
A new index calculus algorithm
with complexity L(1/4 + o(1)) in very small

characteristic
(Draft)

Antoine Joux

CryptoExperts and
Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM,

45 avenue des États-Unis, F-78035 Versailles Cedex, France
antoine.joux@m4x.org

Abstract. In this paper, we describe a new algorithm for discrete logarithms
in small characteristic. It works especially well when the characteristic is fixed.
Indeed, in this case, we obtain a total complexity of L(1/4 + o(1)).

1 Introduction

The discrete logarithm problem is one of the major hard problems used in cryptography.
In this paper, we show that in small characteristic, it can be solved with a smaller
heuristic complexity than previously believed.

In the course of writing this paper, that in particular explains the computation
announced in [4], we discovered that another team has been working on similar ideas [1]
and used them to compute discrete logarithms [2] in F21971 .

An important distinction between the two works is their range of applicability. The
authors of [1] consider extensions of the form Fqn with

n =
1

α
·
(

logQ

log logQ

)2/3

, q = exp

(
α · 3

√
logQ · log2 logQ

)
,

where Q = qn.
In this paper, we look at extensions Fq2k , where q ≈ k, i.e., we consider much smaller

base fields.
In the present competitive context, timeliness is preferable to completeness. We have

thus chosen to publish this preprint in a draft form that includes neither a complete
analysis of our results, nor a large number of examples. We apologize to the reader for
any inconvenience.

1.1 Refresher on function field sieve algorithms

When considering the computation of discrete logarithm in fields of the form Fqn , where q
is relatively small compared to qn, the state of the art choice is to use one of the numerous
variation of the function field sieve. For larger values of q, it becomes preferable to use
a variation of the number field sieve. The choice between the two algorithms is made by
comparing q and Lqn(1

3).
Both the function field sieve and the number field sieve algorithm are index calculus

algorithms and can be decomposed in three main phases. After a preliminary step that
chooses the representation of the field to be addressed and a smoothness basis, they first
run a relation collection phase which produces many multiplicative relations between

2 Antoine Joux

elements of the smoothness basis. The second phase solves the linear system derived
from the coefficient of the multiplicative relations and produces a vector of consistent
logarithms for all elements in the smoothness basis. The final phase receives as input
an arbitrary elememt of the finite field and expresses it as a product of (powers of)
elements of the smoothness basis. This allows us to compute the discrete logarithm of
this element.

Despite this common structure, index calculus algorithms may greatly differ in the
way they produce their multiplicative relations. Since in this paper, we only consider
small values of q, let us consider the production of relations in function field sieve
algorithms. Essentially, relations are produced by considering an finite field element
which can be represented in two distinct ways by an element of a function field above
Fq (or simply of a ring of polynomials). When both representations can be factored into
elements of the smoothness basis, this leads to a multiplicative relation.

To test whether a function field element can be factored, one takes its norm, which
is a polynomial with coefficient in Fq, and tests whether it can be factored into a prod-
uct of low-degree polynomials. As the consequence, the keystone of function field sieve
algorithms is our understanding of the factorization of two related polynomials into
low-degree factors. In general, we don’t know much about this. However, practical ex-
periments gave good indication that even related polynomial often behaves as random
polynomial in this respect. In fact, current function sieve algorithm rely on this as an
essential heuristic assumption. A notable exception is the algorithm described in [1],
which independently considered a similar approach.

The first deviation from the classical smoothness approach appeared in [3]. This
paper remarked that, using a linear change of variable, a single polynomial with good
factorization is amplified into many. Thanks to specific choice of parameters, this can be
done while keeping the ability to find a second representation of the same elements. Of
course, it remains essential that this second representation also has a good probability
of factoring into low-degree polynomials.

Another alternative is also proposed in [3]: taking two distinct representations with
a low-degree factorization and uses a linear change on each of them to coerce them
into two distinct representations of a common element. However, the construction of the
initial polynomials still involves a random search for a polynomial that nicely factors.

1.2 Notations

As usual when studying index calculus algorithms, we write:

LQ(β, c) = exp((c+ o(1))(logQ)β(log logQ)1−β).

As classical useful result is the logarithm of the probability that a random polyno-
mial of degree n decomposes into factors of degree m over a finite field is close to:

− n
m

log
(n
m

)
,

for a wide range of parameters [6].

In index calculus algorithm, a standard heuristic assumption is to assume that all
polynomials that arise in the algorithm also follow this smoothness probability. In our
algorithm, this is false by construction, because we consider polynomials than decompose
more frequently than usual. However, we still use the heuristic assumption on some
polynomials, for which we have no known reason to say that they deviate from the
normal behavior.

A new index calculus algorithm in small characteristic 3

1.3 Recalling the algorithm from [5]

The medium prime discrete logarithms proposed in [5] works as follows. In order to
compute discrete logarithms in Fqn , a degree n extension of the base field Fq, it starts
by defining the extension field implicitly from two bivariate polynomials in X and Y :

f1(X,Y) = X − g1(Y), f2(X,Y) = −g2(X) + Y,

where g1 and g2 are univariate polynomials of degree d1 and d2. In order to define the
expected extension, this requires that the polynomial −g2(g1(Y))+Y has an irreducible
factor F (Y) of degree n over Fq. As explained in [5], it is easy to find polynomials g1
and g2 that satisfy this requirement.

The relative degrees of d1 and d2 in this case are controlled by an extra parameter
D, whose choice is determined by the size of q compared to qn. More precisely, we have
d1 ≈

√
Dn and d2 ≈

√
n/D.

Starting from this definition of the finite field, the medium prime field algorithms
consider objects of the form A(Y)X+B(Y), where A and B are univariate polynomials
of degree D and A is unitary. Substituting g1(Y) for X on one side and g2(X) for Y on
the other, we obtain an equation:

A(Y) g1(Y) + B(Y) = A(g2(X))X + B(g2(X)).

This relates a polynomial of degree d1 +D in Y and a polynomial of degree Dd2 + 1 in
X.

To use the equations as index calculus relations, the algorithm of [5] selects the set
of all unitary polynomials of degree at most D in X or Y , with coefficients in Fq as its
smoothness basis and keeps pairs of polynomials (a, b) such that the two polynomials
a(Y) g1(Y) + b(Y) and a(g2(X))X + b(g2(X)) both factor into terms of degree at most
D. These good pairs are found using a classical sieving approach.

Writing Q = qn, to analyze the complexity of the medium prime discrete logarithms,
[5] chooses to write q = LQ(1

3 , αD), where as usual:

LQ(β, c) = exp((c+ o(1))(logQ)β(log logQ)1−β).

In this setting, the (heuristic) asymptotic complexity of the sieving phase is LQ(1
3 , c1)

and the complexity of the linear algebra is LQ(1
3 , c2), with:

c1 =
2

3
√
αD

+ αD and c2 = 2αD.

Note that the algorithm with parameter D only works under the condition:

(D + 1)α ≥ 2

3
√
αD

. (1)

Otherwise, the number of expected relations is too small to relate all elements of the
smoothness basis. For a finite field Fqn , [5] indicates that the best complexity is obtained
choosing the smallest acceptable value for the parameter D.

Individual discrete logarithms phase Another very important phase that appears
in many index calculus based algorithms is the individual discrete logarithms phase
which allows to compute the logarithm of an arbitrary field element by finding a mul-
tiplicative relation which relates this element to the elements of the smoothness basis
whose logarithms have already been computed.

4 Antoine Joux

In [5], this is done by first expressing the desired element as a product of elements
which can be represented as low degree polynomials in X or Y . These polynomials can
in turn be related to polynomials of a lower degree and so on, until hitting degree one,
i.e. elements of the smoothness basis. For this reason, the individual logarithm phase is
also called the descent phase.

As analyzed in [5], the asymptotic complexity of the descent phase is

LQ

(
1

3
,

1

3µ
√
αD

)
,

where µ < 1 is an arbitrary parameter. Moreover, any choice of µ in the interval
]
1
2 ; 1
[

ensures that the complexity of the descent phase is asymptotically negligible compared
to (at least one of) the main phases.

2 New algorithm: the basic ideas

The new index calculus algorithms proposed in this paper hinges on two basic ideas.

Basic idea 1. In [3], it was remarked that a polynomial f that nicely factors can
be transformed into several such polynomials, simply by a linear change of variable:
f(x) −→ f(ax), for any constant a.

Our first idea consists in remarking that this is also true for a larger class of change
of variables. Basically, we consider changes given homographies:

x −→ ax+ b

cx+ d
.

The reader might object that an homography is not going to transform f into polynomial.
To cover this, we instead perform homogeneous evaluation of f at (ax+ b)/(cx+ d).

In other words, we consider the polynomial:

Fabcd(x) = (cx+ d)deg ff

(
ax+ b

cx+ d

)
.

Theorem 1. Let f(Y) be a monic polynomial of degree D over Fq and Fqk be an exten-

sion field of Fq. Let Fabcd(U) = (cx+d)deg ff
(
ax+b
cx+d

)
with (a, b, c, d) ∈ F4

qk and ad 6= bc.

Write the factorization of f into monic irreducible polynomials as f(Y) =
∏k
i=1 Fi(Y)ei .

It induces a factorization of Fabcd

Fabcd(U) =

k∏
i=1

(
(cx+ d)degFiFi

(
ax+ b

cx+ d

))ei
.

Note that the factors in this decomposition are not necessary monic, not necessary irre-
ducible and may have a lower degree than the corresponding factor in Fi.

Proof. The induced factorization is clear. It suffices to perform the change of variable
on both sides and remark that the grouped terms

(cx+ d)degFiFi

(
ax+ b

cx+ d

)
are indeed polynomials.

It is also clear that the transformed factors have no reason to be irreducible in the
extension field Fqk .

A new index calculus algorithm in small characteristic 5

Remark that when c 6= 0 the coefficient of xdegFi in the factor coming from Fi
is cdegFiFi(a/c). Since this is not necessarily 1 and can even be 0, we see that the
transformed polynomials are not necessarily monic and may have degree strictly smaller
than the corresponding Fi. ut

Thanks to this, it is now possible to amplify a single polynomial to a much larger
extend than previously. More precisely, with a linear change of variable, number of
amplified copies of a single polynomial is close to the size of finite field in which a is
picked. With homographies, the number of copies becomes close to the cube of the size
of the finite field.

Basic idea 2. The second idea directly stems from this fact. Since it is possible to make
so many copies of one polynomial, it suffices to start from a single polynomial f . Thus,
instead of considering many polynomials until we find some candidate, we are going to
choose a polynomial with factors by design. Over a small finite field Fq, an extremely
natural candidate to consider is:

f(x) = xq − x.

It is well-known that this polynomial splits into linear factors, since any element of Fq
is a root of f .

The rest of the paper gives the details of how to put together these two basic ideas
into a working discrete logarithm algorithm.

3 New algorithm: Setting

In this section, we introduce our new discrete logarithm algorithm for small character-
istic fields. We first describe the general setting of our algorithm, before considering its
relation collection phase. We skip the description of the linear algebra phase that takes
as input the relations and outputs logarithms of the elements of our factor base(s), since
it is left unchanged compared to previous algorithms. Finally, we study the computa-
tion of individual discrete logarithms, for arbitrary field elements. This phase relies on
a descent strategy as in [5], which needs to be deeply adapted to the specificities of our
new relation collection phase.

3.1 Choosing the parameters

The finite fields that we consider are of the form Fq2k , obtained by taking a degree k
extension of a base field Fq2 , which is not necessarily prime. In our construction, we only
deal with cases where k ≤ q+ δ, for some small offset δ (compared to q). The extension
is constructed using a irreducible factor of a low degree bivariate polynomial, evaluated
at (X,Xp). More precisely, we choose two low degree polynomials h0(X) and h1(X)
with coefficients in Fq2 such that h1(X)Xq − h0(X) has an irreducible factor I(X) of
degree k. Heuristically, we expect arbitrary extension degrees to appear with this form
of definition polynomials. For example, we performed some experiments with q = 101
and found that all extension degrees up to 103 appeared with h0 and h1 of degree at
most 2 and coefficients in F101. Indeed, we heuristically expect that a fraction close to
1/k of random polynomials has a factor of degree k. Thus considering polynomials h0
and h1 of degree 2, we have a very large number of degrees of freedom and expect to get
a good representation. However, this argument is not a proof. In particular, with linear
polynomials h0 and h1 we can only reach a fraction of the possible extension degrees
(see the simple cases below).

Still, since we have the option of raising the degree of h0 and h1 to arbitrary constants,
it should be easy to achieve any extension degree k (up to q + deg(h1).)

6 Antoine Joux

Some simple cases. Some kind of extensions are especially well-suited to this form of
representation. To illustrate our construction, we now describe these simple cases.

A first example concerns extensions of degree k = q − 1. They can be represented
as Kummer extensions by an irreducible polynomial I(X) = Xq−1 + g, where g is a
generator of the multiplicative group F∗p. This can be achieved easily in our setting by
letting h0(X) = −gX and h1(X) = 1.

Similarly extensions of degree k = q + 1 can be represented by a Kummer extension
by an irreducible polynomial I(X) = Xq+1 + Gq−1, where G is a generator of the
multiplicative group F∗q2 . This can be achieved easily in our setting by letting h0(X) =

−Gq−1 and h1(X) = X.
Another special case is k = p, which can be represented by an Artin-Schreier exten-

sion with I(X) = Xp−X− 1. This can be achieved by choosing h0(X) = −(X+ 1) and
h1(X) = 1.

Extending to smaller values of p. One apparent difficulty of our choice of parameters
is that it only works when k ≤ p+deg h1, i.e. k is not much bigger than p. In particular,
this is problematic for binary field of the form F2k when the extension degree is prime.

To extend to this case, it suffices to start by embedding the base field Fp into Fq
with q = pr, the smallest power of p larger than k.

4 New algorithm: initial phase

In order to generate the relations, we start from the polynomial equation:∏
α∈Fq

(Y − α) = Y q − Y, (2)

and perform a change of variable Y = aX+b
cX+d , with (a, b, c, d) ∈ F4

q2 satisying ad− bc 6= 0.

Evaluating Equation (2) and multiplying by (cX + d)q+1, we find that:

(cX + d)
∏
α∈Fq

((a− αc)X + (b− αd)) = (cX + d)(aX + b)q − (aX + b)(cX + d)q.

Moreover the right-hand side can be evaluated to:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≡
(caq − acq)Xh0(X) + (daq − bcq)h0(X) + (cbq − adq)Xh1(X) + (dbq − bdq)h1(X)

h1(X)
(mod I(X)).

As a consequence, we get an equality in Fq2k between a product of linear polynomials
and a fraction with low-degree numerator and constant denominator. Considering h1(X)
as an extra element of the smoothness basis, we get a multiplicative relation whenever
the numerator factors into linear factors.

Important note: The reader should be aware that the same relation may be encountered
several times (with different quadruples (a, b, c, d)). In particular, when (a, b, c, d) ∈ F4

q,
we obtain a trivial equation. This phenomenom is due to the structure of the homo-
graphies seen as matrices with determinant 1. It is the reason why we need to take
coefficients1 in Fq2 and to consider a smoothness basis with coefficients in Fq2 .

1 There is nothing really special with Fq2 , it is just the smallest superfield of Fq. A larger
superfield would also work.

A new index calculus algorithm in small characteristic 7

Cost of relation finding. With the structure of homographies in mind, we can choose
the quadruple (a, b, c, d) in a way that avoids duplicate relations. We now would like to
estimate the probability of finding a relation for a random quadruple. Under the usual
heuristic that the right-hand side numerator factors into linear with a probability close to
a random polynomial of the same degree, we need to perform D! trials (where D denotes
the degree of the right-hand numerator). We note that D ≤ 1 + max(deg h0,deg h1).

As a consequence, we expect to find enough relations by considering O(p2) quadru-
ples.

4.1 Extending the basis to degree 2 polynomials

The above process together with linear algebra can thus give us the logarithms of linear
polynomials. Unfortunately, this is not enough. Indeed, at the present time, we do not
know how to compute arbitrary logarihtms using only linear polynomials. Instead, we
extend our basis of known logarithms to include polynomials of degree 2.

We propose two different strategies for completing the basis. The first strategy is the
fastest, however, depending on the finite field and its description, it may not be able
to access all polynomials. The second strategy is slower because it requires to do some
additional linear algebra steps.

First strategy. The idea of this strategy is to reconstruct the relations produced for
finding the linear polynomials. This time, instead of keeping the relations with a right-
hand that splits into linear factors, we keep relations with a single degree 2 factor and
some linear factors. This clearly allows us to compute the logarithm of the degree 2
polynomial.

Note that, depending on the degree of the right-hand side, it is possible to repeat
this a few time. In each pass, we can learn some extra logarithms, as long as there are
relations whose right-hand side factors logarithms are all known, expect a single degree
2 factor, which we then learn.

Second strategy. For this second strategy, we produce some extra equations, using the
same approach with a different change of variable. More precisely, we consider changes
of the form:

Y =
aX2 + bX + c

dX2 + eX + f
.

With this choice, the left-hand side factors into polynomials of degree at most 2. If the
left-hand side also factors into polynomials of degree at most 2, we obtain an equation
that involves the extended basis. Once we get enough equations, it suffices to perform a
linear algebra step to recover the extra logarithms.

However, this linear algebra step is much bigger than the first one. Thankfully, it is
often possible to improve this be considering a change a variable with a restricted form
that lead to equations containing only a subset of the possible degree 2 polynomials.

Basically, the idea is to choose

Y =
X2 + aX + b

X2 + aX + c
.

With this choice, thanks to the repetition of X2+aX in the numerator and denominator,
all the degree 2 factors on the left are of the form X2+aX+K. If we only keep relations
with a right-hand side that factors into linear polynomials, then, a set of relations
that all share the same value for a produce a much smaller linear system. Indeed, the
unknowns are the logarithms of irreducible polynomials of degree 2 of the restricted

8 Antoine Joux

form X2 + aX +K, with a fixed a. As a consequence, instead of solving a large system
of size O(q4), we need to solve q2 smaller system (on for each a), of size O(q2).

Note that depending on the exact extension, it might be necessary to use different
restricted form, with the same goal of splitting the system into smaller chunks in mind.

Finally, it is possible to reuse the first strategy on such reduced systems and complete
our basis of degree 2 polynomials once we have obtained the logarithms values for one
(or a few) subsets of degree 2 polynomials.

Depending on the exact parameters of the finite field and the number of logarithms
that need to be computed, it might also be useful to further extend the smoothness basis
and include polynomials of larger degree (3 or more).

5 New algorithm: descent phase

Once the logarithms of smoothness basis elements are known, we want to be able to
compute the logarithm of an arbitrary element of the finite field. We wish to proceed
using a descent approach similar to [5]. The basic idea is to first obtain a good represen-
tation of the desired element into a product of polynomials whose degrees are not too
high. Then, proceeding recursively, we express the logarithms of those polynomials as
sums of logarithms of polynomials of decreasing degree. Once we reach the polynomials
of the smoothness basis, we are done.

In our context, we cannot, in general, use the preexisting method for this descent
step. Yet, we first recall this method, discuss when it can be used and explain why we
cannot use it generally. Then, we propose an alternative method that is more suited
to the field representations we are using. This new method involves the resolution of
bilinear multivariate systems of equations over Fq2 . The resolution of such system has
been analyzed careful in Spaenlehauer’s PhD thesis [7].

5.1 Practical preliminary step

Before going into the descent itself, it is useful to start by finding a good representation
of the element Z whose logarithm is desired. Initially, Z is expressed as a polynomial of
degree up to k−1 over Fq2 . Assuming that g denotes a generator of Fq2k , we consider the
decomposition of the polynomials that represent giZ, until we find one which decomposes
into elements of reasonably low degree. These lower degree elements are then processed
by the descent step.

A classical improvement on this is to use a continued fraction algorithm to first
express giZ as a quotient of two polynomials of degree at most k/2.

This preliminary step gives no improvement on the asymptotic complexity of the
descent phase.

5.2 Classical Descent method

The classical descent technique as described in [5] is based on Special-Q sieving. More
precisely, it creates relations in a linear subspace where by construction one side of the
equation is divisible by the desired polynomial.

It works in the context, recalled in Section 1.3, where we have two related variables
X and Y . The relations are constructed by considering bivariate polynomials h(X,Y),
which can lead to relations of the form h(X, f1(X)) = h(f2(Y), Y). To create a relation
that involves a fixed polynomial Q(X), we want to enforce the condition h(X, f1(X)) ≡ 0
(mod Q(X)). This condition is equivalent to deg(Q) linear equations on the coefficients
of h. To get enough equations, it suffices to build the polynomials h as linear combination

A new index calculus algorithm in small characteristic 9

of deg(Q) + 2 monomials. We, of course, choose monomials with low degree in X and Y
and fix one arbitrary coefficient to 1.

In general characteristic, we cannot use this method in our context. However, with
fixed characteristic fields, for example in characteristic 2 or 3, this become possible.
Let p denote the charateristic of the finite field and let Y = Xpr , where r is chosen to
optimize the complexity of the descent. Then following our construction, we see that:

Y q·p
−r

=
h0(X)

h1(X)
.

For the Kummer or Artin-Schreier cases, where h0 and h1 have degree at most one, this
directly gives X as a polynomial in Y and the usual descent can be applied. When h0
or h1 have higher degree, the method still work, but we need to use a slight variation.
Instead of considering the relation h(X, f1(X)) = h(f2(Y), Y), we consider a relation

(h(X, f1(X)))q·p
−r

= h′(Xq·p−r

, h0(X)/h1(X)), where h′ is obtained from h by raising
the coeeficient to the power q · p−r. This has the additional advantage of completely
eliminating the auxiliary variable Y .

In truth, this classical method is very efficient during the early However, by itself,
this method cannot descend to very low degrees which is a problem when we want to
keep a small smoothness basis. As a consequence, we combine it with a newer method
described below, which works better on low degree polynomials.

5.3 New Descent method

The basic idea of the new descent method is given a polynomial Q of degree D, to
find pairs of polynomials of degree d = d(D + 1)/2e, k1 and k2 such that Q(X) divides
(k1(x)qk2(x)− k1(x)k2(x)q) mod I(X). As a consequence, the relation:

(k1(x)qk2(x)− k1(x)k2(x)q) ≡ (k1(x)qk2(x)− k1(x)k2(x)q) mod I(x),

has a factor equal to Q on the right-hand side and factors of degree at most d on the left-
hand side. Since the total degree of the right-hand side is bounded by a small multiple
of D (related to the degrees of h0 and h1 the polynomials which defined out extension
field), with good probability, we obtain a relation between Q and polynomials of degree
at most d.

The question is thus to construct such polynomials. We remark that the condition
that (h1(x)qh2(x) − h1(x)h2(x)q) mod I(X) vanishes modulo Q can be rewritten as a
quadratic system of equations over Fq. In fact, this system is even bilinear, since each
monomial that appear in it contains at most one unknown for each of h1 and h2. As a
consequence, this system can be quite efficiently solved using a Gröbner basis algorithm.

However, the cost of solving such system with currently existing algorithms remains
exponential in d. As a consequence, for larger values of D, we need to use a different
unbalanced split. More precisely, we take two polynomials of distinct degree d and D+
1 − d, to get enough degrees of freedom in the system. Since the cost of solving the
resulting bilinear system of equations essentially depends on min(d,D+ 1− d) = d this
allows us to perform descent of polynomials of arbitrary degree. It should be noted that
we are now using a smaller rate of descent, which is going to greatly increase the number
of nodes in the descent tree.

6 Complexity Analysis

6.1 Logarithms of the smoothness basis

We analyze the complexity of this phase under the heuristic assumption that our method
can produce distinct and independent relations. We only consider the general case where

10 Antoine Joux

the full degree 2 smoothness basis, with coefficients in Fq2 , is constructed as a whole.
Forgetting about possible size reduction using the action of Frobenius, the size of the
smoothness basis is O(q4). We thus need to construct O(q4) equations. The degree of
the right-hand sides in our equation is bounded by Dr = 1 + max deg(h0),deg(h1). As
a consequence, we need to consider O(Dr!q

2) candidates in order to build relations.
Solving the resulting linear systems of O(q4) equations of weight O(q) in O(q4) has a
complexity of O(q9) arithmetic operations modulo q2k− 1 (or a divisor of this number).

The linear algebra part dominates if we can find a representation of our finite field
that satisfies Dr! ≤ q5. Since, according to Section 3.1, we expect h0 and h1 to have
constant degree, Dr is also constant and the condition Dr! ≤ q5 is clearly satisfied. As
a consequence, the creation of the smoothness basis can be done in polynomial time
in q and thus, this phase is polynomial in the size of the considered finite field.

A similar polynomial time behavior for computing the logarithms of the smoothness
basis is also given in [1].

6.2 Individual logarithms

To analyze this phase, we use the simplifying hypothesis q ≈ k. Under this hypothesis,
remark that:

Lq2k(β, c) = exp((c+ o(1))(2k log q)β(log(2k log q))1−β)

≈ exp((c′ + o(1))kβ log(k)).

We sketch the analysis of the complexity, ignoring the constant in the L(α, c). We
show that we can reach complexity L(1/4 + o(1)) when the characteristic is fixed (such
as 2 or 3). I.e., we have q = p` for some fixed value of p. Since q ≈ k, we have `, q and
k growing to infinity.

We start with the classical descent approach, since it is compatible with our algorithm
in fixed characteristic. The analysis of this method is well-known and we do not need to
redo it completely. We simply remark that in order to descend to polynomials of degree
k1/2, it is possible to parametrize the classical descent in such a way that its cost is
reduced to L(1/4). This is not usually used, because stopping at polynomials of degree
k1/2 normally doesn’t allow to finish the computation.

We then use the newer descent approach, starting from polynomials of degree D ≈
k1/2. To decompose each polynomial into polynomials of lower degree, we construct a
relation using one polynomial of degree d + 1 and one of degree D + 1 − d. Since the
degree of the right-hand side is a small multiple of D, a solution of the system yields
with heuristic constant probability a new equation relating the desired polynomial to
polynomials of degree at most D − d. The number of polynomials of degree between
D + 1 − 2d and D − d is at most q + O(1). Note that the contribution of lower degree
polynomials is negligible, since the computation of their logarithms is deferred to a lower
level of the computation tree, where they represent a tiny fraction of the polynomials
to be addressed.

Thus, the running time to compute the logarithm of a degree D polynomial is
T (D, d) ≈ T0(D, d)+qT (D−d, d). According to [7], we have T0(D, d) = O(dD

(
D+d+2
d+2

)ω
),

where ω denotes the achievable exponent for matrix multiplication. We now choose d to
ensure that T0(D, d) dominates the computation. This requires d to be large enough to
be able to neglect the powers of q in the sum (when the expression of T (D, d) is unrolled).
To simplify the analysis, we replace T0 by T1(D, d) = D3d+7, which is asymptotically
larger. We find that we need to choose d such that d(3d+ 7) > D log q. Taking d above

but close to this bound with D ≈ k1/2 yields d = O(k1/4 log1/2(k)). As a consequence,

the cost of the newer part of the descent is bounded by T1(k1/2, O(k1/4 log1/2(k))) per

A new index calculus algorithm in small characteristic 11

polynomial. Due to the presence of an extra log1/2(k) term, this is strictly bigger than
L(1/4). However, it can be rewritten as L(1/4 + o(1)).

Finally, since there are at most L(1/4) polynomials of degree k1/2 to consider, the
overall complexity of the algorithm in fixed characteristic is L(1/4 + o(1)).

Impact of more efficient algorithms to solve the bilinear systems. It is important to
remark that given an oracle (or efficient algorithm) to solve the bilinear systems, we
could use a much faster descent from degree D to d(D + 1)/2e at each step. In this
case, the complexity would be dominated by the number of nodes in the descent tree,
i.e. qlogD. Starting directly from D = k − 1 would then give a quasi-polynomial
complexity exp(log2 q).

6.3 Special case of Fpk , p and k prime

In order to use our algorithm, we need to embed Fpk with p and k prime into Fq2k , with
q = p` and ` = dlog ke. From an asymptotic point of view, this is of little impact, indeed
Lq2k(1/4 + o(1)) can be rewritten as Lpk(1/4 + o(1)) with a slightly larger o(1).

7 Experiment on a Kummer extension F(214)127

We define F214 as F2[a] with a14 + a5 + 1 = 0. Then, F214·127 is obtained as a Kummer
extension F214 [u] with u127 = a+ a128.

To compute our basis of discrete logarithms, we proceed in two parts as explained in
Section 4. First we obtain the logarithm of the linear polynomials u+α with α in F214 .
Thanks to the action of Frobenius, this part of the basis can be reduced to 66 elements.

We then compute the logarithms of elements of the form u2+αu+β. Using the action
of Frobenius, we can multiply α by an arbitrary power of A = a+ a128. This allows us
to split the degree 2 polynomials in 129 distinct subsets. Moreover, these subsets are
further grouped into pairs which are again related by Frobenius (except the u2 + u+ β
which is related to itself and is twice as small). This allows us to recover the complete
basis of logarithms by solving 64 systems on 8192 unknowns and one system on 4096
unknowns.

In [4], we announced that the linear algebra was done using 210 CPU.hours. Note
however, that our linear algebra code is not really adapted to the tiny sizes of the
considered system. As a consequence, this can probably be reduced.

The descent phase uses the mix of classical and newer descent that we described
earlier. More precisely, starting with the preliminary phase, we transform the initial
problem into a representation that contains polynomials of degree at most 18. We use
the classical descent with Y = X8 to lower the representation down to polynomials of
degree at most 5. With the newer descent we can express polynomials of degree 4 and 5
using polynomials of degree 3 and polynomials of degree 3 using polynomials of degree
2, which concludes the computation. The total number of degree 3 polynomials that
appeared during the computation is 86 803.

As mentionned in [4], the descent step took a little more than 5 CPU.hours.

Acknowledgements

We acknowledge that the results in this paper have been achieved using the PRACE
Research Infrastructure resource Curie based in France at TGCC, Bruyères-le-Chatel
(project number 2011050868) and the PRACE Research Infrastructure resource Ju-
gene/Juqueen based in Germany at the Jülich Supercomputing Centre (project number
2011050868).

12 Antoine Joux

References

1. Faruk Gologlu, Robert Granger, Gary McGuire, and Jens Zumbragel. On the function field
sieve and the impact of higher splitting probabilities: Application to discrete logarithms in
F21971 . Cryptology ePrint Archive, 2012. Report 2013/074.

2. Robert Granger, Faruk Gologlu, Gary McGuire, and Jens Zumbragel. Discrete logarithms
in GF(21971). NMBRTHRY list, February 2013.

3. Antoine Joux. Faster index calculus for the medium prime case. Application to 1175-bit and
1425-bit finite fields. Cryptology ePrint Archive, 2012. Report 2012/720.

4. Antoine Joux. Discrete logarithms in GF(21778). NMBRTHRY list, February 2013.
5. Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case. In

Serge Vaudenay, editor, EUROCRYPT’2006, volume 4004 of Lecture Notes in Computer
Science, pages 254–270. Springer, 2006.

6. Daniel Panario, Xavier Gourdon, and Philippe Flajolet. An analytic approach to smooth
polynomials over finite fields. In J. Buhler, editor, Algorithmic Number Theory, Proceedings
of the ANTS-III conference, volume 1423, pages 226–236. Springer, 1998.

7. Pierre-Jean Spaenlehauer. Solving multihomogeneous and determinantal systems Algorithms
- Complexity - Applications. PhD thesis, Université Pierre et Marie Curie (UPMC), 2012.

