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Abstract

We construct a very efficient protocol for constant round Two-Party Secure Function Eval-
uation based on general assumptions. We define and instantiate a leaky variant of Generalized
Oblivious Transfer based on Oblivious Transfer and Commitment Schemes. The concepts of
Garbling Schemes, Leaky Generalized Oblivious Transfer and Privacy Amplification are com-
bined using the Cut-and-Choose paradigm to obtain the final protocol. Our solution is proven
secure in the Universal Composability Paradigm.

Introduction

The tools that we use in this paper are Oblivious Transfer [Rab81, EGL85], Commitment Schemes
[Blu83, Eve83] and some variation on Yao’s Garbled Circuits. The notion of security that we will
use in this work is Universal Composability which was introduced by Ron Canetti in [Can01].
The goal of this work is to present a very efficient protocol for constant round Two-Party Secure
Function Evaluation based on these assumptions.

Important work has gone into optimizing the primitives of secure computation. Oblivious
Transfer requires expensive public key operations to instantiate from scratch, thus the idea of
generating a large number of them from a much smaller number of OT’s by using private key
operations (named OT extension) is extremely valuable [Bea96, IKNP03]. Many techniques have
been used to reduce the complexity of communicating a garbled circuits such as the Free XOR
technique optimization from [KS08].

There are many recent constructions for efficient secure computation. Several of them are
based on Garbled Circuits such as [KSS12, LP11, SS11, LP07], but other approaches have been
used [IPS08, LOP11, NO09, NNOB12].

Notation and convention

We will refer to 1-out-of-2 Oblivious String Transfer for string of length l as OT. The security
parameter will be denote by s. A circuit’s depth will be denoted by d and its input size by n.
The notation x ∈R A describes the random selection of an element x according to the uniform
distribution from a set A. As usual, we define secure fonction evaluation FSFE as a two party
computation where Bob learns the output.
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Our results in perspective

In recent times, Secure Function Evaluation with malicious adversaries using Garbled Circuits have
become more and more practical. Garbling scheme based protocol following the Cut-and-Choose
paradigm require Ω(ns) calls to OT. Lindell and Pinkas started the trend with their work in [LP07]
that required Ω(ns) OT but Ω(ns2) Commitments. The work of [LP11] and [SS11] only require
Ω(ns) comitment but require stronger notions of OT such as committing OT and Batch Single
Choice Cut and Choose OT. These protocols do not admit OT extension. Both the result of
[Fre12] and [KSS12] allow OT extensions but the first one relies on a Random Oracle and the
second one on Claw-Free Collections.

In contrast, our work allows OT extension, does not rely on additional assumptions and only
uses O(ns) OT and Commitments. The structure of our protocol is based on [LP11].

paper OT Commit OT extension Assumptions

[LP07] O(ns) O(ns2) yes None

[LP11] O(ns) O(ns) no DDH

[SS11] O(ns) O(ns) no Claw-Free Collection, DDH

[Fre12, FN12] O(ns) O(ns) yes Random oracle

[KSS12] O(ns) O(ns) yes Claw-Free Collection

this work O(ns) O(ns) yes None

Leaky Generalized Oblivious Transfer

Generalized Oblivious Transfer is a very natural primitive. In OT, the receiver either learns the
first or the second message. In a context where the sender transmits n messages, the receiver can
learn 1-out-of-n or even k-out-of-n. In fact, there is no reason not to considered arbitrary legitimate
sets of messages. The sender and receiver could define a list of accessible subsets of all the positions
that are considered legitimate. At the end of the protocol, the receiver will learn the messages
whose indices belongs to a legitimate set of his choice. As usual, the sender will not learn the
receiver’s choice. This primitive was introduced in [IK97] and a clever protocol was presented in
[SSR08]. Unfortunately, the protocol that was presented is only secure against a passive adversary.
A protocol based on verifiable oblivious transfer and secure against active adversary was proposed
in [BNRT12].

In this section, we will present a protocol for Generalized Oblivious Transfer that we know is
imperfect. This will not prevent the protocol from being useful. The advantage of the protocol
described here is that it is based directly on Oblivious Transfer and Commitment Schemes. This
means that the protocol is more efficient then the one proposed in [BNRT12]. In the next section,
this imperfect implementation of GOT will be used to instantiate Two-Party Computation in a
way that improves previous protocols. We will not present other applications of Leaky GOT; we
are nevertheless confident that it could be used in other contexts.

In order to prove the security of the final two party protocol under the Universal Composability
framework, it is necessary to present a meaningful ideal functionality for Leaky GOT that is securely
implemented by our protocol. We call this functionality Leaky Generalized Oblivious Transfer for
obvious reasons. The protocol, when compared to the naturally defined GOT, will only leak one
bit of information to a dishonest sender. We will then prove that our protocol implements this
ideal functionality. This enable us to work in a modular way. The abstraction of an imperfect
protocol, where a cheating player has a limited advantage is trickier than expected. Once a cheating
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possibility for the sender is made explicit in the definition of the task, it opens (in a very unexpected
way) the possibility that the receiver cheats.

We will now present the intuition behind the protocol. How can one use OT to implement
GOT? The main idea is taken from [SSR08]. The first important observation is that the set of
accessible sets of positions is always the complement of an access structure. Each of the n messages
will be sent using OT in conjunction with a decoy message. Learning the decoy message is a ”proof
of no knowledge” about the message paired with it in the OT. The problem with revealing this
decoy is that the receiver would reveal the position he had learned. To solve this problem, the set
of decoy messages will form n shares in a secret sharing scheme with an access structure that is the
complement of the collection associated with the particular instance of GOT. If the receiver only
learns positions from a legitimate set, he will learn enough decoys to reconstruct the secret. When
the receiver reveals the secret, the sender knows that the receiver has only learned messages that are
included in a legitimate set. This is what was presented in [SSR08]. Unfortunately, it is clear that
an active adversary can learn a lot of information about the receiver’s choice by corrupting shares
and then observing the secret that was reconstructed (if any) by the receiver. Thus we modify the
protocol so that the receiver commits to the reconstructed secret and then requests that the sender
makes it public. Then, by proving that he knew the secret (by opening the Commitment), he only
reveals one bit of information to a cheating sender. A cheating sender cannot choose to learn any
bit of information about the receiver’s choice but every choice for the set of shares corresponds to
a specific predicate. Although in general the set of predicate available to the sender is very limited,
any deviant behavior at this phase is consistent with a specific predicate. The set of available
predicates is perfectly determined from the choice of the underlying secret sharing scheme used
in the protocol. Although it may be hard to determine if a predicate belongs to a set, it is not
important since only adversaries benefit from this knowledge.

We will now formalize the notion of legitimate sets for a GOT and its relationship with secret
sharing.

Definition 1.

• Let I = {1, 2, ..., n} be a set of indices. A collection A ⊆ P(I) is monotone if the fact that
B ∈ A and B ⊆ C implies that C ∈ A is verified.

• An access structure is a monotone collection A of non-empty sets of I. A set s is au-
thorized if s ∈ A and a set s′ is minimal if there exists no strict subset s′′ of s′ such that
s′′ ∈ A.

• The complement of a collection C is defined as C∗ = {b ⊆ I | ∃ c ∈ C, b = I − c}.

• We define Closure(C) = {c ⊆ c′ | c′ ∈ C}.

• A collection C is enclosed if C = Closure(C).

• An element c ∈ C is maximal if there exists no c′ ∈ C such that c ⊆ c′ and c 6= c′.

The following theorem is proven in [SSR08].

Theorem 1. For every enclosed collection C, there exists a unique access structure A such that
C∗ = A

Definition 2. A secret sharing scheme is a pair of randomized algorithms (Share, Recon-
struct) over a domain D with an access structure A. ShareA(s) where s ∈ D always outputs
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(s1, . . . , sn) ∈ Dn such that:
(1) for all A ∈ A, ReconstructA({(i, si) | i ∈ A}) = s,
(2) for any A′ 6∈ A, {(i, si) | i ∈ A′} gives no information about s.
(3) si 6∈ D and i ∈ A =⇒ ReconstructA({(i, si) | i ∈ A}) = ⊥

Definition 3. Shares {si} are consistent if for any authorized subset of shares, the reconstruction
is possible and the secret obtained is always the same.

Definition 4. In our context, a predicate is a function that takes a set as an argument and returns
a boolean value. The null predicate is the predicate that always return FALSE and will be noted φ.
A predicate class is a set of predicates that contains the base predicate.

The ideal functionality for the Leaky GOT has to be defined very carefully. The problem is
that it is imperfect and its behavior changes if a participant is corrupt. It is important that the
ideal functionality knows which if any participant is cheating. Otherwise the simulation does not
make sense. In the description, the order of the steps and the expected messages are fixed.

LEAKY GENERALIZED OBLIVIOUS TRANSFER: FLGOT (I,P)
Let I be an enclosed collection, P a predicate class, p a predicate in P, m1, . . . ,mn ∈ {0, 1}l
and b ∈ {True, False}.

• Upon receiving (predicate,p) from the Sender, if the sender is corrupted, this value
of p will be used, otherwise p is set to φ (the null predicate).

• Upon receiving (choice,I) where I ∈ I is a set of indices, if p(I) the functionality
forwards (failure) to the receiver, otherwise it forwards (match).

• Upon receiving (validation,b) from the receiver, if b = True and the receiver is
corrupt, or if p(I) = True the functionality forwards (failure) to the sender and
ignores any further commands, otherwise it sends (match) to the sender.

• Upon receiving (send, m1, ...,mn) from the sender, for each i ∈ I, the functionality
sends (Reveal,i,mi) to the receiver.

The following protocol implements FLGOT (I,P) where I is an enclosed collection defining the
accessible sets of messages.

Protocol: πLGOT (I)

1. The sender selects k1, k2, ..., kn ∈R {0, 1}l (one-time pads)

2. Let A = I∗, s ∈R D and (s1, s2, ..., sn) = ShareA(s).

3. The sender selects a set of n ids that have never been used, denote these ids as sidi and sends
them to the receiver. For each i, the sender sends (send,ki,si,sidi) to FOT .

4. Let I ∈ I be the set of messages that the receiver wishes to receive. He selects bi = 0 when
i ∈ I and bi = 1 otherwise. For each i, the receiver sends (Transfer,bi,sidi) to FOT and
records the result.
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5. The receiver executes the recover algorithm with the shares he received and obtains S′ (if he
did not successfully recover a secret he selects a random value for S’ instead). The receiver
sends (commit,S’) to FCOM .

6. Sender sends S to the receiver.

7. The receiver checks if S 6= S′, if so he selects m = Failure, otherwise he notes m =match.
He then sends m to the receiver. If S 6= S′, the receiver then aborts.

8. The sender checks if m = Failure and if so, he aborts. The receiver then sends open to
FCOM . The sender verifies that S = S′ and if not, he aborts the protocol.

9. The sender sends zi = mi ⊕ ki to the receiver. ({mi} are the messages)

Theorem 2. For every secret sharing scheme there exists a class Predicate P such that πLGOT (I)
securely realizes FLGOT (I,P) in the FOT , FCOM hybrid model.

Proof. The correctness of the protocol can be verified by inspection but one has to be careful when
dealing with the leakage of the protocol. Given a secret sharing scheme with associated domains
D, for every value V ∈ D, and every set of shares E such that each share is in D′, there exists a
predicate p defined over the subsets of E such that pE,V (E′) = 0 iff Reconstruct(E′) = v. We can
define a predicate class P by taking the union pE,V over all possible E and V . It is important to
note that if E is consistent and V is the reconstructed secret of E, then the predicate is the predi-
cate that always returns 0. The protocol precisely realizes the functionality with this predicate class.

Sender Simulation:

• The simulator awaits the input to the OT and records the ki and si

• The simulator sends committed to the Environment.

• The simulator awaits a secret S.

• The simulator sends to the ideal functionality the command (Predicate,p) where p is the
predicate that asks if the complement of I does not correctly reconstruct the secret S.

• The simulator awaits that the functionality outputs either (failure) or (match) and for-
wards that message to the environment; if (failure) was received, the simulator aborts.

• The simulator awaits the encrypted messages from the environment, he then decrypts them
(using the ki) and sends the command (send,mi) to the ideal functionality.

Receiver Simulation

• The simulator awaits that the environment sends his choice of the bi to be used in step 4.
From those he can deduce I.

• The simulator selects random keys ki, creates shares si for a random secret S and then sends
the environment the appropriate output for each OT.

• The simulator awaits that the environment forwards the command (commit,S’,id).
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• The simulator then sends the secret S to the environment.

• The simulator awaits that the environment sends his choice of m (match or failure), if
(failure) was received, the simulator sends (validation,True) to the functionality
and then aborts, otherwise he sends (validation,False)

• The simulator awaits the command (open) from the environment, if S 6= S′, the simulator
aborts the protocol.

• The simulator calls the ideal functionality with I and receives the messages for that set. He
chooses random values for the messages that he did not receive, encrypts all the messages
with the keys (ki) and then sends them to the environment.

Garbling schemes

In 1982, Yao generated a construction that came to be known as Yao’s garbled circuit. The idea
was to encode a circuit in such a way that by giving a party the right keys he could evaluate the
circuit on a specific input and yet learn nothing about the input except what could be deduced
from the circuit. This construction came to be used in many different applications each with their
own divergent variant. Lindell and Pinkas were the first to prove the security of Yao’s garbled
circuit in the field of two party computation [LP09]. Garbling schemes proposed in [BHR12] define
the notions that unify these different variants.

We will need to distinguish between a function f : {0, 1}n → {0, 1}m and the representation
of a function as f̄ (in our case we can restrain ourselves to circuits). A garbling algorithm GB
is a randomized algorithm that transforms f̄ into a triple of functions GB(f̄) = (F, e, d). We
require that f = d.F.e. The encoding function e turns an initial input x ∈ {0, 1}n into a garbled
input X = e(x). Evaluating the garbled function F on the garbled input X gives a garbled
output Y = F (X). The decoding function d turns Y into the final output y = d(Y ), which
must coincide with f(x). One has probabilistically factored f into d.F.e. Thus a garbling scheme
G = (GB,En,De,Ev, ev) is regarded as a five-tuple of algorithms, with strings d̄, ē, f̄ , and F̄
interpreted as functions under the auspices of functions De, En, ev, and Ev.

A circuit garbling scheme is a five-tuple of algorithms G = (GB,En,De,Ev, ev). The first two
algorithms are probabilistic, the remaining are deterministic. The string f̄ represents the function
f that we wish to garble. On input f̄ , algorithm GB outputs an encoding function En(ē, .) that
maps an initial input x ∈ {0, 1}n to a garbled input X = En(ē, x) as well as F̄ that describes a
garbled function that maps each garbled input X into a garbled output Y and a string d̄ describing
a decoding function DE(d̄, .) that maps each garbled output y into a a final output y = De(d̄, Y ).

Definition 5. A garbling scheme is correct if for any function f the application of GB results in
strings (F̄ , ē, d̄) such that De(d̄, Ev(F̄ , En(ē, x))) = ev(f̄ , x).

Definition 6. A garbling scheme with an encoding function En(ē, .) with input x = x1 . . . xn where
xi ∈ {0, 1} is projective if for every ē there exists a list of tokens (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n) such that

En(ē, x) = (T x1
1 , . . . , T xn

n )

Definition 7. A projective scheme is transparent, if given f̄ , F̄ ,and the token (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n)

in a random order for each variable, one can efficiently verify that F̄ is consistent with GB(f̄) and
furthermore the order of the tokens can be deduced.
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Definition 8. A side-information function ψ denotes the information revealed about f̄ from (F̄ , ē, d̄).

Definition 9. A garbling scheme is private relative to a leakage function ψ if for any inputs
x0,x1 and description of functions f̄0, f̄1 such that ev(f̄0, x0) = ev(f̄1, x1) and ψ(f̄0) = ψ(f̄1),
the adversary cannot distinguish between (F̄0, ē0, d̄0, X0) generated from (f̄0, x0) and (F̄1, ē1, d̄1, X̄1)
from (f̄1, x1)

Definition 10. A garbling scheme is malleable if for any function f̄ such that GB(f̄) = (F̄ , ē, d̄)
and every y ∈ {0, 1}m there exists a ḡ such that ∀x, g(x) = y and ψ(f̄) = ψ(ḡ).

Two party computation

The first application of Garbling scheme was presented by Yao in order to implement two party
computation. In a context where the players are semi-honest, Alice and Bob can evaluate a circuit
of their choice on their private inputs. Alice can construct the circuit and send it with the keys
associated to her input. Now for Bob to obtain the keys associated to his own input, in a way that
hides those values from Alice, Alice and Bob will execute an OT. The messages transfered by Alice
will be the keys associated to Bob’s input variables and Bob will only learn the keys associated
to his choice of input. Since Bob has all the input keys as well as the circuit, he can perform the
evaluation and extract the result.

In order to make this scheme secure against an active adversary, two things have to be verified.
In term of correctness, Bob must verify that the circuit he evaluates computes the right function.
For his privacy, he must also verify that the protocol would have worked even if he had chosen
another input. These two problems are easily addressed by using what is called Batch-Single
Choice Cut-and-Chose OT. This is an instantiation of GOT for a specific access structure [LP11].

Alice will create s circuits with all of their input keys. Half of the circuits will be completely
revealed so that Bob can verify that they are correct. By virtue of contra-factual reasoning, this
ensures that no more then a few of the remaining unopened circuit are incorrect. By evaluating
the remaining circuits and taking the most common result as the output, correctness is guaranteed.
To keep ’s input private, it is important that Bob always evaluate the circuit with the same input.
Combining all these requirement, we see that OT has to be replaced with a specific GOT. The set
of pairs of keys for all the circuit will be organized in a table. Each of the s columns are associated
with a circuit. Each row is associated with an input variable and each element of the table is a pair
of keys, which are respectively associated with the value 0 and 1. Thus, Bob must learn for exactly
half of the columns, for each input, the value of both keys and for the other half, for each row, he
must choose between learning the first element of each pair or learning the second element of each
pair. We will now formally define the enclosed collection that was just informally described. Now,
y ∈ {0, 1}n is the input of Bob and J ⊆ [s], |J | = s/2 is the set of check circuits.

Definition 11. Each messages is denoted as mijk where i ∈ [1..n], j ∈ [1..s], k ∈ {0, 1}. The
enclosed collection I defining the set of messages that are authorized is the union of

• I0 = { {mijk | k = yi }},

• I1 = { {mijk | j ∈ J }}.

For Bob to verify the correctness of the check circuits, he must obtain from Alice all the
associated input keys. Then, for the evaluation circuits, Alice will only send the keys associated
with her specific input. Unfortunately, Alice could decide not to use the same input for all evaluation
circuits. The success of the execution of the protocol would give her information on the sensitivity
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of the function on her choice of input, which would leak information about Bob’s input. To
solve that problem [Fre12, FN12] introduced a verification functions v. Instead of just generating
garbled circuits for f , garbled circuits for f ′[(x, r), (y, s)] = (f [x, y], v[x, s, r]) will be generated.
The following choice of functions have been introduced. It was proven in [Fre12] that it does not
reveal information about Alice’s inputs and at the same time guarantees that inconsistent inputs
will be detected except with exponentially small probability.

Definition 12. We will denote zi(x, r) = pi(x) ·r⊕si and v[x, s, r] = (z0, . . . , zn) as the verification
function. Where pi is the cyclic shift toward the right of i position and · as the inner product mod 2.

Main protocol

Although the complete protocol requires several steps, the right combination of its ingredients
results in a very efficient protocol based on general assumptions. In the previous section, we
explained a known approach to combine GOT and Garbling schemes that allows us to obtain
Two-party Secure Computation. Our general protocol will follow the same approach described in
the previous section but will be based on Leaky GOT instead. Privacy of the receiver’s input is
jeopardized by the leakage in our GOT and therefore the general protocol must be modified in a
clever way. The function to be evaluated will be modified in such a way that the string that will
leak contains no information on Bob’s input. It will only be used after the leaky GOT has been
executed, privacy amplification will then be executed by revealing the hash function, thus rendering
any leakage moot.

The function of two players, which is to be evaluated, will be replaced by f ′(x, y′, h, q) =
f(x, h(y′) ⊕ q) = f(x, y). To extract the output, y′ will be chosen uniformly at random, h will
be taken randomly from a family of universal hash functions with the appropriate parameters and
q = h(y′) ⊕ y. Since h and q do not contain information about the input, they can (and will) be
declared publicly after the leaky GOT has been used to transfer y′ among all the different circuits.
Thus, Alice’s input will remain the same, but Bob’s input is now decomposed into (y′, h, q) where
only y′ is transfered using the leaky GOT. Intuitively, since only one bit of information about y′ is
leaked, privacy amplification ensures that y remains private.

Definition 13. We denote H a family of Universal Hash Function from {0, 1}n+s+1 to {0, 1}n.

Any universal Hash Function Family can be used in our protocol but the one presented in [] is
compact and efficient.

Definition 14. Denote f ′((x, s), (y′, h, q, r)) = (f(x, h(y′)⊕ q), v(x, s, r)) where h is in H and v is
the verification function that was defined in the previous section.

In our main protocol any circuit garbling scheme that is correct, private, malleable, transpar-
ent, and projective relative to a side information ψ can be used. For explicit constructions see
[LP07, BHR12]. We will also use the following length parameters, the length of the input to the
function to be evaluate is denoted as usual by n, nq = n, nh = 2(n+s+1), nx = 2n, ny = 2n+s+1
and nt = nq + nx + ny + nh. To clarify the role of each player, we will refer to Alice as the sender
and Bob as the receiver.
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Protocol: πSFE

1. The sender extracts s triplets (Fj , ej , dj) = GB(f ′).

2. The sender extracts from the encoding functions ej all the 2ns tokens associated to both
values for all inputs of all circuits. Tokens associated to the sender will be denoted by
(x01j , x

1
1j , . . . , x

0
nxj
, x1nxj

), those to y′ by (y01j , y
1
1j , . . . , y

0
nyj
, y1nyj

), those to the hash function by

(h01j , h
1
1j , . . . , h

0
nhj

, h1nhj
) and those associated to q by (q01j , q

1
1j , . . . , q

0
nqj
, q1nqj

).

3. The receiver selects uniformly at random y′ ∈ {0, 1}n+s+1, q ∈ {0, 1}n, h ∈ H and sets
q = h(y′) ⊕ y. The receiver commits to (H,Q) = (Com(h), Com(q)). He also choses J ⊆
[s], |J | = s/2 (choice of check circuits).

4. The sender sends the command (predicate, ψ) to FLGOT (A)

5. The receiver inputs to FLGOT (I) his choice I ∈ I where I is obtained from J and y′ as describe
above. He awaits a response from FLGOT (I), he sends (validation,False) to FLGOT (I)
and if he received (Failure), he aborts.

6. If the sender receives (Failure) from the Leaky GOT, he aborts.

7. The sender executes (send,(y01j , y
1
1j , . . . , y

0
nyj
, y1nyj

)) associated to FLGOT (I). For each i, j

the sender commits to (H0
ij , H

1
ij) = h0ij , h

1
ij .

For each x0ij , x
1
ij , the sender selects a random rij ∈ {0, 1} and commits to (X0

ij , X
1
ij) =

(Com(x
rij
ij ), Com(x

1⊕rij
ij )). The sender sends each Fj , dj to the receiver.

8. The receiver reveals J to the sender and for each j ∈ J and each input i, he sends y0ij , y
1
ij to

the sender.

9. The sender aborts if the values are different than what he sent.

10. For all j ∈ J , the sender opens the Commitment X0
ij , X

1
ij , H

0
ij , H

1
ij and Q0

ij , Q
1
ij

11. For all j ∈ J , the receiver checks that the garbled circuit j is valid and consistent and aborts
otherwise.

12. For all j 6∈ J , and all i ∈ [n], the sender opens X
cj⊕rij
ij = x

cj
ij .

13. The receiver opens his Commitment to h and q.

14. The sender opens the Commitments to the token associated to the values h and q

15. The receiver uses the tokens he received as well as the pairs (Fj , dj) to do the evaluations
using the garbling scheme. He checks that the validation outputs are consistent. If not he
aborts. Receiver takes the most common value as his output.

Theorem 3. For all predicate class P, πSFE securely realizes FSFE in the FLGOT (I), FCOM hybrid
model.

Proof. The correctness of the protocol can be deduced by inspection. The addition of privacy
amplification in conjunction with Commitment Scheme do not compromise correctness since they
are independent of the calculated function and are eventually made public. In the simulations, the
number at the end of each line corresponds to the relevant step in the protocol.
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Sender simulation

• The simulator sends the messages (commited) which are associated to the sender commiting
to h and q. (3)

• The simulator awaits the command (predicate,p). (4)

• The simulator selects uniformly at random the set J (of size s/2) and the string y′ and derives
the associated set I.

• If p(I) = True, then the simulator forwards the message (failure) to the environment and
aborts. (6)

• The simulator awaits that environment’s inputs for the leaky GOT, the Commitment com-
mand with the keys associated to the circuits as well as each (Fj , dj) (7)

• The simulator forwards J as well as all the keys whose indices are matched to J (9)

• The simulator awaits that the environment send the open command associated to all the keys
in the check circuit, he then checks that all check circuits are consistent and if not, he aborts.
(11)

• The simulator awaits that the environment sends the open command to the keys associated
to his choice of input. (11)

• The simulator choses uniformly at random h and q and forwards them to the environment.
(13)

• The simulator awaits that the environment send the open commands for Commitments asso-
ciated to keys associated to the given h and q (14)

• The simulator evaluates the evaluation circuits and checks that all validation outputs (V (.))
are consistent; if not he aborts.

• The simulator has all the tokens, because of the transparency of the garbling scheme, he can
determine for each input, for each circuit the value of input associated to each key. For each
input, he takes as input bit the value that appears in the majority of evaluation circuits. He
can thus extract the input and sends it to the ideal functionality (15)

All messages sent from the simulator to the environment are generated using the same distri-
bution as the protocol with an honest receiver. In the simulation, the environment could see a
discrepancy at the end when the simulator extracts the implicit input from the environment. This
can only happen with exponentially small probability for the simulator since the check circuit are
checked and that the verification function ensures that the inputs are consistent. The leakage from
the Leaky GOT, due to the privacy amplification step, will only leak a negligible amount of infor-
mation about the receiver’s input and thus the simulation is indistinguishable from the real protocol.
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Receiver Simulation

• The simulator awaits the commit command associated to h and q. (3)

• The simulator awaits the message (choice,I) from the environment, the simulator notes
the receiver’s choice of check circuit as J as well as the input y′ and sets y = h(y′) ⊕ q. the
simulator forward message (match)

• The simulator awaits the command (validation,b) from the environment, if b = True
the simulator aborts, otherwise it sends the input y to FSFE and learns output z. (5)

• For each j ∈ J , the sender sets (Fj , dj , ej) = GB(f ′).

• The simulator selects r uniformly at random. Let g′[(x, y), (h, y′, r)] = (z, r). Because of the
malleability of the scheme, the simulator can produce g consistent with GB(g′) such that
ψ(f ′) = ψ(g). For each j 6∈ J , the sender sets (Fj , dj , ej) = GB(g).

• The simulator sends the appropriate tokens that are associated with the environment’s input
to the leaky GOT. He also forwards the Commitment messages to the remaining tokens as
well as all the (Fj , dj , ej) he constructed. (7)

• The simulator awaits the environment’s choice of check circuit as well as the inputs he received
from the leaky GOT. The simulator checks if these values are consistent with what he sent,
if it is not the case, the simulator aborts.

• The simulator sends the reveals message for all of tokens associated to check circuits. (10)

• The simulator randomly selects for each input and each circuit to send a reveal message for
one of the token. (12)

• The simulator awaits the open commands to h and q. The simulator simulates the opening
of all the tokens required by the protocol. (15)

The main difference between the ideal setting and the real setting is the construction of fake
garbled functions. Fortunately, due to the privacy of the garbling schemes, these do not allow the
environment to distinguish which model he is part of. The Commitments hide the sender‘s input
and as such leave no recourse for the environment to distinguish between the real and ideal setting.

Theorem 4. FSFE can be securely realized in a constant number of rounds using O(ns) calls to
FOT and O(ns) calls to FCOM assuming a correct, private, transparent, malleable and projective
garbling scheme.

Proof. In the protocol the functionality FLGOT (I) is used only once to transmit a table containing
2ns keys. To do this, O(ns) OT and Commitments are required. The πSFE protocol does not
use any additional OT but requires O(ns) Commitments. It is clear that the protocol is constant
round.
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