
Unconditionally Secure and Universally Composable
Commitments from Physical Assumptions

Ivan Damgård ∗ Alessandra Scafuro †

Abstract

We present a constant-round unconditional black-box compiler that transforms any ideal (i.e.,
statistically-hiding and statistically-binding) straight-line extractable commitment scheme, into
an extractable and equivocal commitment scheme, therefore yielding to UC-security [Can01].
We exemplify the usefulness of our compiler by providing two (constant-round) instantiations of
ideal straight-line extractable commitment based on (malicious) PUFs [OSVW13] and stateless
tamper-proof hardware tokens [Kat07], therefore achieving the first unconditionally UC-secure
commitment with malicious PUFs and stateless tokens, respectively. Our constructions are
secure for adversaries creating arbitrarily malicious stateful PUFs/tokens.

Previous results with malicious PUFs used either computational assumptions to achieve
UC-secure commitments or were unconditionally secure but only in the indistinguishability
sense [OSVW13]. Similarly, with stateless tokens, UC-secure commitments are known only
under computational assumptions [CGS08, GIS+10, CKS+11], while the (not UC) unconditional
commitment scheme of [GIMS10] is secure only in a weaker model in which the adversary is not
allowed to create stateful tokens.

Besides allowing us to prove feasibility of unconditional UC-security with (malicious) PUFs
and stateless tokens, our compiler can be instantiated with any ideal straight-line extractable
commitment scheme, thus allowing the use of various setup assumptions which may better fit
the application or the technology available.

Keywords: UC-security, hardware assumptions, unconditional security, commitment scheme.

1 Introduction

Unconditional security guarantees that a protocol is secure even when the adversary is unbounded.
While it is known how to achieve unconditional security for multi-party functionalities in the plain
model assuming honest majority [BGW88, CCD88], obtaining unconditionally secure two-party
computation is impossible in the plain model. In fact, for all non-trivial two-party functionalities,
achieving unconditional security requires some sort of (physical) setup assumption.

Universally composable (UC) security [Can01] guarantees that a protocol is secure even when
executed concurrently with many other instances of any arbitrary protocol. This strong notion
captures the real world scenarios, where typically many applications are run concurrently over the
internet, and is therefore very desirable to achieve. Unfortunately, achieving UC-security in the
plain model is impossible [CKL03].
∗Department of Computer Science, Aarhus University, Denmark.
†Department of Computer Science, UCLA, USA.

1

Hence, to have a 2-party protocol whose security either withstands any unbounded adversary
(unconditional security), or holds in presence of concurrent executions with arbitrary protocols
(UC-security) – or both, if one aims for the best – one must trust in some setup. One natural
research direction is to explore which setup assumptions suffice to achieve (unconditional) UC, as
well as to determine whether (or to what extent) we can reduce the amount of trust in some third
party. Furthermore, exploring multiple setup assumptions allows for more options when designing a
protocol. Hence, several setup assumptions have been explored by the community. In the following,
we briefly go over some assumptions proposed in literature to achieve unconditional and/or UC-
security, and motivate our focus to the stateless token and (malicious) PUF model.

In [CLOS02] Canetti et. al show that any functionality can be UC-realized assuming the ex-
istence of a trusted Common Reference String (CRS), under computational assumptions. Here,
the security crucially relies on the CRS being honestly sampled. Hence, security in practice would
typically rely on a third party sampling the CRS honestly and security breaks down if the third
party is not honest. Similar arguments apply to various assumptions like “public-key registration”
services [BCNP04, CDPW07].

Another line of research explores “physical” setup assumptions. Based on various types of
noisy channels, unconditionally secure Bit Commitment (BC) and Oblivious Transfer (OT) can
be achieved [CK88, DKS99] for two parties, but UC security has not been shown for these protocols
and in fact seems non-trivial to get for the case of [DKS99].

In [Kat07] Katz introduces the assumption of the existence of tamper-proof hardware tokens.
The assumption is supported by the possibility of implementing tamper-proof hardware using cur-
rent available technology (e.g., smart cards). A token is defined as a physical device (a wrapper),
on which a player can upload the code of any functionality, and the assumption is that any ad-
versary cannot tamper with the token. Namely, the adversary has only black-box access to the
token, i.e., it cannot do more then observing the input/output characteristic of the token. The
main motivation behind this new setup assumption is that it allows for a reduction of trust. Indeed
in Katz’s model tokens are not assumed to be trusted (i.e., produced by a trusted party) and the
adversary is allowed to create a token that implements an arbitrary malicious function instead of the
function dictated by the protocol. (However, it is assumed that once the token is sent away to the
honest party, it cannot communicate with its creator. This assumption is necessary, as otherwise
we are back to the plain model). A consequence of this model is that the security of a player now
depends only on its own token being good and holds even if tokens used by other players are not
genuine! This new setup assumptions has gained a lot of interest and several work after [Kat07]
have shown that unconditional UC-security is possible [MS08, GIS+10], even using a single stateful
token [DKMQ11, DKMQ12]. Note that a stateful token, in contrast with a stateless token, requires
an updatable memory that can be subject to reset attacks. Thus, ensuring tamper-proofness for a
stateful token seems to be more demanding than for a stateless token, and hence having protocols
working with stateless tokens is preferable.

However, the only constructions known for stateless tokens require computational assump-
tions [CGS08, Kol10, GIS+10, CKS+11] and a non-constant number of rounds (if based on one-
way functions only). In fact, intuitively it seems challenging to achieve unconditional security with
stateless tokens: A stateless token runs always on the same state, thus an unbounded adversary
might be able to extract the secret state after having observed only a polynomial number of the
token’s outputs. This intuition is confirmed by [GIMS10] where it is proved that unconditional
OT is impossible using stateless tokens. On the positive side, [GIMS10] shows an unconditional

2

commitment scheme (not UC) based on stateless tokens, but the security of the scheme holds only
if the adversary is not allowed to create malicious stateful tokens. This is in contrast with the
standard tamper-proof hardware model, where the adversary is allowed to construct any arbitrary
malicious (hence possibly stateful) token. Indeed, it seems difficult in practice to detect whether an
adversary sends you a stateless or a stateful token. Therefore, the question of achieving uncondi-
tional commitments (UC-secure or not) in the standard stateless token model (where an adversary
possibly plays with stateful tokens) is still open.

In this work we provide a positive answer showing the first UC-secure unconditional commitment
scheme with stateless tokens.

Following the approach of [Kat07], Brzuska et al. in [BFSK11a] propose a new setup assumption
for achieving UC security, which is the existence of Physically Uncloneable Functions (PUFs). PUFs
have been introduced by Pappu in [Pap01, PRTG02], and since then have gained a lot of interest
for cryptographic applications [GKST07, GvDC+08, AMS+09, RSS09, FBA09, SVW10, AMS+11,
Rüh10, MHV12]. A PUF is a physical noisy source of randomness. In other words a PUF is a device
implementing a function whose behavior is unpredictable even to the manufacturer. The reason is
that even knowing the exact manufacturing process there are parameters that cannot be controlled,
therefore it is assumed infeasible to construct two PUFs with the same challenge-response behavior.
A PUF is noisy in the sense that, when queried twice with the same challenge, it can output two
different, although close, responses. Fuzzy extractors are applied to PUF’s responses in order to re-
produce a unique response for the same challenge. The “PUF assumption” consists in assuming that
PUFs satisfy two properties: 1) unpredictability: the distribution implemented by a PUF is unpre-
dictable. That is, even after a polynomial number of challenge/response pairs have been observed,
where the challenges can be adaptively chosen, the response on any new challenge (sufficiently far
from the ones observed so far) is unpredictable; this property is unconditional; 2) uncloneability: as
a PUF is the output of a physical uncontrollable manufacturing process, it is assumed that creating
two identical PUFs is hard even for the manufacturer. This property is called hardware uncloneabil-
ity. Software uncloneability corresponds to the hardness of modeling the function implemented by
the PUF and is enforced by unpredictability (given that the challenge/response space of the PUF
is adequately large). Determining whether (or to what extent) current PUF candidates actually
satisfy the PUF assumption is an active area of research (e.g., [KKR+12, BHNS13]) but is out of
the scope of this work. For a survey on PUF’s candidates the reader can refer to [MV10], while a
security analysis of silicon PUFs is provided in [KKR+12].

Designing PUF-based protocols is fundamentally different than for other hardware tokens. This
is due to the fact that the functional behavior of a PUF is unpredictable even for its creator. This
causes an asymmetric situation in which only the party in possession of the PUF has full access to
the secrets [BFSK11b]. Brzuska et al. modeled PUFs in the UC-setting by formalizing the ideal PUF
functionality. They then provided constructions for Unconditional UC-OT and UC-BC. Somewhat
surprisingly, it turns out that unconditional UC-OT is possible with (honest) PUFs, while it is
impossible with (honest) stateless tokens [GIMS10]. However, the UC-definition of PUFs proposed
in [BFSK11a] assumes that all PUFs are trusted. Namely, they assume that even a malicious player
creates PUFs honestly, following the prescribed generation procedure. This assumption seems too
optimistic as it implies that an adversary must not be capable of constructing hardware that “looks
like” a PUF but that instead computes some arbitrary function. The consequence of assuming
that all PUFs are trusted is that the security of a player depends on the PUFs created by other
players. (Indeed, in the OT protocol of [BFSK11a], if the receiver replaces the PUF with hardware

3

implementing some predictable function, the security of the sender is broken).
In [OSVW13] Ostrovsky et al. extend the ideal PUF functionality of [BFSK11a] in order to

model the adversarial behavior of creating and using “malicious PUFs” in the UC framework. A
malicious PUF is a physical device for which the security properties of a PUF are not guaranteed. As
such, it can be a device implementing any function chosen by the adversary, so that the adversary
might have full control on the answers computed by its own “PUF”. Similarly to the hardware-token
model, a malicious PUF cannot communicate with the creator once is sent away. A malicious PUF
can, of course, be stateful. The major advantage of the malicious PUF model is that the security of
a player depends only on the goodness of its own PUFs. Obviously, the price to pay is that protocols
secure in presence of malicious PUFs are more complex that protocols designed to deal only with
honest PUFs. Nevertheless, [OSVW13] shows that even with malicious PUFs it is possible to achieve
UC-secure computations relying on computational assumptions and an unconditional commitment
scheme which is secure only in the indistinguishability sense. Achieving unconditional UC-secure
commitments (and general secure computations) is left as an open problem in [OSVW13].

In this paper, we provide a (partial) positive answer to this open problem by providing the first
construction of unconditional UC-secure Bit Commitment in the malicious PUFs model. Whether
unconditional OT (and thus general secure computation) is possible with malicious PUFs is still an
interesting open question. Intuitively, since PUFs are stateless devices, one would think to apply the
arguments used for the impossibility of unconditional OT with stateless tokens [GIMS10]. However,
due to the unpredictability property of PUFs which holds unconditionally, such arguments do not
carry through. Indeed, as long as there is at least one honest PUF in the system, there is enough
entropy, and this seems to defeat the arguments used in [GIMS10]. On the other hand, since a PUF
is in spirit just a “random function”, it is not clear how to implement the OT functionality when
only one of the players uses honest PUFs.

Van Dijk and Rührmair in [vDR12] also consider adversaries who create malicious PUFs, that
they call “bad PUFs" and they consider only the stand-alone setting. They show that unconditional
OT is impossible in the bad PUF model but this impossibility proof works assuming that also honest
parties play with bad PUFs. Thus such impossibility proof has no connection to the question of
achieving unconditional OT in the malicious PUF model (where honest parties play with honest
PUFs).

Our Contribution. In this work we provide a tool for constructing UC-secure commitments given
any straight-line extractable commitment. This essentially means that the task of constructing UC-
secure commitment is reduced to the perhaps simpler task of achieving extractable commitments.
This tool allows us to show feasibility results for unconditional UC-secure protocols in the state-
less token model and in the malicious PUF model. More precisely, we provide a compiler that
transforms any ideal extractable commitment into a UC-secure commitment. An ideal extractable
commitment is a statistically hiding, statistically binding and straight-line extractable commitment.
The transformation uses the ideal extractable commitment as black-box and is unconditional, that
is, it does not require any further assumption. The key advantage of such compiler is that one can
implement the ideal extractable commitment with the setup assumption that is more suitable to
the application and the technology available.

We then provide an implementation of the ideal extractable commitment scheme in the malicious
PUFs model of [OSVW13]. Our construction builds upon the (stand-alone) unconditional BC

4

scheme shown in [OSVW13] 1 which is not extractable. By plugging our extractable commitment
scheme in our compiler we obtain the first unconditional UC-secure commitment with malicious
PUFs.

We then construct ideal extractable commitments using stateless tokens. We use some of the
ideas employed for the PUF construction, but implement them with different techniques. Indeed,
while PUFs are intrinsically unpredictable and even having oracle access to a PUF an unbounded
adversary cannot predict the function run by it, with stateless tokens we do not have such guarantee
and uncontrolled access to a token might reveal the function embedded in it. Our protocol is secure
in the standard stateless token model, where the adversary has no restriction and can send malicious
stateful tokens. By plugging such protocol in our compiler, we achieve the first unconditional UC-
secure commitment scheme with stateless tokens. Given that unconditional OT is impossible with
stateless tokens, this result completes the picture concerning feasibility of unconditional UC-security
with stateless tokens.
Remark. In the rest of the paper it is assumed that even an unbounded adversary can query
the PUF/token only a polynomial number of times. We stress that this is not a restriction of our
work but it is a necessary assumption in all previous works achieving unconditional security with
PUFs and stateless tokens.(See Pag.15 of [BFSK11b] for PUFs, and Pag. 5 of [GIMS10] for stateless
tokens). Indeed, if we allowed the adversary to query the PUF/token on all possible challenges,
then she can derive the truth table implemented by the physical device.

2 Definitions

Notation. We denote by n the security parameter and by PPT the property of a probabilistic
algorithm whose number of steps is polynomial in its security parameter. We denote by (vA, vB)←
〈A(a), B(b)〉(x) the local outputs of A and B of the random process obtained by having A and B
activated with independent random tapes, interacting on common input x and on (private) auxiliary
inputs a to A and b to B. When the common input x is the security parameter, we omit it. If A
is a probabilistic algorithm we use v $← A(x) to denote the output of A on input x assigned to v.
We denote by viewA(A(a), B(b))(x) the view of A of the interaction with player B, i.e., its values
is the transcript (γ1, γ2, ..., γt; r), where the γi’s are all the messages exchanged and r is A’s coin
tosses. We use notation [n] to denote the set {1, . . . , n}. Let P1 and P2 be two parties running
protocol (A,B) as sub-routine. When we say that party “P1 runs 〈A(·), B(·)〉(·) with P2” we always
mean that P1 executes the procedure of party A and P2 executes the procedure of party B. In
the following definitions we assume that the adversary has auxiliary information, and assume that
parties are stateful.

2.1 Ideal Extractable Commitment Scheme

We denote by Faux an auxiliary set-up functionality accessed by the real world parties (and the
extractor).

1For completeness, we would like to mention that [RvD13] claims an “attack” on such construction. Such “attack"
however arises only due to misunderstanding of conventions used to write protocol specifications and does not bear
any security threat. The reader can refer to the discussion of [OSVW12] (full version of [OSVW13]) at Pag. 7,
paragraph "On [RvD13]", line 20–40 for more details.

5

Definition 1 (Ideal Commitment Scheme in the Faux model). A commitment scheme is a tuple of
PPT algorithms Com = (C,R) having access to an ideal set-up functionality Faux, implementing the
following two-phase functionality. Given to C an input b ∈ {0, 1}, in the first phase called commit-
ment phase, C interacts with R to commit to the bit b. We denote this interaction by ((c, d), c) ←
〈C(com, b), R(recv)〉 where c is the transcript of the (possibly interactive) commitment phase and d
is the decommitment data. In the second phase, called decommitment phase, C sends (b, d) and R
finally outputs “accept” or “reject” according to (c, d, b). In both phases parties could access to Faux.
Com = (C,R) is an ideal commitment scheme if it satisfies the following properties.

Completeness. For any b ∈ {0, 1}, if C and R follow their prescribed strategy then R accepts the
commitment c and the decommitment (b, d) with probability 1.

Statistically Hiding. For any malicious receiver R∗ the ensembles {viewR∗ (C(com, 0), R∗)
(1n)}n∈N and {viewR∗(C(com, 1), R∗) (1n)}n∈N are statistically indistinguishable, where viewR∗

(C(com, b), R∗) denotes the view of R∗ restricted to the commitment phase.

Statistically Binding. For any malicious committer C∗, there exists a negligible function ε, such
that C∗ succeeds in the following game with probability at most ε(n): On security parameter
1n, C∗ interacts with R in the commitment phase obtaining the transcript c . Then C∗ outputs
pairs (0, d0) and (1, d1), and succeeds if in the decommitment phase, R(c, d0, 0) = R(c, d1, 1) =
accept.

In this paper the term ideal is used to refer to a commitment which is statistically-hiding and
statistically-binding.

Definition 2 (Interface Access to an Ideal Functionality Faux). Let Π = (P1, P2) be a two-party
protocol in the Faux-hybrid model. That is, parties P1 and P2 need to query the ideal functionality
Faux in order to carry out the protocol. An algorithmM has interface access to the ideal functionality
Faux w.r.t. protocol Π if all queries made by either party P1 or P2 to Faux during the protocol
execution are observed (but not answered) by M , and M has oracle access to Faux. Namely, Faux

can be a non programmable and non PPT functionality.

Definition 3 (Ideal Extractable Commitment Scheme in the Faux model). IdealExtCom = (Cext,Rext)
is an ideal extractable commitment scheme in the Faux model if (Cext,Rext) is an ideal commitment
and there exists a straight-line strict polynomial-time extractor E having interface access to Faux,
that runs the commitment phase only and outputs a value b? ∈ {0, 1,⊥} such that, for all malicious
committers C∗, the following properties are satisfied.

Simulation: the view generated by the interaction between E and C∗ is identical to the view
generated when C∗ interacts with the honest receiver Rext: viewFaux

C∗ (C∗(com, ·),Rext(recv)) ≡
viewFaux

C∗ (C∗(com, ·), E)

Extraction: let c be a valid transcript of the commitment phase run between C∗ and E. If E
outputs ⊥ then probability that C∗ will provide an accepting decommitment is negligible.

Binding: if b? 6= ⊥, then probability that C∗ decommits to a bit b 6= b? is negligible.

6

2.2 Physically Uncloneable Functions

Here we recall the definition of PUFs taken from [BFSK11a]. A Physically Uncloneable Function
(PUF) is a noisy physical source of randomness. A PUF is evaluated with a physical stimulus, called
the challenge, and its physical output, called the response, is measured. Because the processes
involved are physical, the function implemented by a PUF can not necessarily be modeled as a
mathematical function, neither can be considered computable in PPT. Moreover, the output of
a PUF is noisy, namely, querying a PUF twice with the same challenge, could yield to different
outputs.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample and Eval. Algorithm
Sample abstracts the PUF fabrication process and works as follows. Given the security parameter
in input, it outputs a PUF-index id from the PUF-family satisfying the security property (that we
define soon) according to the security parameter. Algorithm Eval abstracts the PUF-evaluation
process. On input a challenge s, it evaluates the PUF on s and outputs the response σ. A PUF-
family is parametrized by two parameters: the bound on the noisy of the answers dnoise, and the size
of the range rg. A PUF is assumed to satisfy the bounded noise condition, that is, when running
Eval(1n, id, s) twice, the Hamming distance of any two responses σ1, σ2 is smaller than dnoise(n). We
assume that the challenge space of a PUF is the set of strings of a certain length.
Security Properties. We assume that PUFs enjoy the properties of uncloneability and unpre-
dictability. Unpredictability is modeled in [BFSK11a] via an entropy condition on the PUF distri-
bution. Namely, given that a PUF has been measured on a polynomial number of challenges, the
response of the PUF evaluated on a new challenge has still a significant amount of entropy. The
following definition automatically implies uncloneability (see [BFSK11b] pag. 39 for details).

Definition 4 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,Eval) for security param-
eter n is (dmin(n),m(n))-unpredictable if for any s ∈ {0, 1}n and challenge list Q = (s1, . . . , spoly(n)),
one has that, if for all 1 ≤ k ≤ poly(n) the Hamming distance satisfies disham(s, sk) ≥ dmin(n), then
the average min-entropy satisfies H̃∞(PUF(s)|PUF(Q)) ≥ m(n), where PUF(Q) denotes a sequence
of random variables PUF(s1), . . . ,PUF(spoly(n)) each corresponding to an evaluation of the PUF on
challenge sk. Such a PUF-family is called a (rg, dnoise, dmin,m)- PUF family.

2.2.1 Fuzzy Extractors

The output of a PUF is noisy. That is, querying the PUF twice with the same challenge, one
might obtain two distinct responses σ, σ′, that are at most dnoise apart in hamming distance. Fuzzy
extractors of Dodis et al. [DORS08] are applied to the outputs of the PUF, to convert such noisy,
high-entropy measurements into reproducible randomness. Very roughly, a fuzzy extractor is a pair
of efficient randomized algorithms (FuzGen,FuzRep), and it is applied to PUFs ’responses as follows.
FuzGen takes as input an `-bit string, that is the PUF’s response σ, and outputs a pair (p, st), where
st is a uniformly distributed string, and p is a public helper data string. FuzRep takes as input the
PUF’s noisy response σ′ and the helper data p and generates the very same string st obtained with
the original measurement σ.

The security property of fuzzy extractors guarantees that, if the min-entropy of the PUF’s
responses are greater than a certain parameter m, knowledge of the public data p only, without the
measurement σ, does not give any information on the secret value st. The correctness property,
guarantees that, all pairs of responses σ, σ′ that are close enough, i.e., their hamming distance is
less then a certain parameter t, will be recovered by FuzRep to the same value st generated by

7

FuzGen. In order to apply fuzzy extractors to PUF’s responses it is sufficient to pick an extractor
whose parameters match with the parameter of the PUF being used. For formal definitions of fuzzy
extractors and PUFs the reader is referred to App. A.1.

Ideal Functionalities for Malicious PUFs and Stateless Tokens. We follow the malicious
PUF model introduced in [OSVW13]. In this model, the adversary is allowed to create arbitrarily
malicious PUFs. Very informally, a malicious PUF is any physical device that “look like” a PUF
but it implements an arbitrary malicious, possibly stateful, function. Such adversarial behaviour
has been modeled in [OSVW13] by extending the ideal functionality proposed in [BFSK11a]. We
denote by FPUF the ideal functionality for malicious PUF, and we provide its formal description
in App. A.3. Stateless Tokens are modeled through the ideal functionality Fwrap [Kat07, CGS08]
described in App. A.4. Definition of UC-security are provided in App. 10.

3 The Compiler

In this section we show how to transform any ideal extractable commitment scheme into a proto-
col that UC-realizes the Fcom functionality, unconditionally. Such transformation is based on the
following building blocks.

Extractable Blobs. “Blob” was used in [BCC88] to denote a commitment. In this paper a blob
is a pair of bit commitments such that the actual bit committed in the blob is the xor of the pair.
As we shall see soon, the representation of a bit as its exclusive-or allows to prove equality of the
bits committed in two blobs without revealing the values and more importantly using commitments
as black boxes. Let IdealExtCom be any ideal extractable commitment scheme satisfying Def. 3. If
the commitment phase of IdealExtCom is interactive then the blob is the pair of transcripts obtained
from the interaction. Procedures to create a blob of a bit b, and to reveal the bit committed in the
blob, are the following.
Blob(b): Committer picks bits b0, b1 uniformly at random such that b = b0 ⊕ b1. It commits to

b0, b1 (in parallel) running IdealExtCom as sub-routine and obtains commitment transcripts
c0, c1, and decommitments d0, d1. Let B = (c0, c1) be the blob of b.

OpenBlob(B): Committer sends (b0, d0), (b1, d1) to Receiver. Receiver accepts iff d0, d1 are valid
decommitments of b0, b1 w.r.t. transcripts (c0, c1) and computes b = b0 ⊕ b1.

Clearly, a blob inherits the properties of the commitment scheme used as sub-protocol. In
particular, in the above case, since IdealExtCom is used as sub-routine, each blob is statistically
hiding/binding, and straight-line extractable.

Equality of Blobs. Given the representation of a bit commitment as a blob, a protocol due to
Kilian [Kil92] allows to prove that two committed bits (two blobs) are equal, without revealing their
values. We build upon this protocol to construct a “simulatable” version, meaning that (given some
trapdoor) a simulator can prove equality of two blobs that are not equal. Let Bi,Bj be two blobs.
Let bi = (b0i ⊕ b1i) be the bit committed in Bi, and bj = (b0j ⊕ b1j) be the bit committed in Bj . Let
P denote the prover and V the verifier. In the following protocol P proves to V that Bi and Bj

are the commitment of the same bit (i.e., bi = bj).
ProveBlobsEquality(Bi,Bj)

8

1. V uniformly chooses e ∈ {0, 1} and commits to e using IdealExtCom.
2. P sends y = b0i ⊕ b0j to V .
3. V reveals e to P .
4. P reveals bei and b

e
j (i.e., P sends decommitments dei , d

e
j to V). V accepts iff y = bei ⊕ bej .

Protocol ProveBlobsEquality satisfies the following properties. Soundness: if bi 6= bj , any malicious
prover P ∗ convinces V with probability 1/2, that is the probability of guessing the challenge e.
Here we are using the statistically hiding property of the ideal commitment IdealExtCom used to
commit e. Privacy: If bi = bj then after executing the protocol, the view of any verifier V ∗, is
independent of the actual value of bi, bj (given that Bi,Bj were secure at the beginning of the
protocol). Simulation: there exists a straight-line strictly PPT simulator SimFalse such that, for
any (Bi,Bj) that are not equal, i.e., bi 6= bj , for any malicious verifier V ∗, produces a view that
is statistically close to the case in which (Bi,Bj) are equal, i.e., bi = bj and V ∗ interacts with the
honest P . The above properties are formally proved in Appendix B.

Note that the protocol uses blobs in a black-box way. Note also, that a blob can be involved in
a single proof only.

3.1 Unconditional UC-secure Commitments from Ideal Extractable Commit-
ments

We construct unconditional UC-secure commitments using extractable blobs and protocol ProveBlobsEquality
as building blocks. We want to implement the following idea. The committer sends two blobs of
the same bit and proves that they are equal running protocol ProveBlobsEquality. In the decom-
mitment phase, it opens only one blob (a similar technique is used in [Hof11], where instead the
commitment scheme is crucially used in a non black-box way). The simulator would extract the bit
of the committer by exploiting the extractability property of blobs. The simulator can equivocate
by committing to the pair 0 and 1, and cheating in the protocol ProveBlobsEquality, by running the
simulator associated to it. In the opening phase, it then opens the blob corresponding to the right
bit.

This idea does not work straight-forwardly since soundness of protocol ProveBlobsEquality holds
only with probability 1/2 and thus a malicious committer can break binding with the same proba-
bility. We cannot amplify the soundness by running many proofs on the same pair of blobs, since a
blob can be involved in a proof only once. (This is due to the fact that we treat blobs in a black-box
manner). Running many proofs among many independent pairs of blobs, and ask the committer to
open half of them, is the way to go.

Specifically, the committer will compute n pairs of (extractable) blobs. Then it proves equality
of each consecutive pair of blobs by running protocol ProveBlobsEquality with the receiver. The
commitment phase is successful if all equality proofs are accepting. In the decommitment phase,
the committer opens one blob for each pair. Namely, it reveals n blobs. Notice that, the committer
cannot open any arbitrary set of blobs. The freedom of the committer is only in the choice of the
index to open for each pair. The receiver accepts if two conditions are satisfied: 1) the committer
opens one blob for each consecutive pair, 2) all revealed blobs open to the same bit. The construction
is formally described in Fig. 1.

Theorem 1. If IdealExtCom is an ideal extractable commitment scheme in the Faux-hybrid model,
then protocol in Fig. 1 is an unconditionally UC-secure bit commitment scheme in the Faux-hybrid
model.

9

Protocol UCComCompiler
Committer’s Input: b ∈ {0, 1}.
Commitment Phase

1. Committer: run Blob(b) 2n times. Let B1, . . . ,B2n be the blobs obtained.
2. Committer ⇔ Receiver: for i = 1; i = i+ 2; i ≤ 2n− 1; run ProveBlobsEquality(Bi,Bi+1).
3. Receiver: if all equality proofs are accepting, accept the commitment phase.

Decommitment Phase
1. Committer: for i = 1; i = i + 2; i ≤ 2n − 1; randomly choose ` ∈ {i, i + 1} and run

OpenBlob(B`) with the Receiver.
2. Receiver: 1) check if Committer opened one blob for each consecutive pair; 2) if all n blobs

open to the same bit b, output b and accept. Else output reject.

Figure 1: UCComCompiler: Unconditional UC Commitment from any Ideal Extractable Commit-
ment.

Proof Intuition. To prove UC-security we have to show a straight-line simulator Sim which
correctly simulates the view of the real-world adversary A and extracts her input. Namely, when
simulating the malicious committer in the ideal world, Sim internally runs the real-world adversarial
committer A simulating the honest receiver to her, so to extract the bit committed to by A, and play
it in the ideal world. This property is called extractability. When simulating the malicious receiver
in the ideal world, Sim internally runs the real-world adversarial receiver A simulating the honest
committer to her, without knowing the secret bit to commit to, but in such a way that it can be
opened as any bit. This property is called equivocality. In the following, we briefly explain why both
properties are achieved. In the proof we assume that parties communicate through authenticated
channels.
Straight-line Extractability. It follows from the straight-line extractability and binding of IdealExtCom
and from the soundness of protocol ProveBlobsEquality. Roughly, Sim works as follows. It plays the
commitment phase as an honest receiver (and running the straight-line extractor of IdealExtCom
having access to Faux). If all proofs of ProveBlobsEquality are successful, Sim extracts the bits of
each consecutive pair of blobs and analyses them as follows. Let b ∈ {0, 1}. If all extracted pairs of
bits are either (b, b) or (b̄, b), (i.e. there are no pairs like (b̄, b̄)), it follows that, the only bit that A
can successfully decommit to, is b. In this case, Sim plays the bit b in the ideal world.

If there is at least a pair (b, b) and a pair (b̄, b̄), then A cannot provide any accepting decommit-
ment (indeed, due to the binding of blobs, A can only open the bit b from one pair, and the bit b̄
from another pair, thus leading the receiver to reject). In this case Sim sends a random bit to the
ideal functionality.

If all the pairs of blobs are not equal, i.e., all pairs are either (b̄, b) or (b, b̄), then A can later
decommit to any bit. In this case the simulator fails in the extraction of the bit committed, and
it aborts. Note that, this case happens only when all the pairs are not equal. Thus A was able
to cheat in all executions of ProveBlobsEquality. Due to the soundness of ProveBlobsEquality, this
event happens with probability 2−n.
Straight-line Equivocality. It follows straight-forwardly from the simulation property of ProveBlobsEquality.
Sim in this case works as follows. It prepares n pairs of blobs such that each pair contains
blob of 0 and blob of 1, in randomly chosen positions. Sim is able to cheat in all executions of

10

ProveBlobsEquality, by running the straight-line simulator associated to this protocol. In the de-
commitment phase, after having received the bit to decommit to, for each pair, Sim reveals the blob
corresponding to the right bit.

Note that, in both cases Sim crucially uses the extractor associated to IdealExtCom, that in turn
uses the access to Faux. The formal proof of Theorem 1 can be found in App. C.

In Section 4 we show an implementation of IdealExtCom with malicious PUFs, while in Section 5,
we show how to implement IdealExtCom using stateless token. By plugging such implementations
in protocol UCComCompiler we obtain the first unconditional UC-secure commitment scheme with
malicious PUFs (namely, in the FPUF-hybrid model), and stateless tokens (namely, in the Fwrap-
hybrid model).

4 Ideal Extractable Commitment from (Malicious) PUFs

In this section we show a construction of ideal extractable commitment in the FPUF model. Our
construction builds upon the ideal commitment scheme in the FPUF model presented in [OSVW13].
We refer to this protocol as IdealCPuf. For simplicity, in the informal description of the protocol we
omit mentioning the use of fuzzy extractors and the formalism for invoking the FPUF functionality.
Such details are provided in the formal descriptions (Fig. 8 and Fig. 2).

Ideal Commitment Scheme in the FPUF Model (from [OSVW13]). The idea behind
the protocol of [OSVW13], that we denote by IdealCPuf = (CIdealPuf ,RIdealPuf), is to turn Naor’s
commitment scheme [Nao89] 2 which is statistically binding but only computationally hiding, into
statistically hiding and binding, by replacing the PRG with a (possibly malicious) PUF. Roughly,
protocol IdealCPuf goes as follows. At the beginning of the protocol, the committer creates a PUF,
that we denote by PS . It preliminary queries PS with a random string s (of n bits) to obtain the
response σS (of rg(3n) bits, where rg is the PUF’s range) and finally delivers the PUF PS to the
receiver. After receiving the PUF, the receiver sends a random string r (i.e., the first round of Naor’s
commitment) to the committer. To commit to a bit b, the committer sends c =σS ⊕ (r∧ b|r|) to the
receiver. In the decommitment phase, the committer sends (b, s) to the receiver, who checks the
commitment by querying PS with s. Hiding intuitively follows from the fact that a fuzzy extractor
applied to the PUF-response σS yields to a uniformly distributed value. Thus, commitment of
1 ,i.e., c =σS ⊕ r and commitment of 0, i.e., c =σS , are statistically close. Binding follows the
same argument of Naor’s scheme and is based on the expansion property of the PUF where the
challenge is n bits and the response is rg(3n) bits (for more details on the proof the reader is referred
to [OSVW12]). The formal description of IdealCPuf is provided in Fig. 8 in App. D.

Our Ideal Extractable Commitment Scheme in the FPUF Model. We transform IdealCPuf
into a straight-line extractable commitmen that we call ExtPuf, using the following technique. We
introduce a new PUF PR, sent by the receiver to the committer, at the beginning of the protocol.
Then we force the committer to query the PUF PR with the opening of the commitment computed

2Naor’s scheme is a two-round commitment scheme. In the first round the receiver sends a random string r $←
{0, 1}3n to the committer. In the second round, the committer picks a random string s $← {0, 1}n, computes y ← G(s)
and sends y ⊕ (r ∧ b) to the receiver, where G : {0, 1}n → {0, 1}3n is a PRG and b is the bit to commit to. The
opening consists of (y, b).

11

running IdealCPuf. An opening of protocol IdealCPuf is the value σS3. In this way, the extractor,
having access to the interface of FPUF, observes the queries made by the committer, and thus
extracts the opening. Note that extractability must hold against a malicious committer, in which
case the token PR sent by the receiver is honest, therefore the extractor is allowed to observe such
queries. The idea is that, from the transcript of the commitment (i.e., the value c = σS ⊕ (r ∧ b))
and the queries made to PR, (the value σS) the bit committed if fully determined 4.

How can we force the committer to query PR with the correct opening? We require that it
commits to the answer σR obtained by PR, using again protocol IdealCPuf. Why the committer
cannot send directly the answer σR? Because σR could be the output of a malicious PUF, and leak
information about the query made by the committer.

Thus, in the commitment phase, the committer runs two instances of IdealCPuf. One instance,
that we call ComBit, is run to commit to the secret bit b. The other instance, that we call ComResp,
is run to commit to the response of PUF PR, queried with the opening of ComBit. In the de-
commitment phase, the receiver gets PR back, along with the openings of both the bit and the
PUF-response. Then it queries PR with the opening of ComBit, and checks if the response is con-
sistent with the string committed in ComResp. Due to the unpredictability of PUFs, the committer
cannot guess the output of PR on the string σS without querying it. Due to the statistically binding
of IdealCPuf, the committer cannot postpone querying the PUF in the decommitment phase. Thus,
if the committer will provide a valid decommitment, the extractor would have observed the opening
already in the commitment phase with all but negligible probability.

However, there is one caveat. The unpredictability of PUFs is guaranteed only for queries
that are sufficiently apart from each other. Which means that, given a challenge/response pair
(c, r), the response on any strings c′ that is “close” in hamming distance to c (“close” means that
disham(c, c′) ≤ dmin), could be predictable. Consequently, a malicious committer could query the
PUF with a string that is only “close” to the opening. Then, given the answer to such a query,
she could predict the answer to the actual opening, without querying the PUF. In this case, the
extractor cannot determine which is the opening, since it cannot try all possible strings that are
“close” to queries made by the malicious committer. Thus the extraction fails. At the same time,
the malicious committer did not violate the unpredictability property of PUFs, since it predicted a
value that is “too close” to the one already observed.

We overcome this problem by using Error Correcting Codes, in short ECC (see Def. 6). The
property of an ECC with distance parameter dis, is that any pair of strings having hamming distance
dis, decodes to a unique string. Therefore, we modify the previous approach asking the committer
to query PR with the encoding of the opening, i.e., Encode(σS). In this way, all queries that are
“too close” in hamming distance, decode to the same opening, and the previous attack is defeated.

Informally, hiding and biding follow from properties of IdealCPuf. Indeed, protocol ExtPuf
basically consists in running two instances of IdealCPuf in parallel. Extractability follows from the
statistically biding of IdealCPuf, the unpredictability of PR and the Minimum Distance Property of
ECC. The formal description of the protocol ExtPuf described above is shown in Fig. 2.
PUF parameters of Protocol ExtPuf for Bit Commitment. ExtPuf requires two PUFs PS ,PR.

3In the actual implementation we require the committer to query PR with stS where (stS , pS)← FuzGen(σS).
4As we shall discuss in the security proof, a malicious sender can always compute c∗ so that it admits two valid

openings (i.e., compute y0, y1 such that r = y0⊕y1 and set c∗ = y0) , and query PR with both openings (thus confusing
the extractor). However, due to the binding of IdealCPuf, A will not be able to provide an accepting decommitment
for such c∗. Thus extractability is not violated. (Straight-line Extractability in Faux model, is violated when the
extractor outputs ⊥, while the adversary provides an accepting decommitment).

12

Protocol ExtPuf
ECC = (Encode,Decode) is a (N,L, d1

min) error correcting code, where L = ` = 3n. FPUF is param-
eterized with a PUF family P1=(rg1, d1

noise, d
1
min,m

1), with challenge size L. (FuzGen1,FuzRep1)
is a (m1, `1, t1, ε1)-fuzzy extractor of appropriate matching parameters. Protocol IdealCPuf =
(CIdealPuf ,RIdealPuf) (depicted in Fig. 8) is run as sub-routine. PS is the sid used to denote the
PUF created by the committer in IdealCPuf. PR is the sid of the PUF created by the receiver.
Committer’s Input: b ∈ {0, 1}.
Commitment Phase

1. Receiver RExtPuf : create a PUF sending (initPUF,PR, normal,RExtPuf) to FPUF and then
handover it to CExtPuf sending (handoverPUF,PR,RExtPuf ,CExtPuf) to FPUF.

2. Commitment of the Secret Bit: ComBit.
CExtPuf ⇔ RExtPuf : run 〈CIdealPuf(com, b),RIdealPuf(com)〉 so that CExtPuf commits to bit b.
Let (stS , pS) ← FuzGen(σS) be the value obtained by CExtPuf , after applying the fuzzy
extractor to the answer obtained from its own PUF PS when running protocol ComBit.

3. Committer CExtPuf : Send (evalPUF,PR,CExtPuf ,Encode(stS)) to FPUF and obtain response
(responsePUF,PR,Encode(stS), σR). If σR = ⊥ (i.e., PUF PR aborts), set σR ← 0. Compute
(stR, pR)← FuzGen1(σR).

4. Commitment of PR’s Response: ComResp.
CExtPuf ⇔ RExtPuf : run 〈CIdealPuf(com, stR||pR),RIdealPuf(com)〉 so that CExtPuf commits to the
string stR||pR.

Decommitment Phase
1. CExtPuf ⇔ RExtPuf :

run 〈CIdealPuf(open, b),RIdealPuf(open)〉 and 〈CIdealPuf(open, stR||pR),RIdealPuf(open)〉.
2. Committer CExtPuf : handover PUF PR to RExtPuf by sending

(handoverPUF,PR,CIdealPufRExtPuf) to FPUF.
3. Receiver RExtPuf : If both decommitments are successfully completed, then RExtPuf gets the

bit b′ along with the opening st′S for ComBit and string st′R||p′R for ComResp.
Check validity of st′R: send (evalPUF,PR,RExtPuf ,Encode(st

′
S)) to FPUF and obtain σ′R. Com-

pute st′′R ← FuzRep1(σ′R, p
′
R). If st′′R = st′R, then accept and output b. Else, reject.

Figure 2: ExtPuf: Ideal Extractable Commitment in the FPUF model.

PS is sent by the committer to the receiver when executing IdealCPuf as sub-protocol. IdealCPuf
is used to commit to a bit b and to a K-bit string where K = |(stR||pR)|. PS has challenge size n
and range size rg(K`) (with ` = 3n). PR is sent by the receiver and is used for extractability only.
PR has challenge size L and range size rg1(L). Note that parameters of PR are independent of the
number of bits that are committed.
Replacement of the honest PUF. In the decommitment phase the committer sends back PR to
the receiver. The receiver checks the validity of the decommitment by querying PR. A malicious
committer could replace PR with another PUF, in which case the extractability property is not
achieved anymore. This attack can be easily overcome by assuming that before giving its own PUF
PR away, the receiver queries it with a secret random challenge and stores the response. Then when
PR is sent back, the receiver checks its authenticity by querying PR on the same challenge and
matching the response obtained with the one stored.

13

On round complexity of ExtPuf. For simplicity in Fig. 2 we describe the interaction between
CExtPuf and RExtPuf using several rounds. However, we stress that the exchange of the PUF can be
done once at the beginning of the protocol, and that except from the PUF transfer, the commitment
phase requires only three rounds. The decommitment is non-interactive and requires another PUF
transfer.

Theorem 2. If IdealCPuf is an Ideal Commitment in the FPUF-model, then Protocol ExtPuf is an
Ideal Extractable Commitment in the FPUF model.

The proof of this theorem is provided in Appendix E.1.

5 Ideal Extractable Commitments from Stateless Tokens

In this section we show how to construct ideal extractable commitments from stateless tokens. We
first construct an ideal commitment scheme. Then, we use it as building block for constructing an
ideal extractable commitment.

Ideal Commitment Scheme in the Fwrap Model. Similarly to the construction with PUFs,
we implement Naor’s commitment scheme by replacing the PRG with a stateless token. Note
that Naor’s commitment is already statistically binding, therefore the token is only used to obtain
also statistically hiding. In the construction with PUFs, the PRG was replaced with a PUF that
is inherently unpredictable. Indeed, by assumption, even after observing a polynomial number
of challenge/response pairs, a malicious receiver cannot predict the output of the PUF on any
new (sufficiently far apart) challenge. In this case, hiding breaks only if the receiver guesses the
challenge used by the committer, which happens only with negligible probability. Hence, hiding
holds unconditionally.

Now, we want to achieve statistically hiding using stateless token. The problem here is that we
do not have unpredictability for free (as it happens with PUFs). Thus, we have to program the
stateless token with a function that is, somehow, unconditionally unpredictable. Clearly, we cannot
construct a token that implements a PRG. Indeed, after observing a few pairs of input/output,
an unbounded receiver can extract the seed, compute all possible outputs, and break hiding. We
follow that same idea as [GIMS10] and we use a point function. A point function f is a function
that outputs always zero, except in a particular point x, in which it outputs a value y. Formally,
f : {0, 1}n → {0, 1}m such that f(x) = y and f(x′) = 0, for all x′ 6= x.

Thus, we adapt Naor’s commitment scheme as follows. The committer picks a n-bit string x and
a 3n-bit string y and creates a stateless token that on input x outputs y, while it outputs 0 on any
other input. The stateless token is sent to the receiver at the beginning of the protocol. After having
obtained the token, the receiver sends then Naor’s first message, i.e., the random value r, to the
committer. The committer commits to the bit b by sending c = y⊕ (r∧ b|r|). In the decommitment
phase, the committer sends x, y, b. The receiver queries the token with x and obtains a string y′. If
y = y′ the receiver accepts iff c = y′ ⊕ (r ∧ b).

Statistically binding follows from the same arguments of Naor’s scheme. The token is sent away
before committer can see r. Thus, since x is only n bits, information theoretically the committer
cannot instruct a malicious token to output y′ adaptively on x. Thus, for any malicious possibly
stateful token, binding is preserved.

14

Statistically hiding holds due to the fact that x is secret. A malicious receiver can query the
token with any polynomial number of values x′. But, whp she will miss x, and thus she will obtain
always 0. Such an answer does not help her to predict y. The only way to obtain y is to predict x.
This happens with probability 2−n.

The above protocol is denoted by IdealCTok and is formally described in Fig. 3. We stress that,
this is the first construction of unconditional commitment scheme that is secure even against mali-
cious stateful tokens. The previous construction of unconditional commitment scheme of [GIMS10]
is secure as long as the malicious token is stateless (i.e., it assumes that the adversary cannot
create stateful tokens). Furthermore, our constructions requires only one stateless token, while
construction of [GIMS10] requires a number of tokens that depends on the security parameter.

From Bit Commitment to String Commitment. To commit to a `-bit string using one stateless
token only is sufficient to embed ` pairs (x1, y1),. . ., (x`, y`) in the token TC and to require that for
each i, xi ∈ {0, 1}n and yi ∈ {0, 1}3`n. Then, execute protocol IdealCTok for each bit of the string
in parallel. The receiver accepts the string iff all bit commitments are accepting.

Protocol IdealCTok
Committer’s Input: b ∈ {0, 1}.
Commitmen Phase

1. Committer CIdealCTok: pick x $← {0, 1}n, y $← {0, 1}3n. Create token TC implementing the
point function f(x) = y; f(x′) = 0 for all x′ 6= x. Send (create, sid, CIdealCTok, RIdealCTok, TC)
to Fwrap.

2. Receiver RIdealCTok: pick r
$← {0, 1}3n. Send r to CIdealCTok.

3. Committer CIdealCTok: Send c = y ⊕ (r ∧ b3n) to RIdealCTok.
Decommitment Phase

1. Committer CIdealCTok: send (b, x) to RIdealCTok.
2. Receiver RIdealCTok: send (run, sid,RIdealCTok, TC, x) and obtain y. If b = 0, check that c = y.

Else, check that y = c⊕ r. If the check passes, accept and output b, else reject.

Figure 3: IdealCTok: Ideal Commitments in the Fwrap model.

Ideal Extractable Commitment in the Fwrap model To achieve extractability we extend the
ideal commitment scheme IdealCTok with three simple steps. First, make the receiver send a token
TR to the committer. Second, make the committer to commit to the secret bit (using IdealCTok)
and query token TR with the opening of such commitment (namely, value y). Third, the committer
commits to the answer received from TR. In the decommitment phase, the receiver has to cross
check the validity of two commitments (commitment of the bits and commitment of the answer)
and the consistency of the answer with its own token. Note that with tokens there is no need for
the committer to send the token back to the receiver, since the function embedded in the token is
well known to the creator.

However, with stateless tokens, achieving extractability is more complicated. Indeed, which
function should TR run, that will force the committer to query it with the correct opening? Let us
discuss some wrong solution, to then converge to the correct one.

Let Mac be a unconditional one-time MAC (for definition see App. A). Consider the function
that takes as input a string y (the opening of ComBit) and outputs Mac(k, y), for some secret key

15

k. Such function does not guarantee extractability. A malicious committer, can query the token on
two random strings y1, y2 (the token is stateless) and extract the MAC key. Later, the adversary
can secretly compute the MAC on the actual opening y, without using the token. Thus, she will
be able to provide a valid decommitment, while the extractor fails. Note that, this case is ruled
out when using PUFs. The reason is that, even after many queries, the adversary is not able to
compute the answer of the PUF on a new string y by herself.

Consider the function that takes as input a commitment’s transcript (r, c) (of protocol IdealCTok)
and the opening y. It checks that y is a correct opening of c, and if so, it outputs Mac(k, y).
This function is still not sufficient for obtaining extraction. A malicious committer can query the
token with arbitrary pairs (commitment, decommitment) that do not correspond to the actual
commitment c sent to the receiver. Thus we are in the previous case again.

The right function to embed in the stateless token is the following. The function, parameterized
by two independent MAC keys krec, ktok, takes as input a commitment’s transcript (r, c), a MAC-tag
σrec (value σrec is computed by the receiver, i.e., the creator of the token) and an opening y. The
function checks that y is a valid opening of (r, c), and that σrec is a valid MAC-tag computed on
(r, c) (i.e., σrec = Mac(krec, r||c)). If both checks are successful, the function outputs the MAC-tag
computed on the opening y (i.e., σtok = Mac(ktok, y)). Due to the unforgeability of the MAC, and
the statistically binding property of the commitment scheme IdealCTok, a malicious committer can
successfully obtain the answer to exactly one query. Note that, a malicious committer, can perform
the following attack. Once it receives the string r from the receiver, it picks strings y0 and y1 such
that r = y0 ⊕ y1 and sends the commitment c = y0 to the receiver, obtaining the MAC of c. With
the commitment so computed and the tag, it can query token TR twice with each valid opening.
In this case, the committer can extract the MAC key, and at the same time baffling the extractor
that observes two valid openings. The observation here is that, due to the binding of IdealCTok,
for a commitment c computed in such a way, the malicious committer will not be able, in the
decommitment phase, to provide a valid opening. (The reason is that, whp, she cannot instruct its
token to output neither y0 or y1). Thus, the extractor fails and outputs ⊥, but at the same time
the decommitment will not be accepting. Thus extractability is not violated.

As final step, the committer commits to the answer σtok, using the scheme IdealCTok. (If the
token of the receiver aborts, the committer sets σtok to the zero string). In the decommitment phase,
the receiver, first checks the validity of both commitments (commitment of the bit, commitment of
the answer σtok). Then, given the opening of the bit, it checks that σtok is a valid MAC computed
under key ktok on such opening.

Binding follows from the binding of IdealCTok and the unforgeability of MAC. Hiding still
follows from the hiding of IdealCTok. Indeed, the answer of TR sent by the malicious receiver, is not
forwarded to the receiver, but is committed using the ideal commitment IdealCTok. Furthermore,
if TR selective aborts, the committer does not halt, but it continues committing to the zero-string.
The receiver will get the answer in clear, only in the decommitment phase, when the bit has been
already revealed. The formal description of the above protocol, that we denote by ExtTok, is shown
in Fig. 4.
Token’s parameters for ExtTok for Bit Commitment. ExtTok requires two tokens. TC is sent
by the committer to the receiver when executing IdealCTok as sub-protocol. IdealCTok is used to
commit to a bit b and to a n-bit string (recall that |σtok| = n). Thus, TC must be loaded with the
n-point function is f : {0, 1}n → {0, 1}n(3n), with points (x1, y1), . . . , (xn, yn).

Theorem 3. Protocol ExtTok is an ideal extractable commitment in the Fwrap model.

16

Protocol ExtTok
(Gen,Mac,Vrfy) is a one-time unconditional MAC. Protocol IdealCTok = (CIdealCTok,RIdealCTok) is
run as sub-routine. Committer’s Input: b ∈ {0, 1}.
Commitmen Phase

1. Receiver RExtTok: pick MAC-keys: krec, ktok. Create token TR implementing the following
functionality. On input a tuple (r||c, σrec, y): if Vrfy(krec, r||c, σrec) = 1 and (c = y OR
c = y ⊕ r) then output σtok = Mac(ktok, y) else output ⊥.
(Formally, RExtTok sends (create, sid, RExtTok, CExtTok, TR) to Fwrap). Send TR to the sender
CExtTok.
Commitment of the Secret Bit: ComBit.

2. CExtTok ⇔ RExtTok: run 〈CIdealCTok(com, b),RIdealCTok(com)〉 so that CIdealCTok commits to bit
b. Let (r, c) be the transcript of such commitment phase. Let y be the opening of c.

3. Receiver RExtTok: compute σrec ← Mac(krec, r||c). Send σrec to Committer CExtTok.
4. Committer CExtTok: query TR with q= (r||c, σrec, y) (i.e., send (run, sid,CExtTok, TR, q) to
Fwrap) and obtain σtok. If token TR aborts, set σtok = 0n.
Commitment of TR’s Response: ComResp.
CExtTok ⇔ RExtTok: run 〈CIdealCTok(com, σtok),RIdealCTok(com)〉 so that CExtTok commits to the
response σtok received from TR.

Decommitment Phase
1. CExtTok ⇔ RExtTok: opening of both commitments.

Run 〈CIdealCTok(open, b),RIdealCTok(open)〉 and 〈CIdealCTok(open, σrec),RIdealCTok(open)〉.
2. Receiver RExtTok: If both decommitment are successfully completed, then RExtTok gets the

bit b′ along with the opening y′ for ComBit and string σ′tok for ComResp.
If Vrfy(ktok, r||y′, σ′tok) = 1 then RExtTok accept and output b′. Else, reject.

Figure 4: ExtTok: Ideal Extractable Commitment in the Fwrap model.

The proof of Theorem 3 is provided in Appendix E.2.

References

[AMS+09] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and Pim Tuyls.
Memory leakage-resilient encryption based on physically unclonable functions. In Mit-
suru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 685–702. Springer, 2009.

[AMS+11] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Franccois-Xavier Standaert,
and Christian Wachsmann. A formalization of the security features of physical func-
tions. In IEEE Symposium on Security and Privacy, pages 397–412. IEEE Computer
Society, 2011.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

17

[BCNP04] Boaz Barak, Ron Canetti, Jesper B. Nielsen, and Rafael Pass. Universally compos-
able protocols with relaxed set-up assumptions. In Foundations of Computer Science
(FOCS’04), pages 394–403, 2004.

[BFSK11a] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically
uncloneable functions in the universal composition framework. In Phillip Rogaway,
editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 51–70.
Springer, 2011.

[BFSK11b] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Physically
uncloneable functions in the universal composition framework. IACR Cryptology ePrint
Archive, 2011:681, 2011.

[BGW88] Michael BenOr, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Simon
[Sim88], pages 1–10.

[BHNS13] Christian Boit, Clemens Helfmeier, Dimitry Nedospasaov, and Jean-Pierre Seifert.
Cloning physically unclonable functions. IEEE HOST, 2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Foundations of Computer Science (FOCS’01), pages 136–145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In Simon [Sim88], pages 11–19.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC, volume 4392 of Lecture
Notes in Computer Science, pages 61–85. Springer, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kil-
ian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 19–40, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Berlin, Germany.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 545–562, Istanbul, Turkey, 2008. Springer, Berlin, Germany.

[CK88] Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened security
assumptions (extended abstract). In FOCS, pages 42–52. IEEE Computer Society,
1988.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, edi-
tor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in
Computer Science, pages 68–86, Warsaw, Poland, May 4–8, 2003. Springer, Berlin,
Germany.

18

[CKS+11] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and
Hong-Sheng Zhou. (efficient) universally composable two-party computation using a
minimal number of stateless tokens. IACR Cryptology ePrint Archive, 2011:689, 2011.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In 34th Annual ACM Symposium
on Theory of Computing, Lecture Notes in Computer Science, pages 494–503, Montréal,
Québec, Canada, May 19–21, 2002. ACM Press.

[DKMQ11] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and com-
posable security using a single stateful tamper-proof hardware token. In Yuval Ishai, ed-
itor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 164–181. Springer,
2011.

[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & goliath oblivious
affine function evaluation - asymptotically optimal building blocks for universally com-
posable two-party computation from a single untrusted stateful tamper-proof hardware
token. IACR Cryptology ePrint Archive, 2012:135, 2012.

[DKS99] Ivan Damgård, Joe Kilian, and Louis Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Jacques Stern,
editor, EUROCRYPT, volume 1592 of Lecture Notes in Computer Science, pages 56–
73. Springer, 1999.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[FBA09] Keith B. Frikken, Marina Blanton, and Mikhail J. Atallah. Robust authentication using
physically unclonable functions. In Pierangela Samarati, Moti Yung, Fabio Martinelli,
and Claudio Agostino Ardagna, editors, ISC, volume 5735 of Lecture Notes in Computer
Science, pages 262–277. Springer, 2009.

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking,
zero-knowledge pcps, and unconditional cryptography. In Advances in Cryptology –
CRYPTO 2010, Lecture Notes in Computer Science, pages 173–190, Santa Barbara,
CA, USA, August 2010. Springer, Berlin, Germany.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wa-
dia. Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture
Notes in Computer Science, pages 308–326, Zurich, Switzerland, February 9–11, 2010.
Springer, Berlin, Germany.

[GKST07] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. Fpga intrinsic
pufs and their use for ip protection. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES, volume 4727 of Lecture Notes in Computer Science, pages 63–80. Springer, 2007.

19

[GvDC+08] Blaise Gassend, Marten van Dijk, Dwaine E. Clarke, Emina Torlak, Srinivas Devadas,
and Pim Tuyls. Controlled physical random functions and applications. ACM Trans.
Inf. Syst. Secur., 10(4), 2008.

[Hof11] Dennis Hofheinz. Possibility and impossibility results for selective decommitments. J.
Cryptology, 24(3):470–516, 2011.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 115–128, Barcelona, Spain, May 20–
24, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, STOC ’92, pages 723–732, New York, NY, USA, 1992. ACM.

[KKR+12] Stefan Katzenbeisser, Ünal Koccabas, Vladimir Rozic, Ahmad-Reza Sadeghi, Ingrid
Verbauwhede, and Christian Wachsmann. Pufs: Myth, fact or busted? a security eval-
uation of physically unclonable functions (pufs) cast in silicon. In Prouff and Schaumont
[PS12], pages 283–301.

[Kol10] Vladimir Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography
Conference, volume 5978 of Lecture Notes in Computer Science, pages 327–342, Zurich,
Switzerland, February 9–11, 2010. Springer, Berlin, Germany.

[MHV12] Roel Maes, Anthony Van Herrewege, and Ingrid Verbauwhede. Pufky: A fully func-
tional puf-based cryptographic key generator. In Prouff and Schaumont [PS12], pages
302–319.

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation for
asymmetric parties using tamper-proof hardware. In Nigel P. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 527–544, Istanbul, Turkey, April 13–17, 2008. Springer, Berlin, Germany.

[MV10] Roel Maes and Ingrid Verbauwhede. Physically unclonable functions: A study on the
state of the art and future research directions. In Ahmad-Reza Sadeghi and David Nac-
cache, editors, Towards Hardware-Intrinsic Security, Information Security and Cryp-
tography, pages 3–37. Springer Berlin Heidelberg, 2010.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages 128–136,
1989.

[OSVW12] Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, and Akshay Wadia. Univer-
sally composable secure computation with (malicious) physically uncloneable functions.
IACR Cryptology ePrint Archive, 2012:143, 2012.

[OSVW13] Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, and Akshay Wadia. Universally
composable secure computation with (malicious) physically uncloneable functions. To
appear. EUROCRYPT, 2013.

20

[Pap01] Ravikanth Srinivasa Pappu. Physical One-Way Functions. PhD thesis, MIT, 2001.

[PRTG02] Ravikanth S. Pappu, Ben Recht, Jason Taylor, and Niel Gershenfeld. Physical one-way
functions. Science, 297:2026–2030, 2002.

[PS12] Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and Embed-
ded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September
9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer Science. Springer,
2012.

[RSS09] Ulrich Rührmair, Jan Sölter, and Frank Sehnke. On the foundations of physical un-
clonable functions. IACR Cryptology ePrint Archive, 2009:277, 2009.

[Rüh10] Ulrich Rührmair. Oblivious transfer based on physical unclonable functions. In Alessan-
dro Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi, editors, TRUST, volume 6101
of Lecture Notes in Computer Science, pages 430–440. Springer, 2010.

[RvD13] Ulrich Rührmair and Marten van Dijk. Pufs in security protocols: Attack models and
security evaluations. In IEEE Symposium on Security and Privacy, 2013.

[Sim88] Janos Simon, editor. Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA. ACM, 1988.

[SVW10] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. Enhancing rfid se-
curity and privacy by physically unclonable functions. In Ahmad-Reza Sadeghi and
David Naccache, editors, Towards Hardware-Intrinsic Security, Information Security
and Cryptography, pages 281–305. Springer Berlin Heidelberg, 2010.

[vDR12] Marten van Dijk and Ulrich Rührmair. Physical unclonable functions in cryptographic
protocols: Security proofs and impossibility results. IACR Cryptology ePrint Archive,
2012:228, 2012.

A More Definitions

For two random variables X and Y with supports in {0, 1}n, the statistical difference between X
and Y , denoted by SD(X,Y), is defined as, SD(X,Y) = 1

2

∑
z∈{0,1}n |Pr [X = z]− Pr [Y = z]|.

A function ε is negligible in n (or just negligible) if for every polynomial p(·) there exists a value
n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n).

Indistinguishability. LetW be a set of strings. An ensemble of random variablesX = {Xw}w∈W
is a sequence of random variables indexed by elements of W.

Definition 5. Two ensembles of random variables X = {Xw}w∈W and Y = {Yw}w∈W are sta-
tistically indistinguishable, i.e., {Xw}w∈W

S≡ {Yw}w∈W if for any distinguisher D there exists a
negligible function ε such that∣∣Pr [α← Xw : D(w,α) = 1]− Pr [α← Yw : D(w,α) = 1]

∣∣ < ε(w).

21

Unconditional One-Time Message Authentication Code. A one-time message authenti-
cation code (MAC) is defined as a triple of PPT algorithms (Gen, Mac, Vrfy). The key-generation
algorithm Gen takes as input the security parameter 1n and outputs a key k with |k| ≥ n. The tag-
generation algorithm Mac takes as input a key k and a message m and outputs a tag t← Mac(k,m).
The verification algorithm Vrfy takes as input a key k, a message m and a tag t and outputs 1 if
t is a valid MAC of the message m, it outputs 0 otherwise. A MAC is unconditionally one-time
unforgeable if, for all keys k ← Gen(1n), for any adversary A observing a pair (t,m)← Mac(k,m),
probability that A generates a new pair (t′,m′), such that Vrfy(k,m′, t′) = 1, is negligible. Uncon-
ditional one-time MAC can be implemented using a pairwise independent hash function.

Definition 6 (Error correcting code). An (N,L, dis)-Error Correcting Code (ECC), is a tuple of
algorithms (Encode,Decode) where Encode : {0, 1}N → {0, 1}L and Decode : {0, 1}L → {0, 1}N
satisfy the following properties:

- Efficiency: Encode,Decode are deterministic polynomial time algorithms;
- Minimum Distance: ∀m1,m2 ∈ {0, 1}N , disham(Encode(m1),Encode(m2)) ≥ dis;
- Correct Decoding: ∀m, cd = Encode(m), ∀cd′ ∈ {0, 1}L such that disham(cd, cd′) ≤ bdis2 c it holds

that Decode(c′) = m.

In our constructions we need (3n,L, L
logL)-Error Correcting Code.

A.1 More Definitions for PUFs

We follow the definition of PUF provided in [BFSK11a].

Definition 7 (Physically Uncloneable Functions). Let rg denote the size of the range of a PUF-
family and dnoise denote a bound of the PUF’s noise. P = (Sample,Eval) is a family of (rg, dnoise)-
PUF if it satisfies the following properties.

Index Sampling. Let In be an index set. On input the security parameter n, the sampling
algorithm Sample outputs an index id ∈ In following a not necessarily efficient procedure. Each
id ∈ In corresponds to a set of distributions Did. For each challenge s ∈ {0, 1}n, Did contains
a distribution Did(s) on {0, 1}rg(n). Did is not necessarily an efficiently samplable distribution.

Evaluation. On input the tuple (1n, id, s), where s ∈ {0, 1}n, the evaluation algorithm Eval
outputs a response σ ∈ {0, 1}rg(n) according to distribution Did(s). It is not required that Eval
is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges s ∈ {0, 1}n, when running
Eval(1n, id, s) twice, the Hamming distance of any two responses σ1, σ2 is smaller than dnoise(n).

In the following we use PUFid(s) to denote Did. When not misleading, we omit id from PUFid,
using only the notation PUF.

Definition 8 (Average min-entropy). The average min-entropy of the measurement PUF(s) condi-
tioned on the measurements of challenges Q = (s1, . . . , spoly(n)) is defined by:

H̃∞(PUF(s)|PUF(Q)) = −log
(
Eσi←PUF(si)[max

a
Pr
[
PUF(s) = σ|σ1 = PUF(s1), . . . , σpoly(n) = PUF(spoly(n))

])
= −log

(
Eσi←PUF(si)[2

H∞(PUF(s)=σ|σ1=PUF(s1),...,σpoly(n)=PUF(spoly(n))
)

where the probability is taken over the choice of id from the PUF-family and the choice of pos-
sible PUF responses on challenge s. The term PUF(Q) denotes a sequence of random variables
PUF(s1), . . . ,PUF(spoly(n)) each corresponding to an evaluation of the PUF on challenge sk.

22

Fuzzy Extractors. We now provide a formal definition of Fuzzy Extractors. Let U` denote the
uniform distribution on `-bit strings. Let M be a metric space with the distance function dis:
M×M→ R+.

Definition 9 (Fuzzy Extractors). Let dis be a distance function for metric spaceM. A (m, `, t, ε)-
fuzzy extractor is a pair of efficient randomized algorithms (FuzGen,FuzRep). The algorithm FuzGen
on input w ∈ M, outputs a pair (p, st), where st ∈ {0, 1}` is a secret string and p ∈ {0, 1}∗ is a
helper data string. The algorithm FuzRep, on input an element w′ ∈ M and a helper data string
p ∈ {0, 1}∗ outputs a string st. A fuzzy extractor satisfies the following properties.

Correctness. For all w,w′ ∈M, if dis(w,w′) ≤ t and (st, p)
$← FuzGen, then FuzRep(w′, p) = st.

Security. For any distribution W on the metric space M, that has min-entropy m, the first
component of the random variable (st, p), defined by drawing w according to W and then
applying FuzGen, is distributed almost uniformly, even given p, i.e., SD((st, p), (U`, p)) ≤ ε.

Fuzzy Extractors Applied to PUF’s output. Given a (rg(n), dnoise(n), dmin(n),m(n))-PUF
family with dmin = o(n/ log n), a matching fuzzy extractor has the following parameters: `(n) = n,
t(n) = dnoise(n), and ε is a negligible function in n. The metric space M is the range {0, 1}rg
with Hamming distance disham. We call such PUF family and fuzzy extractor as having matching
parameters, and the following properties are guaranteed.

Well-Spread Domain. For all polynomial p(n) and all set of challenges s1, . . . , sp(n), the proba-
bility that a randomly chosen challenge is within distance smaller than dmin with any sk is
negligible.

Extraction Independence. For all challenges s1, . . . , sp(n), and for a challenge s such that dis(s, sk) >
dmin for 1 ≤ k ≤ p(n), it holds that the PUF evaluation on s and subsequent application of
FuzGen yields an almost uniform value st even if p is observed.

Response consistency. Let σ, σ′ be the responses of PUF when queried twice with the same
challenge s, then for (st, p)

$← FuzGen(σ) it holds that st← FuzRep(σ′, p).

A.2 Ideal Functionalities and the UC framework

An ideal functionality F is specified as an interactive Turing machine that privately communicates
with the parties and the adversary and computes a task in a trusted manner. The specification of
the functionality also models the adversary’s ability to obtain leaked information and/or to influence
the computation, also in case the adversary corrupts parties. The world in which parties privately
interact with the trusted machine F is called ideal world.

A real protocol Π is specified as an ITM executed by the parties. Parties communicate over the
channel in presence of an adversary A which controls the schedule of the communication over the
channel, and can corrupt parties. When a party is corrupted the adversary receives its secret input
and its internal state. In this work, we consider only static adversaries, which means that A can
corrupt a party only before the protocol execution starts. This is called real world.

A protocol Π securely realizes F if for any real world adversary A, there exists an ideal adversary
Sim, such that the view generate by A running the actual protocol is indistinguishable from the
view generated by Sim who has only access to the trusted party F .

23

We also consider a G-hybrid model, where the real-world parties are additionally given access to
an ideal functionality G. During the execution of the protocol, the parties can send inputs to, and
receive outputs from, the functionality G.

In the universally composable framework [Can01], the distinguisher of the views is the envi-
ronment Z. Z has the power of choosing the inputs of all the parties and guide the actions of
the adversary A (scheduling messages, corrupting parties), who will act just as proxy overall the
execution. Let IDEALF ,Sim,Z be the distribution ensemble that describes the environment’s output
in the ideal world process, and REALGΠ,A,Z the distribution of the environment’s output in the real
world process in the G-hybrid model.

Definition 10 (Information theoretically UC-security). Let F be an ideal functionality, and Π
be a PPT protocol. We say Π realizes F in the G-hybrid model if for any hybrid-model static
adversary A, there exists an ideal world expected PPT adversary Sim such that for every environment
Z, for all auxiliary information to z ∈ {0, 1}∗ to Z, it holds:

{IDEALF ,Sim,Z(n, z)}n∈N,z∈{0,1}∗ ∼ {REALGΠ,A,Z(n, z)}n∈N,z∈{0,1}∗

We stress that, there exist different formulations of the UC framework, capturing different
requirements on the set-assumptions (e.g., [CDPW07, BFSK11a]). In some formulation for exam-
ple, the set-up assumption is global, which means that the environment has direct access to the
set-up functionality G and therefore the simulator Sim needs to have oracle access to G as well.
In [BFSK11a] instead, while they assume that Sim cannot simulate (program) a PUF, and thus
has always access to the ideal functionality FPUF, they require that Z has not permanent access to
FPUF.

Commitment Ideal Functionality Fcom. The ideal functionality for Commitment Scheme as
presented in [CF01], is depicted in Fig. 5.

Functionality Fcom

Fcom running with parties P1, . . . , Pn and an adversary Sim proceeds as follows:
• Commitment Phase: Upon receiving a message (commit, sid, Pi, Pj , b) from Pi where
b ∈ {0, 1}, record the tuple (sid, Pi, Pj , b) and send the message (receipt, sid, Pi, Pj) to Pj
and Sim. Ignore any subsequent commit messages.

• Decommit Phase: Upon receiving (open, sid, Pi, Pj) from Pi, if the tuple (sid, Pi, Pj , b) is
recorded then send (open,sid, Pi, Pj , b) to Pj and to Sim and halt. Otherwise ignore the
message.

Figure 5: The Commitment Functionality Fcom.

A.3 FPUF Ideal Functionality for Malicious PUFs

A malicious PUF is any physical device that “looks like” a PUF but it does not satisfy the PUF’s
security property. Namely, a malicious PUF could implement any function chosen by the adver-
sary, and it can be stateful. The ideal functionality modeling malicious PUFs has been proposed
in [OSVW13], and is the direct extension of the ideal functionality introduced in [BFSK11a]. The

24

PUF access model assumed by [OSVW13], follows the same model proposed in [BFSK11a] and
consists in the following. The simulator Sim has interface access to FPUF. This means that Sim
cannot simulate a PUF, but it has permanent oracle access to the ideal functionality FPUF. The
environment has a restricted access to FPUF in the following sense. It can invoke command Eval of
FPUF (i.e., query the PUF) only in case the PUF is in possession of the dummy adversary, or when
the PUF is in transit. Additionally, the dummy adversary and thus also the simulator, have the
power of creating honest PUFs.

The ideal functionality of [OSVW13] is depicted in Fig. 6. FPUF is parametrized by one honest
PUF family and one malicious PUF family. In our construction we need two PUFs that have
different parameters. This is not a problem, since FPUF can be straightforwardly extended so that
it is parametrized by more then one honest PUF family. For more details about the model the
reader is referred to [OSVW13].

A.4 Fwrap Ideal Functionality modeling Stateless Tokens

The original work of Katz [Kat07] introduces the ideal functionality Fwrap to model stateful tokens
in the UC-framework. A stateful token is modeled as a Turing machine. In the ideal world, a
party that wants to create a token, sends the Turing machine to Fwrap. The adversary is, of course,
allowed to send an arbitrarily malicious Turing machine to Fwrap. This translates in the fact that
the adversary can send a malicious token to the honest party. Fwrap will then run the machine
(keeping the state), when the designed party will ask for it. The same functionality can be adapted
to model stateless tokens. It is sufficient that the functionality does not keep the state between two
executions.

One technicality of the model proposed by [Kat07] is that it assumes that the adversary knows
the code of the tokens that she sends. In real life, this translates to the fact that an adversary
cannot forward tokens received from other parties, or tamper with its own token, so that the actual
behavior of the token is not known to anyone. The advantage of this assumption, is that in the
security proof the simulator can rewind the token.

In [CGS08], Chandran, Goyal and Sahai, modify the original model of Katz, so to allow the
adversary to create tokens without knowing the code. Formally, this consists in changing the
‘create’ command of the Fwrap functionality, which now takes as input an Oracle machine instead of
a Turing machine. The model of [CGS08] is even stronger and allows the adversary to encapsulate
tokens.

Our security proofs are unconditional, and our simulator and extractor only exploit the interface
access to the ideal functionality Fwrap (i.e., they only observe the queries made by the adversary),
namely, they do not need adversary’s knowledge of the code. Therefore, our proofs hold in both
[CGS08] and [Kat07] models. In this work, similarly to all previous work on stateless tokens [Kol10,
GIS+10, CKS+11], and also [GIMS10], we do not consider adversaries that can perform token
encapsulation. To sum up, a malicious token is a physical device that “looks like" a token but
implements a functionality which is arbitrarily different from the one dictated by the protocol. It is
assumed that once a malicious token is sent away to the honest party, it cannot communicate with
its creator.

A simplification of the Fwrap functionality as shown in [CGS08] (that is very similar to the Fwrap

of [Kat07]) is depicted in Fig. 7.

25

FPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters (rg, dnoise, dmin,m),
and P2 = (Samplemal,Evalmal). It runs on input the security parameter 1n, with parties
P = {P1, . . . , Pn } and adversary S.
• When a party P̂ ∈ P ∪ {S } writes (initPUF, sid, mode, P̂) on the input tape of FPUF, where

mode ∈ { normal, mal }, then FPUF checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):
− If this is the case, then turn into the waiting state.
− Else, draw id← Samplemode(1

n) from the PUF family. Put (sid, id, mode, P̂ , notrans) in L
and write (initializedPUF, sid) on the communication tape of P̂ .

• When party Pi ∈ P writes (evalPUF, sid, Pi, s) on FPUF’s input tape, check if there exists a
tuple (sid, id, mode, Pi, notrans) in L.
− If not, then turn into waiting state.
− Else, run σS ← Evalmode(1

n, id, s). Write (responsePUF, sid, s, σS) on Pi’s communication
input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tuple
(sid, ∗, ∗, Pi, notrans) in L.
− If not, then turn into waiting state.
− Else, modify the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode, ⊥,

trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S’s communication input tape.
• When the adversary sends (evalPUF, sid,S, s) to FPUF, check if L contains a tuple (sid, id,

mode, ⊥, trans(∗)) or (sid, id, mode,S, notrans).
− If not, then turn into waiting state.
− Else, run σS ← Evalmode(1

n, id, s) and return (responsePUF, sid, s, σS) to S.
• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id, mode, ⊥,

trans(Pj)).
− If not found, turn into the waiting state.
− Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans) and

write (handoverPUF, sid, Pi) on Pj ’s communication input tape and store the tuple
(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple (receivedPUF, sid, Pi)
has been stored. If not, return to the waiting state. Else, write this tuple to the input tape
of Pi.

Figure 6: The ideal functionality FPUF for malicious PUFs.

B Properties of Protocol ProveBlobsEquality

For convenience protocol ProveBlobsEquality is rewritten below. Recall that a blob is a pair of
commitments to bit, and the value committed to in a blob is the xor of such bits. Namely, a blob
Bi is the pair (c0

i , c
1
i), of commitments of bits (b0i , b

1
i), and the values committed to in blob Bi is

the bit bi = b0i ⊕ b1i . For simplicity in the following we use bi, bj to denote “the bit committed in
blob Bi,Bj”.

ProveBlobsEquality(Bi,Bj)

1. V uniformly chooses e ∈ {0, 1} and commits to e using IdealExtCom.

26

Functionality Fwrap

Fwrap is parameterized by a polynomial p(·) and an implicit security parameter n.

Create. Upon receiving (create, sid, Pi, Pj , T) from Pi, where Pj is another party in the system
and T is an oracle machine do:

1. Send (create, sid, Pi, Pj , T) to Pj .
2. Store (Pi, Pj , T).

Execute. Upon receiving (run, sid, Pi, T ,msg) from Pj , find the unique stored tuple (Pi, Pj , T)
(if no such tuple exists, then do nothing). Run T with input msg for at most p(n) steps
and let out be the response (set out =⊥ if T does not respond in the allotted time). Send
(sid, Pi, out) to Pj .

Figure 7: The Fwrap functionality.

2. P sends y = b0i ⊕ b0j to V

3. V reveals e to P .

4. P reveals bei and b
e
j . V accepts iff y = bei ⊕ bej .

Completeness. Follows from completeness of the commitment scheme IdealExtCom used to commit
the challenge e and to compute blobs Bi,Bj .

Lemma 1 (Soundness of ProveBlobsEquality). If IdealExtCom is an ideal commitment, then for any
malicious prover P ∗, there exists a negligible function ε, such that if bi 6= bj, Pr [V accepts] = 1/2+ε.

Proof. The prover can cheat in two ways: 1) by guessing the challenge. In this case P ∗ can just
compute y as bei ⊕ bej and convince the verifier; 2) by breaking the binding of IdealExtCom used
to compute the blobs. Due to the statistically hiding property of IdealExtCom, probability that
any P ∗ guesses the challenge committed by V , is only negligibly better than 1/2. Due to the
statistically binding property of IdealExtCom, probability that P ∗ opens a commitment adaptively
on the challenge is negligible.

Lemma 2 (Privacy of ProveBlobsEquality). Assume that Bi,Bj are statistically hiding commit-
ments. If bi = bj then for any malicious verifier V ∗ the view is independent on the actual value of
bi and bj.

Proof. We prove that given a view of V ∗, any value for bi, bj is equally likely. The view of V ∗ after
the execution of protocol ProveBlobsEquality consists of: Bi,Bj ,y, bei , b

e
j . We argue that any bit

β ∈ {0, 1} is consistent with such view. Indeed, since bits b0i , b
1
i , b

0
j , b

1
j are randomly chosen, for any

bit β there exists a pair bēi , b
ē
j such that y = bēi ⊕ bēj and β = bei ⊕ bēi and β = bej ⊕ bēj .

Lemma 3 (Simulation of ProveBlobsEquality in the Faux model). If IdealExtCom is a straight-line
extractable commitment in the Faux-hybrid model, then there exists a straight-line PPT algorithm
SimFalse, called simulator, such that for any V ∗, the view of V ∗ interacting with SimFalse on input
a pair (Bi,Bj) of possibly not equal blobs (i.e., bi 6= bj) is statistically close to the view of V ∗ when
interacting with P and bi = bj.

27

Proof. In the following we use the assumption that blobs are statistically hiding, therefore given
Bi,Bj , any pair bi, bj is equally likely to be the committed values. Let E be the straight-line ex-
tractor associated to IdealExtCom as required by Definition 3. On common input (Bi,Bj), SimFalse
has interface access to Faux and works as follows.

SimFalse (Bi,Bj)

1. (V ∗ has to commit to the challenge e.) For the commitment phase of IdealExtCom, run
extractor E as-subroutine forwarding all the messages computed by E to V ∗ and viceversa,
and having interface access to Faux (access to Faux is needed to run procedure E). After the
completion of the commitment phase, obtain b? ∈ {0, 1,⊥} fromE. If V ∗ or E aborts, then
halt.

2. Send y = bb
?

i ⊕ bb
?

j to V ∗. If b? = ⊥ send a random bit.

3. Upon receiving the decommitment e of the challenge:

- If e 6= b? then abort. We call this event extraction abort.
- Else, if b? = ⊥ halt. Otherwise, reveal bb?i , bb?j .

Since E is straight-line (due to the straight-line extractability of IdealExtCom) and generates a
transcript that is identical to the one generated by an honest receiver (due to the simulation property
of IdealExtCom), the only deviation of SimFalse w.r.t. to an honest prover is in the computation
of bit y. In the honest execution y is always b0i ⊕ b0j , in the simulated execution y depends on the
challenge extracted, i.e., y = yb

?

i ⊕ yb
?

j . For simplicity, let us assume that the challenge extracted b?

corresponds to the one that is later revealed by V ∗, i.e.,b? = e (we handle the case in which is not
later).

We argue that, for any V ∗ the view obtained interacting with an honest prover P and bi = bj
(honest execution), is statistically close to the view obtained interacting with SimFalse and bi 6= bj
(simulated execution).

The view of V ∗ at the end of the execution of ProveBlobsEquality consists of: ((Bi,Bj), y, b
e
i , b

e
j).

In case e = 0, it is easy to see that, given that blobs are statistically hiding, the view of the honest
execution is statistically close to the view of the simulated execution. Indeed, in this case y is
computed as b0i ⊕ b0j , exactly as in the honest execution.

In case e = 1, in the simulated experiment y is computed as b1i ⊕ b1j , deviating from the honest
procedure where y = b0i ⊕ b0j . Here is sufficient to observe that, in the honest execution, bi = bj
therefore it holds that y = b1i ⊕ b1j = b0i ⊕ b0j . Thus, distribution of (y, b1i , b

1
j) obtained in the

simulation is still statistically close (given the hiding of blobs) to the distribution obtained from the
honest execution.

When the challenge extracted (if any) is different from the one revealed by V ∗, SimFalse aborts.
Thus probability of observing abort in the simulated execution is higher than in the honest execution.
Nevertheless, due to the extractability property of IdealExtCom, probability of aborting because of
extraction failure is negligible.

28

Here we prove another property of ProveBlobsEquality that will be useful when proving the
straight-line equivocality of protocol UCComCompiler. The following lemma is required only for the
case in which the simulator was used to prove a false theorem (i.e., bi 6= bj). Indeed, when bi = bj
the transcript of the simulation is always statistically close to the transcript of the honest execution
even after one of the blob is revealed.

Lemma 4 (Indistinguishability of the Simulation after one blob is revealed.). The view of V ∗ in the
simulated execution (where bi 6= bj) is statistically close to the view of V ∗ in the honest execution
(where bi = bj) even if, at the end of the protocol, one blob is revealed.

Proof. Assume wlog that after the execution of ProveBlobsEquality, the value bi of blob Bi is reveal.
This means that both bits b0i , b

1
i are revealed. The view of V ∗ at this point consists of values

(y, bej , b
0
i , b

1
i). So only bit bēj is not revealed. Now consider again the honest experiment, when

bi = bj and y = b0i ⊕ b0j , and the simulated experiment where bi 6= bj and y = bei ⊕ bej . We want
to argue that, even after bi is known, still the view generated by the simulator is statistically close
to the view of the honest execution. Consider the case in which e = 1 (the case in which e = 0
follows straight-forwardly). At the beginning all four bits b0i , b

1
i , b

0
j , b

1
j are hidden to V ∗. After the

protocol execution V ∗ knows bit b1i , b
1
j and y that is supposed to be xor of b0i , b

0
j . We already proved

that in this case any value bi, bj of the blobs is equally likely. After blob Bi and therefore bit bi
is revealed, V ∗ knows 3 out of 4 bits, and the value of b0j is determined by the knowledge of bi.
Indeed, if bi = bj then b0j = bi⊕ b1j . Furthermore, since y = b0i ⊕ b0j , the values of b0j must satisfy also
condition b0j = y ⊕ b0i . Hence, bi ⊕ b1j = y ⊕ b0i . In the honest executions the equation is certainly
satisfied since bi = bj and y is honestly computed. We show that in the simulated experiment, the
equation always holds (note that in this argument we are using the fact that all shares b0i , b

1
i , b

0
j , b

1
j

are randomly chosen). Given the equation:

bi ⊕ b1j = y ⊕ b0i

given that in the simulation y = b1i ⊕b1j , and bi = b0i ⊕b1i ; by replacing y and bi we have: b0i ⊕b1i ⊕b1j =

b1i ⊕ b1j ⊕ b0i .

C UC-security of UCComCompiler

In this section we provide formal proof of Theorem 1. We show a straight-line simulator Sim having
interface access to Faux and interacting with Fcom only, that for any environment Z, generates a
transcript that is indistinguishable from the transcript that Z obtains from the real-world adversary
A participating (or just observing) the real protocol execution. We distinguish three cases, according
to which party Z corrupts, if any.

C.1 Committer and Receiver are honest

In this case the real-world adversary A is instructed by Z to not corrupt any party. The goal of
the simulator is to generate the transcript of the interaction between honest parties Cuc,Ruc. The
procedure of Sim is described in Simulator 1.

29

Simulator 1. [Sim in the honest-honest case.]

Commitment Phase.
Whenever Fcom writes (receipt, sid,Cuc,Ruc) to the communication tape of Sim in the ideal world,
then this message indicates that Z wrote the secret bit b to the input tape of Cuc. Sim simulates
the transcript of the commitment phase between Cuc and Ruc as follows.

1. For (i = 1; i = i+ 2; i ≤ 2n− 1):

- pick randomly `0i ∈ {i, i+ 1}; let `1i ← {i, i+ 1}/{`0i }.
- let Cuc run B`0i

= Blob(0) and B`1i
= Blob(1) with Ruc.

When the simulated Cuc or Ruc queries functionality Faux, interact with Faux from their behalf.

2. For (i = 1; i = i + 2; i ≤ 2n − 1), simulate execution of ProveBlobsEquality(B̄i, B̄i+1) as
follows (the following steps correspond to procedure SimFalse except for the first step, in which
the challenge is not extracted but randomly chosen by Sim):

- pick a random challenge e, and let Cuc,Ruc run commitment phase of IdealExtCom where
Ruc runs as a committer on input e, and Cuc runs as a receiver.

- write y = bei ⊕ bei+1 on Ruc’s communication tape.
- write the decommitment of e on Cuc’s communication tape.
- write decommitments of bei , b

e
i+1 on the communication tape of Ruc.

In any of the steps above, delay or to drop a message according to the strategy of the real-world
adversary A.

Decommitment phase.
When receiving (open, sid,Cuc,Ruc, b) simulate the transcript of the decommitment phase as follows.

1. If b = 0 then for (i = 1; i = i+ 2; i ≤ 2n− 1) run OpenBlob(B`0i
).

2. If b = 1 then for (i = 1; i = i+ 2; i ≤ 2n− 1) run OpenBlob(B`1i
).

Note that, in Step 2, Sim is basically running algorithm SimFalse. The only difference with
SimFalse is that the challenge e is not extracted using extractability of IdealExtCom, but it is chosen
by Sim itself. Therefore, in the following proof we will use the lemmata proved in Section B.

Claim 1 (Indistinguishability of the simulation when both parties are honest). If blobs are ideal
commitments, for any real-world adversary A and any environment Z, the transcript generated by
Sim (Simulator 1) is statistically indistinguishable from the interaction between honest real-world
Cuc,Ruc.

Proof. In this proof we use only the statistically hiding property of IdealExtCom commitment scheme
used to implement the Blob procedure, and the interface access of Sim to Faux which is necessary
to honestly execute protocol IdealExtCom.

In the honest-honest case, the environment Z sets the input of the honest sender Cuc, observes the
communication between Cuc and Ruc, and possibly delays/drops messages (we assume authenticated
channel) of the protocol through the dummy adversary A. We show that the transcript simulated
by Sim 1 is statistically close to the actual transcript obtained from the real interaction of honest
Cuc,Ruc. The proof goes by hybrids arguments. It starts from the real world, hybrid H0, in which
(Cuc,Ruc) honestly run the protocol using the input received from Z, and it ends to the ideal world,
hybrid H4, where Sim simulates both parties without knowing the actual input.

30

Hybrid H0: This is the real world.

Hybrid H1: In this hybrid, consider simulator Sim1. Sim1 obtains the input b chosen by Z for Cuc,
it honestly runs procedure of Cuc on input b and procedure Ruc, using independently random
tapes (and forwarding the queries of Cuc,Ruc to the ideal functionality Faux when they run
the extractable commitment scheme). In addition, Sim1 internally simulates a copy of the
dummy adversary A as well as A’s communication with Z, and let A control the scheduling
of the communication. H1 is just the real world protocol, executed through the simulator
Sim1. Clearly, hybrids H0 and H1 are identical.

Hybrid Hj
2 (for 1 ≤ j ≤ n): The difference between hybrid Hj

2 and hybrid Hj−1
2 is that in Hybrid

Hj
2 , the j-th instance of Protocol ProveBlobsEquality, is simulated. Specifically, in hybrid Hj

2 ,
Simj

2 simulates the j-th instance of ProveBlobsEquality by running Step 2 of Sim 1 instead of
running the honest prover procedure (as the honest Cuc would do).

We claim that the views obtained from hybrids Hj−1
2 and Hj

2 are statistically close.

In hybrid Hj−1
2 the j-th execution of ProveBlobsEquality is executed following the procedure

of the honest prover P . In hybrid Hj
2 , the procedure of a modified (the challenge e do not

need to be extracted) SimFalse is followed instead. By lemma 2, it holds that the transcript
generated by SimFalse is statistically close to the transcript generated by an honest prover. In
our case is even identical since we do not have to consider the negligible probability of failure
of the extraction, and since the pair of blob Bj ,Bj−1 are equal.

Hence, hybrids Hj−1
2 and Hj

2 are identical.

Note that, Hybrid H0
2 corresponds to the real experiment H1 where all proofs are given by

honestly running the prover of ProveBlobsEquality, and Hn
2 corresponds to the case in which

all proof are simulated, by running SimFalse.

Hybrid H3: In this hybrid, we consider simulator Sim3. In the commitment phase, Sim3 chooses,
for each i, the indexes `0i , `

1
i . Then in the decommitment phase Sim3, pick a random bit d,

and for each pair i, it opens always the blob in position `di . This hybrid is identical to Hn
2 .

Hybrid H4: In this hybrid, we consider simulator Sim4. In the commitment phase Sim4 follows
Step 2 of Simulator 1. Namely, for all indexes `0i it commits (it “blobs”) to 0, and it commits
to 1 for the remaining index `1i . Then in the decommitment phase, for each i it opens blobs in
position `bi . Note that here Sim4 is not using the knowledge of the input b in the commitment
phase.

The difference between hybrids H3 and H4 is that blobs do not commit to the same bit, they
are not all equal. Therefore, in H4 the simulated proofs are given on pairs of blobs that are
not equal, and then one of the blobs is revealed. By Lemma 4, and the statistically hiding
property of blobs (that are ideal commitment schemes) it follows that hybrids H3 and H4 are
statistically close.

Noticing that Sim4 corresponds to the procedure of Sim (Simulator 1), we have that hybrid
H4 is the ideal world. The claim is proved.

31

C.2 Receiver is corrupt

In this case the environment Z instructs the real-world adversary A to corrupt the receiver Ruc. The
simulator in this case, is very close to Simulator 1 shown for the honest-honest case. Therefore we
will just point out the differences with the previous simulator, and how the same indistinguishability
proof can be consequently adapted.

Concerning the simulator, the main difference with Simulator 1 is in Step 2. While in the honest-
honest case the challenge is chosen by Sim 1 itself, in the malicious receiver case, the challenge must
be extracted from the adversary. This simply means that Step 2 must be replaced with procedure
SimFalse shown in Lemma 2. Furthermore, the simulator in this case is not simulating Ruc, but is
internally running A that plays as a receiver. Thus, it has to take care of A aborting the protocol
at any point.

The proof that such simulation is indistinguishable from the real-world execution goes along the
same lines of the proof provided for the honest-honest case. The main difference is in hybrid H2,
that in case of malicious receiver, is only statistically close to hybrid H1. Indeed, when the receiver
is malicious we have to consider the negligible probability of the failure of the extractor associated
to the commitment scheme IdealExtCom.

C.3 Committer is corrupt

In this case, the environment Z instructs the adversary A to corrupt the sender Cuc. The simulator
Sim internally simulates a copy of the dummy adversary A as well as A’s communication with Z.
In addition, Sim simulates the honest receiver Ruc to A. The goal of Sim is to extract the bit that A
is committing to in the simulated execution, so that it can send it to the ideal functionality Fcom.

The procedure of Sim very roughly is the following. Sim extracts the bits committed in each blob
by running the extractor of IdealExtCom and then executes protocols ProveBlobsEquality exactly as
the honest receiver Ruc. If all the executions of ProveBlobsEquality are accepting, then Sim looks at
the extracted pair of bits, and proceeds as follow. If there exists at least one pair (b, b) and at least
one pair (b̄, b̄), (for a bit b), then the adversary, that has to open at least one bit per pair, will open
to b and b̄, thus leading the receiver to reject. Indeed, the receiver expects that all bits opened are
equal. Thus, in this case the adversary cannot successfully open to any bit. Hence, the simulator
will play the bit 0 in the ideal functionality. If there exist only pairs in the form (b, b) or (b, b̄), then
the adversary, can successfully open only to bit b. In this case, Sim will play b in the ideal world.
Finally, if all pairs are not equal, that is, each pair is either (b, b̄) or (b̄, b), then the adversary can
later successfully open to both b and b̄. In this case, Sim has no clue on which bit to play in the
ideal functionality and fails. Since this case happens when the adversary was able to prove equality
of n pairs that are not equal, probability that the adversary passes all these false proofs is 2−n,
which is negligible. Thus, probability that Sim fails in the extraction of the secret bit, is negligible
as well. Sim is formally defined in Simulator 2.

Simulator 2 (Sim in case sender Cuc is corrupt.). Activate A on input the security parameter n
and the secret bit received by Z. When A starts the commitment phase, proceeds as follows.

Commitment Phase.

1. For j = 1, . . . , 2n: extract the bit committed in blob Bj. Namely, run the procedure of the
extractor E associated to IdealExtCom for the pair of commitments in Bj. Obtain bits b0j ,b

1
j

32

from the extraction. Set bj = b0j ⊕ b1j . In this phase Sim uses the interface access to Faux as
required by E. If E aborts in any of the executions, then Sim also aborts. If A does not abort
in any of the commitments, proceeds to the next step.

2. If A proceeds to run ProveBlobsEquality(Bi, Bi+1), for all adjacent pairs, then follow the
procedure of the honest receiver.

3. If all proofs are successful, consider the bits extracted in Step 1, and check which case applies:

1. There exists a bit b such all adjacent pairs of extracted bit are either (b, b) or (b, b̄). In
this case, since in the decommitment phase A is required to open one bit for each pair,
there is only one bit that A can possibly decommit to, and is the bit b. Thus, send
(commit, sid,Cuc,Ruc, b) to Fcom.

2. There exists at least an adjacent pair of bits (b, b) and at least one pair of bits (b̄, b̄). In
this case, A that has to open at least one bit for each pair, cannot successfully commit to
any bit. Thus send (commit, sid,Cuc,Ruc, 0) to Fcom.

3. (Failure) Each adjacent pair is either (0, 1) or (1, 0). In this case, A could correctly
decommit to both 0 and 1. Thus, abort. We call this event Input Extraction Failure.

Decommitment phase.
If A correctly decommits to a bit b, (i.e., all blobs revealed agree on the same value b), send
(open, sid,Cuc,Ruc, b) to Fcom. Else, if A aborts, halt. If b is different from the one sent in the
commitment phase, then abort. We call this even Binding Failure.

Claim 2 (Indistinguishability of the simulation when the sender is corrupt). If blobs are ideal ex-
tractable commitments, for any real-world adversary A corrupting the sender Cuc, any environment
Z, it holds that view REALFaux

UCCom,A,Z is statistically close to IDEALF ,Sim 2,Z .

Proof. Sim 2 behaves almost identically to honest receiver Ruc. Indeed, it runs E in the first step,
that due to the simulation property of IdealExtCom, generates a view that is identical to the one
generated by an honest receiver. Then it honestly follows protocol ProveBlobsEquality. However,
differently from the honest receiver, Sim 2 aborts more often. Specifically, Sim 2 additionally aborts
in the following two cases:

Case 1. In Step 1, when the extractor E fails in extracting the bit from any of the blobs.

Case 2. In Step 3, Sim fails in determining the bit committed to by A. We call this event
Input extraction Failure, since Sim fails in extracting the input to send to the ideal functionality
Fcom.

Case 3. In the decommitment phase A opens to a bit b that is different from the one extracted
by Sim.

Due to the extractability property of the ideal extractable commitment IdealExtCom, Case 1 hap-
pens only with negligible probability. Due to Lemma 5, probability of Case 2 is also negligible.
Finally, due to the statistically binding property of Blobs, probability that A can open to a bit
that is different from the one extracted is negligible. Therefore, the view of A simulated by Sim is
statistically close to the view obtained from the interaction with real world receiver. Which implies
that the distribution of the input extracted by Sim is statistically close to the distribution of the

33

input played in the real world, and the communication between A and Z simulated by Sim is also
statistically close to the communication of Z with A interacting in the real protocol. Which implies
that REALFaux

UCCom,A,Z and IDEALF ,Sim 2,Z are statistically close.

Lemma 5. Probability of event Input extraction Failure is negligible.

Proof. Event Input extraction Failure happens when both the following events happen:

Event 1: all executions of protocol ProveBlobsEquality are successful. Namely, for all i 5,
ProveBlobsEquality(Bi, Bi+1) provided by A is accepting.

Event 2: Each consecutive pair of blobs is not equal. Namely, for all i, bi 6= bj , where bi and
bj are the bits committed respectively in Bi , Bi+1.

Due to the soundness of protocol ProveBlobsEquality, an adversary committing to n consecutive
pairs that are all not equal, passes all the equality proof with probability 1

2n , which is negligible.

D Ideal Commitment Scheme of [OSVW13]

In Fig. 8 is depicted the ideal extractable commitment scheme based on (malicious) PUFs and
presented in [OSVW13]. PS denote the sid for accessing the PUF created by FPUF functionality.

From Bit Commitment to String Commitment. To commit to a k-bit string one executes
protocol IdealCPuf k times in parallel and the receiver accepts the string iff all executions are
accepting. The PUF family required for a k-bit string commitment is with challenge space n and
range k3n (one can construct such PUF by combining several PUFs together and querying them with
the same challenge and concatenating the responses). Indeed, the binding argument relies on the
expansion factor between PUF-challenge and PUF-response. In case of k-composition the expansion
factor must be k3n instead of 3n, since for each i ∈ [k], xi might convey n bits of information to a
malicious stateful PUF. Hiding holds since probability that a malicious receiver guesses one of the
challenges is k/2n.

E Ideal Extractable Commitments: Proofs

In this section we provide formal proofs of our ideal extractable commitments shown in Section 4
and Section 5.

E.1 Proof of the Ideal Extractable Commitment with PUFs ExtPuf

In this section we formally prove that Protocol ExtPuf (shown in Fig. 2) is an ideal extractable
commitment scheme. Namely, we provide the full proof of Theorem 2.

Proof. Completeness. Completeness follows from completeness of IdealCPuf, from the response
consistency property of PUF and fuzzy extractors and the correct decoding property of Error
Correcting Codes.

5for (i = 1; i = i+ 2; i < n)

34

Protocol IdealCPuf
FPUF is parameterized with a PUF-family P=(rg, dnoise, dmin,m) with challenge space {0, 1}n.
(FuzGen,FuzRep) is a (m, `, t, ε)-fuzzy extractor of appropriate matching parameters such that
` = 3n. PS denote the id for accessing to the PUF created by the committer. Committer’s Input:
b ∈ {0, 1}. Commitment Phase

1. Committer CIdealPuf : send (initPUF, normal,PS ,CIdealPuf) to FPUF and obtain response
(initializedPUF,PS). Select a random string s ∈ {0, 1}n, send (evalPUF,PS ,CIdealPuf , s) to
FPUF and obtain response (responsePUF,PS , s, σS). Compute (stS , pS) ← FuzGen(σS), and
send pS to RIdealPuf and (handoverPUF,PS ,CIdealPuf ,RIdealPuf) to FPUF.

2. Receiver RIdealPuf : obtain p′S from the committer and (handoverPUF,PS ,CIdealPuf) from FPUF.
Pick random string r ∈ {0, 1}` and send it to the committer.

3. Committer CIdealPuf : send c = stS ⊕ (r ∧ b`) to RIdealPuf .

Decommitment Phase

1. Committer CIdealPuf : send (b, s) to RIdealPuf .

2. Receiver RIdealPuf : obtain (b′, s′) from the committer. Send (evalPUF,PS ,RIdealPuf , s
′) to FPUF

and obtain (responsePUF,PS , s′, σ′S). Compute st′S ← FuzRep(σ′S , p
′
S). If b = 0, check if

st′S = c. Else, check st′S = c⊕ r. If the check passes, accept and output b, else output reject.

Figure 8: IdealCPuf: Ideal Commitments in the FPUF model [OSVW13].

Hiding. The commitment phase of protocol ExtPuf basically consists in the parallel execution of
two instances of IdealCPuf. In the first instance, that we call ComBit, CExtPuf commits to its
secret bit b, in the other instance, that we call ComResp, it commits to some value received
from the (possibly malicious) PUF P∗R 6. Although P∗R could compute the response adaptively
on the query observed, thus revealing information about the opening (recall that the query
corresponds to the opening of ComBit), such information cannot reach A since the response
is committed using IdealCPuf. Furthermore in case P∗R aborts, CExtPuf continues the protocol,
committing to the string 0, in fact, ruling out selective abort attacks.

Formally, the hiding proof goes by hybrids:

H0 : In this experiment the committer honestly commits to the bit 0. Namely, it runs
ComBit to commit to 0, then in queries the possibly malicious PUF P∗R with the opening
of ComBit. Finally it commits to the answer received from P∗R running protocol ComResp
(if P∗R aborts, the committer commits to the zero string).

H1 : In this experiment the committer runs ComBit as commitment of 0 and ComResp as
commitment of the string 0`, instead of the actual opening of ComBit. Due to the hiding
of IdealCPuf, H0 and H1 are statistically close.

6Recall that, to create a malicious PUF, the malicious receiver A sends (initPUF, mal,PR,RExtPuf) to FPUF

35

H2 : In this experiment the commitment runs ComBit as commitment of 1 and ComResp still
as commitment of 0`. Due to the hiding of IdealCPuf, H1 and H2 are statistically close.

H3 : In this experiment the committer queries the possibly malicious PUF P∗R with the
opening of ComBit and commits to the answer (if any) running ComResp. If P∗R aborts,
the committer commits to the zero string. Due to the hiding of IdealCPuf, H2 and H3

are statistically close. In this experiment the committer is honestly committing to the
bit 1. This completes the proof.

Binding. Binding follows straight-forwardly from the binding property of IdealCPuf.

Extractability. We show a straight-line PPT extractor E that having interface access to FPUF

satisfies the properties of Definition 3. The extractor is formally described in Fig. 9. A
denotes the malicious sender.

Extractor E
E creates PUF PR sending (initPUF, normal,PR,RExtPuf) to FPUF. E handovers the PUF to A,
sending (handoverPUF,PR,RExtPuf ,A) to FPUF. Queries made by A to PR are intercepted by E,
stored in the variable Q, and then forwarded to FPUF. The answers received by FPUF are then
forwarded to A.
Commitment Phase:
E honestly follows the procedure of RExtPuf . If the commitment phase is accepting, E proceeds to
extraction phase. Else, it halts. Let (r, c) be the transcript of ComBit.
Extraction Phase:

- If there exists a query x ∈ Q such that c = Decode(x) then output 0.
- If there exists a query x ∈ Q such that c = Decode(x)⊕ r then ouput 1.
- Case 1) If there exist queries x0, x1 ∈ Q s.t. c = Decode(x0) AND c = Decode(x1) ⊕ r then

output ⊥.
- Case 2) If there exist no query in Q that decodes to a valid opening of c, output ⊥.

Figure 9: E: Extractor associated to ExtPuf.

Extractor E satisfies the following properties.

E runs in polynomial time. E follows the procedure of the honest receiver, which is poly-
nomial. In the extraction phase E runs algorithm Decode for at most polynomially many
queries. Due to the efficiency property of ECC this operation also requires polynomial
time.

Simulation. The extractor E follows the procedure of the honest receiver RExtPuf , and ad-
ditionally it collects the queries made by A to PR. Therefore the view of A interacting
with E is identical to the view of A interacting with RExtPuf .

Extraction. We have to prove that, when E outputs ⊥, probability that A provides an
accepting decommitment is negligible. First, recall that E outputs ⊥ in two cases. Case
1) there exists a pair of queries x0, x1 that are both valid openings of c. Case 2) there
exists no query decoding to a valid opening of c.
- Case 1. Note that, A can always compute x0, x1 such that r = Decode(x0)⊕Decode(x1)

and compute c = Decode(x0). We argue that, if A computes c in such a way, then

36

probability that A can provide an accepting decommitment for c is negligible. This
follows directly from the binding of IdealCPuf.

- Case 2. Towards a contradiction, assume that A does not query the PUF with any
valid opening, but in the decommitment phase, A still provides an accepting de-
commitment. An accepting decommitment in ExtPuf consists of the decommitments
of ComBit and ComResp. Namely, the bit b, along with the value stS such that
c = stS⊕ (r∧b), and the string (stR||pR) (for simplicity we are omitting the remain-
ing decommitment data).
Since the decommitment is accepting it holds that stR is the answer of the honest
PUF PR on the query Encode(stS)(more precisely stR = FuzRep(σR, pR) where σR
is the actual answer of PR on input Encode(stS)).
By hypothesis no queries received by PR in the commitment phase decoded to stS .
Thus one of these two cases has happened:
1. A has correctly computed PR’s responds σR without querying PR. In this case
A breaks unpredictability of the honest PUF PR.
Indeed, due to the Minimum Distance property of ECC, we have that all the
valid codewords are at dmin hamming distance from each other. Thus, the only
way for A to obtain a response for an encoding of stS that was not inferred
by E, is that such encoding is dmin apart from any challenge observed by E.
Predicting the PUF-response of a challenge that is so far from the previously
queried challenges, corresponds to break the unpredictability of the PUF.

2. A queries PR only in the decommitment phase. Then she opens the commitment
of the response, ComResp, accordingly. Due to the statistically binding property
of IdealCPuf, this case happens with negligible probability.

Binding. Here we have to prove that if E extracts bit b, probability that A decommits to
bit b̄ is negligible. This basically follows from the biding of the sub-protocol IdealCPuf.

E.2 Proof of the Ideal Extractable Commitments with Stateless Tokens ExtTok

In this section we provide a formal proof of Theorem 3.
First, we prove that IdealCTok is an ideal commitment scheme in the Fwrap model.

Theorem 4. Protocol IdealCTok is an ideal commitment scheme in the Fwrap model.

Proof. Completeness. By inspection.

Hiding. Hiding breaks if a malicious receiver A is able to compute y, in the commitment phase.
Recall that values x, y embedded into the stateless token TC are chosen uniformly at random.
Furthermore, TC responds only on input x. Since A can make only polynomial number of
queries to TC, it can get y only if she guesses x. This happens with negligible probability only.

Binding. The proof of binding can be adapted from the proof of protocol IdealCom (due to [OSVW13]).
It is sufficient to observe that a malicious PUF can be a malicious token.

We are now ready to prove Theorem 3.

37

Proof. Completeness. Due to the completeness of the one-time unconditional MAC and the
completeness of the sub-protocol IdealCTok.
Hiding. Follows directly from the hiding property of protocol IdealCTok. The formal argument is
similar to the one provided in the hiding proof of Section E.1, and is therefore omitted.
Binding. Follows directly from the binding property of protocol IdealCTok.
Extractability. Extractability roughly follows from the binding of IdealCTok and the unconditional
one-time unforgeability of MAC. Details follow.

We show a straight-line PPT extractor E that having interface access to Fwrap satisfies the
properties of Definition 3. The extractor is formally described in Fig. 10. A denotes the malicious
sender.

Extractor E
E simulates the creation of TR. Queries made by A to TR are intercepted by E, stored in the
variable Q, and then answered faithfully (i.e., by following the code of an honest TR).
Commitment Phase:
E honestly follows the procedure of RExtTok. If the commitment phase is accepting, E proceeds to
the extraction phase. Else, it halts. Let (r, c) be the transcript of ComBit.
Extraction Phase:

- If there exists a query q= (r||c, σrec, y) ∈ Q such that Vrfy(krec, r||c, σrec) = 1 and (c = y)
then output 0.

- If there exists a query q= (r||c, σrec, y) ∈ Q such that Vrfy(krec, r||c, σrec) = 1 and (c = y⊕ r
) then output 1.

- Case 1) If there exist queries q0, q1 ∈ Q s.t. q0 = (r||c, σrec, y0) and q1 = (r||c, σrec, y1), and
Vrfy(krec, r||c, σrec) = 1 and both y0, y1 are valid openings for (r||c) then output ⊥.

- Case 2) If no queries are accepting, output ⊥.

Figure 10: E: Extractor associated to ExtTok.

E runs in polynomial time. E follows the procedure of the honest receiver, which is efficient.

Simulation. The extractor E follows the procedure of the honest receiver RExtTok, and additionally
it collects the queries made by A to TR. Therefore the view of A interacting with E is identical
to the view of A interacting with RExtTok.

Extraction. We show that, probability that the extractor E outputs⊥ (i.e., it fails in extracting the
bit) but the adversary A is instead able to provide an accepting decommitment is negligible.
From Fig. 10 E fails in the extraction in two cases.

In case 1, the adversary queries the token with two valid openings for the same commitment
c. In this case, the commitment c is not binding. We argue that, due to the binding property
of protocol IdealCTok, probability that A later provides an accepting decommitment for c is
negligible. The reason is that, an opening of c is the pair x, y such that y = TC(x). Note also
that |x| = n while |y| = 3n. The commitment c is equivocal only if c = y0 and r = y0 ⊕ y1

for some pair y0, y1 ∈ {0, 1}3n. Since TC is sent to the receiver before the string r has been
observed, probability that TC has been programmed with a pair of strings which exclusive-or
is r is negligible. Since x is only n bits, the committer cannot later instruct the token TC to

38

answer the value yb. Thus, probability that A computes a commitment c which is equivocal
and can be accepted in the decommitment, is negligible as well. Hence, in case 1) extractability
is not violated since the extractor fails only when the decommitment will be accepted whp.

Now, consider case 2. Let r||c be the transcript of the commitment of ComBit. In case 2, the
adversary A did not query the token TR with the opening of the commitment c (but she might
have queried with other values). We argue that, in this case, probability that A provides an
accepting decommitment is negligible. Assume, towards a contradiction, that A provides an
accepting decommitment in protocol ExtTok. This means that A committed to a valid MAC,
computed with the key ktok, of the opening y of commitment c, without querying TR with y.
Now, A can compute such a MAC in two ways. Either, A was able to extract the key ktok by
exploiting its access to the stateless TR, or A was able to forge the MAC under key ktok.

Due to the unconditional one-time unforgeability of MAC and the statistically binding of
IdealCTok, A cannot query the token TR more then one time (thus extracting the key). Namely,
it cannot query TR on values which prefix is different from r||c, σrec where σrec is received from
the receiver (extractor). This is due to the one-time unforgeability of the MAC used to
compute σrec, and from the fact that A observes only one MAC computed with krec. Once the
prefix r||c is fixed, due to the binding of IdealCTok, probability that A can query the token
for more then one opening is negligible (except the case in which c is properly crafted, that
we analyzed before). Thus, probability that A obtains two MACs and extracts the key ktok,
is negligible.

Since A cannot extract ktok, the only case in which it can generate a valid new mac for an
opening y, without querying the token, is by forging the MAC. Due to the unforgeability of
MAC, this happens with negligible probability.

39

	Introduction
	Definitions
	Ideal Extractable Commitment Scheme
	Physically Uncloneable Functions
	Fuzzy Extractors

	The Compiler
	Unconditional UC-secure Commitments from Ideal Extractable Commitments

	Ideal Extractable Commitment from (Malicious) PUFs
	Ideal Extractable Commitments from Stateless Tokens
	More Definitions
	More Definitions for PUFs
	Ideal Functionalities and the UC framework
	FPUF Ideal Functionality for Malicious PUFs
	Fwrap Ideal Functionality modeling Stateless Tokens

	Properties of Protocol ProveBlobsEquality
	UC-security of UC Com Compiler
	Committer and Receiver are honest
	Receiver is corrupt
	Committer is corrupt

	Ideal Commitment Scheme of OSVW12
	Ideal Extractable Commitments: Proofs
	Proof of the Ideal Extractable Commitment with PUFs ExtPuf
	Proof of the Ideal Extractable Commitments with Stateless Tokens ExtTok

