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Abstract. Design efficient lattice-based cryptosystem secure against adap-
tive chosen ciphertext attack (IND-CCA2) is a challenge problem. To
the date, full CCA2-security of all proposed lattice-based cryptosystems
achieved by using a generic transformations such as either strongly un-
forgeable one-time signature schemes (SU-OT-SS), or a message authen-
tication code (MAC) and weak form of commitment. The drawback of
these schemes is that encryption requires separate encryption. Therefore,
the resulting encryption scheme is not sufficiently efficient to be used
in practice and it is inappropriate for many applications such as small
ubiquitous computing devices with limited resources such as smart cards,
active RFID tags, wireless sensor networks and other embedded devices.

In this work, for the first time, we introduce an efficient universal random
data padding (URDP) scheme, and show how it can be used to construct
a direct CCA2-secure encryption scheme from any worst-case hardness
problems in (ideal) lattice in the standard model, resolving a problem
that has remained open till date. This novel approach is a black-box

construction and leads to the elimination of separate encryption, as it
avoids using general transformation from CPA-secure scheme to a CCA2-
secure one. IND-CCA2 security of this scheme can be tightly reduced in
the standard model to the assumption that the underlying primitive is
an one-way trapdoor function.

Keywords: Post-quantum cryptography, Lattice-based PKE scheme, Universal
random data padding, CCA2-security, Standard model

1 Introduction

Devising quantum computer will enable us to break public-key cryptosystems
based on integer factoring (IF) and discrete logarithm (DL) problems[17] . Under
this future threat, it is important to search for secure PKEs based on the other
problem. Lattice-based PKE schemes hold a great promise for post-quantum
cryptography, as they enjoy very strong security proofs based on worst-case hard-
ness, relatively efficient implementations, as well as great simplicity and, lately,
their promising potential as a platform for constructing advanced functionalities.



The ultimate goal of public-key encryption is the production of a simple and effi-
cient encryption scheme that is provably secure in a strong security model under
a weak and reasonable computational assumption. The accepted notion for the
security of a public-key encryption scheme is semantically secure against adap-
tive chose ciphertext attack (i.e. IND-CCA2) [13] . In this scenario, the adversary
has seen the challenge ciphertext before having access to the decryption oracle.
The adversary is not allowed to ask the decryption of the challenge ciphertext,
but can obtain the decryption of any relevant cryptogram (even modified ones
based on the challenge ciphertext). A cryptosystem is said to be CCA2-secure
if the cryptanalyst fails to obtain any partial information about the plaintext
relevant to the challenge ciphertext.

1.1 Related work

In order to design CCA2-secure lattice-based encryption schemes, a lot of
successes were reached. There are two approach for constructing CCA2-secure
lattice-based cryptosystems in the standard model. Existing CCA2-secure schemes
exhibit various incomparable tradeoffs between key size and error rate.

-CCA-secure cryptosystem based on lossy trapdoor functions. Peikert and Waters
[11] showed for the first time how to construct CCA2-secure encryption scheme
from a primitive called a lossy ABO trapdoor function family, along with a
SU-OT-SS. They showed how to construct this primitive based on the learning
with error (LWE) problem. This result is particularly important as it gives for the
first time a CCA-secure cryptosystem based on the worst-case hardness of lattice
problems. It has public-keys of size O(n2) bits and relies on a quite small LWE

error rate of α = O(1/n4). Subsequently, Peikert [12] showed how to construct
a correlation-secure trapdoor function family from the LWE problem, and used
it within the Rosen-Segev scheme [15] to obtain another lattice-based CCA-
secure scheme. Unfortunately, the latter scheme also suffers from long public-
key and ciphertext length of O(n3) bits, but uses a better error rate of O(1/n)
in the security parameter n, even if applied in the Ring-LWE setting. Recently,
Micciancio and Peikert [10] give new methods for generating simpler, tighter,
faster and smaller trapdoors in cryptographic lattices to achieve a CCA-secure
cryptosystem. Their construction give a CCA-secure cryptosystem that enjoys
the best of all prior constructions, which has O(n2) bit public-keys, uses error
rate O(1/n). Recently, Steinfeld et al. [18] introduced the first CCA2-secure
variant of the NTRU [9] in the standard model with a provable security from
worst-case problems in ideal lattices. They construct a CCA-secure scheme using
the lossy trapdoor function, which they generalize it to the case of (k − 1)-of-k-
correlated input distributions.

-CCA-secure cryptosystem based on IBE. More constructions of IND-CCA2 se-
cure lattice-based encryption schemes can be obtained by using the lattice-based
selective-ID secure identity-based encryption (IBE) schemes of [1,2,3,4,7,14,16,19]
within the generic constructions of [5,6], and a SU-OT-SS or commitment scheme.



All the above schemes use generic transformations from CPA to CCA2 security
in the standard model, e.g., Dolev et al. approach [8], Canetti et al. paradigm [6]
or Boneh et al. approach [5]. They typically involve either a SU-OT-SS or a MAC

and commitment schemes to make the ciphertext authentic and non-malleable.
So, the resulting encryption scheme requires separate encryption and thus, it is
not sufficiently efficient to be used in practice and inappropriate for many appli-
cations such as small ubiquitous computing devices with limited resources such
as smart cards, active RFID tags, wireless sensor networks and other embedded
devices.

Till date, there is no generic direct transformation from any lattice-based one-
way trapdoor cryptosystem (i.e., worst-case hardness problem in lattice) to a
CCA2-secure one. In this work, for the first time, we show how to construct a
CCA2-secure cryptosystem directly based on the worst-case hardness problems
in lattice, resolving a problem that has remained open till date.

1.2 Our contributions

Our approach has several main benefits:

– It introduce a new generic asymmetric padding-based scheme. The main nov-
elty is that our approach can be applied to any conjectured (post-quantum)
one-way trapdoor cryptosystem.

– Our approach yields the first known direct CCA2-secure PKE scheme from
worst-case hardness problems in lattice.

– The proposed approach is a ”black-box” construction, which making it more
efficient and technically simpler than those previously proposed. The pub-
lick/secret keys are as in the original scheme and the encryption/decryption
complexity are comparable to the original scheme.

– This novel approach leads to the elimination of using generic transformations
from CPA-secure schemes to a CCA2-secure one.

– Our CCA2-security proof is tightly based on the assumption that the under-
lying primitive is a trapdoor one-way function. So, the scheme’s consistency
check can be directly implemented by the simulator without having access to
some external gap-oracle as in previous schemes [1,2,3,7,10,11,12,14,16,18,19].
Thus, our proof technique is fundamentally different from all known ap-
proaches to obtain CCA2-security in the lattice-based cryptosystems.

– Additionally, this scheme can be used for encryption of arbitrary-length long
messages without employing the hybrid encryption method and symmetric
encryption.

Organization. The rest of this manuscript is organized as follows: In the follow-
ing section, we briefly explain some notations and definitions. Then, in Section



3, we introduce our proposed scheme. Security and performance analysis of the
proposed scheme will be discussed in Section 4.

2 Preliminary

2.1 Notation

We will use standard notation. If x is a string, then |x| denotes its length. If

k ∈ N, then {0, 1}
k
denote the set of k -bit strings, 1k denote a string of k ones

and {0, 1}∗ denote the set of bit strings of finite length. y ← x denotes the
assignment to y of the value x. For a set S, s ← S denote the assignment to s
of a uniformly random element of S. For a deterministic algorithm A, we write
x ← AO(y, z) to mean that x is assigned the output of running A on inputs y
and z, with access to oracle O. We denote by Pr[E] the probability that the event
E occurs. If a and b are two strings of bits, we denote by a‖b their concatenation.
The bit-length of a denoted by Len(a), Lsbx1

(a) means the right x1 bits of a and
Msbx2

(a) means the left x2 bits of a.

2.2 Definitions

Definition 1 (Public-key encryption scheme). A public-key encryption
scheme (PKE) is a triple of probabilistic polynomial time (PPT) algorithms
(Gen,Enc,Dec) such that:

– Gen is a probabilistic polynomial-time key generation algorithm which takes
a security parameter 1n as input and outputs a public key pk and a secret-key
sk. We write (pk, sk)← Gen(1n). The public key specifies the message space
M and the ciphertext space C.

– Enc is a (possibly) probabilistic polynomial-time encryption algorithm which
takes as input a public key pk, a m ∈ M and random coins r, and outputs
a ciphertext C ∈ C. We write Enc(pk,m; r) to indicate explicitly that the
random coins r is used and Enc(pk,m) if fresh random coins are used.

– Dec is a deterministic polynomial-time decryption algorithm which takes as
input a secret-key sk and a ciphertext C ∈ C, and outputs either a message
m ∈ M or an error symbol ⊥. We write m← Dec(C, sk).

– (Completeness) For any pair of public and secret-keys generated by Gen and
any message m ∈ M it holds that Dec(sk, Enc(pk,m; r)) = m with over-
whelming probability over the randomness used by Gen and the random coins
r used by Enc.

Definition 2 (Padding scheme). Let ν, ρ, k be three integers such that ν+ρ ≤
k. A padding scheme Π consists of two mappings π : {0, 1}ν × {0, 1}ρ → {0, 1}k



and π̂ : {0, 1}k → {0, 1}ν×{0, 1}ρ∪{⊥} such that π is injective and the following
consistency requirement is fulfilled:

∀m ∈ {0, 1}ν, r ∈ {0, 1}ρ : π̂(π(m, r)) = m.

Definition 3 (CCA2-security). A public-key encryption scheme PKE is se-
cure against adaptive chosen-ciphertext attacks (i.e. IND-CCA2) if the advantage
of any two-stage PPT adversary A = (A1, A2) in the following experiment is
negligible in the security parameter k:

Expcca2
PKE,A(k):

(pk, sk)← Gen(1k)

(m0,m1, state)← A
Dec(sk,.)
1 (pk) s.t. |m0| = |m1|

b← {0, 1}

C∗ ← Enc(pk,mb)

b′ ← A
Dec(sk,.)
2 (C∗, state)

if b = b
′

return 1, else return 0.

The attacker may query a decryption oracle with a ciphertext C at any point dur-
ing its execution, with the exception that A2 is not allowed to query Dec(sk, .)

with C∗. The decryption oracle returns b
′

← A
Dec(sk, .)
2 (C∗, state). The attacker

wins the game if b = b′ and the probability of this event is defined as Pr[Exp cca2
PKE,A (k)].

We define the advantage of A in the experiment as

AdvIND−CCA2
PKE,A (k) =

∣
∣
∣
∣
Pr[Exp cca2

PKE,A (k) = 1]−
1

2

∣
∣
∣
∣
.

3 The proposed cryptosystem

In this section, we introduced our proposed CCA2-secure encryption scheme.
Our scheme is a precoding-based algorithm which can transform any one-way
trapdoor cryptosystem to a CCA2-secure one in the standard model. Precoding
includes a permutation and pad some random obscure-data to the message bits.

3.1 The proposed idea

Let we can decide to encrypt message m ∈ {0, 1}n. At first, we perform a
random encoding to the message bits. To do this, we uniformly choose r =
(r1, . . . , rk) ∈R {0, 1}

k with k ≪ n at random, and, suppose wt(r) = h be the
its Hamming weigh. If n/h is an integer, then we can divide m into h blocks.



Otherwise, in order to divide m into h blocks, we must pad a random binary
string (RBS) with length h . ⌈n/h⌉ − n to the right of m. In each cases, we can
divide m into h blocks d1‖d2‖ . . . ‖dh with equal binary length v = ⌈n/h⌉ where
dh = Lsb(n−(h−1) .⌈n/h⌉) (m)‖RBS. Therefore, if h | n, then RBS = ϕ (the empty
set) and dh = Lsb(n−(h−1) .⌈n/h⌉) (m), else, RBS is a random block with binary
length h . ⌈n/h⌉ − n and we have dh = Lsb(n−(h−1) .⌈n/h⌉) (m)‖RBS.

Now, we perform a random permutation and pad some random obscure blocks
(ROBs) with equal binary length s into the message blocks di, 1 ≤ i ≤ h using
padding scheme π : {0, 1} × {0, 1}

v
→ {0, 1}

v
× {0, 1}

s
, which can be defined

as follows:

π(ri, di) = d
′

i =







d∑i
j=1

rj
if ri = 1

ROB if ri = 0

, 1 ≤ i ≤ k.

Notice that in order to prevent excessive increase in the message length, we can
choose s small enough. The message m

′

= (d
′

1‖d
′

2‖ . . . ‖d
′

k) is called encoded
message. We summarize encoding process in algorithm 1.

Algorithm 3.1: Random Encoding Algorithm.

Input: m = (m1, . . . ,mn), r ∈R {0, 1}
k with n≫ k .

Output: Encoded message m′ = (d
′

1‖d
′

2‖ . . . ‖d
′

k).

SETUP:

1. h← wt(r).

2. If h | n then v ← n/h;

else v ← ⌈n/h⌉ and choose a RBS with binary length h · ⌈n/h⌉ − n, and

m← (m1, . . . ,mn‖ R B S
︸ ︷︷ ︸

h·⌈n/h⌉−n

).

3. Divide m into h blocks (d1‖d2‖ . . . ‖dh) with equal Len(di) = v, 1 ≤ i ≤ h.

PERMUTATION AND PADDING:

1. Uniformly choose integer s at random.

2. For i = 1 to k do;

if ri = 1 then d
′

i ← d∑i
j=1

rj
,

else d
′

i ← ROB with binary length s.

Return m
′

= (d
′

1‖d
′

2‖ . . . ‖d
′

k).

We illustrate algorithm (3.1) with small example. Supposem = (m1, . . . ,m1117)
and r = (0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0).



SETUP:

We have |m| = n = 1117, k = 18 and h =
∑k

i=1 ri = 11. Since
11 ∤ 1117 so we must pad a RBS with binary length h . ⌈n/h⌉ − n =
5 to the right of m. If we uniformly chose 1, 0, 1, 1, 0 at random, we
have m = (m1, . . . ,m1117, 1, 0, 1, 1, 0

︸ ︷︷ ︸

h .⌈n/h⌉−n

). Since h = 11, the algorithm di-

vides m into 11 blocks with equal length v = ⌈n/h⌉ = 102. We have
m = (m1, . . . , m102

︸ ︷︷ ︸

d1

‖m103, . . . ,m204
︸ ︷︷ ︸

d2

‖ . . . ‖m1020, . . . ,m1117, 1, 0, 1, 1, 0
︸ ︷︷ ︸

d11

), where

Lsb(n−(n−1)·⌈n/h⌉) (m) = Lsb 97 (m) = m1020, . . . ,m1117.

PERMUTATION AND PADDING:

Firstly, we choose random integer s, say s = 4. We have

r1 = 0, thus d
′

1 ← ROB#1 = (0, 1, 1, 0), where (0, 1, 1, 0) is randomly chosen by
algorithm 3.1.

r2 = 1, thus d
′

2 ← d∑2

j=1
rj = d1.

r3 = 0, thus d
′

3 ← ROB#2 = (1, 0, 1, 0), where (1, 0, 1, 0) is randomly chosen by
algorithm 3.1.
...
r17 = 1, thus d

′

17 ← d∑17

j=1
rj

= d11.

r18 = 0, thus d
′

18 ← ROB#(k−h) = 7 = (0, 0, 1, 0), where (0, 0, 1, 0) is randomly
chosen by algorithm 3.1.

l − h ROB blocks with equal length s = 4 are combined with the
message blocks di, 1 ≤ i ≤ h, to produce the encoded message
m

′

= (d
′

1‖d
′

2‖ . . . ‖d
′

k). In the final, the algorithm outputs m
′

as m
′

=
(0, 1, 1, 0
︸ ︷︷ ︸

d
′

1

‖m1, . . . , m102
︸ ︷︷ ︸

d
′

2

‖ 1, 0, 1, 0
︸ ︷︷ ︸

d
′

3

‖ . . . ‖m1020, . . . ,m1117, 1, 0, 1, 1, 0
︸ ︷︷ ︸

d
′

17

‖ ‖ 0, 0, 1, 0
︸ ︷︷ ︸

d
′

18

).

As we see, the length and the position of the message blocks di are correlated
to the number and the position of the random bits ri = 1 respectively, and
completely random.

3.2 The proposed scheme

Now, we are ready to define our proposed encryption scheme. Given a secure
lattice-based encryption scheme Πlbe = (Genlbe,Enclbe,Declbe), we construct a
IND-CCA2 secure encryption scheme Πcca2 = (Gencca2,Enccca2,Deccca2) as fol-
lows. This scheme can be used for encryption of arbitrary-length long messages.
System parameters. n, k ∈ N, where n≫ k.



Key generation. Let Genlbe be the Lattice-based key generator. On security
parameter 1k, the generator Gencca2 runs Genlbe(1

k) to obtain

sk = sklbe and pk = pklbe.

Encryption. To encrypt messagem ∈ {0, 1}n with n≫ k, Enccca2(pk,m) works
as follows.

– Uniformly chooses r ∈R {0, 1}
k at random and computes its Hamming

weight wt(r) = h.

– Randomly chooses small integer s and executes algorithm (3.1) for generate
encoded message m

′

= (d
′

1‖d
′

2‖ . . . ‖d
′

l) from message m.

– Suppose y be the corresponding decimal value of m
′

. Computes

C1 = y · h, C2 = Enclbe(pk, r)

and outputs the ciphertext C = (C1, C2).

To handle CCA2-security and non-malleability related issues, we strictly cor-
relate the message bits mi, 1 ≤ i ≤ n to the randomness r via encoding process.
The value of y also correlates to the random binary string r via its Hamming
weight h = wt(r). So, the CCA2 adversary for extract the message blocks di
from C1 must first recover exactly the same random binary string r from lattice-
based cryptosystem which is impossible, if the underlying lattice-based one-way
trapdoor cryptosystem be secure.

Decryption. Deccca2(sk, C) for extract message m performs the following steps.

– Computes random binary vector r as r = Declbe(C2, sk) and h =
∑k

i=1 ri.

– Computes y = C1/h.

– Checks whether

Len(y)
?
= h · ⌈n/h⌉ (1)

holds, and rejects if not (consistency check). If (1) hold, computes v = ⌈n/h⌉
and binary coded decimal (BCD) m′ of y.

– Computes s = (|m′| − hv)/(k − h) and rejects the ciphertext if s is not an
integers (verify whether the padding information is correct or not).

– The lengths and position of the message/ROB blocks are explicit, therefore,
Deccca2 simply can separate ROB blocks from encoded message m′ and ex-
tract message blocks di, 1 ≤ i ≤ h with the following algorithm.

Algorithm 3.2: Message Extractor.
Input: r = (r1, . . . , rk), integers h, v, s and encoded message m′.
Output: Retrieved message m = (d1‖d2‖ . . . ‖dh)



1. For i = 1 to k do

If ri = 0, then m′ ← Lsb(|m′|−s)(m
′),

else d∑i
j=1

rj
← Msbv(m

′) and m′ ← Lsb(|m′|−v)(m
′);

2. m← (d1‖d2‖ . . . ‖d∑k
j=1

rj
), where

∑k
i=1 ri = h.

3. If h ∤ n, then m← Msbn(m) (remove right (h.⌈n/h⌉ − n) bits of m).

Return ”m”.

4 Security and performance analysis

4.1 Security analysis

In this subsection, we proof the CCA2-security of the proposed cryptosystem
which is built using the pre-coding approach with a secure lattice-based encryp-
tion scheme.
Theorem 1. : Let Πlbe = (Genlbe,Enclbe,Declbe) be a secure lattice-based en-
cryption scheme, then the proposed scheme is CCA2-secure in the standard
model.

In the proof of security, we exploit the fact that for a well-formed ciphertext, we
can recover the message if we know the randomness r that was used to create
the ciphertext.

Proof: Suppose that C∗ = (C∗
1 , C

∗
2 ) be the challenge ciphertext. Let Si be the

event that the adversary A wins in Game i. Here is the sequence of games.

Game 0. We define Game 0 which is an interactive computation between an
adversary A and a simulator. This game is usual CCA2 game used to define
CCA2-security, in which the simulator provides the adversary’s environment.
Initially, the simulator runs the key generation algorithm and gives the public-key
to the adversary. The adversary submits two messages m0,m1 with |m0| = |m1|
to the simulator. The simulator chooses b ∈ {0, 1} at random, and encrypts mb,
obtaining the challenge ciphertext C∗ = (C∗

1 , C
∗
2 ). The simulator gives C∗ to the

adversary. We denote by r∗, h∗ = wt(r∗), v∗ = ⌈n/h∗⌉, s∗ and y∗ = DV(m′∗)
where

m′∗ = Encode(mb, r
∗, s∗) (2)

the corresponding intermediate quantities computed by the encryption algo-
rithm, where DVmeans the decimal value. The only restriction on the adversary’s
requests is that after it makes a challenge request, the subsequent decryption
requests must not be the same as the challenge ciphertext. At the end of the
game, the adversary A outputs b̃ ∈ {0, 1}. Let S0 be the event that b̃ = b. Since
Game 0 is identical to the CCA2 game we have that



∣
∣
∣
∣
Pr[S0]−

1

2

∣
∣
∣
∣
= Advcca2Π,A (k).

and, our goal is to prove that this quantity is negligible.

Game 1. Define Game 1 as identical with Game 0, except that h = h∗.
Lemma 1. There exists an efficient adversary A1 such that:

|Pr[S1]− Pr[S0]| ≤ AdvlbeΠ,A1
(k). (3)

By the assumption that the lattice-based encryption scheme is secure, we have
that AdvlbeΠ,A1

(k) is negligible.

Proof: Let negl(k) = |Pr[S1]− Pr[S0]|. We can easily build an adversary A1

who hopes to recover mb from Game 1. In this game, the adversary A1 queries
on input(C1, C2) 6= (C∗

1 , C
∗
2 ), while h = h∗. The simulator takes as input

(C1, C2), h = h∗ and computes r = Declbe(C2, ·) 6= r∗, y = C1/h
∗ 6= y∗ and so

m
′

6= m′∗. If |m
′

| is not equal to obvious value h∗ · ⌈n/h∗⌉, then the simulator
rejects the ciphertext in (1). Since m′ 6= m′∗, thus s = (|m′|−h∗ ·v)/(k−h∗) 6= s∗

and the simulator rejects the ciphertext if s is not an integers. Furthermore,
since the position of the message/ROB blocks (r 6= r∗) and the ROB blocks
length s are not explicit, so, the output of algorithm (3.2)) is not identical to mb.
Therefore, if the lattice-based encryption scheme is secure (i.e., the adversary
cannot recover r∗ from it), then the A1’s advantage of this game is exactly
equal to negl(k). By definition of AdvlbeΠ,A1

(k), we have negl(k) ≤ AdvlbeΠ,A1
(k).

Remark 1. Notice that if one of the message extractor algorithm (3.2) inputs
(i.e., r∗, v∗, s∗ and m′∗) is not a legitimate input, then the output of its is not
identical to mb.
Remark 2. Notice that in order to query from the simulator, the CCA2 ad-
versary cannot modified C2 based on the challenge ciphertext C∗

2 (well-formed
decryption queries). Since for correctly retrieve mb, the simulator must know
the exact value of randomness r∗. So, if the lattice-based encryption scheme is
secure, then the advantage of the CCA2 adversary is negligible.

Game 2. Define Game 2 as identical with Game 1, except that C1 = C∗
1 .

Lemma 2. There exists an efficient adversary A2 such that:

|Pr[S2]− Pr[S1]| ≤ AdvlbeΠ,A2
(k) (4)

By the assumption that the lattice-based encryption scheme is secure, we have
that AdvlbeA2

(k) is negligible.

Proof: Let negl(k) = |Pr[S2]− Pr[S0]|. Consider the adversary A2 who aims to
recover mb from this game. In this game, the adversary A2 uniformly chooses
C2 6= C∗

2 at random and queries on input C = (C∗
1 , C2), h = h∗. In this case,

the decryption simulator computes r = Declbe(C2, ·) 6= r∗. It also computes



y = C1/h = y∗, v = v∗, s = s∗. Although the message/ROB blocks length and
the encoded message m′ are explicit, but since the position of the message/ROB
blocks are not explicit, r 6= r∗, thus the outputs of algorithm (3.2)) is not iden-
tical to mb. So, if the lattice-based encryption scheme is secure, then the A2’s
advantage of this game is equal to negl(k). By definition of AdvlbeΠ,A2

(k), we have

negl(k) ≤ AdvlbeΠ,A2
(k).

Game 3. Define Game 3 as identical with Game 0, except that C2 = C∗
2 .

Lemma 3. There exists an efficient adversary A3 such that

|Pr[S3]− Pr[S0]| ≤ AdvΠ,A3
(k). (5)

Proof: Suppose negl(k) = |Pr[S3]− Pr[S0]|. We can easily build an adversary
A3 who wishes to recover mb from Game 3. In this game, the adversary A3

uniformly chooses C1 6= C∗
1 at random and queries on input (C1, C

∗
2 ). In this

case, the simulator computes r = Declbe(C
∗
2 , ·) = r∗, h = h∗, y = C1/h

∗ 6= y∗

and so m′ 6= m′∗. If Len(y) = |m′| is not equal to obvious value h∗ · ⌈n/h∗⌉,
then the simulator rejects the ciphertext in (1). Since m′ 6= m′∗, thus
s = (|m′| − h∗ · v)/(k − h∗) 6= s∗, and the simulator rejects the ciphertext if s
is not an integers. Furthermore, since the ROB blocks length s and the encoded
message m′ are not explicit, thus the outputs of algorithm (3.2)) is not identical
to mb and so, the A3’s advantage of this game is equal to negl(k). By definition
of AdvlbeΠ,A3

(k), we have negl(k) ≤ AdvlbeΠ,A3
(k).

Lemma 4. We claim that
|Pr[S3]| = 1/2. (6)

Proof: Game 3 same as Game 0, except that the component C1 of the queried
ciphertext C = (C1, C

∗
2 ) is not computed by equation (2) but rather chosen

uniformly at random. So, the queried ciphertext C is statistically independent
from the challenge bit b. Thus, the A3’s advantage in Game 3 is obviously 0, and

|Pr[S2]| =
1

2

Completing the Proof:

We can write

| Pr[S0] |= |Pr[S0] + Pr[S0]− Pr[S0] + Pr[S1]− Pr[S1] + Pr[S2]− Pr[S2]+

Pr[S3]− Pr[S3]|
So we have

|Pr[S0]| ≤ |Pr[S3]|+ |Pr[S3]− Pr[S0]|+ |Pr[S2]− Pr[S1]|+ |Pr[S1]− Pr[S0]|+

|Pr[S2]− Pr[S0]|
We have

|Pr[S2]− Pr[S0]| ≤ |Pr[S2]− Pr[S1]|+ |Pr[S1]− Pr[S0]| (7)



From equations (3,4,5,6,7) we have:

|Pr[S0]− 1/2| ≤ AdvΠ,A3
(k) + 2AdvlbeΠ,A2

(k) + 2AdvlbeΠ,A1
(k)

By assumption, the right-hand side of the above equation is negligible, which
finishes the proof.

4.2 Performance analysis

The performance-related issues can be discussed with respect to the computa-
tional complexity of key generation, key sizes, encryption and decryption speed,
and information rate. The proposed cryptosystem features fast encryption and
decryption. The time for computing encoded message is negligible compared
to the time for computing (Enclbe,Declbe). Encryption roughly needs one ap-
plication of Enclbe together a multiplication, and decryption roughly needs one
application of Declbe together a division. The public/secret keys are as in the
original scheme. The length of the ciphertext is equal to n + (k − h)s + k. The
information rate (i.e., the ratio of the binary length of plaintext to that of the
ciphertext) is equal to n/(n+ (k − h)s+ k), and for n≫ k and small integer s,
it is close to one. Compared to other CCA2-secure lattice-based schemes were
introduced today, our scheme is very simple and more efficient.

5 Conclusion

We construct the first direct CCA2-secure variant of the lattice-based PKE
scheme, in a black-box manner, with a provable security from worst-case hardness
problems in (ideal) lattices. This novel approach is very simple and more efficient
and leads to the elimination of using SU-OT-SSs or MACs for transformations
CPA-secure schemes to a CCA2-secure one. We showed that this scheme has
extra advantages, namely, its IND-CCA security remains tightly related (in the
standard model) to the worst-case hardness problems in lattice. Additionally,
this scheme can be used for encryption of long messages without employing the
hybrid encryption method and symmetric encryption.
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