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Abstract

We define a novel notion of quasi-adaptive non-interactive zero knowledge (NIZK) proofs for
probability distributions on parametrized languages. It is quasi-adaptive in the sense that the
common reference string (CRS) generator can generate the CRS depending on the parameters
defining the language. However, the simulation is required to be uniform, i.e., a single efficient
simulator should work for the whole class of parametrized languages. For distributions on lan-
guages that are linear subspaces of vector spaces over bilinear groups, we give quasi-adaptive
NIZKs that are shorter and more efficient than Groth-Sahai NIZKs. For many cryptographic
applications quasi-adaptive NIZKs suffice, and our constructions can lead to significant improve-
ments in the standard model. Our construction can be based on any k-linear assumption, and
in particular under the Symmetric eXternal Diffie Hellman (SXDH) assumption our proofs are
even competitive with Random-Oracle based Σ-protocol NIZK proofs.

We also show that our system can be extended to include integer tags in the defining equa-
tions, where the tags are provided adaptively by the adversary. This leads to applicability of
our system to many applications that use tags, e.g. applications using Cramer-Shoup projective
hash proofs. Our techniques also lead to the shortest known (ciphertext) fully secure identity
based encryption (IBE) scheme under standard static assumptions (SXDH).
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1 Introduction

In [12] a remarkably efficient non-interactive zero-knowledge (NIZK) proof system [2] was given for
groups with a bilinear map, which has found many applications in design of cryptographic protocols
in the standard model. All earlier NIZK proof systems (except [11], which was not very efficient)
were constructed by reduction to Circuit Satisfiability. Underlying this system, now commonly
known as Groth-Sahai NIZKs, is a homomorphic commitment scheme. Each variable in the system
of algebraic equations to be proven is committed to using this scheme. Since the commitment
scheme is homomorphic, group operations in the equations are translated to corresponding opera-
tions on the commitments and new terms are constructed involving the constants in the equations
and the randomness used in the commitments. It was shown that these new terms along with the
commitments to variables constitute a zero-knowledge proof [12].

While the Groth-Sahai system is quite efficient, it still falls short in comparison to Schnorr-based
Σ-protocols [7] turned into NIZK proofs in the Random Oracle model [1] using the Fiat-Shamir
paradigm [9]. Thus, the quest remains to obtain even more efficient NIZK Proofs.

Our contributions. In this paper, we show that for languages that are linear subspaces of
vector spaces of the bilinear groups, one can indeed obtain more efficient NIZK proofs in a slightly
different quasi-adaptive setting, which suffices for many cryptographic applications. In the quasi-
adaptive setting we consider a class of parametrized languages {Lρ}, parametrized by ρ, and we
allow the CRS generator to generate the CRS based on the language parameter ρ. However, the
CRS simulator in the zero-knowledge setting is required to be a single efficient algorithm that works
for the whole parametrized class or probability distributions of languages, by taking the parameter
as input. We will refer to this property as uniform simulation.

Many hard languages that are commonly used in cryptography are distributions on class of
parametrized languages, e.g. the DDH language based on the decisional Diffie-Hellman (DDH)
assumption is hard only when in the tuple 〈g, f , x ·g, x · f 〉, even f is chosen at random (in addition
to x · g being chosen randomly). However, applications (or trusted parties) usually set f , once
and for all, by choosing it at random, and then all parties in the application can use multiple
instances of the above language with the same fixed f . Thus, we can consider f as a parameter for
a class of languages that only specify the last two components above. If NIZK proofs are required
in the application for this parametrized language, then the NIZK CRS can be generated by the
trusted party that chooses the language parameter f . Hence, it can base the CRS on the language
parameter1.

We remark that adaptive NIZK proofs [2] also allow the CRS to depend on the language,
but such a NIZK that allows different efficient simulators for each particular language (from a
parametrized class) is unlikely to be useful in applications. Thus, most NIZK proofs, including
Groth-Sahai NIZKs, actually show that the same efficient simulator works for the whole class, i.e.
they show uniform simulation. The Groth-Sahai system achieves uniform simulation without mak-
ing any distinction between different classes of parametrized languages, i.e. it shows a single efficient
CRS simulator that works for all algebraic languages without taking any language parameters as
input. Thus, there is potential to gain efficiency by considering quasi-adaptive NIZK proofs, i.e.

1However, in the security definition, the efficient CRS simulator does not itself generate f , but is given f as input
chosen randomly.
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by allowing the (uniform) simulator to take language parameters as input/footnoteIt is important
to specify the information about the parameter which is supplied as input to the CRS simulator.
We defer this important issue to Section 2 where we formally define quasi-adaptive NIZK proofs..

Our approach to building more efficient NIZK proofs for linear subspaces is quite different from
the Groth-Sahai techniques. In fact, our system does not require any commitments to the witnesses
at all. If there are t free variables in defining a subspace of the n-dimensional vector-space and
assuming the subspace is full-ranked (i.e. has rank t), then t components of the vector already
serve as commitment to the variables. As an example, consider the language L (over a cyclic group
G of order q in additive notation) to be

L = {〈l 1, l2, l3〉 ∈ G
3 | ∃x1, x2 ∈ Zq : l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h}

where g, f , h are parameters defining the language. Then, l1 and l2 are already binding commit-
ments to x1 and x2. Thus, we only need to show that the last component l3 is consistent.

The main idea underlying our construction can be summarized as follows. Suppose the CRS can
be set to be a basis for the null-space L⊥ρ of the language Lρ. Then, just pairing a potential language

candidate with L⊥ρ and testing for all-zero suffices to prove that the candidate is in L, as the null-

space of L⊥ρ is just L. However, efficiently computing null-spaces in hard bilinear groups is itself

hard. Thus, an efficient CRS simulator cannot generate L⊥ρ , but can give a (hiding) commitment

that is computationally indistinguishable from a binding commitment to L⊥ρ . To achieve this we
use a homomorphic commitment just as in the Groth-Sahai system, but we can use the simpler El-
Gamal encryption style commitment as opposed to the more involved Groth-Sahai commitments.
This allows for a more efficient verifier, but requires a more sophisticated proof2. As we will see
later in Section 6, a more efficient verifier is critical for obtaining short identity based encryption
schemes (IBE).

In fact, the idea of using the null-space of the language is reminiscent of Waters’ dual-system
IBE construction [18], and indeed our system is inspired by that construction3, although the idea
of using it for NIZK proofs, and in particular the proof of soundness is novel. Another contribution
of the paper is in the definition of quasi-adaptive NIZK proofs.

For n equations in t variables, our quasi-adaptive NIZK proofs for linear subspaces require
only k(n − t) group elements, under the k-linear decisional assumption [17, 4]. Thus, under the
SXDH assumption for bilinear groups, our proofs require only (n− t) group elements. In contrast,
the Groth-Sahai system requires (n + 2t) group elements. Similarly, under the decisional linear
assumption (DLIN), our proofs require only 2(n − t) group elements, whereas the Groth-Sahai
system requires (2n + 3t) group elements. These parameters are summarized in Figure 1, where
we also compare with Σ-protocol based NIZK proofs in the random oracle model. Our SXDH
based proofs are actually shorter than the Σ-protocol NIZK proofs, although the latter have the
advantage of being proofs of knowledge (PoK). We remark that the Groth-Sahai system is also not
a PoK for witnesses that are Zq elements.

Thus, for the language L above, which is just a DLIN tuple used ubiquitously for encryption,
our system only requires two additional group elements under the DLIN assumption, whereas the

2Our quasi-adaptive NIZK proofs are already shorter than Groth-Sahai as they require no commitments to vari-
ables, and have to prove lesser number of equations, as mentioned earlier.

3In Section 6 and in the Appendix, we show that the design of our system leads to a shorter SXDH assumption
based dual-system IBE.
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SXDH DLIN Discrete Log + Random Oracle
Proof CRS Proof CRS Proof CRS

Groth-Sahai n+ 2t 4 2n+ 3t 9 - -

This paper n− t 2t(n− t) + 2 2n− 2t 4t(n − t) + 3 - -

Σ-Protocol - - - - (n : G) + (t : Zq) + (1 : Hash) RO

Table 1: Comparison with existing techniques for NIZKs for Linear Subspaces. Parameter t is the
number of unknowns or witnesses and n is the dimension of the vector space, or in other words,
the number of equations. The CRS in this paper’s system is usually much smaller, as many of the
constants in the linear system can be zero.

Groth-Sahai system requires twelve additional group elements (note, t = 2, n = 3 in L above).
For the Diffie-Hellman analogue of this language 〈x · g, x · f〉, our system produces a single element
proof under the SXDH assumption, which we demonstrate in Section 4 (whereas the Groth-Sahai
system requires (n + 2t =)4 elements for the proof; note t = 1 and n = 2).

Our system does not yet extend naturally to quadratic or multi-linear equations, whereas the
Groth-Sahai system does. However, we can extend our system to include tags, and allow the
defining equations to be polynomially dependent on tags. For example, our system can prove the
following language:

L′ = {〈l 1, l2, l3,tag〉 ∈ G
3 × Zq | ∃x1, x2 ∈ Zq : l1 = x1 · f , l2 = x2 · g, l3 = (x1 + tag · x2) · h}.

Note that this is a non-trivial extension since the tag is adaptively provided by the adversary after
the CRS has been set.

The extension to tags is very important, as we now discuss. Many applications require that
the NIZK proof also be simulation-sound. However, extending NIZK proofs for bilinear groups
to be unbounded simulation-sound requires handling quadratic equations (see [4] for a generic
construction). On the other hand, many applications just require one-time simulation soundness,
and as has been shown in [13], this can be achieved for linear subspaces by projective hash proofs [6].
Projective hash proofs can be defined by linear extensions but using tags. Thus, our system can
handle such equations. Many applications, such as signatures, can also achieve implicit unbounded
simulation soundness using projective hash proofs, and such applications can utilize our system
(see Section 6).

While the cryptographic literature is replete with NIZK proofs, we will demonstrate the applica-
bility of quasi-adaptive NIZKs, and in particular our efficient system for linear subspaces, to a few
recent applications such as signature schemes [4], UC commitments [10] and password-based key ex-
change [14, 13]. In particular, based on [10], our system yields an adaptive UC-secure commitment
scheme (in the erasure model) that has only four group elements as commitment, and another four
as opening (under the DLIN assumption; and 3+2 under SXDH assumption), whereas the original
scheme required 5+16 group elements. We also obtain one of the shortest signature schemes under
a static standard assumption, i.e. SXDH, that only requires five group elements. We also show how
this signature scheme can be extended to a short fully secure (and perfectly complete) dual-system
IBE scheme, and indeed a scheme with ciphertexts that are only four group elements plus a tag
(under the SXDH assumption). This is the shortest IBE scheme under the SXDH assumption, and
is technically even shorter than a recent and independently obtained scheme of [5] which requires
five group elements as ciphertext.
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Organization of the paper. We begin the rest of the paper with the definition of quasi-adaptive
NIZKs in Section 2 followed by definitions of the hardness assumptions that we use in Section 3.
In Section 4 we develop quasi-adaptive NIZKs for linear subspaces under the SXDH assumption.
In Section 5, we extend our system to include tags. Finally, we demonstrate applications of our
system in Section 6. We defer detailed proofs and descriptions to the appendix. In Appendix B,
we describe our system based on the k-linear assumption.

Notations. We will be dealing with witness-relations R that are binary relations on pairs (x,w),
and where w is commonly referred to as the witness. Each witness-relation defines a language
L = {x| ∃w : R(x,w)}. For every witness-relation Rρ we will use Lρ to denote the language it
defines. Thus, a NIZK proof for a witness-relation Rρ can also be seen as a NIZK proof for its
language Lρ.

Vectors will always be row-vectors and will always be denoted by an arrow over the letter, e.g.
~r for (row) vector of Zq elements, and ~d as (row) vector of group elements.

2 Quasi-Adaptive NIZK Proofs

Instead of considering NIZK proofs for a (witness-) relation R, we will consider Quasi-Adaptive
NIZK proofs for a probability distribution D on a collection of (witness-) relations R = {Rρ}. The
quasi-adaptiveness allows for the common reference string (CRS) to be set based on Rρ after the
latter has been chosen according to D. We will however require, as we will see later, that the
simulator generating the CRS (in the simulation world) is a single probabilistic polynomial time
algorithm that works for the whole collection of relations R.

To be more precise, we will consider ensemble of distributions on (witness-) relations, each
distribution in the ensemble itself parametrized by a security parameter. Thus, we will consider
ensemble {Dλ} of distributions on collection of relations Rλ, where each Dλ specifies a probability
distribution on Rλ = {Rλ,ρ}. When λ is clear from context, we will just refer to a particular
relation as Rρ, and write Rλ = {Rρ}.

Since in the quasi-adaptive setting the CRS could depend on the relation, we must specify
what information about the relation is given to the CRS generator. Thus, we will consider an
associated parameter language such that a member of this language is enough to characterize a
particular relation, and this language member is provided to the CRS generator. For example,
consider the class of parametrized relations R = {Rρ}, where parameter ρ is a tuple g, f,h of three
group elements. Suppose, Rρ (on 〈l1, l2, l 3〉, 〈x1, x2〉) is defined as

R〈g,f,h〉(〈l1, l2, l3〉, 〈x1, x2〉)
def
= (x1, x2 ∈ Zq, l1, l2, l 3 ∈ G and l1 = x1·g, l2 = x2·f, l 3 = (x1+x2)·h).

For this class of relations, one could seek a quasi-adaptive NIZK where the CRS generator is just
given ρ as input. Thus in this case, the associated parameter language Lpar will just be triples of
group elements4. Moreover, the distribution D can just be on the parameter language Lpar, i.e. D
just specifies a ρ ∈ Lpar. Again, Lpar is technically an ensemble.

4It is worth remarking that alternatively the parameter language could also be discrete logarithms of these group
elements (w.r.t. to some base), but a NIZK proof for this associated language may not be very useful. Thus, it is
critical to define the proper associated parameter language.
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We call (K0,K1,P,V) a QA-NIZK proof system for an ensemble of distributions {Dλ} on col-
lection of witness-relations Rλ = {Rρ} with associated parameter language Lpar if there exists
a probabilistic polynomial time simulator (S1,S2), such that for all non-uniform PPT adversaries
A1,A2,A3 we have:

Quasi-Adaptive Completeness:

Pr[λ← K0(1
m); ρ← Dλ;ψ ← K1(λ, ρ); (x,w) ← A1(λ, ψ, ρ);

π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w)] = 1

Quasi-Adaptive Soundness:

Pr[λ← K0(1
m); ρ← Dλ;ψ ← K1(λ, ρ);

(x, π)← A2(λ, ψ, ρ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[λ← K0(1
m); ρ← Dλ;ψ ← K1(λ, ρ) : A

P(ψ,·,·)
3 (λ, ψ, ρ) = 1] ≈

Pr[λ← K0(1
m); ρ← Dλ; (σ, τ)← S1(λ, ρ) : A

S(σ,τ,·,·)
3 (λ, σ, ρ) = 1],

where S(σ, τ, x, w) = S2(σ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and S) output failure
if (x,w) 6∈ Rρ.

To summarize, a quasi-adaptive NIZK

1. allows to split a hard language, or more precisely a distribution of languages, into two lan-
guages: (a) a language of parameters Lpar (and the projected distribution D on Lpar), and
(b) the projection Lρ of the original language once the parameter ρ (in Lpar) has been fixed,

2. requires uniform simulation, i.e. a single efficient simulator for the whole distribution of
parameters,

3. allows to pass the parameter as an input to the CRS generator and CRS generator simulator,

4. allows the Adversary to adaptively generate Lρ tuples for the prover/simulator in the zero-
knowledge definition (this is same as that in usual adaptive NIZK definitions).

Remark. One can consider a stronger definition of soundness where the Adversary gets more
information (than ρ) about the relation Rρ. Indeed, our quasi-adaptive NIZK for linear subspaces
will have the property that the Adversary can even be given the discrete logarithms of the param-
eters. However, we do not yet see an application for such a stronger definition. Such a definition
could however be useful in situations where the QA-NIZK’s CRS can be generated with an under-
specification of the relation Rρ.
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3 Hardness Assumptions

Definition 1 (DDH [8]) Assuming a generation algorithm G that outputs a tuple (q,G,g) such
that G is of prime order q and has generator g, the DDH assumption asserts that it is computa-

tionally infeasible to distinguish between (g,ga,gb,gc) and (g,ga,gb,gab) for a, b, c
$
←− Zq. More

formally, for all PPT adversaries A there exists a negligible function ν() such that

∣
∣
∣
∣

Pr[(q,G,g)← G(1m); a, b, c ← Zq : A(g,g
a,gb,gc) = 1]−

Pr[(q,G,g)← G(1m); a, b← Zq : A(g,g
a,gb,gab) = 1]

∣
∣
∣
∣
< ν(m)

Definition 2 (SXDH [3]) Consider a generation algorithm G taking the security parameter as
input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups of prime
order q with generators g1,g2 and e(g1,g2) respectively and which allow an efficiently computable
Zq-bilinear pairing map e : G1 × G2 → GT . The Symmetric eXternal decisional Diffie-Hellman
(SXDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem is hard in both the
groups G1 and G2.

4 NIZK for Linear Subspaces under the SXDH Assumption

Let G1,G2 and GT be cyclic groups of prime order q with a bilinear map e : G1×G2 → GT chosen
by a group generation algorithm. Let g1 and g2 be generators of the group G1 and G2 respectively.
Let 01, 02 and 0T be the identity elements in the three groups G1,G2 and GT respectively.

The bilinear pairing e naturally extends to Zq-vector spaces of G1 and G2 of the same dimension

n as follows: e(~a, ~b
⊤
) =

∑n
i=1 e(ai,bi). Thus, if ~a = ~x · g1 and ~b = ~y · g2, where ~x and ~y are now

vectors over Zq, then e(~a, ~b
⊤
) = (~x ·~y⊤)·e(g1,g2). The operator “

⊤” indicates taking the transpose.

A set of equations l1 = x1 · g1, l 2 = x2 · f1, l3 = (x1 + x2) · h1 will be expressed in the form
~l = ~x · A · g1 as follows:

[
l1 l2 l3

]
=

[
x1 x2

]
·

[
1 0 c2
0 c1 c2

]

· g1

where f1 = c1 · g1,h1 = c2 · g1 are constants and ~x is a vector of unknowns.

The scalars in this system of equations are from the field Zq. In general, we consider languages
that are linear subspaces of vectors of G1 elements. These are just Zq-modules, and since Zq is a
field, they are vector spaces. In other words, the languages we are interested in can be characterized
as:

Lρ = {~x · A · g1 ∈ G
n
1 | ~x ∈ Zq

t}

where ρ = At×n ·g1 is the parameter of the language. Thus, the associated parameter language Lpar
will be all t× n matrices of G1 elements. The parameter language Lpar also has a corresponding
witness relation Rpar, where the witness is a matrix of Zq elements. Thus, Rpar(ρ,A

t×n) iff
ρ = At×n · g1.

Let the t × n dimensional matrix ρ be chosen according to a distribution D on Lρ. We will
call the distribution D robust if with probability close to one the left-most t columns of ρ are full-
ranked. We will call a distribution D on Lpar efficiently witness-samplable if there is a probabilistic
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polynomial time algorithm such that it outputs a pair of matrices (ρ,A) that satisfy the relation
Rpar (i.e. Rpar(ρ,A) holds), and further the resulting distribution of the output ρ is same as D.
For example, the uniform distribution on Lpar is efficiently witness-samplable, by first picking A

at random, and then computing ρ. As an example of a robust distribution, consider a distribution

D on (2 × 3)-dimensional matrices

[
1 0 c2
0 c1 c2

]

with c1 and c2 chosen randomly from Zq. It is

easy to see that the first two columns are full-ranked with probability (1− 1/q).

We now describe a quasi-adaptive NIZK (K0,K1,P,V) for robust and efficiently-samplable dis-
tributions over linear subspaces {Lρ} with associated parameter language Lpar.

Algorithm K0: K0 is same as the group generation algorithm for which the SXDH assumption
holds. It takes 1m as input, where m is the security parameter and generates λ that includes q, the
three groups, the generators g1 and g2 of G1 and G2, and the bilinear pairing e.

We will assume that the size t× n of the matrix A is either fixed or determined by the security
parameter m. In general, t and n could also be part of the parameter language, and hence t, n
could be given as part of the input to CRS generator K1.

Algorithm K1: The algorithm K1 generates the CRS as follows. Let At×n · g1 be the parameter

supplied to K1. Let s
def
= n − t: this is the number of equations in excess of the unknowns. It

generates a matrix Dt×s with all elements chosen randomly from Zq and a single element b chosen
randomly from Zq. The common reference string (CRS) has two parts CRS1 and CRS2 which are
to be used by the prover and the verifier respectively.

CRS
t×(n+s)
1 = A ·

[

In×n
D

b−1 · Is×s

]

· g1 CRS
(n+s)×s
2 =





b · D
Is×s

−b · Is×s



 · g2

Here, I denotes the identity matrix. Note that CRS1 can be generated from the parameter A · g1,
since K1 knows D and b. Also, note that CRS2 is independent of the parameter.

Prover P: Given candidate ~x · A · g1 with witness vector ~x, the prover generates the following
proof:

~p := ~x · CRS1

Note that the first n elements of the proof are exactly the candidate. We can assume that the
language candidate is just given as the first part (i.e. first n elements) of the proof.

Verifier V: Given ~l , and a proof ~p, the verifier first checks that the first n elements of ~p form
the candidate ~l and then checks the following:

e(~p,CRS2)
?
= 0

1×s
T

Theorem 3 Let D be a robust and efficiently witness-samplable distribution over Lpar. For any
group generation algorithm for which the DDH assumption holds for group G2, the above algorithms
K0, K1, the Prover P, and the Verifier V constitute a quasi-adaptive NIZK for distribution D over
the class of languages {Lρ} with associated parameter language Lpar.
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A detailed proof of the theorem can be found in Appendix A. Here we give the main idea
behind the working of the above quasi-adaptive NIZK, and in particular the soundness requirement
which is the difficult part here. We first observe that completeness follows by straightforward
bilinear manipulation (again, see Appendix A for details). Zero Knowledge also follows easily:
the simulator generates the same CRS as above but retains D and b as trapdoors. Now, given a

language candidate ~l , the proof is simply ~p′ := ~l ·

[

In×n
D

b−1 · Is×s

]

. If ~l is in the language,

i.e., it is ~x · A · g1 for some ~x, then the distribution of the simulated proof is identical to the real
world proof.

We now focus on the soundness proof. For simplicity, assume that At×n is a full-ranked matrix
with its left-most t columns being full-ranked. Given a language Lρ with parameter ρ = At×n · g1,
Let the null-space of vector space generated by rows of A be generated by columns of matrix Un×s

(s = (n − t)). Then by basic linear algebra, the null-space of U is just A, and hence ~l is in span

of A iff ~l · U = ~0
1×s

. Hence, one could verify a candidate ~l (a vector in group G1) to be in Lρ by
checking the following bilinear pairing equation

e(~l , U · g2)
?
= 0

1×s
T .

However, we can not expect the CRS generator K1 to produce U · g2 as CRS, as it is only given
ρ = A · g1 as input. For hard languages Lρ, efficiently computing U · g2 from ρ implies breaking the
hardness of Lρ (using the bilinear pairing).

However, one can envision the CRS being a hiding commitment of U · g2, which to a computa-
tionally bounded adversary is also a binding commitment. W.l.o.g. assume that U has its bottom
s rows as the identity matrix (recall, U has rank s = (n− t)), and let the top t rows of U be called
W. Thus, a perfectly binding commitment to W · g2 can be 〈g1,D · g1, b · g2, (W + b · D) · g2〉,
for any scalar b and any matrix Dt×s over Zq. Note that the first two elements are in G1, while
the last two are in G2. In fact, the following is also a perfectly binding commitment to W · g2:
〈A1 · g1,A1D · g1, b · g2, (W + b · D) · g2〉, where A1 is the left most t columns of A (recall, A1 is
non-singular).

With this in mind, we let Algorithm K1 set the CRS as described in the specification before
(which is the hiding form of the commitment), and that can be computed from just ρ. Now
statistically, this CRS is indistinguishable from the one where we substitute D′+b−1 ·W for D, where
D′ itself is an independent random matrix. With this substitution (and noting that A · U = 0t×s),
the CRS1 and CRS2 can be represented as

CRS
t×(n+s)
1 = A ·

[

In×n
D′

0s×s

]

· g1, CRS
(n+s)×s
2 =




b ·

[
D′

0s×s

]

+

[
W

Is×s

]

−b · Is×s



 · g2

However, we do not expect the pairing test of the verifier with this representation of the CRS, i.e.

e(~p,CRS2)
?
= 0

1×s
T to be statistically binding for ~p to be a proof of a Lρ member (i.e. of the form

~x · A · g1). One can hope that the CRS can be made computationally binding by employing DDH
on 〈b · g2,D

′ · g2, b ·D
′ · g2〉. However, CRS1 requires D′ · g1 and not D′ · g2, and so this approach is

untenable.

However, there is an alternate way to show that if an efficient Adversary B can produce a
“proof” ~p for which the above pairing test holds and yet the candidate (contained as first part of
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~p) is not in Lρ, then it implies an efficient adversary that can break DDH in group G2. So consider
a DDH game, where a challenger either provides a real DDH-tuple 〈g2, b · g2, r · b · g2,χ = r · g2〉
or a fake DDH tuple 〈g2, b · g2, r · b · g2,χ = (r + r′) · g2〉 (let’s denote the last component in the
tuple provided by the challenger as χ). We build an adversary S (for the DDH challenge) that
first simulates the challenger in the QA-NIZK soundness experiment by using the DDH-challenge
components g2, b · g2 to build the above representation of the CRS (in particular CRS2). After B
replies with “proof” ~p, the DDH Adversary S checks if

e



~p,





r · b · D′ · g2 +W · χ
Is×s · χ

−r · b · Is×s · g2








?
= 0

1×s
T

When the DDH challenge is a real DDH tuple, this test has (at least) the same probability of

passing as the verifier test in the QA-NIZK (i.e. e(~p,CRS2)
?
= 0T ). When the DDH challenge is a

fake DDH tuple, one can show that this test fails with high probability (given that ~p’s first part
is not in Lρ), especially since B’s response is independent of r′. Further, when ~p’s first part is in
Lρ, the above test has identical probability of passing in both the real and fake DDH setting. This
leads to a proof of soundness of the QA-NIZK. Details of the proof can be found in Appendix A.

Example: QA-NIZK for a DH tuple. In this example, we instantiate our general system to
provide a NIZK for a DH tuple, that is a tuple of the form (x · g, x · f) for an a priori fixed base
(g, f) ∈ G

2
1. We assume SXDH for the groups G1 and G2.

As in the setup described before, we have A =
[
c1 c2

]
, where c1 and c2 are the discrete logs

of g and f respectively with respect to g1. The language is: L = {[x] · A · g1 | x ∈ Zq}.

Now proceeding with the framework, we generate D as [d] and the element b where d and b are
random elements of Zq. With this setting, the NIZK CRS is:

CRS1 := A ·

[

I2×2
D

b−1 · I1×1

]

· g1 =
[
g f (d · g+ b−1 · f)

]

CRS2 :=





b · D
I1×1

−b · I1×1



 · g2 =





bd · g2
g2
−b · g2





The proof of a tuple (r, r̂) with witness r, is just the single element r · (d · g + b−1 · f). Along
with the tuple this forms: ~p :=

[
r r̂ r · (d · g+ b−1 · f)

]
. In the proof of zero knowledge, the

simulator trapdoor is (d, b) and the simulated proof of (r, r̂) is just (d · r+ b−1 · r̂).

5 Introducing Tags

In this section we show how the previous system can be extended to include tags which are elements
of Zq and are included as part of the proof. The tags are used as part of the defining equations of
the language.

While our system works for any number of components in the tuple (except the first t) being
dependent on any number of tags, to simplify the presentation we will focus on only one dependent
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element and only one tag. Also for simplicity, we will assume that this element is an affine function
of the tag (the function being defined by parameters). We can handle arbitrary polynomial functions
of the tags as well, but we will focus on affine functions here as most applications seem to need just
affine functions. Then, the languages we handle can be characterized as

{〈
~x ·

[

At×(n−1) (~a⊤1 + tag ·~a⊤2 )
]
· g1,tag

〉
| ~x ∈ Zq

t,tag ∈ Zq

}

where At×(n−1) · g1,~a1 · g1 and ~a2 · g1 are parameters of the language. A distribution is still called
robust (as in Section 4) if with overwhelming probability the first t columns of A are full-ranked.

Write A as [At×tl | A
t×(n−1−t)
r ], where w.l.o.g. Al is non-singular. While the first n−1−t components

in excess of the unknowns, corresponding to Ar, can be verified just as in Section 4, for the last
component we proceed as follows. The CRS is generated as:

CRS
t×1
1,0 :=

[

Al ~a⊤1
]
·

[
D1

b−1

]

· g1 CRS
t×1
1,1 :=

[

Al ~a⊤2
]
·

[
D2

b−1

]

· g1

CRS
(t+2)×1
2,0 :=





b · D1

1
−b



 · g2 CRS
(t+2)×1
2,1 :=





b · D2

0
0



 · g2

where D1 and D2 are random matrices of order t×1 independent of the matrix D chosen for proving
the other components. The Zq element b can be re-used from the other components.

Prover: Let ~l
′ def
= ~x ·

[

Al (~a⊤1 + tag ·~a⊤2 )
]
· g1. The prover generates the following proof for

the last component:

~p :=
[

~l
′
~x · (CRS1,0 + tag · CRS1,1)

]

Verifier: Given a proof ~p, which includes the candidate for membership, the verifier checks the
following:

e(~p,CRS2,0 + tag · CRS2,1)
?
= 0T

The size of the proof is 1 element in the group G1. The proof of completeness, soundness and
zero-knowledge for this quasi-adaptive system is similar to proof in Section 4 and a proof sketch
can be found in Appendix C.

6 Applications

In this section we mention several important applications of quasi-adaptive NIZK proofs. Before
we go into the details of these applications, we discuss the general applicability of quasi-adaptive
NIZKs. Recall in quasi-adaptive NIZKs, the CRS is set based on the language for which proofs
are required. In many applications the language is set by a trusted party, and the most obvious
example of this is the trusted party that sets the CRS in some UC applications, many of which have
UC realizations only with a CRS. Another obvious example is the (H)IBE trusted party that issues
secret keys to various identities. In many public key applications, the party issuing the public key
is also considered trusted, i.e. incorruptible, as security is defined with respect to the public key
issuing party (acting as challenger). Thus, in all these settings if the language for which proofs are

10



required is determined by a incorruptible party, then that party can also issue the QA-NIZK CRS
based on that language. It stands to reason that most languages for which proofs are required are
ultimately set by an incorruptible party (at least as far as the security definitions are concerned),
although they may not be linear subspaces, and can indeed be multi-linear or even quadratic. For
example, suppose a potentially corruptible party P wants to (NIZK) prove that x ∈ Lρ, where
Lρ is a language that it generated. However, this proof is unlikely to be of any use unless it also
proves something about Lρ, e.g., that ρ itself is in another language, say L′. In some applications,
potentially corruptible parties generate new linear languages using random tags. However, the
underlying basis for these languages is set by a trusted party, and hence the NIZK CRS for the
whole range of tag based languages can be generated by that trusted party based on the original
basis for these languages.

Adaptive UC Commitments in the Erasure Model. The SXDH-based commitment scheme
from [10] requires the following quasi-adaptive NIZK proof (see Appendix F for details)

{〈R,S, T 〉 | ∃r : R = r · g, S = r · h, T = r · (d1 + tag · e1)}

with parameters h,d1, e1 (chosen randomly), which leads to a UC commitment scheme with com-
mitment consisting of 3 G1 elements, and a proof consisting of two G2 elements. Under DLIN, a
similar scheme leads to a commitment consisting of 4 elements and an opening of another 4 ele-
ments, whereas [10] stated a scheme using Groth-Sahai NIZK proofs requiring (5 + 16) elements.
More details can be found in Appendix F.

One-time (Relatively) Simulation-Sound NIZK for DDH and other languages. In [13] it
was shown that for linear subspace languages, such as the DDH or DLIN language, or the language
showing that two El-Gamal encryptions are of the same message [15, 16], the NIZK proof can be
made one-time simulation sound using a projective hash proof [6] and proving in addition that the
hash proof is correct. For the DLIN language, this one-time simulation sound proof (in Groth-Sahai
system) required 15 group elements, whereas the quasi-adaptive proof in this paper leads to a proof
of size only 5 group elements.

Signatures. We will now show a generic construction of existentially unforgeable signature scheme
(against adaptive adversaries) from labeled CCA2-encryption schemes and QA-NIZK proof system
for a related language distribution. This construction is a generalization of a signature scheme
from [4] which used (fully) adaptive NIZK proofs and required constructions based on groups in
which the CDH assumption holds.

We first need to define a special form of QA-NIZK proof systems which we will call split-CRS
QA-NIZK proofs. In a split-CRS QA-NIZK for a distribution of relations, the CRS generator K1

generates two CRS-es ψp and ψv, such that the prover P only needs ψp, and the verifier V only
needs ψv . In addition, the CRS ψv is independent of the particular relation Rρ. A formal definition
can be found in Section D.

Let E = (KeyGen,Enc,Dec) be a labeled CCA-encryption scheme on messages. Let Xm be
any subset of the message space of E such that 1/|Xm| is negligible in the security parameter m.
Consider the following class of (parametrized) languages {Lρ}:

Lρ = {(c,M) | ∃r : c = Encpk(u; r;M)}

with parameter ρ = (u, pk). The notation Encpk(u; r;M) means that u is encrypted under public
key pk with randomness r and label M . Consider the following distribution D on the parameters:
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u is chosen uniformly at random from Xm and pk is generated using the probabilistic algorithm
KeyGen of E on 1m (the secret key is discarded). Note we have an ensemble of distributions, one
for each value of the security parameter, but we will suppress these details.

Let Q = (K0, 〈K11,K12〉,P,V) be a split-CRS QA-NIZK for distribution D on {Lρ}.

Now, consider the following signature scheme S.
Key Generation. On input a security parameter m, run K0(1

m) to get λ. Let E .pk be generated
using KeyGen of E on 1m (the secret key sk is discarded). Choose u at random from Xm. Let
ρ = (u, E .pk). Generate ψv by running K11 on λ (it also generates a state s). Generate ψp by
running K12 on (λ, ρ) and state s. The public key S.pk of the signature scheme is then ψv. The
secret key S.sk consists of (u, E .pk, ψp).

Sign. The signature on M just consists of a pair 〈c, π〉, where c is an E-encryption of u with label
M (using public key E .pk and randomness r), and π is the QA-NIZK proof generated using prover
P of Q on input (ψp, (c,M), r). Recall r is the witness to the language member (c,M) of Lρ (and
ρ = (u, E .pk)).

Verify. Given the public key S.pk (= ψv), and a signature 〈c, π〉 on message M , the verifier uses
the verifier V of Q and outputs V(ψv , (c,M), π).

Theorem 4 If E is a labeled CCA2-encryption scheme and Q is a split-CRS quasi-adaptive NIZK
system for distribution D on class of languages {Lρ} described above, then the signature scheme
described above is existentially unforgeable under adaptive chosen message attacks.

The theorem is proved in Appendix F. It is worth remarking here that the reason one can
use a quasi-adaptive NIZK here is because the language Lρ for which (multiple) NIZK proof(s) is
required is set (or chosen) by the (signature scheme) key generator, and hence the key generator
can generate the CRS for the NIZK after it sets the language. The proof of the above theorem
can be understood in terms of simulation-soundness. Suppose the above split-CRS QA-NIZK was
also unbounded simulation-sound. Then, one can replace the CCA2 encryption scheme with just a
CPA-encryption scheme, and still get a secure signature scheme. A proof sketch of this is as follows:
an Adversary B is only given ψv (which is independent of parameters, including u). Further, the
simulator for the QA-NIZK can replace all proofs by simulated proofs (that do not use witness r
used for encryption). Next, one can employ CPA-security to replace encryptions of u by encryptions
of 1. By unbounded simulation soundness of the QA-NIZK it follows that if B produces a verifying
signature then it must have produced an encryption of u. However, the view of B is independent
of u, and hence its probability of forging a signature is negligible.

However, the best known technique for obtaining efficient unbounded simulation soundness
itself requires CCA2 encryption (see [4]), and in addition NIZK proofs for quadratic equations.
On the other hand, if we instantiate the above theorem with Cramer-Shoup encryption scheme,
we get remarkably short signatures (in fact the shortest signatures under any static and standard
assumption). The Cramer-Shoup encryption scheme PK consists of g, f ,k,d, e chosen randomly
from G1, along with a target collision-resistant hash function H (with a public random key). The
set X from which u is chosen is just the whole group G1. Then an encryption of u is obtained by
picking r at random, and obtaining the tuple

〈R = r · g, S = r · f , T = u+ r · k, H = r · (d + tag · e)〉

where tag = H(R,S, T,M). It can be shown that it suffices to hide u with the hash proof H
(although one has to go into the internals of the hash-proof based CCA2 encryption; see Appendix
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in [13]). Thus, we just need a (split-CRS) QA-NIZK for the tag-based affine system (it is affine
because of the additive constant u). There is one variable r, and three equations (four if we consider
the original CCA-2 encryption) Thus, we just need (3 − 1) ∗ 1 (= 2) proof elements, leading to a
total signature size of 5 elements (i.e. R,S,u +H, and the two proof elements) under the SXDH
assumption.

Dual-System Fully Secure IBE. It is well-known that Identity Based Encryption (IBE) implies
signature schemes (due to Naor), but the question arises whether the above signature scheme using
Cramer-Shoup CCA2-encryption and the related QA-NIZK can be converted into an IBE scheme.
To achieve this, we take a hint from Naor’s IBE to Signature Scheme conversion, and let the
signatures (on identities) be private keys of the various identities. The verification of the QA-NIZK

from Section 4 works by checking e(~p,CRSv)
?
= 0

1×s
T (or more precisely, e(~p,CRSv)

?
= ~f for the

affine language). However, there are two issues: (1) CRSv needs to be randomized, (2) there are two
equations to be verified (which correspond to the alternate decryption of Cramer-Shoup encryption,
providing implicit simulation-soundness). Both these problems are resolved by first scaling CRSv

by a random value s (as in the soundness proof game G2), and then taking a linear combination
of the two equations using a public random tag. The right hand side s ·~f can then serve as secret
one-time pad for encryption. Rather than being a provable generic construction, this is more a hint
to get to a really short IBE. We give a complete (stand-alone) proof in Appendix G. It shows an
IBE scheme under the SXDH assumption where the ciphertext has only four group (G1) elements
plus a Zq-tag, which is the shortest IBE known under standard static assumptions5. Moreover, this
scheme has perfect completeness.
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A Proof of QA-NIZK for Linear Subspaces under SXDH Assump-

tion

Theorem 3 (Section 4) Let D be a robust and efficiently witness-samplable distribution over
Lpar. For any group generation algorithm for which the DDH assumption holds for group G2,
the algorithms K0, K1, the Prover P, and the Verifier V constitute a quasi-adaptive NIZK for
distribution D over the class of languages {Lρ} with associated parameter language Lpar.

Proof:

Completeness: For a candidate ~x ·A ·g1 (which is a language member), the left-hand-side of the
verification equation is:

e(~x · CRS1,CRS2)

= ~x · A ·

[

In×n
D

b−1 · Is×s

]

·





b · D
Is×s

−b · Is×s



 · e(g1,g2)

= ~x · A ·

( [
b · D
Is×s

]

− b ·

[
D

b−1 · Is×s

] )

· e(g1,g2) = 01×s · e(g1,g2) = 01×s
T

Hence completeness follows.

Zero Knowledge: The CRS is generated exactly as above. In addition, the simulator is given

the trapdoor

[
D

b−1 · Is×s

]

. Now, given a language candidate ~l , the proof is simply ~p′ := ~l ·
[

In×n
D

b−1 · Is×s

]

. If ~l is in the language, i.e., it is ~x · A · g1 for some ~x, then the distribution

of the simulated proof is identical to the real world proof. Therefore, the simulated NIZK CRS
and simulated proofs of language members are identically distributed as the real world. Hence the
system is perfect Zero Knowledge.

Soundness: We prove soundness by transforming the system over three games. Game G0 just
replicates the soundness security definition. In game G1 the CRS is generated using witness A and
its null-space, and this can be done efficiently by the challenger as the distribution is efficiently
witness samplable. In game G2 the challenger uses a real DDH challenge distribution to generate
the CRS and execute the verifier, which is then transformed in the third game to a fake DDH
challenge distribution. After this transformation, we show that a verifying proof implies that the
given candidate is a member of the language.

Game G0: This is just the original system, i.e., the challenger takes a security parameter m,
generates λ using K0, then generates ρ according to D, generates the CRS ψ using K1, and passes
λ, ρ and the CRS (i.e. CRS1, CRS2 ) to an Adversary B. Let the B produce ~p. We say B wins

if e(~p,CRS2)
?
= 0

1×s
T while the first part of ~p is not in Lρ. Let W0 denote the event that B wins

game G0. Note that Pr[W0] is exactly the probability of an Adversary producing a proof ~p that
passes the QA-NIZK verifier V while the proof’s first part is not in Lρ, and hence if we can show
that Pr[W0] is negligible (in m), then soundness follows.
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Game G1: Since D is efficiently witness samplable, say using a PPT machine M , in this game
the challenger generates ρ = A · g1 using M , and hence the challenger also gets A (the witness to
ρ in language Lpar). Next the challenger checks if the left most t columns of A are full-ranked. If
they are not full-ranked, the Challenger declares the Adversary as winner. We will also call this
event BAD. The probability of event BAD happening is negligible by definition as the distribution

D is robust. Otherwise, it computes a rank s matrix

[
Wt×s

Is×s

]

of dimension (t + s) × s whose

columns form a complete basis for the null-space of A, which means A ·

[
Wt×s

Is×s

]

= 0t×s. Next, the

NIZK CRS is computed as follows: The challenger generates matrix D′ t×s with elements randomly
chosen from Zq and element b randomly chosen from Zq (just as in the real CRS). Implicitly set,

[
D

b−1 · Is×s

]

=

[
D′

0s×s

]

+ b−1 ·

[
W

Is×s

]

Therefore the challenger produces,

CRS
t×(n+s)
1 = A ·

[

In×n
D

b−1 · Is×s

]

· g1 = A ·

[

In×n
[

D

b−1 · Is×s

]

− b−1 ·

[
W

Is×s

] ]

· g1

= A ·

[

In×n
D′

0s×s

]

· g1

CRS
(n+s)×s
2 =





b · D
Is×s

−b · Is×s



 · g2 =




b ·

[
D′

0s×s

]

+

[
W

Is×s

]

−b · Is×s



 · g2

Observe that D has identical distribution as in gameG0 and the rest of the computations were same.
So game G1 is statistically indistinguishable from game G0, conditioned on BAD not happening.
Let W1 denote the event that Adversary wins game G1. Since event BAD implies event W1, it
follows that Pr[W1] ≥ Pr[W0]. Moreover,

Pr[W1] = Pr[W1 ∧ BAD] + Pr[W1 ∧ ¬BAD]

≤ Pr[BAD] + Pr[W1 ∧ ¬BAD]

Since probability of event BAD is negligible, if we can show Pr[W1 ∧ ¬BAD] to be negligible,
soundness would follow. We remark that the Challenger in game G1 is efficient (i.e. it can be
implemented by a PPT).

Game G2: This game is identical to the previous game, except that the final bilinear pairings

test is modified from e(~p,CRS2)
?
= 0

1×s
T to being

e



~p,





r · b · D′ · g2 + r ·W · g2
r · Is×s · g2
−r · b · Is×s · g2








?
= 0

1×s
T

where r is chosen at random from Zq by the challenger. It is easy to see that if the test in game
G1 passes, then this test passes as well, as CRS2 has just been scaled by a scalar r. Let W2 be
the event that adversary B wins game G2. It follows that Pr[W2 | ¬BAD] ≥ Pr[W1 | ¬BAD], and
hence Pr[W2 ∧ ¬BAD] ≥ Pr[W1 ∧ ¬BAD].
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The Challenger in game G2 continues to be efficient (i.e. can be implemented by a PPT).

Game G3: This game is identical to the previous game, except that the final bilinear pairings
test is now the following:

e



~p,





r · b · D′ · g2 + (r + r′) ·W · g2

(r + r′) · Is×s · g2

−r · b · Is×s · g2








?
= 0

1×s
T (1)

where r and r′ are chosen at random from Zq by the challenger. LetW3 be the event that adversary
B wins game G3. The Challenger in game G3 also continues to be efficient.

Lemma 5 below shows that |Pr[W2 ∧ ¬BAD]−Pr[W3 ∧ ¬BAD]| is negligible. Lemma 6 below
shows that Pr[W3 | ¬BAD] itself is negligible. From the two lemmas and the fact the Pr[BAD] is
negligible, it follows that Pr[W2 ∧¬BAD] is negligible. But, Pr[W2 ∧ ¬BAD] ≥ Pr[W1 ∧ ¬BAD],
and hence soundness of the QA-NIZK follows. �

Lemma 5 |Pr[W2 ∧¬BAD]−Pr[W3 ∧¬BAD]| is negligible under the DDH assumption for group
G2.

Proof: Consider a challenger that uses a group generation algorithm to produce the bilinear groups
G1 and G2 including their generators, say g1 and g2, such that it is hard to distinguish between a
real DDH tuple 〈g2, b ·g2, r ·b ·g2,χ = r ·g2〉 or a fake DDH tuple 〈g2, b ·g2, r ·b ·g2,χ = (r+r′) ·g2〉
(we will denote by χ the last component of the tuple provided as DDH challenge). While this may
look slightly different from the usual formalization of DDH, it is easy to show that this is equivalent.
We will now show that if p = |Pr[W2 | ¬BAD] − Pr[W3 | ¬BAD]|, then there is an adversary S
that can distinguish between the real and fake DDH tuple with probability p. Thus, by the DDH
assumption for G2, the lemma would follow.

The Adversary S will use the DDH challenge to simulate the challengers from games G2 and
G3 to adversary B in those games, and use B’s response and the trapdoors kept by the challengers
(in games G2 and G3) to respond with a bit to the DDH Challenger.

As remarked earlier, the Challenger in games G2 and G3 is efficient, so B just emulates the
challenger, which is identical in both games except for performing the final pairing test. The
CRS2 generation in both games can be done using g2 and b · g2 supplied by the DDH challenger
(which is same in both real and fake DDH tuples), and the matrices D′ (that the challenger chooses
randomly) and W that the challenger efficiently computes. If the matrix A’s left most t columns
were not full-ranked then B just quits and responds with bit 0 to the DDH challenger (recall, this
is same as event BAD).

After adversary B responds with ~p, the adversary A performs the following pairing test

e



~p,





D′ · r · b · g2 +W · χ
Is×sχ

−Is×s · r · b · g2








?
= 0

1×s
T (2)

Note that depending on whether χ came from the real DDH tuple or the fake DDH tuple, this
test emulates the test in game G2 or game G3 resp. If the answer to this test is false, adversary
S responds with bit 0 to the DDH challenger. Otherwise, i.e. if the test is true, S checks if the
first part of ~p is in the language Lρ, which it can efficiently test as it has W, the null-space of A.
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More precisely, it can just do the following bilinear pairing test e(~p1..n,w · g2)
?
= 01×sT . If this test

passes then S outputs 0 to the DDH challenger (i.e. the response of B was not in Lρ). Otherwise,
if the test fails it outputs 1 to the DDH challenger. Thus, it outputs 1 to the DDH challenger iff
the pairing test in Equation (2) passes and the candidate was not in the language. In other words,
when the DDH challenger produces the real DDH tuple, adversary S outputs 1 iff Adversary B
wins game G2 and event BAD does not happen. Similarly, when the DDH challenger produces the
fake DDH tuple, adversary S outputs 1 iff Adversary B wins game G3 and event BAD does not
happen. This completes the proof. �

Lemma 6 Pr[W3 | ¬BAD] is negligible.

Proof: We will condition on the event BAD not happening in Game G3. Recall the first part in
~p is just ~l . The verification equation in game G3 )(i.e. Equation (1)) can be re-written as:

e(~p,CRS2 · r) + e

(

~l ,

[
W

Is×s

]

· r′ · g2

)

= 01×sT

Since r′ is not used in the generation of the NIZK CRS, it follows that ~l and the proof ~p provided
by the adversary are independent of r′. Thus, the probability of event W3 remains same if r′ was
chosen after all other random coins have been chosen by the challenger and the adversary.

For the sake of contradiction, suppose that for any fixed choice of all the coins (except r′) the
probability over random choice of r′ of the verification equation passing in game G3 (while ~l ∈ Lρ)
is strictly more than 1/q . This implies there are at least two choices of r′ for this fixed choice of
all other coins such that the pairing test passes the (fixed) tuple and the (fixed) proof while the
(fixed) tuple is not in the language. But, if all other coins are same, except for r′, then the pairing
test passing means that

e

(

~l ,

[
W

Is×s

]

· (r′1 − r
′
2) · g2

)

= 01×sT

where r′1 and r′2 are any two such distinct values of r′. But, this would imply that ~l is in the

language, as it is in the null-space of

[
W

Is×s

]

, which is a contradiction. Thus, for any fixed choice

of all the coins (except r′) the probability over r′ that the pairing test passes and the tuple is not
in the language is at most 1/q. Thus, Pr[W3 | ¬BAD] is itself at most 1/q, which is negligible. �

B NIZK for Linear Subspaces under the k-Linear Assumption

In this section we generalize our QA-NIZK proof system to be based on the k-linear assumption
for any k ≥ 1. We start off with defining the hardness assumption. We specially mention DLIN ,
which is the case of k = 2 since it’s a widely used assumption.

Definition 7 (DLIN [3]) Assuming a generation algorithm G that outputs a tuple (q,G) such

that G is of prime order q and has generators g, f,h
$
←− G, the DLIN assumption asserts that it is

computationally infeasible to distinguish between (g, f,h,gx1 , fx2 ,hx3) and (g, f,h,gx1 , fx2 ,hx1+x2)
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for x1, x2, x3
$
←− Zq. More formally, for all PPT adversaries A there exists a negligible function ν()

such that
∣
∣
∣
∣
∣

Pr[(q,G)← G(1m);g, f,h
$
←− G;x1, x2, x3

$
←− Zq : A(g, f,h,g

x1 , fx2 ,hx3) = 1]−

Pr[(q,G)← G(1m);g, f,h
$
←− G;x1, x2

$
←− Zq : A(g, f,h,g

x1 , fx2 ,hx1+x2) = 1]

∣
∣
∣
∣
∣
< ν(m)

Definition 8 (k-linear [17, 4]) For a constant k ≥ 1, assuming a generation algorithm G that

outputs a tuple (q,G) such that G is of prime order q and has generators g1, · · · , gk+1
$
←−

G, the k-linear assumption asserts that it is computationally infeasible to distinguish between

(g1,...,gk+1,g
x1
1 ,...,g

xk+1

k+1 ) and (g1,...,gk+1,g
x1
1 ,...,g

x1+...+xk
k+1 ) for x1, ..., xk+1

$
←− Zq. More formally,

for all PPT adversaries A there exists a negligible function ν() such that
∣

∣

∣

∣

∣

∣

Pr[(q,G)← G(1m); g1, · · · , gk+1
$
←− G; x1, ..., xk+1

$
←− Zq : A(g1, ...,gk+1,g

x1
1 , ...,g

xk+1

k+1
) = 1]−

Pr[(q,G)← G(1m); g1, · · · , gk+1

$
←− G; x1, ..., xk

$
←− Zq : A(g1, ...,gk+1,g

x1

1 , ...,g
x1+...+xk

k+1
) = 1]

∣

∣

∣

∣

∣

∣

< ν(m)

Let G1,G2 and GT be cyclic groups of prime order q with a bilinear map e : G1 × G2 → GT .
Let g1 and g2 be randomly chosen generators of the group G1 and G2 respectively. We assume
that the k-linear problem is hard in the group G2. The groups G1 and G2 are in fact allowed to be
the same for k ≥ 2. In the rest of the section, we adopt the same symbols and conventions as in
Section 4.

NIZK CRS: Suppose the language is L = {~x · At×n · g1 ∈ G
n
1 | ~x ∈ Zq

t}. Let s
def
= n − t: this

is the number of equations in excess of the unknowns. Generate a matrix Dt×ks with all elements
chosen randomly from Zq and a diagonal matrix Eks×ks with diagonal elements chosen randomly

from Zq. Let F
s×ks def

=
[
Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1. The common reference string (CRS) has two parts

CRS1 and CRS2 which are to be used by the prover and the verifier respectively.

CRS
t×(n+ks)
1 = A ·

[

In×n
D

F

]

· g1 CRS
(n+ks)×ks
2 =





[
D

F

]

· E

−E



 · g2

Note that CRS1 can be generated from A · g1 - the knowledge of A is not necessary.

Prover: Given candidate ~x ·A ·g1 with witness vector ~x, the prover generates the following proof:

~p := ~x · CRS1

Verifier: The verifier generates a vector ~s with ks entries randomly chosen from Zq. Given a

proof ~p, the verifier first checks that the first n elements form the candidate ~l and then checks the
following:

e(~p,CRS2 ·~s
⊤)

?
= 0T

Theorem 9 Let D be a robust and efficiently witness-samplable distribution over Lpar. For any
group generation algorithm for which the k-linear assumption holds for group G2, the above algo-
rithms K0, K1, the Prover P, and the Verifier V constitute a quasi-adaptive NIZK for distribution
D over the class of languages {Lρ} with associated parameter language Lpar.
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Proof:

Completeness: For a candidate ~x·A·g1 (which is a language member), the LHS of the verification
equation is:

e(~x · CRS1,CRS2 ·~s
⊤)

= ~x · A ·

[

In×n
D

F

]

·





[
D

F

]

· E

−E



 ·~s⊤ · e(g1,g2)

= ~x · A ·

( [
D

F

]

· E−

[
D

F

]

· E

)

·~s⊤ · e(g1,g2) = 0 · e(g1,g2) = 0T

Hence completeness follows.

Zero-Knowledge: The CRS is generated exactly as above. In addition, the simulator is given the

trapdoor

[
D

F

]

. Now, given a language candidate~l , the proof is simply ~p′ := ~l ·

[

In×n
D

F

]

. If~l

is in the language, i.e., it is ~x ·A for some ~x, then the distribution of the simulated proof is identical
to the real world proof. Therefore, the simulated NIZK CRS and simulated proofs of language
members are identically distributed as the real world. Hence the system is perfect Zero-Knowledge.

Soundness: We prove soundness by transforming the system over three games. The first trans-
formation involves generating the public keys in a different way, which is still statistically identical
to the original system. In the second transformation, we use a real k-linear challenge distribution
to generate the CRS and execute the verifier, which is then transformed in the third step to a fake
k-linear challenge distribution. After this transformation, we show that a verifiable proof implies
that the given candidate is a member of the language.

Game G0: This is just the original system.

Game G1: In this game, the discrete logarithms of the defining constants of the language L
are given to the CRS generator, or in other words A is given. Since A is a t× (t+ s) dimensional

rank t matrix, there is a rank s matrix

[
Wt×s

Is×s

]

of dimension (t + s) × s whose columns form a

complete basis for the null-space of A, which means A ·

[
Wt×s

Is×s

]

= 0t×s. In this game, the NIZK

CRS is computed as follows: Generate matrix D′ t×ks with elements randomly chosen from Zq and
diagonal matrix Eks×ks as in the real CRS. Implicity set,

[
D

F

]

=

[
D′

0s×ks

]

+

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1
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where Fs×ks
△
=

[
Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1. Therefore we have,

CRS
t×(n+ks)
1 = A ·

[

In×n
D

F

]

· g1 = A ·



 In×n

[
D

F

]

−

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1


 · g1

= A ·

[

In×n
D′

0s×ks

]

· g1

CRS
(n+ks)×ks
2 =





[
D

F

]

· E

−E



 · g2 =







[
D′

0s×ks

]

· E+

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

−E






· g2

Observe that D has identical distribution as in game G0 and the rest of the computations were
same. So game G1 is statistically indistinguishable from game G0.

G2: In this game, we use a vector of real k-linear challenge distributions to generate the CRS
and to execute the verification algorithm. Let B be a (ks × ks) diagonal matrix with diagonal
entries chosen randomly from Zq and ~r be a ks element vector also chosen randomly from Zq. Let
~r be also represented as [~r1 · · · ~rk], where each of the ~ri’s is an s element vector. The following
lemma is actually s different instances of a k-linear problem and thus can be proved by a standard
hybrid argument:

Lemma 10 Given B · g,B · ~r⊤ · g and g, it is computationally infeasible to distinguish between
(~r1 + · · ·+~rk)

⊤ · g and (~r1 + · · ·+~rk +~rk+1)
⊤ · g under the k-linear assumption.

In fact, we can take B to be a set of k independently random diagonal elements repeated s
times.

So now suppose we are given a real challenge distribution B ·g,B ·~r⊤ ·g,g and (~r1+ · · ·+~rk)
⊤ ·g

in the group G2. In this game we generate the CRS as follows: CRS1 is generated as in G1.

CRS2 =







[
D′

0s×ks

]

· B · g+

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·g

−B · g







We also change the term CRS2 ·~s
⊤ in the verification equation e(~p,CRS2 ·~s

⊤)
?
= 0T to the

following:




D′ · B ·~r⊤ · g+W · (~r1 + · · ·+~rk)
⊤ · g

(~r1 + · · ·+~rk)
⊤ · g

−B ·~r⊤ · g





Since the distributions of B,~r and g are identical to E,~s and g2, game G2 is statistically indis-
tinguishable from game G1.

Game G3: In this game, we use a vector of fake k-linear challenge distributions to generate the
CRS and to execute the verification algorithm. Suppose we are given a fake challenge distribution
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B · g,B ·~r⊤ · g,g and (~r1 + · · ·+~rk +~rk+1)
⊤ · g in the group G2, where ~xk+1 is another vector of s

elements chosen randomly from Zq. In this game we generate the CRS in the same way as game
G2: CRS1 is generated as in game G1.

CRS2 =







[
D′

0s×ks

]

· B · g+

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·g

−B · g







The term CRS2 ·~s
⊤ in the verification equation e(~p,CRS2 ·~s

⊤)
?
= 0T also changes according to

the fake challenge distribution:





D′ · B ·~r⊤ · g+W · (~r1 + · · ·+~rk +~rk+1)
⊤ · g

(~r1 + · · ·+~rk +~rk+1)
⊤ · g

−B ·~r⊤ · g





Let us call this term T and note that:

e(~p,T) = e(~p,CRS2 ·~r
⊤) + e



~p,





W

Is×s

0ks×s



 ·~r⊤k+1 · g





= e(~p,CRS2 ·~r
⊤) + e

(

~l ,

[
W

Is×s

]

·~r⊤k+1 · g

)

Now, game G3 is indistinguishable from game G2 by Lemma 10. We now show that this implies
soundness based on indistinguishability of the results of the verification steps in both games. Let
the verification equation in game G3 pass some candidate ~l provided by the adversary which is not
in L, with non-negligible probability. That is, with non-negligible probability:

e(~p,CRS2 ·~r
⊤) + e

(

~l ,

[
W

Is×s

]

·~r⊤k+1 · g

)

= 0T

Now we proceed as in the proof of soundness of Theorem 3. We provide a sketch here, but the
arguments can be made rigorous as in Appendix A. Since the vector ~r⊤k+1 · g is not used in the

generation of the NIZK CRS, it follows that ~l and the proof ~p provided by the adversary are

independent of ~rk+1. Let ~w⊤i denote the i-th column in

[
W

Is×s

]

. Let pi (for i ∈ [1..s]) be the

probability that e(~p,T) = 0 and ~l · ~w⊤i 6= 0. Then by fixing ~r, and all other random variables
including ~rk+1, except the i-th variable in ~rk+1, it follows that pi is negligible. Then by union
bound, the probability that e(~p,T) = 0 and there exists an i ∈ [1..s] such that ~l · ~w⊤i 6= 0 is
negligible. Since the vectors ~wi generate the null-space of A, this implies that the probability that
e(~p,T) = 0 and ~l 6∈ span(A) is negligible. Note that the second conjunct is equivalent to ~l 6∈ L.

To complete the argument, we also have to prove that proofs for language members behave the
same way in both games G2 and G3. This is straightforward because a language member is already

in the nullspace of

[
W

Is×s

]

. Therefore, the extra term in T just vanishes when we do the pairing

product. �
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C Proof of QA-NIZK for Tag Based Linear Subspaces

Recall, the languages we handle can be characterized as

{〈
~x ·

[

At×(n−1) (~a⊤1 + tag ·~a⊤2 )
]
· g1,tag

〉
| ~x ∈ Zq

t,tag ∈ Zq

}

where At×(n−1) ·g1,~a1 ·g1 and ~a2 ·g1 are parameters of the language. Write A as [At×tl | A
t×(n−1−t)
r ],

where w.l.o.g. Al is non-singular. While the first n− 1− t components in excess of the unknowns,
corresponding to Ar, can be verified just as in Section 4, for the last component we proceed as
follows. The CRS is generated as:

CRS
t×1
1,0 :=

[

Al ~a⊤1
]
·

[
D1

b−1

]

· g1 CRS
t×1
1,1 :=

[

Al ~a⊤2
]
·

[
D2

b−1

]

· g1

CRS
(t+2)×1
2,0 :=





b · D1

1
−b



 · g2 CRS
(t+2)×1
2,1 :=





b · D2

0
0



 · g2

where D1 and D2 are random matrices of order t×1 independent of the matrix D chosen for proving
the other components. The Zq element b can be re-used from the other components.

Prover: Let ~l
′ def
= ~x ·

[

Al (~a⊤1 + tag ·~a⊤2 )
]
· g1. The prover generates the following proof for

the last component:

~p :=
[

~l
′
~x · (CRS1,0 + tag · CRS1,1)

]

Verifier: Given a proof ~p, which includes the candidate for membership, the verifier checks the
following:

e(~p,CRS2,0 + tag · CRS2,1)
?
= 0T

We now prove completeness, zero-knowledge and give a sketch for soundness.

Completeness: We have,

~p =
[

~x · Al ~x · (~a⊤1 + tag ·~a⊤2 ) ~x · (Al · D1 + Al · tag · D2 + (~a⊤1 + tag ·~a⊤2 ) · b
−1)

]
· g1

and

CRS2,0 + tag · CRS2,1 =





b · (D1 + tag · D2)
1
−b



 · g2

Therefore,

e(~p,CRS2,0 + tag · CRS2,1)

=





~x · Al · b · (D1 + tag · D2) +

~x · (~a⊤1 + tag ·~a⊤2 ) −

~x · (Al · D1 + Al · tag · D2 + (~a⊤1 + tag ·~a⊤2 ) · b
−1) · b



 · e(g1,g2) = 0T
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Zero Knowledge: This is straight-forward with the simulator being given trapdoors D1,D2 and
b.

Soundness: As in the proof of Theorem 3, we compute the CRS’s in game G1 as follows. Let
[
Wt×1

1

1

]

be the null-space of
[

Al ~a⊤1
]
and let

[
Wt×1

2

1

]

be the null-space of
[

Al ~a⊤2
]
. Then

the CRS’s in game G1 are:

CRS1,0 :=
[

Al ~a⊤1
]
·

([
D′1
0

]

+

[
W1

1

]

· b−1
)

· g1 =
[

Al ~a⊤1
]
·

[
D′1
0

]

· g1

CRS1,1 :=
[

Al ~a⊤2
]
·

([
D′2
0

]

+

[
W2

1

]

· b−1
)

· g1 =
[

Al ~a⊤2
]
·

[
D′2
0

]

· g1

CRS
(t+2)×1
2,0 :=





b · D′1 +W1

1
−b



 · g2 CRS
(t+2)×1
2,1 :=





b · D′2 +W2

0
0



 · g2

We now claim that ~w⊤
def
=

[
W1 + tag ·W2

1

]

is the null-space of A′
def
=

[

Al (~a⊤1 + tag ·~a⊤2 )
]
.

This is because ~w⊤ is a non-zero t× 1 matrix and satisfies:

A′ · ~w⊤ =
[

Al (~a⊤1 + tag ·~a⊤2 )
]
·

[
W1 + tag ·W2

1

]

= Al · (W1 + tag ·W2) + (~a⊤1 + tag ·~a⊤2 )

=
[

Al ~a⊤1
]
·

[
W1

1

]

+ tag ·
[

Al ~a⊤2
]
·

[
W2

1

]

= 0

The rest of the proof is similar to the rest of the proof of soundness in Theorem 3, since A′ defines
the tag-based language.

D Split-CRS QA-NIZK Proofs

We note that the QA-NIZK described in Section 4 has an interesting split-CRS property. In a
split-CRS QA-NIZK for a distribution of relations, the CRS generator K1 generates two CRS-es
ψp and ψv, such that the prover P only needs ψp, and the verifier V only needs ψv. In addition, the
CRS ψv is independent of the particular relation Rρ. In other words the CRS generator K1 can be
split into two PPTs K11 and K12, such that K11 generates ψv using just λ, and K12 generates ψp
using ρ and a state output by K11. The key generation simulator S1 is also split similarly, and a
formal definition follows.

In many applications, split-CRS QA-NIZKs can lead to simpler constructions (and their proofs)
and possibly shorter proofs.

Definition We call (K0,K11,K12,P,V) a split-CRS QA-NIZK proof system for an ensemble of
distributions {Dλ} on collection of witness-relations Rλ = {Rρ} with associated parameter language
Lpar if there exists a probabilistic polynomial time simulator (S11,S12,S2), such that for all non-
uniform PPT adversaries A1,A2,A3 we have
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Quasi-Adaptive Completeness.

Pr[λ← K0(1
m); (ψv , s)← K11(λ); ρ← Dλ;ψp ← K12(λ, ρ, s); (x,w) ← A1(λ, ψv , ψp, ρ);

π ← P(ψp, x, w) : V(ψv , x, π) = 1 if Rρ(x,w)] = 1

Quasi-Adaptive Soundness.

Pr[λ← K0(1
m); (ψv , s)← K11(λ); ρ← Dλ;ψp ← K12(λ, ρ, s);

(x, π)← A2(λ, ψv , ψp, ρ) : V(ψv , x, π) = 1 and ¬(∃w : Rρ(x,w))] ≈ 0

Quasi-Adaptive Zero-Knowledge.

Pr[λ← K0(1
m); (ψv , s)← K11(λ); ρ← Dλ;ψp ← K12(λ, ρ, s) : A

P(ψp,·,·)
3 (λ, ψv , ψp, ρ) = 1] ≈

Pr[λ← K0(1
m); (σv , s)← S11(λ); ρ← Dλ; (σp, τ)← S12(λ, ρ, s) : A

S(σp,τ,·,·)
3 (λ, σv, σp, ρ) = 1],

where S(σp, τ, x, w) = S2(σp, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and S) output failure if
(x,w) 6∈ Rρ.

E Split-CRS QA-NIZK for Affine Spaces

Consider languages that are affine spaces

Lρ = {(~x · A+~a) · g1 ∈ G
n
1 | ~x ∈ Zq

t}

with parameter ρ being At×n · g1 and ~a1×n · g1. The parameter language Lpar just specifies A and
~a. A distribution over Lpar is called robust if with overwhelming probability the left most t × t
sub-matrix of A is non-singular (full-ranked). If ~a·g1 is given as part of the verifier CRS, then a QA-
NIZK for distributions over this class follows directly from the construction in Section 4. However,
that would make the QA-NIZK non split-CRS. We now show that the techniques of Section 4 can
be extended to give a split-CRS QA-NIZK for (robust and witness-samplable) distributions over
affine spaces.

The common reference string (CRS) has two parts ψp and ψv which are to be used by the prover

and the verifier respectively. The split-CRS generator K11 and K12 work as follows. Let s
△
= n− t:

this is the number of equations in excess of the unknowns. K11 starts by generating a matrix Dt×s

with all elements chosen randomly from Zq and a single element b chosen randomly from Zq. It

also generate a row vector ~d
1×s

at random from Zq. Next, it generates

CRS
(n+s)×s
v =





b · D
Is×s

−b · Is×s



 · g2

The verifier CRS ψv is the matrix CRSv and an additional (row) vector in the target group ~f
1×s

=
e(g1, b ·

~d · g2).
The prover CRS generator K12 generates

CRS
t×(n+s)
p =

[
At×n

~a1×n

]

·

[

In×n
D

b−1 · Is×s

]

· g1 −

[

0t×n 0t×s

01×n ~d
1×s

]

· g1

The (prover) CRS ψp is just the matrix CRSp.
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Prover: Given candidate (~x ·A+~a) · g1 with witness vector ~x, the prover generates the following
proof:

~p := [~x | 1] · CRSp

Note that the proof includes the candidate.

Verifier: Given a proof ~p, the verifier first checks that the first n elements form the candidate ~l
and then checks the following:

e(~p,CRSv)
?
=~f

The split-CRS QA-NIZK for affine spaces also naturally extends to include tags as described in
Section 5.

Theorem 11 Let D be a robust and efficiently witness-samplable distribution over Lpar as defined
above. For any group generation algorithm for which the DDH assumption holds for group G2,
the above K0, K1, the Prover P, and the Verifier V constitute a split-CRS quasi-adaptive NIZK for
distribution D over the above class of languages {Lρ} with associated parameter language Lpar.

The proof of this theorem is similar to that of theorem 3. We higlight the main points in the proof
sketch below.

Proof:

Completeness:

[
~x 1

]
· e(CRSp,CRSv) =

[
~x 1

]
· e(−

[

0t×n 0t×s

01×n ~d
1×s

]

· g1,





b · D
Is×s

−b · Is×s



 · g2)

=
[
~x 1

]
· e(g1,

[

0t×s

b · ~d
1×s

]

· g2)

=~f

Zero Knowledge: This is straight-forward with the simulator retaining trapdoors D, ~d, and b.

Soundness: As in the proof of Theorem 3, we compute the CRS’s in game G1 as follows. Compute
[
Wt×s

Is×s

]

of dimension (t + s) × s whose columns form a complete basis for the null-space of A,

which means A ·

[
Wt×s

Is×s

]

= 0t×s.

Next, the NIZK CRS is computed as follows: The challenger generates matrix D′ t×s with
elements randomly chosen from Zq and element b randomly chosen from Zq (just as in the real
CRS). Implicitly set,

[
D

b−1 · Is×s

]

=

[
D′

0s×s

]

+ b−1 ·

[
W

Is×s

]
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Also choose ~d1 at random and implicity set

~d = ~d1 − ~a ·

([
D′

0

]

+ b−1 ·

[
W

I

])

Then, ~f can be computed as

e

(

g1, b ·
~d1 · g2 −~a · b ·

[
D′

0

]

· g2 −~a ·

[
W

I

]

· g2

)

Further CRSp can be computed as just




A A ·

[
D′

0

]

~a −~d1





Rest of the proof is as in the proof of Theorem 3, but crucially noting that in the proof of lemma 5
while employing DDH in group G2, the challenge values b · g2 and r · b · g2 suffice to simulate all
occurences of b in both the CRS-es (including ~f).

�

F Application Details

Proof of the Signature Scheme Theorem.

Theorem 4 If E is a labeled CCA2-encryption scheme and Q is a split-CRS quasi-adaptive NIZK
system for distribution D on class of languages {Lρ} described above, then the signature scheme
described above is existentially unforgeable under adaptive chosen message attacks.

Proof: Recall the security game for a signature scheme. Once the signature scheme’s public key
is given to the signature-scheme adversary B, it adaptively obtains several signatures 〈ci, πi〉 on
messages Mi of its choosing. Let T denote the set of all such messages Mi. To win the game, B
must obtain a 〈M∗, c∗, π∗〉 (M∗ 6∈ T ) which passes the public signature verification, which in this
case just means that the claimed proof π∗ of (c∗,M∗) being in Lρ (where ρ = (u, E .pk))) passes
the QA-NIZK verifier V using the CRS ψv. Let W be the event that B wins. By soundness of the
QA-NIZK, it follows that Pr[W ] is at most the probability that (c,M) is in Lρ plus a negligible
amount.

To show that Pr[W ] is negligible consider the following experiments:

Expt1 : The challenger generates the signature scheme public key S.pk(= ψv) just as in the signature
scheme described above, and passes it to B. Apart from retaining the secret key S.sk =
(u, E .pk, ψp), the challenger also retains the secret key E .sk generated by KeyGen of E . It
then adaptively answers multiple requests for signatures on Mi by encrypting u with labels
Mi (using E ’s encryptor Enc with key E .pk) and generating proofs πi using ψp and QA-NIZK
Prover P. The view of B is identical so far to that in the signature scheme security game.
When the adversary B replies with a triple 〈M∗, c∗, π∗〉, the challenger decrypts c∗ with label
M∗ using secret key E .sk to get u∗. If u∗ = u the challenger outputs WIN, otherwise it outputs
LOSE. Let W1 be the event that challenger outputs WIN. By correctness of the encryption
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scheme E , the event W1 happens whenever c
∗ is an encryption of u with labelM∗ under E .pk,

i.e. whenever (c∗,M∗( are in Lρ(where ρ = (u, E .pk)). Thus, Pr[W ] is at most Pr[W1] plus a
negligible amount.

Expt2 : This is same as Expt1 except that the Challenger generates the QA-NIZK CRS-es (and trap-
door) σv using S11 and σp, τ using S12. Further, it generates all the proofs using S2(σp, τ, ·).
Let W2 be the event that challenger outputs WIN. By QA-NIZK zero-knowledge, |Pr[W2]−
Pr[W1]| is negligible.

Expt3 : This is same as Expt2 except that the challenger now encrypts 1 instead of u. Let W3 be
the event that challenger outputs WIN. By CCA-2 security of the encryption scheme E , it
follows that |Pr[W3] − Pr[W2]| is negligible. Techincally, this requires a sequence of hybrid
experiments, with each subsequent experiment replacing u by 1 in the next signature request
of B.

Now, note that in Expt3, Pr[W3] is at most 1/|Xm| as the view of the adversary B is independent
of u. Thus, by hypothesis about Xm , Pr[W3] is negligible. It follows that Pr[W ] is negligible as
well. �

Couple of remarks are in order here. If we did not have a split-CRS QA-NIZK, but a QA-NIZK
where the verifier also needed a CRS that depended on ρ, then in Expt3 above the view of the
Adversary B would depend on u. In such a case, one can still get a signature scheme (as in [4]) but
one has to encrypt a hard to compute challenge such as x · u (given u, g and x · g). However, the
size of the QA-NIZK proof and hence the signature would not increase as although the number of
equations to prove would go up by one, but so would the number of variables (note the additional
variable x).

UC Adaptive Commitments in the Erasure Model. Here we instantiate the scheme due to
Fischlin, Libert and Manulis [10] in our QA-NIZK tag-based linear subspace proof system. The
following consturction is under the SXDH assumption.

Consider the tag-based language Lρ, with tag t,

∃r.

(
R = r · g, S = r · h,

T = r ·K1,H = r · (d1 + t · e1)

)

with parameter ρ being h,d1, e1, and with the distribution on the parameters being that they are
chosen randomly and uniformly (as in the Cramer-Shoup Key Generation). We can assume that g
is part of the Group description, and is chosen randomly as part of group generation. Consider a
QA-NIZK (K0,K1,P,V) for the above distribution of (tag-based) linear languages.

UC CRS-Gen(λ):
g,h,K1,d1, e1,K0(h,d1, e1)

Commit(crs,M, sid, cid, Pi, Pj): to commit to message M ∈ G for party Pj upon receiving a
command (commit, sid, cid, Pi , Pj ,M), party Pi proceeds as follows:

1. Generate r
$
←− Zq. Compute a Cramer-Shoup Encryption of M as follows:

R = r · g, S = r · h, T =M + r ·K1,H = r · (d1 + t · e1)
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where t is the tag generated using a collision-resitant hash function just as in Cramer-
Shoup encryption.

2. Generate QA-NIZK proof (using P) π of:

∃r.

(
R = r · g, S = r · h,

T −M = r ·K1,H = r · (d1 + t · e1)

)

with witness r.

3. Keep π and erase r.

4. Commitment is c = (R,S, T,H): 4 group elements

Open(crs,M, sid, cid, Pi, Pj): Reveal M and π, which is (4− 1) ∗ 1 = 3 group elements .

As the proof is for (T −M) it can be shown that it suffices to hideM with the hash key itself (see a
similar remark for the signature scheme), which leads to a commitment consisting of three elements,
and a proof (opening) consisting of another two elements. A similar scheme using QA-NIZKs, and
under the DLIN assumption leads to a commitment consisting of 4 elements and an opening of
another 4 elements, whereas [10] stated a scheme using Groth-Sahai NIZK proofs requiring (5+16)
elements.

G Dual System IBE under SXDH Assumption

We first consider the QA-NIZK for the affine language (incorporating tags)

〈R = r · g1, S = r · f , T = u+ r · (d + i · e)〉

where i is an identity, and can be viewed as a tag. More precisely, the affine-system is given by

Lρ = {r · (
[
g1 f 0

]
+
[
0 0 d

]
+ i ·

[
0 0 e

]
) +

[
0 0 u

]
| r ∈ Zq}

where ρ consists of the matrices
[
g1 f

]
and

[
0 0 u

]
(affine shift), and group elements d and

e (for defining the tag based last component). Note that T corresponds to the language component
that depends on a tag. So, let’s focus on the components 〈R,S〉 first. In the notation of Section 4,
this is a language with rank one, and two dimensions, i.e. n = 2, t = 1 and s = (n − t) = 1. Let
f = gc1 for some c ∈ Zq. Then the matrix A is

[
1 c

]
. Further its null-space is generated by

[
−c 1

]
.

For the IBE scheme, instead of generating the CRS as in Section 4 for the above language, we
will generate the CRS as in game G1 in the proof of soundness of QA-NIZK (see Appendix A),
as this will be more in line with the original construction of Waters, and hence possibly easier to
relate. Thus, the two CRS-es are generated by choosing a matrix D′ of dimension t × s, which in
this case is just one element. This single element in D′ will be called ∆3 in the IBE scheme below.
The CRS1 (prover CRS) is then specified by A · g1 and ∆3 · g1. Recall, the prover CRS is to be
used in KeyGen in IBE.

The verifier CRS, i.e. CRS1 is specified by g2, b · g2 and (b ·∆3 − c) · g2. Similarly, the CRS-es
for the tag based element T , and the affine shift u can be obtained from Sections 5 and E resp. The
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element T will require single element matrices D′1 and D′2 (for d and e resp.), which will be called
∆1 and ∆2 respectively (see Appendix C). Similarly, using Appendix E, we derive the CRS element
required for the affine shift, which will be e(g1, (b · ∆4 − u)g2) (see the vector ~f in Appendix E,
and note we want the representation corresponding to the simulation of game G1 in the soundness
proof). That completes the description of how we intend to setup the CRS-es in the IBE using the
QA-NIZK for the above language.

Now, the verifier CRS needs to be randomized to represent IBE ciphertexts, and hence each
ciphertext is a scaling of the verifier CRS by a Zq scalar s (as in game G2 of the soundness proof
in section 4). Also, there is one variable r, and two equations in excess of the variables, and hence
the verification requires testing two pairing product equations – which is a problem as mentioned
in Section 6. The two pairing product equation tests can be converted into one by taking a linear
combination with a random public tag, and this gives us the final form of the ciphertext. The
(fully secure) IBE scheme so obtained is described below, along with a proof of security. For a
security definition of fully secure IBE we refer the reader to [18]. For ease of reading, we switch to
multiplicative group notation in the following.

Setup The authority uses a group generation algorithm for which the SXDH assumption holds
to generate a bilinear group (G1,G2,GT ) with g1 and g2 as generators of G1 and G2 respectively .
Assume that G1 and G2 are of order q, and let e be a bilinear pairing on G1 × G2. Then it picks
c at random from Zq, and sets f = gc1. It further picks ∆1, ∆2, ∆3, ∆4, b, d, e, u from Zq, and
publishes the following public key PK:

g2, g
b
2, v1 = g−∆1·b+d

2 , v2 = g−∆2·b+e
2 , v3 = g−∆3·b+c

2 , and k = e(g1,g2)
−∆4·b+u.

The authority retains the following master secret key MSK: g1, f , and ∆1, ∆2, ∆3, ∆4, d, e, u.

Encrypt(PK, i , M): the encryption algorithm chooses s and tag at random from Zq. It then
blinds M as C0 =M · ks, and also creates

C1 = gs2, C2 = gbs2 , C3 = vs1 · v
i ·s
2 · v

tag·s
3

and the ciphertext is C = 〈C0, C1, C2, C3,tag〉.

KeyGen(MSK, i): The authority chooses r at random from Zq and creates

R = gr1, S = f r, T = g
u+r·(d+i ·e)
1 , W1 = g

−∆4−r·(∆1+i ·∆2)
1 ,W2 = g−r·∆3

1

as the secret key Ki for identity i .

Decrypt(Ki , C): Let tag be the tag in C. Obtain

κ =
e(Stag · T,C1) · e(W1 ·W

tag

2 , C2)

e(R,C3)

and output C0/κ.

Proof: We will just show that ks (as used in blinding the plaintext M) is distributed randomly
in the view of an adaptive Adversary, who after obtaining the public key, adaptively obtains secret
keys for multiple identities i1, i2, ..., in, and a ciphertext for identity i (where all the identities are
chosen adaptively by the Adversary, and i is different from the secret key identities). The ciphertext
can be obtained by the Adversary at any stage.

We will consider a sequence of games, and show that the Adversary’s view is either statistically
or computationally indistinguishable between any two consecutive games. Game G0 is same as the
actual adaptive security IBE game above.
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Game G1: In this game the challenger behaves exactly like the authority while publishing the
PK, and while generating the secret keys. However, it picks another random value s′ from Zq, and
outputs the following as ciphertext (for identity i):

C0 =M · ks · e(g1,g2)
u·s′ ,

C1 = gs+s
′

2 , C2 = gb·s2 ,

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · g

(d+i ·e+tag·c)s′

2 (3)

The tag tag is chosen randomly as in game G0. This simulation of the ciphertext is called semi-
functional ciphertext in [18]. Intuitively, from the point of view of QA-NIZK proofs, the semi-
functional ciphertext provides simulation-soundness as the null-space of the language is reflected
as a factor (linear combination in additive notation)“shifted” by s′.

The view of the Adversary in games G0 and G1 is computationally indistinguishable by employ-
ing the DDH assumption in group G1 on the tuples 〈g2,g

b
2,g

bs
2 ,g

s
2〉, and 〈g2,g

b
2,g

bs
2 ,g

s+s′

2 〉. The
former tuple is used in game G0 and the latter in game G1.

Game G2: In this game the challenger chooses ∆′1, ∆
′
2, ∆

′
3, ∆

′
4 at random and sets ∆1 = (∆′1+d)/b,

∆2 = (∆′2 + e)/b, ∆3 = (∆′3 + c)/b, ∆4 = (∆′4 + u)/b. Thus, the PK is now output as

g2, g
b
2, v1 = g

−∆′

1

2 , v2 = g
−∆′

2

2 , v3 = g
−∆′

3

2 , and k = e(g1,g2)
−∆′

4 .
Further, the secret keys are output as

R = gr1, S = f r, T = g
u+r·(d+i ·e)
1 ,

W1 = g
[−∆′

4−u−r·(∆
′

1+d+i ·(∆′

2+e))]/b
1 ,

W2 = g
−r·(∆′

3+c)/b
1 . (4)

The view of the Adversary in games G2 and G1 is statistically identical.

Game G3: This game is actually a sequence of several hybrid games, with the j-th hybrid game
G3,j changing the simulation of the j-th secret key generation. Game G3,0 is just the same as game
G2.

In game G3,j the challenger modifies the output of the j-th secret key as follows (assume that
the identity requested by the Adversary is i j): it chooses rj , r

′
j and r

′′
j at random and sets

R = g
rj
1 , S = f rjg

r′j
1 ,

T = g
r′′j +rj ·(d+i j ·e)
1 ,

W1 = g
[−∆′

4−r
′′

j −rj ·(∆
′

1+d+i j ·(∆′

2+e))]/b

1 ,

W2 = g
(−r′j−rj ·(∆

′

3+c))/b

1 .

Note that u has completely vanished from the j-th (and earlier) secret key simulation. This simu-
lation of the secret key is called semi-functional key.

Lemma 12 The view of the Adversary in game G3,j is computationally indistinguishable from the
view of the Adversary in game G3,j−1.
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Proof:

Let H0 be same as the game G3,j−1. In game H1, the challenger chooses d = d1 + c · d2, and
e = e1 + c · e2, and tag tag in the ciphertext as −(d2 + i · e2). where d1, d2, e1 and e2 are random
and independent values from Zq. It is easy to see that d, e and tag are random and independent,
and hence the view of the Adversary in games H0 and H1 is statistically identical. Note that with
this value of tag, C3 (in the ciphertext) can be generated by the challenger as

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · g

(d1+i ·e1+(d2+i ·e2)·c+tag·c)s′

2

= vs1 · v
i ·s
2 · v

tag·s
3 · g

(d1+i ·e1)s′
2

As a consequence c is not used at all in the simulation of the ciphertext (whose elements are all in
group G1). The simulation of PK (without using c) is unchanged from game G2.

In game H2, the challenger generates the j-th secret-key by choosing rj and r′j uniformly and
independently and setting

R = g
rj
1 , S = f rg

r′j
1 ,

T = g
u+rj ·(d1+c·d2+i j ·(e1+c·e2))+r′j ·(d2+i je2)
1

W1 = g
[−∆′

4−u−rj ·(∆
′

1+d1+cd2+i j ·(∆′

2+e1+ce2))−r
′

j(d2+i je2)]/b
1 ,

W2 = g
(−rj ·(∆′

3+c)−r
′

j)/b

1 .

Recall that in game H1, the secret key is being generated as in Equation (4), with d = d1+ cd2 and
e = e1 + ce2. The view of the Adversary in games H2 and H1 is computationally indistinguishable,
and this is shown by employing the DDH assumption on the two tuples 〈g1, f = gc1,g

rj
1 ,g

crj
1 〉 and

〈g1, f = gc1,g
rj
1 ,g

crj+r
′

j

1 〉, where the first tuple is employed in simulating game H1 and the second
tuple is used in simulating game H2.

In game H3, the challenger generates the j-th secret key as

R = g
rj
1 , S = f rg

r′j
1 ,

T = g
u+rj ·(d1+c·d2+i j ·(e1+c·e2))+r′j ·r′′j
1

W1 = g
[−∆′

4−u−rj ·(∆
′

1+d1+cd2+i j ·(∆′

2+e1+ce2))−r
′

j ·r
′′

j ]/b

1 ,

W2 = g
(−rj ·(∆

′

3+c)−r
′

j)/b

1 .

where rj, r
′
j and r′′j are chosen randomly and independently (and independently from all other

variables).

The view of the Adversary in game H3 and H2 is statistically identical by noting that d =
d1 + c · d3, and e = e1 + c · e2, tag = −(d2 + i · e2) and r′′j = d2 + i je2 are all random and
independent (since i 6= i j). This can be seen by noting that the four by four matrix of coefficients
of d, e,tag, r′′j in their linear representation in terms of d1, d2, e1, e2 is non-singular.

In game H4, the challenger generates d, e and tag at random (instead of d1+cd2 etc.), and also
chooses r′′′j at random (and independent of rj, r

′
j and other variables) and outputs the ciphertext
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as

R = g
rj
1 , S = f rg

r′j
1 ,

T = g
r′′′j +rj ·(d+i j ·(e))
1

W1 = g
[−∆′

4−r
′′′

j −rj ·(∆
′

1+d+i j ·(∆′

2+e))]/b

1 ,

W2 = g
(−rj ·(∆′

3+c)−r
′

j)/b

1 .

Game H4 is statistically identical to game H3, as ( = u + r′j · r
′′
j ) in game H3 is random and

independent of r′j , and hence is distributed same as a random r′′′j as in game H4. Now note that
game H4 is identical to the game G3,j as described above the lemma 12 statement. �

We now continue with the proof of the theorem. Game G4 is just the game G3,n (where n is
the number of secret key requests). Note that in game G4 the only place that u is used is in the
ciphertext component C0 which is simulated by the challenger as C0 = M · ks · e(g1,g2)

us′ (see
equation (3)). Hence, C0 is completely random and independent of M in the view of the Adversary
in game G4 (note u is non-zero with high probability). That completes the proof. �
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