. We use the Hermite normal form of the assumption, as in [BV11b], where the secret
s is sampled from the noise distribution χ rather than being uniform in Rq. This presentation is
more useful for the purposes of this paper and it turns out to be equivalent to the original one up
to obtaining one additional sample [ACPS09, LPR10].

Definition 3.3. (The RLWE Assumption - Hermite Normal Form [BV11b, LPR10]) For
all κ ∈ N, let φ(x) = φκ(x) ∈ Z[x] be a polynomial of degree n = n(κ), let q = q(κ) ∈ Z be a prime
integer, let the ring R

.= Z[x]/ 〈φ(x)〉 and Rq
.= R/qR, and let χ denote a distribution over the

ring R.
The decisional ring LWE assumption RLWEφ,q,χ states that for any ` = poly(κ) it holds that

{(ai, ai · s + ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] ,

where s is sampled from the noise distribution χ, ai are uniform in Rq, the “error polynomials” ei

are sampled from the error distribution χ, and finally, the ring elements ui are uniformly random
over Rq.
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We use RLWE
(`)
φ,q,χ to denote the assumption when the number of samples ` is fixed.

Fact 3.4. The RLWE`
φ,q,χ assumption implies that,

{(ai, ai · s + 2 · ei)}i∈[`]
c
≈ {(ai, ui)}i∈[`] .

where ai, s, ei and ui are as in Definition 3.3.

Choice of Parameters. As already stated above, we will rely of the following specific choices
of the polynomial φ(x) and the error distribution χ. For security parameter κ and a dimension
parameter n = n(κ) which is a power of two:

• We set φ(x) to be the nth cyclotomic polynomial. This implies that φ(x) = xn + 1.

• The error distribution χ is the truncated discrete Gaussian distribution DZn,r for standard
deviation r > 0. A sample from this distribution is a (r

√
n)-bounded polynomial e ∈ R.

The Worst-case to Average-case Connection. We state a worst-case to average-case reduc-
tion from the shortest vector problem on ideal lattices to the RLWE problem for our setting of
parameters. The reduction stated below is a special case of the results of [LPR10].

Theorem 3.5 (A special case of [LPR10]). Let Φn(x) = xn + 1 be the nth cyclotomic polynomial
where n is a power of two. Let r ≥ ω(

√
log n) be a real number, and let q ≡ 1 (mod 2n) be a

prime integer. Let R
.= Z[x]/ 〈xn + 1〉. Then there is a randomized reduction from 2ω(log n) · (q/r)-

approximate R-SVP to RLWEφ,q,χ where χ = DZn,r is the discrete Gaussian distribution. The
reduction runs in time poly(n, q).

3.2 The Scheme

We describe the NTRU encryption scheme [HPS98], with the modifications proposed by Stehlé and
Steinfeld [SS11]. For a security parameter κ, the scheme is parametrized by the following quantities:

• an integer n = n(κ),

• a prime number q = q(κ),

• a degree-n polynomial φ(x) = φκ(x),

• a B(κ)-bounded error distribution χ = χ(κ) over the ring R
.= Z[x]/〈φ(x)〉.

The parameters n, q, φ(x) and χ are public and we assume that given κ, there are polynomial-time
algorithms that output n, q and φ(x), and sample from the error distribution χ. The message space
is M = {0, 1}, and all operations on ciphertexts are carried out in the ring Rq (i.e. modulo q and
φ(x)).

• Keygen(1κ) : Sample polynomials f ′, g ← χ and set f := 2f ′ + 1 so that f ≡ 1 (mod 2). If f
is not invertible in Rq, resample f ′. Set

pk := h = 2gf−1 ∈ Rq , sk := f ∈ R
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• Enc(pk,m) : Sample polynomials s, e← χ. Output the ciphertext

c := hs + 2e + m ∈ Rq

where all operations are done modulo q and φ(x).

• Dec(sk, c) : Let µ = fc ∈ Rq. Output m′ := µ (mod 2).

It is easily seen that this scheme is correct as long as there is no wrap-around modulo q. To
decrypt a ciphertext c, we compute in Rq:

fc = fhs + 2fe + fm = 2gs + 2fe + fm

If there is no wrap-around modulo q then

fc (mod 2) = 2gs + 2fe + fm (mod 2) = fm (mod 2) = m

One possible setting which ensures that there is no wrap-around modulo q is to set φ(x) = xn+1.
To see why this helps, notice that since the coefficients of g, s, f, e are all bounded by 2B + 1.8

By Corollary 3.3, we know that the coefficients of gs (mod xn + 1) and fe (mod xn + 1) are both
bounded by n(2B+1)2. Thus, the coefficients of fc are bounded by 4n(2B+1)2+B < 36nB2 < q/2.

In other words, as long as we set q > 72nB2, a fresh ciphertext generated by Enc is guaranteed
to decrypt correctly. From here on, we refer to µ = fc ∈ Rq as the “error in a ciphertext c”.

For the rest of our exposition, we will use φ(x) = xn + 1 as our modulus polynomial.

3.3 Security

We base the security of the encryption scheme in Section 3.2 on two assumptions – the RLWE
assumption described in Section 3.1, as well as a new assumption that we call the (Decisional)
Small Polynomial Ratio (DSPR) Assumption. Towards this end, we define the following problem.

Definition 3.4. (Decisional Small Polynomial Ratio (DSPRφ,q,χ) Problem) Let φ(x) ∈
Z[x] be a polynomial of degree n, let q ∈ Z be a prime integer, and let χ denote a distribution
over the ring R

.= Z[x]/ 〈φ(x)〉. The (decisional) small polynomial ratio problem DSPRφ,q,χ is to
distinguish between the following two distributions:

• a polynomial h = g/f , where f and g are sampled from the distribution χ (conditioned on f
being invertible over Rq = R/qR), and

• a polynomial h sampled uniformly at random over Rq.

Stehlé and Steinfeld [SS11] have shown that the DSPRφ,q,χ problem is hard even for unbounded
adversaries (namely, the two distributions above are statistically close) if n is a power of two,
φ(x) = xn + 1 is the nth cyclotomic polynomial, and χ is the discrete Gaussian DZn,r for r >√

q·poly(n). This allowed them to prove semantic security for the modified NTRU scheme described
in Section 3.2 under the RLWEφ,q,χ assumption alone.

The security proof follows by a hybrid argument, in two steps.
8In fact, the coefficients of g, s and e are bounded by B and that of f is bounded by 2B + 1.
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1. The hardness of DSPRφ,q,χ allows us to change the public key h = 2g/f to h = 2h′ for a
uniformly sampled h′.

2. Once this is done, we can use RLWEφ,q,χ to change the challenge ciphertext c∗ = hs + 2e + m
to c∗ = u + m, where u is uniformly sampled from Rq.

In this final hybrid, the advantage of the adversary is exactly 1/2 since c∗ is uniform over Rq,
independent of the message m.

Unfortunately, their result holds only if r >
√

q · poly(n), which is too large to permit even a
single homomorphic multiplication. To support homomorphic operations, we need to use a much
smaller value of r, for which it is easy to see that the DSPRφ,q,χ assumption does not hold in a
statistical sense any more. This makes it necessary for us to assume that the decisional small
polynomial ratios problem is hard for our choice of parameters, which we refer to as the DSPRφ,q,χ

assumption.
Using the same security proof as in [SS11], we can base the security of the scheme in Section 3.2

on the DSPR assumption and the RLWE assumption. With the choice of parameters stated below,
this yields security under the DSPR assumption and the hardness of approximating shortest vectors
on ideal lattices to within a factor of 2nε

, which is believed to be hard.

Lemma 3.6. Let n be a power of two, let φ(x) = xn + 1, let q = 2nε
for ε ∈ (0, 1) and χ = DZn,r

with r = poly(n). Then, the (modified) NTRU encryption scheme described in Section 3.2 is secure
under the DSPRφ,q,χ assumption and the worst-case hardness of approximating shortest vectors on
ideal lattices (over the ring R

.= Z[x]/ 〈φ(x)〉) to within a factor of 2Ω(nε).

3.4 Multikey Homomorphism

Let (h1, f1) and (h2, f2) be two different public/secret key pairs, and let c1 = h1s1 + 2e1 + m1

and c2 = h2s2 + 2e2 + m2 be two ciphertexts, encrypted under public keys h1 and h2, respectively.
We show how to compute ciphertexts that decrypt to the sum and the product of m1 and m2. In
particular, we show that the “ciphertexts” cmult

.= c1 · c2 and cadd
.= c1 + c2 can be decrypted

to the product and the sum of m1 and m2 respectively, using the secret key f12
.= f1 · f2.

To see this, note that as long as there is no wrap-around modulo q,

f1f2(c1 + c2) (mod 2) = 2(f1f2(e1 + e2) + f2g1s1 + f1g2s2) + f1f2(m1 + m2) (mod 2)
= m1 + m2 (mod 2)

and

f1f2(c1c2) (mod 2) = 2(2g1g2s1s2 + g1s1f2(2e2 + m2) + g2s2f1(2e1 + m1) +
f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2) (mod 2)

= m1m2 (mod 2)

since f1 ≡ 1 (mod 2) and f2 ≡ 1 (mod 2). In other words, the “joint secret key” f12
.= f1f2 can

be used to decrypt cadd
.= c1 + c2 and cmult

.= c1 · c2. We can extend this argument to any
combination of operations, with ciphertexts encrypted under multiple public keys.

Of course, the error in the ciphertexts will grow with the number of operations performed (as
with all known fully homomorphic encryption schemes). Thus, correctness of decryption will only
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hold for a limited number of operations. We can show that the scheme can correctly evaluate
circuits of depth roughly ε log(n) when q = 2nε

and B = poly(n).
However, an astute reader would have observed by now that in order to successfully decrypt

a ciphertext that was the result of a homomorphic evaluation, we must know the circuit that was
evaluated. For example, to decrypt c2

1 + c2 we need to multiply it by f2
1 f2, whereas to decrypt

c1 + c2
2 we need to multiply by f1f

2
2 . This is obviously unsatisfactory.

Furthermore, consider what happens when we add or multiply two ciphertexts c, c′ that are
themselves a result of homomorphic evaluation. Suppose, for example, that c = c1c2 and c′ = c2c3,
where ci is encrypted under hi for i ∈ {1, 2, 3}. We know c can be decrypted using f1f2 and c′ can
be decrypted using f2f3. Thus, we know that

f1f2 · c = 2e + m

f2f3 · c′ = 2e′ + m′

for some messages m and m′ and error terms e and e′. Following the discussion above, we can
see that c + c′ can be decrypted using the key f1f2f3. In general, given a ciphertext c encrypted
under a set of keys K, and c′ encrypted under a set of keys K ′, their sum can be decrypted using
the product of the keys in K ∪K ′. The absolute magnitude of the entries in this product grows
exponentially with the number of keys in K ∪K ′.

Analogously, in the context of homomorphic multiplication, we need f1f
2
2 f3 to decrypt c·c′. This

hints at the fact that the size of the (joint) secret key needed to decrypt an evaluated ciphertext
grows exponentially with the degree of the evaluated circuit (and not just with the number of
parties involved, as in the case of addition). Indeed, after D multiplications, the (joint) secret key
needed to decrypt will be the product of D polynomials, and the magnitude of the coefficients in
this product will be exponential in D.

It is beneficial, especially for our constructions in Section 4 that we eliminate the exponential
dependence (of the magnitude of the coefficients of the joint secret key) on the degree D. We
remark that we will not succeed in eliminating the exponential dependence on N , the number of
users – indeed, this is the reason why our solution will eventually assume an a-priori upper bound
on N .

This motivates our use of relinearization, a technique first introduced by Brakerski and Vaikun-
tanathan [BV11a]. Informally, we will introduce a (public) evaluation key ek that will be output
by the Keygen algorithm. Every time we multiply ciphertexts that share a key fi, we will use the
evaluation key to ensure that we only need fi, and not f2

i , to decrypt the new ciphertext. This
ensures two things.

1. First, it ensures that to decrypt a ciphertext c∗, we only need to multiply it by one copy of
each secret key, making decryption independent of the circuit used to produce c∗.

2. Second, it ensures that the size of the (joint) secret key needed to decrypt depends only on
the number of keys N , and not on the circuit C that was evaluated.

We present below our modified scheme, as well as the Eval algorithm.

• Keygen(1κ) : Sample f ′, g ← χ and set f := 2f ′ + 1 so that f ≡ 1 (mod 2). If f is not
invertible in Rq, resample f ′. Set

pk := h = 2gf−1 ∈ Rq , sk := f ∈ R
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For all τ ∈ {0, . . . , blog qc}, sample sτ , eτ ← χ and compute γτ = hsτ + 2eτ + 2τf ∈ Rq. Set

ek = (γ0, . . . , γblog qc) ∈ Rdlog qe
q

• Enc(pk,m) : Sample s, e← χ. Output the ciphertext c := hs + 2e + m ∈ Rq.

• Dec(sk1, . . . , skN , c) : Parse ski = fi for i ∈ [N ]. Let µ = f1 · · · fN · c ∈ Rq. Output m′ := µ
(mod 2).

• Eval(C, (c1, pk1, ek1), . . . , (ct, pkt, ekt)): We show how to evaluate a t-input circuit C. To this
end, we show how to homomorphically add and multiply two elements in {0, 1}. Given two
ciphertexts c1, c2, we assume that we also have a set of distinct public keys associated with
each ciphertext.9 We will denote these lists by K1,K2, respectively. The public-key set of a
fresh encryption is simply the set {pk} containing the public key under which it was encrypted.

Given two ciphertexts c1 and c2 with corresponding public-key sets K1 and K2, output the
ciphertext

cadd = c1 + c2 ∈ Rq

as an encryption of the sum of the underlying messages. Output the set Kadd = K1 ∪K2 as
its corresponding public-key set.

Given two ciphertexts c1 and c2 with corresponding public-key sets K1 and K2, compute
ciphertext c̃0 = c1 · c2 ∈ Rq, and let K1 ∩K2 = {pki1 , . . . , pkir}.

– If K1 ∩K2 = ∅, let cmult = c̃0.

– Otherwise, for j ∈ [r] and τ = {0, . . . , blog qc}, define c̃j−1,τ so that

c̃j−1 =
blog qc∑
τ=0

c̃j−1,τ2τ

is the binary representation of c̃j−1. Parse

ekij = (γij ,0, . . . , γij ,blog qc)

and let

c̃j =
blog qc∑
τ=0

c̃j−1,τγij ,τ

At the end of the iteration, let cmult = c̃r.

In either case, output cmult as an encryption of the product of the underlying messages, and
output the set Kmult = K1 ∪K2 as its corresponding public-key set.

We first show that the scheme works correctly as advertised:

Lemma 3.7. If q = 2nε
for ε ∈ (0, 1) and χ is a B-bounded distribution for B = poly(n), then

the (modified) NTRU encryption scheme described above is multikey homomorphic for N = O
(
nδ

)
keys and circuits of depth d < (ε− δ) log n− log log n−O(1).

9That is, we assume each set contains distinct public keys, but the intersection of any two sets might not be empty.
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Proof. The main step in the proof of correctness is to show that a homomorphic operation increases
the error from η to at most η2+(B ·poly(n))O(N). Putting this together with the fact that successful
decryption requires the error to be smaller than q/2 gives us the statement of the lemma.

We first compute how much the error in a ciphertext grows with a homomorphic multiplication.
Let c and c′ be ciphertexts that decrypt to m and m′, under two sets of secret keys K and K ′

respectively. Let fK (resp. fK′) denote the product
∏

i∈K fi (resp.
∏

i∈K′ fi). Then, we have:

fKc = 2e + m

fK′c′ = 2e′ + m′

where |2e + m| ≤ η and |2e′ + m′| ≤ η′. Letting cmult
.= cc′, we have

(fKfK′) · cmult = 2(2ee′ + em′ + e′m) + mm′ (1)

Thus, the error in the ciphertext cmult is at most ηη′, and it decrypts to the product of the two
messages mm′ as long as the error is not too large.

We now move to analyzing the additional error introduced by relinearization. Let K ∩ K ′ =
{i1, . . . , ir}. Then, the “joint decryption key” fKfK′ contains the term f2

i1
. . . f2

ir
. The goal of

relinearization is to convert cmult into a ciphertext that decrypts to the same message under the
secret key

fKfK′

( ∏
j∈K∩K′

fj

)−1

which replaces the term f2
i1

. . . f2
ir

with the term fi1 . . . fir .
Let F0

.= fKfK′ and let Fj
.= Fj−1 · (fij )

−1 for j = 1, . . . , r. Thus, Fr is a simple product of
the secret keys fi, without any quadratic terms.

We show that the ciphertext c̃j decrypts to the message mm′, and has error at most ηη′ + j ·
(8 log q(nB)2N+2). The base case (i.e., j = 0) follows from Equation 1 since c̃0 = cmult. In general,
we have:

Fj c̃j = (fijFj) · (fij )
−2 · (fij c̃j)

= Fj−1 · (fij )
−2 · (fij c̃j)

= Fj−1 · (fij )
−2 ·

( blog qc∑
τ=0

c̃j−1,τ (fijγij ,τ )
)

(2)

Now,
fijγij ,τ = 2(gijsij ,τ + fijeij ,τ ) + 2τf2

ij = 2Eτ + 2τf2
ij
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where |Eτ | ≤ 2nB2. Substituting back into Equation 2, we get

Fj c̃j = Fj−1 · (fij )
−2 ·

( blog qc∑
τ=0

c̃j−1,τ (fijγij ,τ )
)

= 2 ·
(

Fj−1f
−2
ij

blog qc∑
τ=0

c̃j−1,τEτ

)

+ Fj−1

blog qc∑
τ=0

c̃j−1,τ2τ

= 2 ·
(

Fj−1f
−2
ij

blog qc∑
τ=0

c̃j−1,τEτ

)
+ Fj−1c̃j−1

Since Fj−1c̃j−1 is exactly mm′ plus an even error (by the inductive assumption), this shows that
c̃j decrypts to mm′ as well, under the secret key Fj .

It remains to compute the error in the ciphertext c̃j . Since Fj−1f
−2
ij

is a product of at most 2N

small polynomials, it has `∞ norm at most (nB)2N , by Corollary 3.3. Thus, the error is at most

errorj ≤ 2 · n · (nB)2N · 2n(blog qc+ 1)B2 + errorj−1

≤ 8 log q · (nB)2N+2 + ηη′ + (j − 1) · 8 log q(nB)2N+2

≤ ηη′ + j · (8 log q(nB)2N+2)

Thus, the final error after a multiplication and relinearization is at most ηη′+8N log q ·(nB)2N+2 =
ηη′ + (B · n)O(N), as claimed, for the setting of q = 2nε

.
For a circuit of depth d and an initial error η0, the error grows to at most

(η0 ·B · n)2
d·O(N)

after homomorphic evaluation. This results in correct decryption as long as d < log log q −
(log log n + log N + O(1)). In particular, for N = O(nδ) keys and q = 2nε

, we get d < (ε −
δ) log n− log log n−O(1).

The main difference between the scheme in Section 3.2 and the one in this section in terms of
security is in the evaluation key ek. The evaluation key contains the elements

γτ
.= hsτ + 2eτ + 2τf

which can be thought of as “pseudo-encryptions” of multiples of the secret key f under the cor-
responding public key h. We point out that these are not true encryptions of the “message” 2τf
since 2τf is not a binary polynomial, whereas our scheme is only equipped to correctly encrypt
polynomials m ∈ Z2[x]/ 〈φ(x)〉.

The security of the scheme then relies on a “circular security” assumption which states that
semantic security of the scheme is maintained given the evaluation key as constructed above. We
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remark that this assumption can be avoided at the cost of obtaining a leveled homomorphic en-
cryption scheme (where the size of the evaluation key grows with the depth of the circuits that the
scheme supports).

In Section 4 we show how to convert this somewhat homomorphic scheme into a multi-key fully
homomorphic one. In the same section, we also discuss any additional assumptions we need to
make to maintain security.

4 From Somewhat to Fully Homomorphic Encryption

We use Gentry’s bootstrapping theorem [Gen09b, Gen09a] to convert a multikey somewhat homo-
morphic scheme into a multikey fully homomorphic one. Unfortunately, as we will see, we cannot
apply the bootstrapping theorem directly to the somewhat homomorphic encryption scheme from
Section 3. We therefore turn to modulus reduction, a technique introduced by [BV11a, BGV12], to
convert our somewhat homomorphic scheme into a bootstrappable scheme. We first describe the
bootstrapping theorem, and then present the modulus reduction technique and how we can apply
it in our case.

4.1 Bootstrapping

We remind the reader of the definition of a bootstrappable encryption scheme and present Gentry’s
bootstrapping theorem [Gen09b, Gen09a] that states that a bootstrappable scheme can be converted
into a fully homomorphic one. We modify the theorem and the corresponding definitions from their
original presentation to generalize it to the multikey setting. Taking N = 1 yields the theorem and
the definitions from [Gen09b, Gen09a].

Definition 4.1. (Bootstrappable Scheme) Let E = {E(N) = (Keygen,Enc,Dec,Eval)}N>0 be a
family of multikey C-homomorphic encryption schemes, and let fadd and fmult be the the augmented
decryption functions of the scheme defined as

f c1,c2
add (sk1, . . . , skN ) = Dec(sk1, . . . , skN , c1) XOR Dec(sk1, . . . , skN , c2)

and

f c1,c2
mult (sk1, . . . , skN ) = Dec(sk1, . . . , skN , c1) AND Dec(sk1, . . . , skN , c2)

Then E is bootstrappable if {
f c1,c2
add , f c1,c2

mult

}
c1,c2
⊆ C .

Namely, the scheme can homomorphically evaluate fadd and fmult.

We first define the notion of weak circular security, and then describe our generalization of
Gentry’s bootstrapping theorem.

Definition 4.2. (Weak Circular Security) A public key encryption scheme (Gen,Enc,Dec)
is weakly circular secure if it is IND-CPA secure even for an adversary with auxiliary information
containing encryptions of all secret key bits: {Enc(pk, sk[i])}i.

Namely, no polynomial time adversary can distinguish an encryption of 0 from an encryption of
1 even given the additional information. We now state a generalization of Gentry’s bootstrapping
theorem to the multi-key setting.

23



Theorem 4.1. (Multikey Bootstrapping Theorem) Let E be a bootstrappable family of mul-
tikey homomorphic schemes that is also weakly circular secure. Then there is a multikey fully
homomorphic family E ′ of encryption schemes.

The idea behind (multi-key) bootstrapping is that given a public evaluation key that consists
of encryptions of all bits of all secret keys, αj,i = Enc(pkj , skj [i]), we can evaluate circuits of any
depth by periodically “refreshing” the evaluated ciphertext c. Simply evaluate the decryption
circuit Dec(sk1, . . . , skN , c) homomorphically using the evaluation key {αj,i = Enc(pkj , skj [i])}. The
result is a ciphertext c∗ that encrypts the same plaintext as c and can again be decrypted using
sk1, . . . , skN , but has much smaller noise. Thus, after this refreshing step, we can continue evaluating
homomorphically for a few more levels before the noise grows again and we need to apply the
refreshing procedure once more.

Unfortunately, the somewhat homomorphic scheme that we described in Section 3 is not boot-
strappable. Recall that we can only evaluate circuits of depth less than ε log(n), where ε < 1. How-
ever, the shallowest implementation of the decryption circuit we are aware of has depth c log N ·log n
for some constant c > 1. We therefore turn to modulus reduction, which will allow us to convert
our somewhat homomorphic encryption scheme into a bootstrappable scheme.

4.2 Modulus Reduction

Modulus reduction [BV11a, BGV12] is a noise-management technique that provides an exponential
gain on the depth of the circuits that can be evaluated, while keeping the depth of the decryption
circuit unchanged. Informally, if ddec is the depth of the decryption circuit of the multikey scheme
described in Section 3.4, then we modify the scheme so that its decryption circuit is unchanged but
the scheme can now evaluate circuits of depth ddec. Hence, the new scheme can evaluate its own
decryption circuit, making it bootstrappable. Details follow.

We let [ · ]q denote the corresponding element in Rq (ie. reducing modulo φ(x) and q), as in
[BGV12]. Then, if (h, f) is a key pair and c is a ciphertext under public key h, [ fc ]q corresponds
to the “noise” in c. Recall that for decryption to be successful, we need [ fc ]q to be equal to fc
over the integers. However, each homomorphic operation increases this noise. Modulus reduction
allows us to keep the noise magnitude small by simply scaling the ciphertext after each operation.
The key idea is to exploit the difference in how the noise affects security and homomorphisms:

• The growth of noise upon homomorphic multiplication is governed by the magnitude of the
noise.

• Security is governed by the ratio between the magnitude of the noise and the modulus q.

This suggests a method of reducing the magnitude of the noise and the modulus by roughly the
same factor, thus preserving security while at the same time making homomorphic multiplications
“easier”.

In particular, modulus reduction gives us a way to transform a ciphertext c ∈ Rq into a different
ciphertext c′ ∈ Rp (where p is smaller than q) while preserving correctness: for “joint” secret key
f =

∏N
i=1 fi,

[ fc ]p = [ fc′ ]q (mod 2)

The transformation from c to c′ involves simply scaling by (p/q) and rounding appropriately.
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Lemma 4.2 ([BV11a, BGV12]). Let p and q be two odd moduli, and let c ∈ Rq. Define c′ to
be the polynomial in Rp closest to (p/q) · c such that c′ ≡ c (mod 2). Then, for any f with
‖[ fc ]q‖∞ < q/2− (q/p) · ‖f‖1, we have

[ fc′ ]p = [ fc ]q (mod 2) and∥∥[ fc′ ]p
∥∥
∞ < (p/q) · ‖[ fc ]q‖∞ + ‖f‖1

where ‖f‖∞ and ‖f‖1 are the `∞ and `1 norms of f , respectively.

Proof. Let fc (mod xn + 1) =
∑n−1

i=0 dix
i, and consider a coefficient di. We know that there exists

k ∈ Z such that:

di (mod q) = di − kq ∈
[
−q

2
+

q

p
‖f‖1 ,

q

2
− q

p
‖f‖1

]
,

so that
(p/q) · di − kp ∈

[
−p

2
+ ‖f‖1 ,

p

2
− ‖f‖1

]
Let fc′ (mod xn + 1) =

∑n−1
i=0 eix

i. Then −‖f‖1 ≤ (p/q) · ei − di ≤ ‖f‖1. Therefore,

ei − kp ∈
[
−p

2
,
p

2

]
and ei (mod p) = ei − kp

This proves the second part of the lemma. To prove the first part, notice that since p and q are
both odd, we know kp ≡ kq (mod 2). Moreover, we chose c′ such that c ≡ c′ (mod 2). We thus
have

ei − kp ≡ di − kq (mod 2)
(ei (mod p)) ≡ (di (mod q)) (mod 2)

[ fc′ ]p ≡ [ fc ]q (mod 2)

The beauty of Lemma 4.2 is that if we know the depth d of the circuit we want to evaluate (in
our case, d = ddec, the depth of the augmented decryption circuit), then we can construct a ladder
of decreasing moduli q0, . . . , qd and perform modulus reduction after each operation so that at level
i all ciphertexts reside in Rqi and the magnitude of the noise at each level is small. In particular,
this is true at level d so that once the evaluation is complete, it is possible to decrypt the resulting
ciphertext without decryption errors.

Bootstrappable Scheme. We change the scheme so that it uses modulus reduction during the
evaluation. Keygen will now sample a ladder of decreasing moduli q0, . . . qddec

. We will choose the
distribution χ in order to guarantee that any sample is B-bounded, where B � qddec

. The modified
scheme is as below.

• Keygen(1κ) : For every i ∈ {0, . . . , ddec}, sample g(i), u(i) ← χ and set f (i) := 2u(i) + 1 so that
f (i) ≡ 1 (mod 2). If f (i) is not invertible in Rqi , resample u(i). Let h(i) = 2g(i)(f (i))−1 ∈
Rqi−1 , and set

pk := h(0) ∈ Rq0 , sk := f (ddec) ∈ Rqddec
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For all i ∈ [ddec] and τ ∈ {0, . . . , blog qi−1c}, sample s
(i)
τ , e

(i)
τ ← χ and compute

γ(i)
τ := h(i)s(i)

τ + 2e(i)
τ + 2τf (i−1) ∈ Rqi−1

ζ(i)
τ := h(i)s(i)

τ + 2e(i)
τ + 2τ (f (i−1))2 ∈ Rqi−1

Set
ek := {γ(i)

τ , ζ(i)
τ }i∈[ddec],τ∈{0,...,blog qic}

• Enc(pk,m) : Sample s, e← χ. Output the ciphertext c := hs + 2e + m ∈ Rq0 .

• Dec(sk1, . . . , skN , c) : Assume w.l.o.g. that c ∈ Rqddec
. Parse ski = fi for i ∈ [N ]. Let

µ := f1 · · · fN · c ∈ Rqddec
. Output m′ := µ (mod 2).

• Eval(C, (c1, pk1, ek1), . . . , (ct, pkt, ekt)): We show how to evaluate a t-input circuit C. We
assume w.l.o.g. that the circuit C is leveled in that it is composed of alternating XOR and
AND levels.

We show how to homomorphically add and multiply two elements in {0, 1}. Given two
ciphertexts c1, c2, we assume that we also have a set of distinct public keys associated with
each ciphertext.10 We will denote these lists by K1,K2, respectively. The public-key set
of a fresh encryption is simply the set {pk} containing the public key under which it was
encrypted.

– Given two ciphertexts c1, c2 ∈ Rqi with corresponding public-key sets K1,K2, compute
c = c1 + c2 ∈ Rqi and let K1 ∪ K2 = {pkj1 , . . . , pkjr

}. For ` = 1, . . . , r and τ ∈
{0, . . . , blog qic}, define c̃`−1,τ so that

c̃`−1 =
blog qic∑

τ=0

c̃`−1,τ2τ

is the binary representation of c̃`−1. Parse

ekj`
= {γ(i)

j`,τ
, ζ

(i)
j`,τ
}i∈[ddec],τ∈{0,...,blog qic}

Let

c̃` :=
blog qic∑

τ=0

c̃`−1γ
(i)
j`,τ
∈ Rqi

Finally, reduce the modulus: let cadd be the integer vector closest to (qi+1/qi)·c̃r such that
cadd ≡ c̃r (mod 2). Output cadd ∈ Rqi+1 as an encryption of the sum of the underlying
messages. Output the set Kadd := K1 ∪K2 as its corresponding public-key set.

– Given two ciphertexts c1, c2 ∈ Rqi with corresponding public-key sets K1,K2, compute
ciphertext c̃0 = c1 · c2 ∈ Rqi , and let K1 ∪K2 = {pkj1 , . . . , pkjr

}. For ` = 1, . . . , r and
τ ∈ {0, . . . , blog qic}, define c̃`−1,τ so that

c̃`−1 =
blog qic∑

τ=0

c̃`−1,τ2τ

10That is, we assume each set contains distinct public keys, but the intersection of any two sets might not be empty.
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is the binary representation of c̃`−1. Parse

ekj`
= {γ(i)

j`,τ
, ζ

(i)
j`,τ
}i∈[ddec],τ∈{0,...,blog qic}

If pkj`
∈ K1 ∩K2, let

c̃` :=
blog qic∑

τ=0

c̃`−1ζ
(i+1)
j`,τ

∈ Rqi

Otherwise, let

c̃` :=
blog qic∑

τ=0

c̃`−1γ
(i+1)
j`,τ

∈ Rqi

Finally, reduce the modulus. Let cmult be the integer vector closest to (qi+1/qi) · c̃r such
that cmult ≡ c̃r (mod 2). Output cmult ∈ Rqi+1 as an encryption of the product of the
underlying messages, and output the set Kmult := K1∪K2 as its corresponding public-key
set.

We can now show the following lemma, whose proof is deferred to the full version.

Lemma 4.3. If q = 2nε
for ε ∈ (0, 1) and χ is a B-bounded distribution for B = poly(n), then

the (modified) NTRU encryption scheme described above is multikey homomorphic for N keys and
circuits of depth d as long as Nd = O (nε/ log n).

Multikey Fully Homomorphic Encryption. To turn this into a fully homomorphic encryption
scheme, we use the (multi-key) bootstrapping theorem (Theorem 4.1), but first, we show an upper
bound on the depth of the decryption circuit.

Lemma 4.4. The decryption circuit for the scheme above for N keys can be implemented as a
polynomial-size arithmetic circuit over GF (2) of depth O(log N(log log q + log n)).

Proof. The decryption circuit for a ciphertext encrypted under N keys can be written as

Decf1,...,fN
(c) = c ·

N∏
i=1

fi

Multiplying two polynomials over Rq can be done using a polynomial-size Boolean circuit of depth
O(log log q + log n) (see, e.g., [BV11a, Lemma 4.5] for a proof). Using a binary tree of polynomial
multiplications, the decryption operation above can then be done in depth O(log N(log log q +
log n)), as claimed.

This means that the modified scheme is bootstrappable, and therefore applying the bootstrap-
ping theorem gives us:

Theorem 4.5. For every N ∈ N, let B = poly(n), χ to be a B-bounded distribution, and q =
2Ω(N log N ·log2 n). Then, there exists a multikey fully homomorphic encryption scheme for N keys,
secure under the DSPRφ,q,χ and RLWEφ,q,χ assumptions.
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Proof. To apply Theorem 4.1, we require that the depth of the decryption circuit is smaller than
the depth of the circuits that the scheme can evaluate. That is,

log N · (log log q + log n) < C · log q

N · log n

for some universal constant C > 0, which holds for the parameter settings in the statement of the
theorem.

In particular, this scheme maintains security as long as q = 2n1−δ
for some δ > 0, thus supporting

as many as N = n1−δ/ logO(1) n users.

Finally, we remark that bootstrapping (and therefore assuming weak circular security) can be
avoided at the cost of obtaining a leveled homomorphic encryption scheme (where the size of the
evaluation key grows with the depth of the circuits that the scheme supports).
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A Multikey Properties of Other FHE Schemes

A.1 A Generic Construction

It turns out that any FHE scheme is inherently multikey for a constant number of parties, N = O(1).
This can be seen from the following construction.

Let E = (Keygen,Enc,Dec,Eval) be an FHE scheme with plaintext space {0, 1}, and ciphertext
space {0, 1}p(κ) for some polynomial p(·). For c ∈ {0, 1}∗, we overload notation and let Enc(pk, c)
denote the bit-wise encryption of c. Let c1 = Enc(pk1,m1), . . . , cN = Enc(pkN ,mN ) be a set of
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ciphertexts, each encrypting a bit message under a different key. From c1, . . . , cN , it is possible to
construct the following ciphetexts using Enc and Eval:

c′1 = Enc(pk1,Enc(pk2,Enc(. . . , Enc(pkN ,m1)) . . .))

c′2 = Enc(pk1,Enc(pk2,Enc(. . . , Enc(pkN ,m2)) . . .))

...

c′N = Enc(pk1,Enc(pk2,Enc(. . . , Enc(pkN ,mN )) . . .))

Using Eval once again, it is possible to obtain the ciphertext

c∗ = Enc(pk1,Enc(pk2,Enc(. . . , Enc(pkN , C(m1, . . . ,mN ))) . . .))

It is then possible to decrypt c∗ using sk1, . . . , skN . However, note that the size of c′i is p(κ)N .
This means that we must have N = O(1), and thus can only obtain this generic construction of
multikey FHE from (regular) FHE for a constant number of parties.

A.2 From Ring-LWE

The FHE scheme of Brakerski and Vaikuntanathan [BV11b] based on the Ring-LWE assumption
can be made multikey for N = O(log(κ)) parties by using relinearization and modulus reduction
[BV11a, BGV12]). Indeed, it is possible to show that in this new scheme, the size of the ciphertext
(as number of elements in Rq) increases to at most 2N when evaluating on ciphertexts encrypted
under at most N keys. Thus, it is able to handle a logarithmic number of parties, N = O(log(κ)).

B Impossibility of a 2-Round Protocol

In this section, we prove the impossibility of a 2-round on-the-fly MPC protocol. We show that if
such a protocol securely computes a function f , then a certain class of functions can be obfuscated.
This has a similiar flavor to a recent result of Van Dijk and Jules [vDJ10]. We review the definition
of obfuscation from [BGI+01].

Definition B.1. A probabilistic algorithm O is a (circuit) obfuscator if the following three condi-
tions hold:

Functionality: For every circuit C, the string O(C) describes a circuit that computes the same
function as C.

Polynomial Slowdown: There is a polynomial p such that for every circuit C, |O(C)| ≤ p(|C|).

“Virtual Black-Box” Property: For any PPT adversary A, there is a PPT simulator S such
that for all circuits C∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]

∣∣∣ ≤ negl(|C|)
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Barak et. al. [BGI+01] show that assuming one-way functions exist, there does not exist any
algorithm O satisfying Definition B.1, even if we do not require that O run in polynomial time .
Thus, we conclude that assuming one-way functions exist, a 2-round on-the-fly MPC protocol is
impossible.

We now show the connection between on-the-fly MPC and obfuscation. For ease of nota-
tion, w.l.o.g. assume that the N parties whose input will be used in the computation are parties
{1, . . . , N}. Such a protocol can be modeled by U + N + 1 (possibly randomized) algorithms:
In1, . . . , InU ,ComputeF,Out1, . . . ,OutN , where:

• (di, ci) ← Ini(xi): On input xi, the algorithm Ini outputs two elements, ci to be sent to the
server S and di to be kept by party Pi.

• (z1, . . . , zN )← ComputeF(c1, . . . , cN ) : On input c1, . . . , cN , which are the messages the server
received from parties P1, . . . , PN , ComputeF outputs N elements z1, . . . , zN . The server sends
back zi to party Pi.

• yi ← Outi(zi, di) : On input zi which was received from the server, and the auxiliary infor-
mation di output by Ini, Outi computes the output yi.

In what follows, we use the following notation. For a set T and a vector ~x = (x1, . . . , xn), we
let ~xT = (xi)i∈T .

Theorem B.1. Let f be an N -input function. If a 2-round on-the-fly MPC protocol Π = (In1, . . . , InU ,
ComputeF,Out1, . . . ,OutN ) securely computes f against a semi-honest adversary corrupting t < N
parties, then for any ~x ∈ ({0, 1}∗)N and any H ⊂ [N ] such that |H| = N − t, there exists an
obfuscator O~xH

for f~xH
, where f~xH

is the t-input function defined by f with fixed inputs xi for
i ∈ H, and restricted to outputs yj for j ∈ [N ]\H.

Proof of Theorem B.1: Fix ~x ∈ ({0, 1}∗)N and H ⊂ [N ] such that |H| = N − t. Consider an
execution of Π where ~x is the input vector. We can build an obfuscator O~xH

for f~xH
as follows:

compute (di, ci)← Ini(xi) for i ∈ H and sample random coins rS , {ri, si}i∈[N ]\H . O~xH
outputs the

circuit that on input ~xC :

• For j ∈ C, computes (cj , dj) := Inj(xj ; rj).

• Computes (z1, . . . , zN ) := ComputeF(c1, . . . , cN ; rS)

• For j ∈ C, computes yj := Outj(zj ; sj).

• Outputs (yj)j∈C .

Notice that O~xH
can be considered as a semi-honest adversary AΠ attacking Π by corrupting

the server S and the parties in C = [N ]\H (ie. the parties in H are honest). For the sake of
simplicity, assume AΠ outputs its entire view. Then by the security of Π, we know that the output
of AΠ is computationally indistinguishable from the output of an adversary SΠ corrupting the same
parties in the ideal model. More formally, for all ~x and any predicate D, we have

|Pr[D(REALΠ,A(~x)) = 1]− Pr[D(IDEALf,SΠ(~x)) = 1]| = negl(κ)
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In our case, REALΠ,A(~x) = (~xC ,O~xH
(~xC)) and IDEALf,SΠ(~x) = S(~xC , ~yC), so we have:

|Pr[D(~xC ,O~xH
(~xC)) = 1]− Pr[D(S(~xC , ~yC)) = 1]| = negl(κ) (3)

Because this holds for all ~x (and in particular for all ~xC), then (3) holds even if D is allowed
to chose ~xC . Now consider an adversary AO attacking the obfuscation of f~xH

(·). Then we can
substitute D in (3) with AO, and because AO can only run O~xH

(·) on a polynomial number of
inputs, then by a hybrid argument we have that for all AO there exists SO (namely AO(S(·)) such
that:

|Pr[AO(O~xH
(·)) = 1]− Pr[Sf~xH

(·)
O (1κ) = 1]| = negl(κ)

C Simulation Extractability

For completeness, we include the definition of simulation-extractability [Gro06].

Definition C.1 (Simulation Extractability [Gro06]). Let Π = (Setup,Prove,Verify) be a proof
system for a relation R, satisfying the completeness, soundness and zero-knowledge properties. We
say that Π is simulation-extractable if:
• Setup also outputs an extraction key xk.

• There exists a PPT algorithm Ext(y, ϕ, xk) such that for all P ∗ we have the probability that
P ∗ wins in the following game in negligible in κ:

1. Key Generation: The challenger runs (pp, xk)← Setup(1κ) and gives pp to P ∗.

2. Simulation queries: P ∗S(·) is given access to the simulation oracle S(·), which it can
adaptively access.

3. Adversary Output: P ∗ outputs a tuple (y∗, ϕ∗).

4. Extraction: The challenger runs x∗ ← Ext(y∗, ϕ∗, ek).

5. P ∗ wins if (a) y∗ was not part of a simulator query, (b) Verify(y∗, ϕ∗) = 1, and
(c) R(y, x∗) = 0.

Katz and Vaikuntanathan [KV09] implicitly construct simulation-extractable proofs for all of
NP from CPA encryption and simulation-sound proofs [Sah99]. See [DHLW10] for a more detailed
exposition.

D Proofs

D.1 Security against Semi-Honest Adversaries

Proof of Theorem 2.1: We prove that the protocol is correct and secure, and that it satisfies the
performance requirements of an on-the-fly protocol.

Correctness: Correctness follows directly from the correctness properties of homomorphic evalu-
ation and the decryption MPC protocol.

35



Performance: By compactness of evaluation, we know that c is independent of |C|. This means
that the communication complexity and the computation time of the parties is independent
of |C|.

Security: Recall that for security, we only need to consider adversaries corrupting a subset T of
the parties P1, . . . , PN involved in the computation. We let T = [N ]\T . For a semi-honest
adversary Ash corrupting t < N parties, we construct a simulator Ssh corrupting the same
parties in the ideal world. We show the case when the server S is corrupted (the other case
is analogous).

Simulator Ssh : Runs Ash on input {xi}i∈T .
Step 1: For non-computing parties i ∈ {N +1, . . . , U} and for honest parties i ∈ T , Ssh

computes (pki, ·, eki) ← Keygen(1κ) honestly and computes ci ← Enc(pki, 0). For
each party Pi, Ssh sends (ci, pki, eki) to Ash on behalf of Pi.

Step 2: Receive c∗ from Ash.
Step 3: Gives {xi}i∈T to the ideal functionality and receives y = f(x1, . . . , xN ). Runs

the simulator Ssh
Πdec

(interacting with Ash) on input y.
Ssh outputs whatever Ash outputs.

We prove that IDEALF ,Ssh(~x)
c
≈ REALΠsh,Ash(~x). Since Ash is semi-honest, correctness guar-

antees that the outputs of the honest parties does not change. Furthermore, we prove that
the view created by Ssh for Ash is indistinguishable from the view of Ash in a real world ex-
ecution, and thus its output is indistinguishable in both cases. We prove this using a hybrid
argument.

Hybrid 0: This is the view of Ash in a real-world execution. We have:

{(pki, ·, eki)← Keygen(1κ)}i∈T , {ci ← Enc(pki, xi)}i∈T , ViewΠdec(Ash)

Hybrid 1: We change how Step 3 is performed. Instead of executing Πdec, we run the
simulator Ssh

Πdec
(interacting with Ash) on input y = f(x1, . . . , xN ). We now have:

{(pki, ·, eki)← Keygen(1κ)}i∈T , {ci ← Enc(pki, xi)}i∈T , ViewSsh
Πdec

(y)(Ash)

We claim that the view of Ash in Hybrid 0 is computationally indistinguishable from its
view in Hybrid 1 by the security of Πdec. Suppose, for the sake of contradiction, that
there exists an algorithm D that distinguishes between hybrids 0 and 1. We construct
an adversary B that breaks the security of Πdec. The adversary B works as follows:
1. For all i ∈ T , sample (pki, ·, eki) ← Keygen(1κ) and compute ci ← Enc(pki, xi)

honestly. For all i ∈ T , give (pki, eki, ci) to Ash on behalf of Pi for all i ∈ T . Receive
c∗ from Ash.

2. Receive the challenge view View∗(Ash), and send the entire view of Ash to D.
3. Output the bit output by D.

When View∗(Ash) = ViewΠdec(Ash), B perfectly emulates Hybrid 0, whereas if View∗(Ash) =
ViewSsh

Πdec
(y)(Ash), B perfectly emulates Hybrid 1. Therefore, if D can distinguish be-

tween Hybrids 0 and 1, then B can distinguish between ViewΠdec(Ash) and ViewSsh
Πdec

(y)(Ash),
contradicting the security of Πdec.
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Hybrids 2.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 2.k we change cik so
that instead of encrypting xik it now encrypts 0. More formally, in Hybrid 2.k we have
cij = Enc(pkij , 0) for j ≤ k and cij = Enc(pkij , xij ) for j > k.

{(pki, ·, eki)← Keygen(1κ)}i∈T , ViewSsh
Πdec

(y)(Ash)

{cij ← Enc(pkij , 0)}j≤k , {cij ← Enc(pkij , xij )}j>k

For ease of notation we let Hybrid 1 be Hybrid 2.0. We claim that the view of Ash in
Hybrid 2.k is indistinguishable from its view in Hybrid 2.(k−1) by the semantic security
of E under public key pkik

. Suppose, for the sake of contradiction, that there exists an
algorithm D that distinguishes between hybrids 2.k and 2.(k − 1). We construct an
adversary B that breaks the semantic security of E under public key pkik

. The adversary
B works as follows:

1. Receive (pk, ek) from the semantic security challenger and set pkik
= pk and ekik =

ek. Give m0 = 0 and m1 = xik to the challenger and receive c = Enc(pk,mb). Set
cik = c. For all i ∈ T , i 6= ik, compute (pki, ·, eki)← Keygen(1κ) honestly. For j < k,
compute cij ← Enc(pkij , 0) and for j > k, compute cij ← Enc(pkij , xij ). For all
i ∈ T give (pki, eki, ci) to Ash on behalf of Pi. Receive c∗ from Ash.

2. Obtain y from the ideal functionality, run the simulator Ssh
Πdec

(y)(Ash). Give D the
resulting view.

3. Output the bit output by D.

When b = 0, B perfectly emulates Hybrid 2.k, whereas if b = 1, B perfectly emulates
Hybrid 2.(k−1). Therefore, if D can distinguish between Hybrids 2.k and 2.(k−1), then
B can distinguish between an encryption of m0 and an encryption of m1, contradicting
the semantic security of E .

We have proved that the view of Ash in Hybrid 0 is computationally indistinguishable from
the view of Ash in Hybrid 2.(N − t). But notice that the view of Ash in Hybrid 2.(N − t) is
precisely the simulated view created by Ssh. We conclude that the view created by Ssh for
Ash is indistinguishable from the view of Ash in a real world execution, as desired.

D.2 Security against Malicious Adversaries

Proof of Theorem 2.2: We prove that the protocol is correct and secure, and that it satisfies the
performance requirements of an on-the-fly protocol.

Correctness: Correctness follows directly from the correctness properties of homomorphic evalu-
ation and the decryption MPC protocol.

Performance: By compactness of evaluation, we know that c∗ is independent of |C|. Also, all
zero-knowledge proofs are independent of C. Furthermore, we know that the proof ϕ has
size polylogarithmic in |C|. Furthermore, the complexity of ϕ and the time needed to verify
depend only polylogarithmically on the total size of the ciphertexts ci. This means they also
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only depend polylogarithmically on the total size of the inputs xi. Thus, the computation
time and communication complexity party Pi is at most polylogarithmic in |C| and the total
size of inputs, and polynomial in y and its input xi.

Security: Recall that for security, we only need to consider adversaries corrupting a subset T of
the parties P1, . . . , PN involved in the computation. We let T = [N ]\T . For a malicious
adversary Amal corrupting t < N parties, we construct a simulator Smal corrupting the same
parties in the ideal world. We show the case when the server S is corrupted (the other case
is analogous).

Simulator Smal : Runs Amal on input {xi}i∈T .

Step 1: For non-computing parties i ∈ {N + 1, . . . , U} and for honest parties i ∈
T , Smal computes (pki, ·, eki) ← Keygen(1κ) and samples hki honestly. It com-
putes ci ← Enc(pki, 0) and simulated proofs πgen

i and πenc
i using the ZK sim-

ulator. It also computes di = Hhki
(ci, π

enc
i ). For each party Pi, Smal sends

(pki, eki, ci, hki, di, π
gen
i , πenc

i ) toAmal on behalf of Pi. Receives (c∗, ϕ), {(pki, eki, hki,
di, π

gen
i )}i∈[N ] from Amal.

Step 2: Receive (c∗, ϕ) from Amal, together with {(pki, eki, hki, di, π
gen
i )}i∈[N ]. Verify

ϕ and {πgen
i )}i∈[T ] and use the extractor to extract witness {c̃i, π̃

enc
i }i∈T from ϕ.

Use the extractor to extract witness x̃i from π̃enc
i for all i ∈ T .

Step 3: Gives {x̃i}i∈T to the ideal functionality and receives ỹ = f(x̃1, . . . , x̃N ), where
x̃j = xj for honest parties j ∈ T . Runs the simulator Smal

Πdec
(interacting with Amal)

on input ỹ.

Smal outputs whatever Amal outputs.

We prove that IDEALF ,Smal(~x)
c
≈ REALΠmal,Amal(~x). We prove that the view created by Smal

for Amal is indistinguishable from the view of Amal in a real world execution, and thus its output
is indistinguishable in both cases. We prove this using a hybrid argument. We give a sketch of each
hybrid.

Hybrid 0: This is the view of Amal in a real-world execution. We have:

{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen
i ← Provegen(· · · )}i∈T

{ci ← Enc(pki, xi)}i∈T , {πenc
i ← Proveenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewΠdec(Amal)

Hybrid 1: We change how we compute the proofs πgen
i ; instead of computing real proofs, we use

the ZK simulator.

{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen
i ← Simgen(· · · )}i∈T

{ci ← Enc(pki, xi)}i∈T , {πenc
i ← Proveenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewΠdec(Amal)

We claim that the view of Amal in Hybrid 1 is computationally indistinguishable from its
view in Hybrid 0 by the (adaptive unbounded) zero-knowledge property of the proof system
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for relation Rgen. Suppose, for the sake of contradiction, that there exists an algorithm
D that distinguishes between hybrids 0 and 1. We construct an adversary B that breaks
zero-knowledge. The adversary B works as follows:

1. For all i ∈ T , sample (pki, ·, eki) ← Keygen(1κ) and hki honestly, and compute ci ←
Enc(pki, xi) and πenc

i ← Proveenc(· · · ). Obtain πgen
i from a query to the ZK challenger.

For all i ∈ T , compute di = Hhki
(ci, π

enc
i ) and give (pki, eki, ci, hki, di, π

gen
i , πenc

i ) to
Amal on behalf of Pi. Receive (c∗, ϕ), {(pki, eki, hki, di, π

gen
i )}i∈[N ] from Amal.

2. Verify ϕ and {πgen
i }i∈T and run the protocol Πdec(c∗) (interacting with Amal). Give D

the resulting view.

3. Output the bit output by D.

When πgen
i ← Provegen(· · · ) for all i ∈ T , B perfectly emulates Hybrid 0, whereas if πgen

i ←
Simgen(· · · ) for all i ∈ T , B perfectly emulates Hybrid 1. Therefore, if D can distinguish
between Hybrids 0 and 1, then B can distinguish between real proofs and simulated proofs,
contradicting the (adaptive unbounded) zero-knowledge property of the proof system for
relation Rgen.

Hybrids 2: We change how we compute the proofs πenc
i . Instead of computing real proofs, we

use the ZK simulator.

{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen
i ← Simgen(· · · )}i∈T

{ci ← Enc(pki, xi)}i∈T , {πenc
i ← Simenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewΠdec(Amal)

We claim that the view of Amal in Hybrid 2 is computationally indistinguishable from its
view in Hybrid 1 by the (adaptive unbounded) zero-knowledge property of the proof system
for relation Renc. Suppose, for the sake of contradiction, that there exists an algorithm
D that distinguishes between hybrids 1 and 2. We construct an adversary B that breaks
zero-knowledge. The adversary B works as follows:

1. For all i ∈ T , sample (pki, ·, eki) ← Keygen(1κ) and hki honestly, and compute ci ←
Enc(pki, xi) and πgen

i ← Simenc(· · · ). Obtain πenc
i from a query to the ZK challenger.

For all i ∈ T , compute di = Hhki
(ci, π

enc
i ) and give (pki, eki, ci, hki, di, π

gen
i , πenc

i ) to
Amal on behalf of Pi. Receive (c∗, ϕ), {(pki, eki, hki, di, π

gen
i )}i∈[N ] from Amal.

2. Verify ϕ and {πgen
i }i∈T and run the protocol Πdec(c∗) (interacting with Amal). Give D

the resulting view.

3. Output the bit output by D.

When πenc
i ← Proveenc(· · · ) for all i ∈ T , B perfectly emulates Hybrid 0, whereas if πenc

i ←
Simenc(· · · ) for all i ∈ T , B perfectly emulates Hybrid 1. Therefore, if D can distinguish
between Hybrids 0 and 1, then B can distinguish between real proofs and simulated proofs,
contradicting the (adaptive unbounded) zero-knowledge property of the proof system for
relation Renc.
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Hybrid 3: Hybrid 3 is the same as hybrid 2 except that we use the extractor for ϕ to extract
{(c̃i, π̃

enc
i )}i∈[N ] ← Ext(ϕ) and compute c̃ := Eval(C, (c̃1, pk1, ek1), . . . , (c̃N , pkN , ekN )). The

simulator outputs ⊥ if verification fails for any π̃enc
i , if di 6= Hhki

(c̃i, π̃
enc
i ), or if c 6= c∗, where

c∗ is the evaluated ciphertext provided by Amal . By the proof of knowledge property of ϕ,
we know that this event happens with negligible probability. The simulator also outputs ⊥
if c̃i 6= ci for any i ∈ T . By the collision-resistance property of Hhki

(·) (since we sampled hki

correctly for i ∈ T ), we know this happens with only negligible probability. Thus, hybrids 2
and 3 are statistically close.

Hybrid 4: Hybrid 4 is the same as hybrid 3 except that in addition, we extract {s̃ki ← Extgen(πgen
i )}i∈T ,

and run ỹ := Dec(s̃k1, . . . , s̃kN , c∗), where s̃ki = ski for i ∈ T . If ỹ 6= y∗, where y∗ is the output
of the protocol Πdec(c∗), then the simulator outputs ⊥. By correctness of decryption and of
the protocol Πdec, we know that as long as (pki, s̃ki, eki) is in the support of Keygen for all
i, this event happens with negligible probability. This is indeed true for i ∈ T since we sam-
ple the key tuple honestly in that case. Furthermore, by the simulation-extractability of the
proof system for relation Rgen, we know that except with negligible probability, (pki, s̃ki, eki)
is indeed in the support of Keygen for i ∈ T . Thus, by a union bound over all i ∈ T , we
know that all of (pki, s̃ki, eki) are in the support of Keygen, except with negligible probability.
Thus, hybrids 3 and 4 are statistically close.

Hybrid 5: Instead of running the protocol Πdec and outputting ViewΠdec(Amal), we run the sim-
ulator Smal

dec and ouput ViewSmal
dec (ey)(Amal), where ỹ := Dec(s̃k1, . . . , s̃kN , c∗).

{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen
i ← Simgen(· · · )}i∈T

{ci ← Enc(pki, xi)}i∈T , {πenc
i ← Simenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewSmal

dec (ey)(Amal)

where
{(c̃i, π̃

enc
i )}i∈[N ] ← Ext(ϕ) , {s̃ki ← Extgen(πgen

i )}i∈T

ỹ := Dec(s̃k1, . . . , s̃kN , c∗) where s̃kj = skj for j ∈ T

We claim that the view of Amal in Hybrid 4 is computationally indistinguishable from its
view in Hybrid 5 by the security of the protocol Πdec. Suppose, for the sake of contradiction,
that there exists an algorithm D that distinguishes between hybrids 4 and 5. We construct
an adversary B that breaks the security of Πdec. The adversary B works as follows:

1. For all i ∈ T , sample (pki, ·, eki) ← Keygen(1κ) and hki honestly, and compute ci ←
Enc(pki, xi), πgen

i ← Simenc(· · · ), and πenc
i ← Simenc(· · · ). Compute di = Hhki

(ci, π
enc
i )

and give (pki, eki, ci, hki, di, π
gen
i , πenc

i ) toAmal on behalf of Pi. Receive (c∗, ϕ), {(pki, eki,
hki, di, π

gen
i )}i∈[N ] from Amal.

2. Verify ϕ and {πgen
i }i∈T . Receive the challenge view View∗(Amal), which is either

ViewΠdec(Amal) or ViewSmal
dec (y∗)(Amal), and send the entire view of Ash to D.

3. Output the bit output by D.
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Recall that unless the simulator outputs ⊥, we are guaranteed that ỹ = y∗, where y∗ is the
output of the protocol Πdec(c∗). Thus, when View∗(Amal) = ViewΠdec(Amal), B perfectly
emulates Hybrid 4, whereas if View∗(Amal) = ViewSmal

dec (ey)(Amal), B perfectly emulates Hybrid
5. Therefore, if D can distinguish between Hybrids 4 and 5, then B can distinguish between a
real execution of Πdec and a simulated view, contradicting the security of the protocol Πdec.

Hybrid 6: Instead of computing ỹ := Dec(s̃k1, . . . , s̃kN , c∗), we decrypt x̃i := Dec(s̃ki, c̃i) and
obtain ỹ = f(x̃1, . . . , x̃N ), where x̃j = xj for j ∈ T .

{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen
i ← Simgen(· · · )}i∈T

{ci ← Enc(pki, xi)}i∈T , {πenc
i ← Simenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewSmal

dec (ey)(Amal)

where

{(c̃i, π̃
enc
i )}i∈[N ] ← Ext(ϕ) , {s̃ki ← Extgen(πgen

i )}i∈T , {x̃i := Dec(s̃ki, c̃i)}i∈T

ỹ = f(x̃1, . . . , x̃N ) where x̃j = xj for j ∈ T

This is purely a syntactical change, since by correctness of the encryption scheme E , we are
guaranteed that ỹ is the same in both hybrids. Thus, hybrids 5 and 6 are identical.

Hybrid 7: We change how we extract x̃i. Instead of decrypting c̃i with s̃ki, we extract x̃i from
π̃enc

i .
{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen

i ← Simgen(· · · )}i∈T

{ci ← Enc(pki, xi)}i∈T , {πenc
i ← Simenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewSmal

dec (ey)(Amal)

where
{(c̃i, π̃

enc
i )}i∈[N ] ← Ext(ϕ) , {x̃ij ← Ext(π̃enc

ij )}i∈T

ỹ = f(x̃1, . . . , x̃N ) where x̃j = xj for j ∈ T

We claim that the view of Amal in Hybrid 6 is computationally indistinguishable from its view
in Hybrid 7 by the simulation-extractability of the proof system for relation Renc. Suppose,
for the sake of contradiction, that there exists an algorithm D that distinguishes between
hybrids 6 and 7. We construct an adversary B that breaks simulation-extractability. The
adversary B works as follows:

1. For all i ∈ T , sample (pki, ·, eki) ← Keygen(1κ), compute ci ← Enc(pki, xi), πgen
i ←

Simgen(· · · ), and obtain πenc
i ← Simenc(· · · ) from a query to the simulation-extractability

challenger. Sample hki honestly, compute di = Hhki
(ci, π

enc
i ), and give (pki, eki, ci, hki,

di, π
gen
i , πenc

i ) to Amal on behalf of Pi. Receive (c∗, ϕ), {(pki, eki, hki, di, π
gen
i )}i∈[N ] from

Amal.

2. Verify ϕ and {πgen
i }i∈T and run {(c̃i, π̃

enc
i )}i∈[N ] ← Ext(ϕ). Sample b← {0, 1}. If b = 0,

then for i ∈ T , run the extractor s̃ki ← Extgen(πgen
i ) and decrypt x̃i := Dec(s̃ki, c̃i). If

b = 1, run the extractor x̃i ← Ext(π̃enc
i ). Run the simulator Smal

dec on input ỹ (interacting
with Amal), where ỹ = f(x̃1, . . . , x̃N ) and x̃j = xj for j ∈ T . Give D the resulting view.
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3. If D outputs b′ = b, then guess a random i∗ ∈ T and output ((pki∗ , ci∗), π̃enc
i∗ ).

Let z(k) denote the variable z in hybrid k. If D distinguishes between hybrids 6 and 7 then we
must have that ỹ(6) 6= ỹ(7), since the views are identical up to the point where ỹ is computed.
Thus, there exists i∗ ∈ T such that x̃

(6)
i∗ 6= x̃

(7)
i∗ . Furthermore, we are guaranteed that if D

distinguishes between hybrids 6 and 7, π̃enc
i is a valid proof for every i ∈ T (since otherwise,

the simulator outputs ⊥ in both hybrids). Thus, π̃enc
i∗ is a valid proof but the extractor fails

to extract a valid witness (the only valid witness is x̃
(6)
i∗ and we know that x̃

(6)
i∗ 6= x̃

(7)
i∗ ), and

B will guess this index i∗ with probability 1/t. Therefore, if D distinguishes hybrids 6 and
7 with non-negligible probability ε, then B breaks the simulation-extractability of the proof
system for Renc with probability ε/t, which is also non-negligible.

Hybrids 8.k for k = 1, . . . , N − t: Let T = {i1, . . . , iN−t}. In Hybrid 8.k we change cik so that
instead of encrypting xik it now encrypts 0. More formally, in Hybrid 8.k we have cij =
Enc(pkij , 0) for j ≤ k and cij = Enc(pkij , xij ) for j > k.

{(pki, ·, eki)← Keygen(1κ)}i∈T , {πgen
i ← Simgen(· · · )}i∈T

{cij ← Enc(pkij , 0)}j≤k , {cij ← Enc(pkij , xij )}j>k , {πenc
i ← Simenc(· · · )}i∈T

{di = Hhki
(ci, π

enc
i )}i∈T , ViewSmal

dec (ey)(Amal)

where
{(c̃i, π̃

enc
i )}i∈[N ] ← Ext(ϕ) , {x̃i ← Ext(π̃enc

i )}i∈T

ỹ = f(x̃1, . . . , x̃N ) where x̃j = xj for j ∈ T

For ease of notation we let Hybrid 7.(N − t) be Hybrid 6.0. We claim that the view of
Amal in Hybrid 8.k is computationally indistinguishable from its view in Hybrid 8.(k − 1)
by the semantic security of E under public key pkij . Suppose, for the sake of contradiction,
that there exists an algorithm D that distinguishes between hybrids 8.k and 8.(k − 1). We
construct an adversary B that breaks the semantic security of E . The adversary B works as
follows:

1. Receive (pk, ek) from the semantic security challenger and set pkik
= pk and ekik =

ek. Give m0 = 0 and m1 = xik to the challenger and receive c = Enc(pk,mb). Set
cik = c. For all i ∈ T , i 6= ik, sample (pki, ·, eki) ← Keygen(1κ) honestly. For j < k,
compute cij ← Enc(pkij , 0) and for j > k, compute cij ← Enc(pkij , xij ). For all i ∈
T , sample hki honestly, compute πgen

i ← Simgen(· · · ), πenc
i ← Simenc(· · · ) and di =

Hhki
(ci, π

enc
i ), and give (pki, eki, ci, hki, di, π

gen
i , πenc

i ) to Ash on behalf of Pi. Receive
(c∗, ϕ), {(pki, eki, hki, di, π

gen
i )}i∈[N ] from Ash.

2. Verify ϕ and {πgen
i }i∈T . Obtain y from the ideal functionality, run the simulator

Ssh
Πdec

(y)(Ash) and output the view ViewSsh
Πdec

(y)(Ash).

When b = 0, B perfectly emulates Hybrid 8.k, whereas if b = 1, B perfectly emulates Hybrid
8.(k − 1). Therefore, if D can distinguish between Hybrids 8.k and 8.(k − 1), then B can
distinguish between an encryption of m0 and an encryption of m1, contradicting the semantic
security of E .
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We have proved that the view of Amal in Hybrid 0 is computationally indistinguishable from
the view of Amal in Hybrid 8.(N − t). But notice that the view of Amal in Hybrid 8.(N − t) is
precisely the simulated view created by Smal. We conclude that the view created by Smal for Amal

is indistinguishable from the view of Amal in a real world execution, as desired.
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