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Abstract

We define a novel notion of quasi-adaptive non-interactive zero-knowledge (NIZK) proofs
for probability distributions on parametrized languages. It is quasi-adaptive in the sense that
the common reference string (CRS) generator can generate the CRS depending on the language
parameters. However, the simulation is required to be uniform, i.e., a single efficient simula-
tor should work for the whole class of parametrized languages. For distributions on languages
that are linear subspaces of vector spaces over bilinear groups, we give computationally-sound
quasi-adaptive NIZKs that are shorter and more efficient than Groth-Sahai NIZKs. For many
cryptographic applications quasi-adaptive NIZKs suffice, and our constructions can lead to sig-
nificant efficiency improvements in the standard model. Our construction can be based on any
k-linear assumption, and in particular under the eXternal Diffie Hellman (XDH) assumption
our proofs are even competitive with Random-Oracle based Σ-protocol NIZK proofs.

We also show that our system can be extended to include integer tags in the defining linear
equations, where the tags are provided adaptively by the adversary. This leads to applicability
of our system to many applications that use tags, e.g. applications using Cramer-Shoup pro-
jective hash proofs. Our techniques also lead to the shortest known (ciphertext) fully secure
identity based encryption (IBE) scheme under standard static assumptions (SXDH). Further,
we also get a short publicly-verifiable CCA2-secure IBE scheme.

Keywords: NIZK, Groth-Sahai, bilinear pairings, signatures, dual-system IBE, DLIN, SXDH.

1 Introduction

In [GS08] a remarkably efficient non-interactive zero-knowledge (NIZK) proof system [BFM88] was
given for groups with a bilinear map, which has found many applications in design of cryptographic
protocols in the standard model. All earlier NIZK proof systems (except [Gro06], which was not
very efficient) were constructed by reduction to Circuit Satisfiability or other NP-complete prob-
lems. Underlying this system, now commonly known as Groth-Sahai NIZKs, is a homomorphic
commitment scheme. Each variable in the system of algebraic equations to be proven is com-
mitted to using this scheme. Since the commitment scheme is homomorphic, group operations
in the equations are translated to corresponding operations on the commitments and new terms

∗An extended abstract of this paper [JR13] appeared in the proceedings of ASIACRYPT 2013. This is the full
version.
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are constructed involving the constants in the equations and the randomness used in the commit-
ments. It was shown that these new terms along with the commitments to variables constitute a
zero-knowledge proof [GS08].

While the Groth-Sahai system is quite efficient, it still falls short in comparison to Schnorr-
based Σ-protocols [Dam] turned into NIZK proofs in the Random Oracle model [BR93] using the
Fiat-Shamir paradigm [FS87]. Thus, the quest remains to obtain even more efficient NIZK proofs.
In particular, in a linear system of rank t, some t of the equations already serve as commitments
to t variables. Thus, the question arises whether, at the very least, fresh commitments to these
variables as done in Groth-Sahai NIZKs can be avoided.

Our contributions. In this paper, we show that for languages that are linear subspaces of
vector spaces of the bilinear groups, one can indeed obtain more efficient computationally-sound
NIZK proofs in a slightly different quasi-adaptive setting, which suffices for many cryptographic
applications. In the quasi-adaptive setting, we consider a class of languages {Lρ}, parametrized
by ρ, and we allow the CRS generator to generate the CRS based on the language parameter
ρ. However, the CRS simulator in the zero-knowledge setting is required to be a single efficient
algorithm that works for the whole parametrized class or probability distributions of languages, by
taking the parameter as input. We will refer to this property as uniform simulation.

Many hard languages that are commonly used in cryptography are distributions on class of
parametrized languages. For example, the DDH language based on the decisional Diffie-Hellman
(DDH) assumption is hard only when in the tuple 〈g, f , x ·g, x · f 〉1, even f is chosen at random (in
addition to x · g being chosen randomly). However, applications (or trusted parties) usually set f ,
once and for all, by choosing it at random, and then all parties in the application can use multiple
instances of the above language with the same fixed f . Thus, we can consider f as a parameter for
a class of languages that only specify the last two components above. If NIZK proofs are required
in the application for this parametrized language, then the NIZK CRS can be generated by the
trusted party that chooses the language parameter f . Hence, it can base the CRS on the language
parameter2.

We remark that adaptive NIZK proofs [BFM88] also allow the CRS to depend on the lan-
guage, but without requiring uniform simulation. Such NIZK proofs that allow different efficient
simulators for each particular language (from a parametrized class) are unlikely to be useful in
applications. Thus, most NIZK proofs, including Groth-Sahai NIZKs, actually show that the same
efficient simulator works for the whole class, i.e. they show uniform simulation. The Groth-Sahai
system achieves uniform simulation without making any distinction between different classes of
parametrized languages, i.e. it shows a single efficient CRS simulator that works for all algebraic
languages without taking any language parameters as input. Thus, there is potential to gain effi-
ciency by considering quasi-adaptive NIZK proofs, i.e. by allowing the (uniform) simulator to take
language parameters as input3.

Our approach to building more efficient quasi-adaptive NIZK proofs for linear subspaces is quite
different from the Groth-Sahai techniques. In fact, our system does not require any commitments
to the witnesses at all. If there are t free variables in defining a subspace of the n-dimensional

1Group operation represented additively.
2However, in the security definition the efficient CRS simulator does not itself generate f , but is given f as input

chosen randomly.
3It is important to specify the information about the parameter which is supplied as input to the CRS simulator.

We defer this important issue to Section 2 where we formally define quasi-adaptive NIZK proofs.
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vector-space and assuming the subspace is full-ranked (i.e. has rank t), then t components of the
vector already serve as commitment to the variables. As an example, consider the language L (over
a cyclic bilinear group G of order q, in additive notation) to be

L =
{
〈l1, l2, l 3〉 ∈ G

3 | ∃x1, x2 ∈ Zq : l1 = x1 · g, l2 = x2 · f , l3 = (x1 + x2) · h
}

where g, f , h are parameters defining the language. Then, l1 and l2 are already binding commit-
ments to x1 and x2. Thus, we only need to show that the last component l3 is consistent.

The main idea underlying our construction can be summarized as follows. Suppose the CRS
can be set to be a basis for the null-space L⊥ρ of the language Lρ. Then, just (bilinear-) pairing a

potential language candidate with L⊥ρ and testing for all-zero suffices to prove that the candidate

is in Lρ, as the null-space of L⊥ρ is just Lρ. However, efficiently computing null-spaces in hard

bilinear groups is itself hard. Thus, an efficient CRS simulator cannot generate L⊥ρ , but can give
a (hiding) commitment that is computationally indistinguishable from a binding commitment to
L⊥ρ . To achieve this we use a homomorphic commitment just as in the Groth-Sahai system, but
we can use the simpler ElGamal encryption style commitment as opposed to the more involved
Groth-Sahai commitments, and as a bonus this allows for a more efficient verifier4. As we will see
later in Section 5, a more efficient verifier is critical for obtaining short identity based encryption
schemes (IBE).

In fact, the idea of using the null-space of the language is reminiscent of Waters’ dual-system
IBE construction [Wat09], and indeed our system is inspired by that construction5, although the
idea of using it for NIZK proofs and, in particular, proving their soundness is novel.

For n equations in t variables, our quasi-adaptive computationally-sound NIZK proofs for linear
subspaces require only k(n − t) group elements, under the k-linear decisional assumption [HK07,
Sha07]. Thus, under the XDH assumption for bilinear groups, our proofs require only (n− t) group
elements. In contrast, the Groth-Sahai system requires (n + 2t) group elements. Similarly, under
the decisional linear assumption (DLIN), our proofs require only 2(n− t) group elements, whereas
the Groth-Sahai system requires (2n + 3t) group elements. These parameters are summarized in
Table 1. While our CRS size grows proportional to t(n− t), more importantly there is a significant
comparative improvement in the number of pairings required for verification. Specifically, under
XDH we require at most half the number of pairings, and under DLIN we require at most 2/3
the number of pairings. The Σ-protocol NIZK proofs based on the Random Oracle model require
n group elements, t elements of Zq and 1 hash value. Although our XDH based proofs require
less number of group elements, the Σ-protocol proofs do not require bilinear groups and have the
advantage of being proofs of knowledge (PoK). We remark that the Groth-Sahai system is also not a
PoK for witnesses that are Zq elements. A recent paper by Escala et al [EHK+13] has also optimized
proofs of linear subspaces in a language dependent CRS setting. Their system also removes the
need for commitment to witnesses but still implicitly uses Groth-Sahai proofs. In comparison, our
proofs are still much shorter.

Thus, for the language L above, which is just a DLIN tuple used ubiquitously for encryption,
our system only requires two group elements under the DLIN assumption, whereas the Groth-
Sahai system requires twelve group elements (note, t = 2, n = 3 in L above). For the Diffie-

4Our quasi-adaptive NIZK proofs are already shorter than Groth-Sahai as they require no commitments to vari-
ables, and as mentioned earlier we have to prove lesser number of equations.

5In Section 5 and in the Appendix, we show that the design of our system leads to a shorter SXDH assumption
based dual-system IBE.
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XDH DLIN
Proof CRS #Pairings Proof CRS #Pairings

Groth-Sahai n+ 2t 4 2n(t+ 2) 2n+ 3t 9 3n(t+ 3)

This paper n− t 2t(n − t) + 2 (n− t)(t+ 2) 2n− 2t 4t(n− t) + 3 2(n− t)(t+ 2)

Table 1: Comparison with Groth-Sahai NIZKs for Linear Subspaces. Parameter t is the number of
unknowns or witnesses and n is the dimension of the vector space, or in other words, the number
of equations.

Hellman analogue of this language 〈x · g, x · f〉, our system produces a single element proof under
the XDH assumption, which we demonstrate in Section 3 (whereas the Groth-Sahai system requires
(n+ 2t =) 4 elements for the proof with t = 1 and n = 2).

Our NIZK proofs also satisfy some interesting new properties. Firstly, the proofs in our system
are unique for each language member. This has interesting applications as we will see later in
a CCA2-IBE construction. Secondly, the CRS in our system, though dependent on the language
parameters, can be split into two parts. The first part is required only by the prover, and the second
part is required only by the verifier, and the latter can be generated independent of the language.
This is surprising since our verifier does not even take the language (parameters) as input. Only
the randomization used in the verifier CRS generation is used in the prover CRS to link the two
CRSes. This is in sharp contrast to Groth-Sahai NIZKs, where the verifier needs the language as
input. This split-CRS property has interesting applications as we will see later.

Extension to Linear Systems with Tags. Our system does not yet extend naturally to
quadratic or multi-linear equations, whereas the Groth-Sahai system does6. However, we can
extend our system to include tags, and allow the defining equations to be polynomially dependent
on tags. For example, our system can prove the following language:

L′ =

{
〈l1, l 2, l3,tag〉 ∈ G

3 × Zq | ∃x1, x2 ∈ Zq :
l1 = x1 · f , l2 = x2 · g, l3 = (x1 + tag · x2) · h

}

.

Note that this is a non-trivial extension since the tag is adaptively provided by the adversary after
the CRS has been set.

The extension to tags is important, as we now discuss. Many applications require that the
NIZK proof also be simulation-sound. However, extending NIZK proofs for bilinear groups to
be unbounded simulation-sound requires handling quadratic equations (see [CCS09] for a generic
construction). On the other hand, many applications just require one-time simulation soundness,
and as has been shown in [JR12], this can be achieved for linear subspaces by projective hash
proofs [CS02]. Projective hash proofs can be defined by linear extensions, but require use of tags.
Thus, our system can handle such equations. Many applications, such as signatures, can also achieve
implicit unbounded simulation soundness using projective hash proofs, and such applications can
utilize our system (see Section 5).

Applications. While the cryptographic literature is replete with NIZK proofs, we will demon-
strate the applicability of quasi-adaptive NIZKs, and in particular our efficient system for linear sub-

6However, since commitments in Groth-Sahai NIZKs are linear, there is scope for mixing the two systems to gain
efficiency.
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Public Key Secret Key Ciphertext #Pairings Anonymity

[CLL+13] 8|G1|+ |GT | 4|G2| 4|G1|+ |GT | 4 yes

This paper 5|G1|+ |GT | 5|G2| 3|G1|+ |GT |+ |Zq| 3 yes

Table 2: Comparison with the SXDH-based IBE of Chen et al. [CLL+13]. The notation | · | denotes
the bit length of an element of the given group.

spaces, to a few recent applications such as signature schemes [CCS09], UC commitments [FLM11],
password-based key exchange [KV11, JR12], key-dependent encryption [CCS09]. For starters, based
on [FLM11], our system yields an adaptive UC-secure commitment scheme (in the erasure model)
that has only four group elements as commitment, and another four as opening (under the DLIN
assumption; and 3 + 2 under SXDH assumption), whereas the original scheme using Groth-Sahai
NIZKs required 5 + 16 group elements.

We also obtain one of the shortest signature schemes under a static standard assumption,
i.e. SXDH, that only requires five group elements. We also show how this signature scheme
can be extended to a short fully secure (and perfectly complete) dual-system IBE scheme, and
indeed a scheme with ciphertexts that are only four group elements plus a tag (under the SXDH
assumption). This is the shortest IBE scheme under the SXDH assumption, and is technically even
shorter than a recent and independently obtained scheme of [CLL+13] which requires five group
elements as ciphertext. Table 2 depicts numerical differences between the parameter sizes of the
two schemes. The SXDH-IBE scheme of [CLL+13] uses the concept of dual pairing vector spaces
(due to Okamoto and Takashima [OT08, OT09], and synthesized from Waters’ dual system IBE).
However, the dual vector space and its generalizations due to others [Lew12] do not capture the
idea of proof verification. Thus, one of our contributions can be viewed as showing that the dual
system not only does zero-knowledge simulation but also extends to provide a computationally
sound proof system for general linear systems.

Finally, using our QA-NIZKs we show a short publicly-verifiable CCA2-secure IBE scheme.
Public verifiability is an informal but practically important notion which implies that one can
publicly verify if the decryption will yield “invalid ciphertext”. Thus, this can allow a network
gateway to act as a filter. Our scheme only requires two additional group elements over the basic
IBE scheme.

Recent works. Following the extended abstract [JR13] of this paper, QA-NIZKs for linear sub-
spaces have been considerably optimized, leading to constant size proofs [LPJY14, JR14], and have
been extended to provide simulation-soundness [LPJY14, ABP15, KW15, JR15]. QA-NIZKs have
been applied to develop several applications, such as anonymous compact HIBEs [RS14], keyed-
homomorphic encryption schemes [LPJY14, JR15] and linear homomorphic structure preserving
signatures [KW15, LPJY15].

Organization of the paper. We begin the rest of the paper with the definition of quasi-adaptive
NIZKs in Section 2. In Section 3 we develop quasi-adaptive NIZKs for linear subspaces under the
XDH assumption and then generalize to quasi-adaptive NIZKs under the k-linear assumption.
In Section 4, we extend our system to include tags, define a notion called split-CRS QA-NIZKs
and extend our system to construct split-CRS NIZKs for affine spaces. Finally, we demonstrate
applications of our system in Section 5. We defer detailed proofs to the appendix.
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a, b, x, y, ... :: elements of Zq

g, f,h, ... :: elements of G1,G2 or GT

~a,~b, ~x, ~y, ... :: (row) vectors of Zq elements

~l, ~p, ... :: (row) vectors of group elements

A,B,X,Y, ... :: matrices of Zq elements

A,B,X,Y, ... :: matrices of group elements

Am×n,Bm×n, ... :: matrices of dimension m× n

g+ f :: group operation expressed additively

01,02,0T :: identity elements of G1,G2 and GT respectively

a · g,g · a :: scalar product of Zq element and group element

A ·B,A · B :: matrix multiplication with scalar product and group addition

e(A,B) :: matrix multiplication with pairing product and group addition

Table 3: Notations

Notations. We will be dealing with witness-relations R that are binary relations on pairs (x,w),
and where w is commonly referred to as the witness. Each witness-relation defines a language
L = {x| ∃w : R(x,w)}. For every witness-relation Rρ we will use Lρ to denote the language it
defines. Thus, a NIZK proof for a witness-relation Rρ can also be seen as a NIZK proof for its
language Lρ.

Vectors will always be row-vectors and will always be denoted by an arrow over the letter, e.g.
~r for (row) vector of Zq elements, and ~d as (row) vector of group elements. The notations are
summarized in Table 3.

2 Quasi-Adaptive NIZK Proofs

Instead of considering NIZK proofs for a (witness-) relation R, we will consider Quasi-Adaptive
NIZK proofs for a probability distribution D on a collection of (witness-) relations R = {Rρ}. The
quasi-adaptiveness allows for the common reference string (CRS) to be set based on Rρ after the
latter has been chosen according to D. We will however require, as we will see later, that the
simulator generating the CRS (in the simulation world) is a single probabilistic polynomial time
algorithm that works for the whole collection of relations R.

To be more precise, we will consider an ensemble of distributions on witness-relations, each
distribution in the ensemble itself parametrized by a security parameter. Thus, we will consider an
ensemble {Dλ} of distributions on collection of relations Rλ, where each Dλ specifies a probability
distribution on Rλ = {Rλ,ρ}. When λ is clear from context, we will just refer to a particular
relation as Rρ, and write Rλ = {Rρ}.
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Since in the quasi-adaptive setting the CRS could depend on the relation, we must specify what
information about the relation is given to the CRS generator. Thus, we will consider an associated
parameter language such that a member of this language is enough to characterize a particular
relation, and this language member is provided to the CRS generator. For example, consider the
class of parametrized relations R = {Rρ}, where parameter ρ is a tuple g, f,h of three elements
from a group G of order q. Suppose, Rρ (on 〈l 1, l2, l3〉, 〈x1, x2〉) is defined as

R〈g,f,h〉(〈l1, l2, l 3〉, 〈x1, x2〉)
def
=

(
x1, x2 ∈ Zq, l1, l2, l3 ∈ G and

l1 = x1 · g, l2 = x2 · f, l3 = (x1 + x2) · h

)

.

For this class of relations, one could seek a quasi-adaptive NIZK where the CRS generator is just
given ρ as input. Thus in this case, the associated parameter language Lpar will just be triples of
group elements7. Moreover, the distribution D can just be on the parameter language Lpar, i.e. D
just specifies a ρ ∈ Lpar. Again, Lpar is technically an ensemble.

Definition 1 (QA-NIZK) We call a tuple of efficient algorithms (K0,K1,P,V) a QA-NIZK proof
system for witness-relations Rλ = {Rρ} with parameters sampled from a distribution D over asso-
ciated parameter language Lpar, if there exists a probabilistic polynomial time simulator (S1,S2),
such that for all non-uniform PPT adversaries A1,A2,A3 we have8:

Quasi-Adaptive Completeness:

Pr





λ← K0(1
m); ρ← Dλ; ψ ← K1(λ, ρ);

(x,w)← A1(λ, ψ, ρ); π ← P(ψ, x,w) :
V(ψ, x, π) = 1 if Rρ(x,w)



 = 1

Quasi-Adaptive Soundness:

Pr

[
λ← K0(1

m); ρ← Dλ; ψ ← K1(λ, ρ); (x, π)← A2(λ, ψ, ρ) :
V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w))

]

≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[

λ← K0(1
m); ρ← Dλ; ψ ← K1(λ, ρ) : A

P(ψ,·,·)
3 (λ, ψ, ρ) = 1

]

≈

Pr
[

λ← K0(1
m); ρ← Dλ; (ψ, τ)← S1(λ, ρ) : A

S(ψ,τ,·,·)
3 (λ, ψ, ρ) = 1

]

,

where S(ψ, τ, x,w) = S2(ψ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and S) output failure
if (x,w) 6∈ Rρ. We call the property Perfect Zero-Knowledge, if the above probabilities are in
fact equal.

Note that ψ is the CRS in the above definitions.

7It is worth remarking that alternatively the parameter language could also be discrete logarithms of these group
elements (w.r.t. to some base), but a NIZK proof under this associated language may not be very useful. Thus, it is
critical to define the proper associated parameter language.

8The approx sign “≈” indicates negligible difference, in the security parameter m, between LHS and RHS.
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2.1 Stronger QA-NIZK Definition

We now consider a stronger definition of QA-NIZK where all the three notions above are potentially
stronger, as the Adversary will be given more power. We remark that a related stronger notion
was considered earlier in [GHR15, LPJY15], as we discuss below.

Instead of considering probability distributions on witness-relations, we now define QA-NIZK
for a language of witness-relations. Each witness-relation in the language is defined by a parameter
that comes from a parameter language Lpar. The QA-NIZK parameter language Lpar also has its
own witness relation Rpar. A parameter ρ is in Lpar iff there exists a θ such that (ρ, θ) ∈ Rpar.

A tuple of algorithms (K0,K1,P,V) is called a QA-NIZK proof system for witness-relations
Rλ = {Rρ} with parameters from a associated parameter language Lpar which has its own witness-
relation Rpar, if there exists a probabilistic polynomial time simulator (S1,S2), such that for all
non-uniform PPT adversaries A0,A1,A2,A3 we have:

Quasi-Adaptive Completeness:

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ);ψ ← K1(λ, ρ); (x,w) ← A1(λ, ρ, ψ, σ);

π ← P(ψ, x,w) : V(ψ, x, π) = 1 if (Rρ(x,w) and Rpar(ρ, θ))] = 1

Strong Quasi-Adaptive Soundness:

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ);ψ ← K1(λ, ρ);

(x, π)← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 and ¬(∃w : Rρ(x,w)) and Rpar(ρ, θ)] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ);ψ ← K1(λ, ρ) : A

P(ψ,·,·)
3 (λ, ρ, ψ, σ) = 1 and Rpar(ρ, θ)] ≈

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ); (ψ, τ) ← S1(λ, ρ) : A

S(ψ,τ,·,·)
3 (λ, ρ, ψ, σ) = 1 and Rpar(ρ, θ)],

where S(ψ, τ, x,w) = S2(ψ, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and S) output failure
if (x,w) 6∈ Rρ.

Remark 1. We will refer to such QA-NIZK as QA-NIZK for parameterized languages as
opposed to the earlier definition which we will call QA-NIZK for distribution of parameterized
languages. This definition of QA-NIZK is stronger than the previous definition if D (over Lpar)
is efficiently witness-samplable. In that case, we can just consider A0 to be the efficient witness-
sampler of D.
Remark 2. An alternate viewpoint was taken earlier in [GHR15, LPJY15] where for the witness-
samplable distributions case, in the original definition, even if the Adversary is given witness θ of
ρ after (ρ, θ) are chosen according to D, the QA-NIZK remains sound. For example, in the case of
linear-subspace languages, the language parameter A which is a matrix of group elements defines
the language for which the NIZK is being considered. Then, even if discrete-log of components of
A, i.e. A, are given to the adversary, it still cannot produce a non-language member that passes
the verification test. However, the definition above in this sub-section is even more general than
considered in [GHR15, LPJY15].
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Remark 3. For most applications it suffices to consider definitions of completeness and zero-
knowledge such that the Adversary A0 need only produce ρ as long as it is in Lpar.
Remark 4. Various other constructions of QA-NIZK were given in recent years [LPJY14, JR14,
ABP15, GHR15], some even guaranteeing simulation-soundness [LPJY14, ABP15, KW15, JR15,
LPJY15]. All of these constructions that worked for efficiently witness-samplable distributions,
also satisfy the above stronger definition.

3 QA-NIZK for Linear Subspaces

Setup. Let G1,G2 and GT be cyclic groups of prime order q with a bilinear map e : G1×G2 → GT

chosen by a group generation algorithm. Let g1 and g2 be generators of the group G1 and G2

respectively. Let 01, 02 and 0T be the identity elements in the three groups G1,G2 and GT

respectively. We use additive notation for the group operations in all the groups.
The bilinear pairing e naturally extends to Zq-vector spaces of G1 and G2 of the same dimension

n as follows: e(~a, ~b
⊤
) =

∑n
i=1 e(ai,bi), where ~a,

~b are row vectors. Thus, if ~a = ~x ·g1 and ~b = ~y ·g2,

where ~x and ~y are now vectors over Zq, then e(~a, ~b
⊤
) = (~x · ~y⊤) · e(g1,g2).

Linear Subspace Languages. To start off with an example, a set of equations l1 = x1 · g, l 2 =
x2 · f, l3 = (x1 + x2) · h will be expressed in the form ~l = ~x ·A as follows:

~l =
[
l1 l2 l3

]
=
[
x1 x2

]
·

[
g 01 h
01 f h

]

where ~x is a vector of unknowns and A is a matrix specifying the group constants g, f,h.
The scalars in this system of equations are from the field Zq. In general, we consider languages

that are linear subspaces of vectors of G1 elements. These are just Zq-modules, and since Zq is a
field, they are vector spaces. In other words, the languages we are interested in can be characterized
as languages parameterized by A as below:

LA = {~x ·A ∈ G
n
1 | ~x ∈ Z

t
q}, where A is a t× n matrix of G1 elements.

Here A is an element of the associated parameter language Lpar, which is all t× n matrices of
G1 elements. The parameter language Lpar also has a corresponding witness relation Rpar, where
the witness is a matrix of Zq elements : Rpar(A,A) iff A = A · g1.

Robust and Efficiently Witness-Samplable Distributions. Let the t×n dimensional matrix
A be chosen according to a distribution D on Lpar. We will call the distribution D robust if with
overwhelming probability the left-most t columns of A are full-ranked. We will call a distribution
D on Lpar efficiently witness-samplable if there is a probabilistic polynomial time algorithm such
that it outputs a pair of matrices (A,A) that satisfy the relation Rpar (i.e., Rpar(A,A) holds),
and further the resulting distribution of the output A is same as D. For example, the uniform
distribution on Lpar is efficiently witness-samplable, by first picking A at random, and then com-
puting A. As an example of a robust distribution, consider a distribution D on (2× 3)-dimensional

matrices

[
g 01 h
01 f h

]

with g, f and h chosen randomly from G1. It is easy to see that the first

two columns are full-ranked if g 6= 01 and f 6= 01, which holds with probability (1− 1/q)2.
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3.1 QA-NIZK Construction under the XDH Assumption

We now describe a computationally sound quasi-adaptive NIZK (K0,K1,P,V) for linear subspace
languages {LA} with parameters sampled from a robust and efficiently witness-samplable distri-
bution D over the associated parameter language Lpar.
Algorithm K0: K0 is same as the group generation algorithm for which the XDH assumption

holds. λ
def
= (q,G1,G2,GT , e,g1,g2)← K0(1

m), with (q,G1,G2,GT , e,g1,g2) as described above.
We will assume that the size t×n of the matrix A is either fixed or determined by the security

parameter m. In general, t and n could also be part of the parameter language, and hence t, n
could be given as part of the input to CRS generator K1.
Algorithm K1: The algorithm K1 generates the CRS as follows. Let A

t×n be the parameter

supplied to K1. Let s
def
= n − t: this is the number of equations in excess of the unknowns. It

generates a matrix Dt×s with all elements chosen randomly from Zq and a single element b chosen
randomly from Zq. The common reference string (CRS) ψ has two parts CRSp and CRSv which
are to be used by the prover and the verifier respectively.

CRS
t×s
p := A ·

[
Dt×s

b−1 · Is×s

]

CRS
(n+s)×s
v :=





b · D
Is×s

−b · Is×s



 · g2

Here, I denotes the identity matrix. Note that CRSv is independent of the parameter.
Prover P: Given candidate ~l = ~x · A with witness vector ~x, the prover generates the following
proof consisting of s elements in G1:

~p := ~x · CRSp

Verifier V: Given candidate ~l , and a proof ~p, the verifier checks the following:

e
([

~l ~p
]

,CRSv

)
?
= 0

1×s
T

The security of the above system depends on the DDH assumption in group G2. Since G2 is a
bilinear group, this assumption is known as the XDH assumption. These assumptions are standard
and are formally described in Appendix A.

Remark. The proofs are unique for language members as the bottom s rows of CRSv are invert-
ible.

Theorem 2 The above algorithms (K0,K1,P,V) constitute a perfectly complete, computationally
sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for linear subspace languages
{LA} with parameters A sampled from a robust and efficiently witness-samplable distribution D
over the associated parameter language Lpar, given the DDH assumption holds for group G2, with
respect to the group generation algorithm K0.

Completeness and zero-knowledge are fairly straight-forward as we will see below. Soundness
is the most non-trivial part of proving this theorem.
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Completeness: For a candidate ~x · A (which is a language member), the left-hand-side of the
verification equation is:

e(
[

~l ~p
]

,CRSv) = e(
[
~x · A ~x · CRSp

]
,CRSv)

= e



~x ·A ·

[

In×n
D

b−1 · Is×s

]

·





b · D
Is×s

−b · Is×s



 ,g2





= e

(

~x · A ·

( [
b · D
Is×s

]

− b ·

[
D

b−1 · Is×s

] )

,g2

)

= e(01×s1 ,g2) = 01×sT

Hence completeness follows.

Zero-Knowledge: The CRS is generated exactly as above. In addition, the simulator is given

the trapdoor

[
D

b−1 · Is×s

]

. Now, given a language candidate ~l , the proof is simply ~p := ~l ·
[

D

b−1 · Is×s

]

. If ~l is in the language, i.e., it is ~x · A for some ~x, then the distribution of the

simulated proof is identical to the real world proof. Therefore, the simulated NIZK CRS and
simulated proofs of language members are identically distributed as the real world. Hence the
system is perfect zero-knowledge.

Soundness: We prove soundness by transforming the system over two games. Game G0 just
replicates the soundness security definition. In game G1 the CRS is generated using witness A and
its null-space, and this can be done efficiently by the challenger as the distribution is efficiently
witness samplable. After this transformation, we show that a verifying proof of a non-language
member implies breaking DDH in group G2.

Game G0: This is just the original system, i.e., the challenger takes a security parameter m,
generates λ using K0, then generates A according to D, generates the CRS ψ using K1, and passes
λ,A and the CRS (i.e. CRSp, CRSv ) to an Adversary B. Let the B produce candidate ~l and proof

~p. We say B wins if e
([

~l ~p
]

,CRSv

)
?
= 0

1×s
T while ~l is not in LA. Let W0 denote the event

that B wins game G0. If we can show that Pr[W0] is negligible (in m), then soundness follows.
Game G1: Since D is efficiently witness samplable, say using a PPT machineM, in this game

the challenger generates A = A · g1 usingM, and hence the challenger also gets A (the witness to
A in language Lpar). Next the challenger checks if the left most t columns of A are full-ranked. If
they are not full-ranked, the Challenger declares the Adversary as winner. We will also call this
event BAD. The probability of event BAD happening is negligible by definition as the distribution

D is robust. Otherwise, it computes a rank s matrix

[
Wt×s

Is×s

]

of dimension (t + s) × s whose

columns form a complete basis for the null-space of A, which means A ·

[
Wt×s

Is×s

]

= 0t×s. Next, the

NIZK CRS is computed as follows: The challenger generates matrix D′ t×s with elements randomly
chosen from Zq and element b randomly chosen from Zq (just as in the real CRS). Now set,

[
D

b−1 · Is×s

]

=

[
D′

0s×s

]

+ b−1 ·

[
W

Is×s

]

11



Therefore the challenger produces,

CRS
t×s
p = A ·

[
D

b−1 · Is×s

]

= A ·

([
D

b−1 · Is×s

]

− b−1 ·

[
W

Is×s

])

= A ·

[
D′

0s×s

]

CRS
(n+s)×s
v =





b · D
Is×s

−b · Is×s



 · g2 =




b ·

[
D′

0s×s

]

+

[
W

Is×s

]

−b · Is×s



 · g2

Observe that D has identical distribution as in gameG0 and the rest of the computations were same.
So game G1 is statistically indistinguishable from game G0, conditioned on BAD not happening.
Let W1 denote the event that Adversary wins game G1. Since event BAD implies event W1, it
follows that Pr[W1] ≥ Pr[W0]. Moreover,

Pr[W1] = Pr[W1 ∧ BAD] + Pr[W1 ∧ ¬BAD]

≤ Pr[BAD] + Pr[W1 ∧ ¬BAD]

Since probability of event BAD is negligible, if we can show Pr[W1 ∧ ¬BAD] to be negligible,
soundness would follow. We remark that the Challenger in game G1 is efficient (i.e. it can be
implemented by a PPT).

Lemma 3 Pr[W1 | ¬BAD] is negligible given the DDH assumption in group G2.

Proof: We will condition on the event BAD not happening in Game G1. We show that if adversary
B can produce a “proof” ~p for which the pairing test holds and yet the candidate ~l is not in LA,
then it implies an efficient adversary that can break DDH in group G2. So consider a DDH game,
where a challenger either provides a real DDH-tuple 〈g2, b̂ · g2, r · g2,χ = b̂r · g2〉 or a fake DDH
tuple 〈g2, b̂ · g2, r · g2,χ = b̂r′ · g2〉.

The QA-NIZK challenger sets b · g2 to be the same as b̂ · g2 in the description of G1. Observe
that due to our transformations, CRS1 does not use b at all and CRS2 can be constructed from
b · g2 alone. Let us partition the Zq matrix A as

[
At×t0 At×s1

]
and the candidate vector ~l as

[

~l
1×t

0
~l
1×s

1

]

. Note that, since A0 has rank t, the elements of ~l0 are ‘free’ elements and ~l0 can be

extended to a unique n element vector ~l ′, which is a member of LA. This member vector ~l ′ can

be computed as ~l ′ :=
[

~l0 −~l0 ·W
]

, where W is the same matrix as in Game G1, and can be

computed as −A−10 A1. The proof of ~l ′ is computed as ~p ′ := ~l0 · D
′. Since both (~l , ~p) and (~l ′, ~p ′)

pass the verification equation, we obtain: ~l ′1 −
~l1 = b(~p ′ − ~p), where ~l1 = −~l0 ·W. In particular

there exists i ∈ [1, s], such that, l ′1i− l1i = b(p′i−pi) 6= 01. This gives us a straightforward test for

the DDH challenge: e(l ′1i − l1i, r · g2)
?
= e(p′i − pi,χ). �

This concludes our proof of soundness of the QA-NIZK.

Remark. Observe from the proof above that the soundness can be based on the following com-
putational assumption which is implied by XDH, which is a decisional assumption:

Definition 4 Consider a generation algorithm G taking the security parameter as input, that out-
puts a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups of prime order q with gener-
ators g1,g2 and e(g1,g2) respectively and which allow an efficiently computable Zq-bilinear pairing
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map e : G1 × G2 → GT . The assumption asserts that the following problem is hard: Given

f, b · f
$
←− G2, output h,h

′ ∈ G1, such that h′ = b · h 6= 01.

This assumption is called the Double Pairing Assumption in [AFG+10] and can also be framed
as the Kernel-MDH assumption [MRV15] for the Diffie-Hellman distribution.

Example: QA-NIZK for a DH tuple. In this example, we instantiate our general system to
provide a NIZK for a DH tuple, that is a tuple of the form (x · g, x · f) for an a priori fixed base
(g, f) ∈ G

2
1. We assume DDH for the group G2.

As in the setup described before, we have A =
[
g f

]
. The language is: L = {[x] ·A | x ∈ Zq}.

Now proceeding with the framework, we generate D as [d] and the element b where d and b are
random elements of Zq. With this setting, the NIZK CRS is:

CRSp := A ·

[
D

b−1 · I1×1

]

=
[
d · g+ b−1 · f

]
, CRSv :=





b · D
I1×1

−b · I1×1



 · g2 =





bd · g2
g2
−b · g2





The proof of a tuple (r, r̂) with witness r, is just the single element r · (d · g + b−1 · f). In the
proof of zero-knowledge, the simulator trapdoor is (d, b) and the simulated proof of (r, r̂) is just
(d · r+ b−1 · r̂).

3.2 QA-NIZK Construction under the k-Linear Assumption.

In this section we generalize our QA-NIZK proof system to be based on the k-linear assumption
for any k ≥ 1. The hardness assumption is defined in Appendix A. We specially mention DLIN ,
which is the case of k = 2, since it’s a widely used assumption and note that XDH is the case of
k = 1.

Let G1,G2 and GT be cyclic groups of prime order q with a bilinear map e : G1 × G2 → GT .
Let g1 and g2 be randomly chosen generators of the group G1 and G2 respectively. We assume
that the k-linear problem is hard in the group G2. The groups G1 and G2 are in fact allowed to be
the same for k ≥ 2. In the rest of the subsection, we adopt the same symbols and conventions as
in the former subsection.

NIZK CRS: Suppose the language is LA = {~x ·At×n ∈ G
n
1 | ~x ∈ Z

t
q}. Let s

def
= n− t: this is the

number of equations in excess of the unknowns. Generate a matrix Dt×ks with all elements chosen
randomly from Zq and k elements b1, · · · , bk chosen randomly from Zq. Let

Eks×ks
def
=






b1 · · · 0
...

. . .
...

0 · · · bk




⊗ Is×s, Fs×ks

def
=
[
Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1

In other words, E is a diagonal matrix with s copies of each of the bi’s in the diagonal. The common
reference string (CRS) has two parts CRS1 and CRS2 which are to be used by the prover and the
verifier respectively.

CRS
t×ks
p = A ·

[
D

F

]

CRS
(n+ks)×ks
v =





[
D

F

]

· E

−E



 · g2
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Prover: Given candidate ~x ·A with witness vector ~x, the prover generates the following proof:

~p := ~x · CRSp

Verifier: Given a proof ~p of candidate ~l , the verifier checks the following:

e
([

~l ~p
]

,CRSv

)
?
= 01×ksT

Theorem 5 The above algorithms (K0,K1,P,V) constitute a perfectly complete, computationally
sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for linear subspace languages
{LA} with parameters A sampled from a robust and efficiently witness-samplable distribution D
over the associated parameter language Lpar, given the k-linear assumption holds for group G2,
with respect to the group generation algorithm K0.

A detailed proof of the theorem can be found in Appendix B.

3.3 Strong QA-NIZK

We now show that the construction above satisfies the QA-NIZK definition for parameterized
languages of Section 2.1.

Full-Ranked Linear Subspace Languages. The full-ranked linear subspace parameter lan-
guage Lfull is the sub-language of Lpar = {LA} (which is all t×n matrices A of G1 elements) such
that the left most t columns of A are full-ranked. Its corresponding witness relation is Rfull, where
the witness is a matrix of Zq elements : Rfull(A,A) iff A = A · g1 and left-most t columns of A are
full-ranked.

Theorem 6 The above algorithms (K0,K1,P,V) constitute a computationally-sound QA-NIZK
proof system for full-ranked linear-subspace languages {LA} with parameters A from an associated
parameter language Lfull (which has its own witness relation Rfull), given any group generation
algorithm K0 for which the k-linear assumption holds for group G2.

Proof Sketch: Completeness and Zero-knowledge in the strong QA-NIZK setting are easily proved
as before with the additional conjunct Rfull(A,A) in place.

Focusing on the stronger soundness condition, instead of considering A0 to be a non-uniform
PPT, we instead consider A0 to be a non-uniform deterministic Turing Machine with an additional
input of coins. All the probabilities in the soundness experiment will now be over additionally
choosing coins uniformly at random. Then,

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ, coins);ψ ← K1(λ, ρ);

(x, π)← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 ∧ Rpar(ρ, θ) ∧ ¬(∃w : Rρ(x,w))]

=
∑

c

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ, coins);ψ ← K1(λ, ρ);

(x, π)← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 ∧ Rpar(ρ, θ) ∧ ¬(∃w : Rρ(x,w)) ∧ coins = c]

=
∑

c

Pr[coins = c] ∗ Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ, c);ψ ← K1(λ, ρ);

(x, π)← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 ∧ Rpar(ρ, θ) ∧ ¬(∃w : Rρ(x,w))]
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We will show that there is an ǫ (more precisely, the maximum advantage any adversary has in the
k-linear hardness assumption), such that for every c,

Pr[λ← K0(1
m); (ρ, θ, σ)← A0(λ, c);ψ ← K1(λ, ρ);

(x, π)← A2(λ, ρ, ψ) : V(ψ, x, π) = 1 ∧ Rpar(ρ, θ) ∧ ¬(∃w : Rρ(x,w))] < ǫ,

so that the above sum is also upper-bounded by ǫ.
To this end, consider an adversary (A0,A2) that wins if it can produce (A,A) in Lfull, and a

“proof” ~p for a candidate ~l that is not in LA and yet the pairing test holds.
Now, fix a c. In game G1, the challenger uses the given λ and the deterministic A0, with coins

set to c, to generate (A,A). Since Rfull is efficiently computable, the challenger terminates if (A,A)
is not in Lfull (note, rank of columns of A can be computed efficiently). The probability of the
Adversary winning remains the same (actually, it is slightly lesser as event BAD leads to Adversary
losing). The rest of the proof continues as before, yielding an upper bound on Adversary’s success
for this fixed c to be the maximum advantage any adversary has in the k-linear hardness assumption.

4 Extensions

In this section we consider some useful extensions of the concepts and constructions of QA-NIZK
systems. We show how the previous system can be extended to include tags. The tags are elements
of Zq, are included as part of the proof and are used as part of the defining equations of the
language. We define a notion called split-CRS QA-NIZK system, where the prover and verifier use
distinct parts of a CRS and we construct a split-CRS system for affine systems.

4.1 Tags

While our system works for any number of components in the tuple (except the first t) being
dependent on any number of tags, to simplify the presentation we will focus on only one dependent
element and only one tag. Also for simplicity, we will assume that this element is an affine function
of the tag (the function being defined by parameters). We can handle arbitrary polynomial functions
of the tags as well, but we will focus on affine functions here as most applications seem to need just
affine functions. Then, the languages we handle can be characterized as

LA,~a1,~a2
=
{〈
~x ·
[

A (~a⊤1 + tag · ~a⊤2 )
]
,tag

〉
| ~x ∈ Z

t
q, tag ∈ Zq

}

where A
t×(n−1), ~a1×t1 and ~a1×t2 are parameters of the language.

Algorithm K0 is just the group generation algorithm as before. A distribution is still called
robust (as in Section 3) if with overwhelming probability the first t columns of A are full-ranked.

Write A as [At×tl | A
t×(n−1−t)
r ], where without loss of generality, Al is non-singular. While the first

n − 1 − t components in excess of the unknowns, corresponding to Ar, can be verified just as in
Section 3, for the last component we proceed as follows.

Algorithm K1: The CRS is generated as:

CRS
t×1
p,1 :=

[

Al ~a⊤1
]
·

[
D1

b−1

]

CRS
t×1
p,2 :=

[

Al ~a⊤2
]
·

[
D2

b−1

]

CRS
(t+2)×1
v,1 :=





b · D1

1
−b



 · g2 CRS
(t+2)×1
v,2 :=





b · D2

0
0



 · g2
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where D1 and D2 are random matrices of order t×1 independent of the matrix D chosen for proving
the other components. The Zq element b can be re-used from the other components.

Prover P: Let ~l ′
def
= ~x ·

[

Al (~a⊤1 + tag · ~a⊤2 )
]
. The prover generates the following proof for

the last component, which is just 1 element in G1:

~p := ~x · (CRSp,1 + tag · CRSp,2)

Verifier V: Given a proof ~p for candidate 〈~l ′, tag〉 the verifier checks the following:

e
([

~l ′ ~p
]

,CRSv,1 + tag · CRSv,2

)
?
= 0T

Theorem 7 The above algorithms (K0,K1,P,V) constitute a perfectly complete, computationally
sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for tagged subspace languages
{LA,~a1,~a2

} with parameters (A, ~a1, ~a2) sampled from a robust and efficiently witness-samplable dis-
tribution D over the associated parameter language Lpar, given the DDH assumption holds for
group G2, with respect to the group generation algorithm K0.

The proof of completeness, soundness and zero-knowledge for this quasi-adaptive system is
similar to proof in Section 3 and a proof sketch can be found in Appendix C.

4.2 Split-CRS QA-NIZK Proofs

We note that the QA-NIZK described in Section 3 (and its extension to tags in Section 4.1) has
an interesting split-CRS property. In a split-CRS QA-NIZK for a distribution of relations, the
CRS generator K1 generates two CRS-es ψp and ψv , such that the prover P only needs ψp, and the
verifier V only needs ψv. In addition, the CRS ψv is independent of the particular relation Rρ. In
other words the CRS generator K1 can be split into two PPTs K11 and K12, such that K11 generates
ψv using just λ, and K12 generates ψp using ρ and a state output by K11. The key generation
simulator S1 is also split similarly.

In many applications, split-CRS QA-NIZKs can lead to simpler constructions (and their proofs)
and possibly shorter proofs.

Definition 8 (Split-CRS QA-NIZK) We call a tuple of algorithms (K0,K11,K12,P,V) a split-
CRS QA-NIZK proof system for an ensemble of distributions {Dλ} on collection of witness-
relations Rλ = {Rρ} with associated parameter language Lpar if there exists a probabilistic poly-
nomial time simulator (S11,S12,S2), such that for all non-uniform PPT adversaries A1,A2,A3 we
have
Quasi-Adaptive Completeness.

Pr





λ← K0(1
m); (ψv, st)← K11(λ); ρ← Dλ; ψp ← K12(λ, ρ, st);
(x,w)← A1(λ, ψv , ψp, ρ); π ← P(ψp, x, w) :

V(ψv , x, π) = 1 if Rρ(x,w)



 = 1

Quasi-Adaptive Soundness.

Pr





λ← K0(1
m); (ψv, st)← K11(λ); ρ← Dλ; ψp ← K12(λ, ρ, st);

(x, π)← A2(λ, ψv , ψp, ρ) :
V(ψv, x, π) = 1 and not (∃w : Rρ(x,w))



 ≈ 0

16



Quasi-Adaptive Zero-Knowledge.

Pr

[

λ← K0(1
m); (ψv, st)← K11(λ); ρ← Dλ; ψp ← K12(λ, ρ, st) :

A
P(ψp,·,·)
3 (λ, ψv , ψp, ρ) = 1

]

≈

Pr

[

λ← K0(1
m); (σv, st)← S11(λ); ρ← Dλ; (σp, τ)← S12(λ, ρ, st) :

A
S(σp,τ,·,·)
3 (λ, σv , σp, ρ) = 1

]

,

where S(σp, τ, x, w) = S2(σp, τ, x) for (x,w) ∈ Rρ and both oracles (i.e. P and S) output failure if
(x,w) 6∈ Rρ.

A split-CRS QA-NIZK is called a strong split-CRS QA-NIZK if the proof simulator S2
does not use σp and the trapdoor τ is independent of ρ. In particular, in this case τ could be
generated by S11 in the above definition. We remark that the QA-NIZK described in Section 3
(and its extension to tags in Section 4.1) are strong split-CRS QA-NIZK proof systems as can be
checked by inspecting the proofs.

Strong Split-CRS QA-NIZK for Affine Spaces. Consider languages that are affine spaces

LA,~a = {(~x ·A+ ~a) ∈ G
n
1 | ~x ∈ Z

t
q}

The parameter language Lpar just specifies A and ~a. A distribution over Lpar is called robust if
with overwhelming probability the left most t× t sub-matrix of A is non-singular (full-ranked). If ~a
is given as part of the verifier CRS, then a QA-NIZK for distributions over this class follows directly
from the construction in Section 3. However, that would make the QA-NIZK non split-CRS. We
now show that the techniques of Section 3 can be extended to give a strong split-CRS QA-NIZK
for (robust and witness-samplable) distributions over affine spaces.

Algorithm K0 is just the group generation algorithm as before. The common reference string
(CRS) has two parts ψp and ψv which are to be used by the prover and the verifier respectively. The

split-CRS generators K11 and K12 work as follows. Let s
def
= n− t: this is the number of equations

in excess of the unknowns.

Algorithm K11: The verifier CRS generator first generates a matrix Dt×s with all elements chosen
randomly from Zq and a single element b chosen randomly from Zq. It also generates a row vector

~d
1×s

at random from Zq. Next, it computes

CRS
(n+s)×s
v :=





b · D
Is×s

−b · Is×s



 · g2
~f
1×s

:= b · ~d · e(g1,g2)

The verifier CRS ψv is the matrix CRSv and ~f. The state st is (b, D, ~d).
Algorithm K12: The prover CRS generator K12 takes as inputs ρ = (A, ~a) and st = (b, D, ~d) and
generates

CRS
(t+1)×s
p =

[
A
t×n

~a1×n

]

·

[
D

b−1 · Is×s

]

−

[

0t×s

~d
1×s

]

· g1

The prover CRS ψp is just the matrix CRSp.
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Prover P: Given candidate (~x · A + ~a) with witness vector ~x, the prover generates the following
proof:

~p :=
[
~x 1

]
· CRSp

Verifier V: Given a proof ~p of candidate ~l , the verifier checks the following:

e
([

~l ~p
]

,CRSv

)
?
=~f

Theorem 9 The above algorithms (K0,K11,K12,P,V) constitute a perfectly complete, computa-
tionally sound and perfectly zero-knowledge quasi-adaptive NIZK proof system for affine subspace
languages {LA,~a} with parameters (A, ~a) sampled from a robust and efficiently witness-samplable
distribution D over the associated parameter language Lpar, given the DDH assumption holds for
group G2, with respect to the group generation algorithm K0.

The proof of Theorem 9 is similar to that of Theorem 2. We highlight the main points in
the proof sketch in Appendix D. The strong split-CRS QA-NIZK for affine spaces also naturally
extends to include tags as described before in this section.

5 Applications

In this section we mention several important applications of quasi-adaptive NIZK proofs. Before
we go into the details of these applications, we discuss the general applicability of quasi-adaptive
NIZKs. Recall in quasi-adaptive NIZKs, the CRS is set based on the language for which proofs
are required. In many applications the language is set by a trusted party. The most prominent
example of this is the trusted party that sets the CRS in some UC applications, many of which
have UC realizations only with a CRS. Also in many public key applications, the party issuing the
public key is also considered trusted, as security is defined with respect to the public key issuing
party (acting as challenger). For example, the IBE or HIBE trusted authority that issues secret
keys to various identities. Thus, in all these settings if the language for which proofs are required
is determined by a trusted party, then that party can also issue a QA-NIZK CRS based on that
language.

5.1 Adaptive UC Commitments in the Erasure Model

Commitment schemes in the Universal Composability [Can01] model were first formalized and
constructed in [CF01]. In a UC commitment scheme, the functionality defines two interactions:
Commit and Open. Each one takes as inputs a session id sid and an additional commitment id cid
that is used to distinguish among the different commitments that take place with the same sid.

The SXDH-based commitment scheme from [FLM11] requires a quasi-adaptive NIZK proof for
the following language:

Lρ := {〈R,S, T,H, t〉 | ∃r : R = r · g, S = r · h, T = r ·K1,H = r · (d1 + t · e1)}

with parameter ρ being (g,h,K1,d1, e1). Consider the tag-based language Lρ, with tag t, with
parameter ρ being (g,h,K1,d1, e1), and with the distribution on the parameters being that they are
chosen randomly and uniformly (as in the Cramer-Shoup Key Generation). Consider a QA-NIZK
(K0,K1,P,V) for the above distribution of (tag-based) linear languages.
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UC CRS-Gen(λ): Choose g,h,K1,d1, e1 randomly from G1 and a public key H for a Colli-
sion Resistant Hash Function. Generate a QA-NIZK CRS ψ for language Lρ with ρ being
(g,h,K1,d1, e1). Publish crs := (ρ, ψ,H).

Commit(crs,M, sid, cid, Pi, Pj): to commit to message M ∈ G for party Pj upon receiving a
command (commit, sid, cid, Pi , Pj ,M), party Pi proceeds as follows:

1. Generate r
$
←− Zq. Compute a Cramer-Shoup Encryption of M as follows:

R = r · g, S = r · h, T =M + r ·K1, H = r · (d1 + t · e1)

where t is a tag generated using a collision-resistant hash function just as in Cramer-
Shoup encryption. Specifically, t = H(sid, cid, Pi, Pj , R, S, T ).

2. Generate QA-NIZK proof (using P) π of:

∃r.

(
R = r · g, S = r · h,

T −M = r ·K1, H = r · (d1 + t · e1)

)

with witness r.

3. Keep π and erase r.

4. Commitment is c := (R,S, T,H): 4 group elements

Open(crs,M, sid, cid, Pi, Pj): Reveal M and π, which is (4− 1) ∗ 1 = 3 group elements .

As the proof is for (T −M) it can be shown that it suffices to hideM with the hash key itself (see a
similar remark for the signature scheme), which leads to a commitment consisting of three elements,
and a proof (opening) consisting of another two elements. A similar scheme using QA-NIZKs, and
under the DLIN assumption leads to a commitment consisting of 4 elements and an opening of
another 4 elements, whereas [FLM11] stated a scheme using Groth-Sahai NIZK proofs requiring 21
elements.

5.2 One-time Relatively Simulation-Sound NIZK for DDH and others.

In [JR12] it was shown that for linear subspace languages, such as the DDH or DLIN language, or
the language showing that two ElGamal encryptions are of the same message [NY90, Sah99], the
NIZK proof can be made one-time relatively simulation sound using a projective hash proof [CS02]
and proving in addition that the hash proof is correct. For the DLIN language, this one-time
relatively simulation sound proof (in Groth-Sahai system) required 15 group elements, whereas the
quasi-adaptive proof in this paper leads to a proof size of only 5 group elements.

5.3 Signatures

We will now show a generic construction of an existentially unforgeable signature scheme (against
adaptive chosen message attacks) from labeled CCA2-secure encryption schemes and split-CRS QA-
NIZK proof system (as defined in Section 4.2) for a related language distribution. This construction
is a generalization of a signature scheme from [CCS09] which used (fully) adaptive NIZK proofs
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and required constructions based on groups in which the CDH assumption holds. The paradigm of
using encryption and NIZK together to construct signatures is originally due to [BG90].

Let E = (KeyGen,Enc,Dec) be a labeled CCA2-secure encryption scheme on messages. Let Xm

be any subset of the message space of E such that 1/|Xm| is negligible in the security parameter
m. Consider the following class of (parametrized) languages {Lρ}:

Lρ = {(c,M) | ∃r : c = Encpk(u; r;M)}

with parameter ρ = (u, pk). The notation Encpk(u; r;M) means that u is encrypted under public
key pk with randomness r and label M . Consider the following distribution D on the parameters:
u is chosen uniformly at random from Xm and pk is generated using the probabilistic algorithm
KeyGen of E on 1m (the secret key is discarded). Note we have an ensemble of distributions, one
for each value of the security parameter, but we will suppress these details.

Let Q = (K0, 〈K11,K12〉,P,V) be a split-CRS QA-NIZK for distribution D on {Lρ}. Note that
the associated parameter language Lpar is just the set of pairs (u, pk), and D specifies a distribution
on Lpar.

Now, consider the following signature scheme S.
Key Generation: On input a security parameter m, run K0(1

m) to get λ. Let E .pk be generated
using KeyGen of E on 1m (the secret key sk is discarded). Choose u at random from Xm. Let
ρ = (u, E .pk). Generate ψv by running K11 on λ (it also generates a state s). Generate ψp by
running K12 on (λ, ρ) and state s. The public key S.pk of the signature scheme is then ψv. The
secret key S.sk consists of (u, E .pk, ψp).
Sign: The signature on M just consists of a pair 〈c, π〉, where c is an E-encryption of u with label
M (using public key E .pk and randomness r), and π is the QA-NIZK proof generated using prover
P of Q on input (ψp, (c,M), r). Recall r is the witness to the language member (c,M) of Lρ (and
ρ = (u, E .pk)).
Verify: Given the public key S.pk (= ψv), and a signature 〈c, π〉 on message M , the verifier uses
the verifier V of Q and outputs V(ψv , (c,M), π).

Theorem 10 If E is a labeled CCA2-encryption scheme and Q is a strong split-CRS quasi-adaptive
NIZK system for distribution D on class of languages {Lρ} described above, then the signature
scheme described above is existentially unforgeable under adaptive chosen message attacks.

Proof:
Recall the security game for a signature scheme. Once the signature scheme’s public key is given

to the signature-scheme adversary B, it adaptively obtains several signatures 〈ci, πi〉 on messages
Mi of its choosing. Let T denote the set of all such messages Mi. To win the game, B must obtain a
〈M∗, c∗, π∗〉 (M∗ 6∈ T ) which passes the public signature verification, which in this case just means
that the claimed proof π∗ of (c∗,M∗) being in Lρ (where ρ = (u, E .pk))) passes the QA-NIZK
verifier V using the CRS ψv. Let W be the event that B wins. By soundness of the QA-NIZK, it
follows that Pr[W ] is at most the probability that (c,M) is in Lρ plus a negligible amount.

To show that Pr[W ] is negligible consider the following experiments:

Expt1 : The challenger generates the signature scheme public key S.pk(= ψv) just as in the signature
scheme described above, and passes it to B. Apart from retaining the secret key S.sk =
(u, E .pk, ψp), the challenger also retains the secret key E .sk generated by KeyGen of E . It
then adaptively answers multiple requests for signatures on Mi by encrypting u with labels
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Mi (using E ’s encryptor Enc with key E .pk) and generating proofs πi using ψp and QA-NIZK
Prover P. The view of B is identical so far to that in the signature scheme security game.
When the adversary B replies with a triple 〈M∗, c∗, π∗〉, the challenger decrypts c∗ with label
M∗ using secret key E .sk to get u∗. If u∗ = u the challenger outputs WIN, otherwise it outputs
LOSE. Let W1 be the event that challenger outputs WIN. By correctness of the encryption
scheme E , the event W1 happens whenever c

∗ is an encryption of u with labelM∗ under E .pk,
i.e. whenever (c∗,M∗( are in Lρ(where ρ = (u, E .pk)). Thus, Pr[W ] is at most Pr[W1] plus a
negligible amount.

Expt2 : This is same as Expt1 except that the Challenger generates the QA-NIZK CRS-es (and trap-
door) σv using S11 and σp, τ using S12. Further, it generates all the proofs using S2(σp, τ, ·).
Since, the QA-NIZK is a strong split-CRS QA-NIZK, the simulator does not use σp and fur-
ther τ is independent of u. Let W2 be the event that challenger outputs WIN. By QA-NIZK
zero-knowledge, |Pr[W2]− Pr[W1]| is negligible.

Expt3 : This is same as Expt2 except that the challenger now encrypts 1 instead of u. Let W3 be
the event that challenger outputs WIN. By CCA-2 security of the encryption scheme E , it
follows that |Pr[W3] − Pr[W2]| is negligible. Technically, this requires a sequence of hybrid
experiments, with each subsequent experiment replacing u by 1 in the next signature request
of B.

Now, note that in Expt3, Pr[W3] is at most 1/|Xm| as the view of the adversary B is independent
of u. Thus, by hypothesis about Xm , Pr[W3] is negligible. It follows that Pr[W ] is negligible as
well.

A couple of remarks are in order here. If we did not have a split-CRS QA-NIZK, but a QA-
NIZK where the verifier also needed a CRS that depended on ρ, then in Expt3 above the view
of the Adversary B would depend on u. In such a case, one can still get a signature scheme (as
in [CCS09]) but one has to encrypt a hard to compute challenge such as x ·u (given u, g and x ·g).
However, the size of the QA-NIZK proof and hence the signature would not increase as although
the number of equations to prove would go up by one, but so would the number of variables (note
the additional variable x).

�

It is worth remarking here that the reason one can use a quasi-adaptive NIZK here is because
the language Lρ for which (multiple) NIZK proof(s) is required is set (or chosen) by the (signature
scheme) key generator, and hence the key generator can generate the CRS for the NIZK after it sets
the language. The proof of the above theorem can be understood in terms of simulation-soundness.
Suppose the above split-CRS QA-NIZK was also unbounded simulation-sound. Then, one can
replace the CCA2 encryption scheme with just a CPA-encryption scheme, and still get a secure
signature scheme. A proof sketch of this is as follows: an Adversary B is only given ψv (which is
independent of parameters, including u). Further, the simulator for the QA-NIZK can replace all
proofs by simulated proofs (that do not use witness r used for encryption). Next, one can employ
CPA-security to replace encryptions of u by encryptions of 1. By unbounded simulation soundness
of the QA-NIZK it follows that if B produces a verifying signature then it must have produced an
encryption of u. However, the view of B is independent of u, and hence its probability of forging
a signature is negligible.

However, the best known technique for obtaining efficient unbounded simulation soundness itself
requires CCA2 encryption (see [CCS09]), and in addition NIZK proofs for quadratic equations. On

21



the other hand, if we instantiate the above theorem with Cramer-Shoup encryption scheme, we
get remarkably short signatures (in fact the shortest signatures under any static and standard
assumption). The Cramer-Shoup encryption scheme PK consists of g, f ,k,d, e chosen randomly
from G1, along with a target collision-resistant hash function H (with a public random key). The
set X from which u is chosen is just the whole group G1. Then an encryption of u is obtained by
picking r at random, and obtaining the tuple

〈R = r · g, S = r · f , T = u+ r · k, H = r · (d + tag · e)〉

where tag = H(R,S, T,M). It can be shown that it suffices to hide u with the hash proof H
(although one has to go into the internals of the hash-proof based CCA2 encryption; see Appendix
in [JR12]). Thus, we just need a (split-CRS) QA-NIZK for the tag-based affine system (it is affine
because of the additive constant u). There is one variable r, and three equations (four if we consider
the original CCA-2 encryption) Thus, we just need (3 − 1) ∗ 1 (= 2) proof elements, leading to a
total signature size of 5 elements (i.e. R,S,u +H, and the two proof elements) under the SXDH
assumption.

5.4 Dual-System Fully Secure IBE

It is well-known that Identity Based Encryption (IBE) implies signature schemes (due to Naor),
but the question arises whether the above signature scheme using Cramer-Shoup CCA2-encryption
and the related QA-NIZK can be converted into an IBE scheme. To achieve this, we take a
hint from Naor’s IBE to Signature Scheme conversion, and let the signatures (on identities) be
private keys of the various identities. The verification of the QA-NIZK from Section 3 works by

checking e
([

~l ~p
]

,CRSv

)
?
= 0

1×s
T (or more precisely, e

([

~l ~p
]

,CRSv

)
?
= ~f for the affine

language). However, there are two issues: (1) CRSv needs to be randomized, (2) there are two
equations to be verified (which correspond to the alternate decryption of Cramer-Shoup encryption,
providing implicit simulation-soundness). Both these problems are resolved by first scaling CRSv

by a random value s, and then taking a linear combination of the two equations using a public
random tag. The right hand side s ·~f can then serve as secret one-time pad for encryption. Rather
than being a provable generic construction, this is more of a hint to get to a really short IBE. We
give a construction of an IBE scheme under the SXDH assumption where the ciphertext has only
four group (G1) elements plus a Zq-tag, which is the shortest IBE known under standard static
assumptions9.

We first consider the QA-NIZK for the affine language (incorporating tags)

〈R = r · g2, S = r · f , T = u+ r · (d + i · e)〉

where i is an identity, and can be viewed as a tag. More precisely, the affine-system is given by

Lρ = {r · (
[
g2 f 0

]
+
[
0 0 d

]
+ i ·

[
0 0 e

]
) +

[
0 0 u

]
| r ∈ Zq}

where ρ consists of the matrices
[
g2 f

]
and

[
0 0 u

]
(affine shift), and group elements d and

e (for defining the tag based last component). Note that T corresponds to the language component
that depends on a tag. So, let’s focus on the components 〈R,S〉 first. In the notation of Section 3,

9[CLL+13] have recently and independently obtained a short IBE under SXDH, but our IBE ciphertexts are even
shorter. See Table 2 in the Introduction for detailed comparison.
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this is a language with rank one, and two dimensions, i.e. n = 2, t = 1 and s = (n − t) = 1. Let
f = gc2 for some c ∈ Zq. Then the matrix A is

[
1 c

]
. Further its null-space is generated by

[
−c 1

]
.

For the IBE scheme, instead of generating the CRS as in Section 3 for the above language, we
will generate the CRS as in game G1 in the proof of soundness of QA-NIZK, as this will be more
in line with the original construction of Waters, and hence possibly easier to relate. Thus, the two
CRS-es are generated by choosing a matrix D′ of dimension t × s, which in this case is just one
element. This single element in D′ will be called ∆3 in the IBE scheme below. The CRSp (prover
CRS) is then specified by A · g2 and ∆3 · g2. Recall, the prover CRS is to be used in KeyGen in
IBE.

The verifier CRS, i.e. CRSp is specified by g1, b ·g1 and (b ·∆3−c) ·g1. Similarly, the CRS-es for
the tag based element T , and the affine shift u can be obtained from Sections 4.1 and 4.2 resp. The
element T will require single element matrices D′1 and D′2 (for d and e resp.), which will be called
∆1 and ∆2 respectively (see Appendix C). Similarly, using Section 4.2, we derive the CRS element
required for the affine shift, which will be e(g1, (b ·∆4 − u) · g2) (see the vector ~f in Appendix 4.2,
and note we want the representation corresponding to the simulation of game G1 in the soundness
proof). That completes the description of how we intend to setup the CRS-es in the IBE using the
QA-NIZK for the above language.

Now, the verifier CRS needs to be randomized to represent IBE ciphertexts, and hence each
ciphertext is a scaling of the verifier CRS by a Zq scalar s (as in game G2 of the soundness proof
in Section 3). Also, there is one variable r, and two equations in excess of the variables, and hence
the verification requires testing two pairing product equations – which is a problem as mentioned
in Section 5. The two pairing product equation tests can be converted into one by taking a linear
combination with a random public tag, and this gives us the final form of the ciphertext. The (fully
secure) IBE scheme so obtained is described below, along with a proof of security. For a security
definition of fully secure IBE we refer the reader to [Wat09].

For ease of reading, we switch to multiplicative group notation in the following.

Setup: The authority uses a group generation algorithm for which the SXDH assumption holds
to generate a bilinear group (G1,G2,GT ) with g1 and g2 as generators of G1 and G2 respectively.
Assume that G1 and G2 are of order q, and let e be a bilinear pairing on G1×G2. It picks ∆1, ∆2,
∆3, ∆4, b, c, d, e, u from Zq, and publishes the following public key:

PK :=










g1, gb1, f = gc2,

v1 = g−∆1·b+d
1 ,

v2 = g−∆2·b+e
1 ,

v3 = g−∆3·b+c
1 ,

k = e(g1,g2)
−∆4·b+u










The authority retains the following master secret key:

MSK := (g2, f , ∆1, ∆2, ∆3, ∆4, d, e, u)

Encrypt(PK, i , M): the encryption algorithm chooses s and tag at random from Zq. It then
computes the ciphertext as:

C :=
(

C0 =M · ks, C1 = gs1, C2 = gbs1 , C3 = vs1 · v
i ·s
2 · v

tag·s
3 , tag

)
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KeyGen(MSK, i): The authority chooses r at random from Zq and creates the following secret
key Ki for identity i :

Ki :=
(

R = gr2, S = gr·c2 , T = g
u+r·(d+i ·e)
2 , W1 = g

−∆4−r·(∆1+i ·∆2)
2 , W2 = g−r·∆3

2

)

Decrypt(Ki , C): Let C be parsed as (C0, C1, C2, C3,tag). Obtain

κ =
e(C1, S

tag · T ) · e(C2,W1 ·W
tag

2 )

e(C3, R)

and output C0/κ.

Theorem 11 Under the SXDH Assumption, the above scheme is a fully-secure IBE scheme.

Proof:
We will just show that ks (as used in blinding the plaintext M) is distributed randomly in the

view of an adaptive Adversary, who after obtaining the public key, adaptively obtains secret keys
for multiple identities i1, i2, ..., in, and a ciphertext for identity i (where all the identities are chosen
adaptively by the Adversary, and i is different from the secret key identities). The ciphertext can
be obtained by the Adversary at any stage.

We will consider a sequence of games, and show that the Adversary’s view is either statistically
or computationally indistinguishable between any two consecutive games. Game G0 is same as the
actual adaptive security IBE game above.
Game G1: In this game the challenger behaves exactly like the authority while publishing the
PK, and while generating the secret keys. However, it picks another random value s′ from Zq, and
outputs the following as ciphertext (for identity i):

C0 =M · ks · e(g1,g2)
u·s′ ,

C1 = gs+s
′

1 , C2 = gb·s1 ,

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · g

(d+i ·e+tag·c)s′

1 (1)

The tag tag is chosen randomly as in game G0. This simulation of the ciphertext is called semi-
functional ciphertext in [Wat09]. Intuitively, from the point of view of QA-NIZK proofs, the semi-
functional ciphertext provides simulation-soundness as the null-space of the language is reflected
as a factor (linear combination in additive notation)“shifted” by s′.

The view of the Adversary in games G0 and G1 is computationally indistinguishable by employ-
ing the DDH assumption in group G1 on the tuples 〈g1,g

b
1,g

bs
1 ,g

s
1〉, and 〈g1,g

b
1,g

bs
1 ,g

s+s′

1 〉. The
former tuple is used in game G0 and the latter in game G1. Note that the order of the last two
components in the DDH tuples is switched from usual formulation of DDH; however, it is easy to
see that this formulation is equivalent to the usual DDH.
Game G2: In this game the challenger chooses ∆′1, ∆

′
2, ∆

′
3, ∆

′
4 at random and sets ∆1 = (∆′1+d)/b,

∆2 = (∆′2 + e)/b, ∆3 = (∆′3 + c)/b, ∆4 = (∆′4 + u)/b. Thus, the PK is now output as

g1, g
b
1, v1 = g

−∆′

1

1 , v2 = g
−∆′

2

1 , v3 = g
−∆′

3

1 , and k = e(g1,g2)
−∆′

4 .
Further, the secret keys are output as

R = gr2, S = gr·c2 , T = g
u+r·(d+i ·e)
2 ,

W1 = g
[−∆′

4−r·(∆
′

1+i ·∆′

2)]/b
2 · T−1/b,

W2 = g
−r·(∆′

3+c)/b
2 . (2)
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The view of the Adversary in games G2 and G1 is statistically identical.
Game G3: This game is actually a sequence of several hybrid games, with the j-th hybrid game
G3,j changing the simulation of the j-th secret key generation. Game G3,0 is just the same as game
G2.

In game G3,j the challenger modifies the output of the j-th secret key as follows (assume that
the identity requested by the Adversary is i j): it chooses rj , r

′
j and r

′′
j at random and sets

R = g
rj
2 , S = g

rj ·c+r
′

j

2 ,

T = g
r′′j
2 ,

W1 = g
[−∆′

4−r·(∆
′

1+i ·∆′

2)]/b
2 · T−1/b,

W2 = g
(−r′j−rj ·(∆

′

3+c))/b

2 .

Note that u has completely vanished from the j-th (and earlier) secret key simulation. This simu-
lation of the secret key is called semi-functional key.

Lemma 12 The view of the Adversary in game G3,j is computationally indistinguishable from the
view of the Adversary in game G3,j−1.

Proof:
Let H0 be same as the game G3,j−1. In game H1, the challenger chooses d = d1 + c · d2, and

e = e1 + c · e2, and tag tag in the ciphertext as −(d2 + i · e2). where d1, d2, e1 and e2 are random
and independent values from Zq. It is easy to see that d, e and tag are random and independent,
and hence the view of the Adversary in games H0 and H1 is statistically identical. Note that with
this value of tag, C3 (in the ciphertext) can be generated by the challenger as

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · g

(d1+i ·e1+(d2+i ·e2)·c+tag·c)s′

1

= vs1 · v
i ·s
2 · v

tag·s
3 · g

(d1+i ·e1)s′
1

As a consequence c is not used at all in the simulation of the ciphertext (whose elements are all in
group G1). The simulation of PK (without using c) is unchanged from game G2.

In game H2, the challenger generates the j-th secret-key by choosing rj and r′j uniformly and
independently and setting

R = g
rj
2 , S = g

rj ·c+r′j
2 ,

T = g
u+rj ·(d1+c·d2+i j ·(e1+c·e2))+r′j ·(d2+i je2)
2

W1 = g
[−∆′

4−r·(∆
′

1+i ·∆′

2)]/b
2 · T−1/b,

W2 = g
(−rj ·(∆

′

3+c)−r
′

j)/b

2 .

Recall that in game H1, the secret key is being generated as in Equation (2), with d = d1+ cd2 and
e = e1 + ce2. The view of the Adversary in games H2 and H1 is computationally indistinguishable,
and this is shown by employing the DDH assumption on the two tuples 〈g2,g

c
2,g

rj
2 ,g

crj
2 〉 and
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〈g2,g
c
2,g

rj
2 ,g

crj+r′j
2 〉, where the first tuple is employed in simulating game H1 and the second tuple

is used in simulating game H2.
In game H3, the challenger generates the j-th secret key as

R = g
rj
2 , S = g

rj ·c+r
′

j

2 ,

T = g
u+rj ·(d1+c·d2+i j ·(e1+c·e2))+r′j ·r′′j
2

W1 = g
[−∆′

4−r·(∆
′

1+i ·∆′

2)]/b
2 · T−1/b,

W2 = g
(−rj ·(∆′

3+c)−r
′

j)/b

2 .

where rj, r
′
j and r′′j are chosen randomly and independently (and independently from all other

variables). Note that d and e are also chosen independently and randomly (back as in game H0).

Moreover, tag is also chosen at random, and C3 output just as in game H0, i.e. vs1 · v
i ·s
2 · v

tag·s
3 ·

g
(d+i ·e+tag·c)s′

1 .
The view of the Adversary in game H3 and H2 is statistically identical by noting that d =

d1 + c · d2, and e = e1 + c · e2, tag = −(d2 + i · e2) and r′′j = d2 + i je2 are all random and
independent (since i 6= i j). This can be seen by noting that the four by four matrix of coefficients
of d, e,tag, r′′j in their linear representation in terms of d1, d2, e1, e2 is non-singular.

In game H4, the challenger generates d, e and tag at random (instead of d1 + cd2 etc.), and
also chooses r′′′j at random (and independent of rj, r

′
j and other variables) and outputs the j-th

secret key as

R = g
rj
2 , S = g

rj ·c+r
′

j

2 ,

T = g
r′′′j

2

W1 = g
[−∆′

4−r·(∆
′

1+i ·∆′

2)]/b
2 · T−1/b,

W2 = g
(−rj ·(∆

′

3+c)−r
′

j)/b

2 .

Game H4 is statistically identical to game H3, as (u + r′j · r
′′
j + rj · (d + i j · e)) in game H3 is

random and independent of r′j, and hence is distributed same as a random r′′′j as in game H4. Now
note that game H4 is identical to the game G3,j as described above the lemma 12 statement. �

We now continue with the proof of the theorem. Game G4 is just the game G3,n (where n is
the number of secret key requests). Note that in game G4 the only place that u is used is in the
ciphertext component C0 which is simulated by the challenger as C0 = M · ks · e(g1,g2)

us′ (see
equation (1)). Hence, C0 is completely random and independent of M in the view of the Adversary
in game G4 (note u is non-zero with high probability). That completes the proof.

We also claim that the ciphertext is anonymity preserving10. This is because in game H4, the
component C3 is randomized by d and e which do not appear elsewhere and hence the ciphertext
is independent of the identity i .

�

10While our IBE scheme was obtained independently of [CLL+13] in 2012, we observed the anonymity property
only after someone pointed us to the anonymity property of the latter. Thus the credit for the first anonymous IBE
under standard static assumptions goes to [CLL+13] alone.
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5.5 Publicly-Verifiable CCA2 Fully-Secure IBE

We can also extend our IBE scheme above to be publicly-verifiable CCA2-secure [RS92, BDPR98].
Public verifiability is an informal but practical notion: most CCA2-secure schemes specify a decryp-
tor that has a test of well-formedness of ciphertext, and on passing the test a CPA-secure scheme
style decryption suffices. However, if this test can be performed publicly, i.e. without access to the
secret key, then we call the scheme publicly-verifiable. While there is a well known reduction from
hierarchical IBE to make an IBE scheme CCA2-secure [CHK04], that reduction does not make the
scheme publicly-verifiable CCA2 in a useful manner. In the IBE setting, publicly-verifiable also
requires that it be verifiable if the ciphertext is valid for the claimed identity. This can have inter-
esting applications where the network can act as a filter. We show that our scheme above can be
extended to be publicly-verifiable CCA2-fully-secure IBE with only two additional group elements
in the ciphertext (and two additional group elements in the keys). We give a construction of an IBE
scheme, which has four group elements (and a tag), where one group element serves as one-time
pad for encrypting the plaintext. The remaining three group elements form a linear subspace with
one variable as witness and three integer tags corresponding to: (a) the identity, (b) the tag needed
in the IBE scheme, and (c) a 1-1 (or universal one-way) hash of some of the elements. We show
that if these three group elements can be QA-NIZK proven to be consistent, and given the unique
proof property of our QA-NIZKs, then the above IBE scheme can be made CCA2-secure - the
dual-system already has implicit simulation-soundness as explained in the signature scheme above,
and we show that this QA-NIZK need not be simulation-sound. Since, there are three components,
and one variable (see the appendix for details), the QA-NIZK requires only two group elements
under SXDH.

The definition of CCA2-secure encryption [BDPR98] naturally extends to the Identity-based
encryption setting [CHK04]. We stress that we prove fully adaptive security, i.e. the Adversary can
choose the identity for which it invokes the encryption oracle adaptively. Our scheme also enjoys the
informal publicly-verifiability property mentioned above. While one may want to define it to be a
notion akin to plaintext-awareness, getting an implementation satisfying such a strong extractable
property would be rather inefficient and/or require strong hardness assumptions. Hence, we focus
on obtaining only the weaker but practically useful public verifiability property.

As in the last sub-section, for ease of reading we switch to multiplicative group notation in the
following.

Setup: The authority uses a group generation algorithm for which the SXDH assumption holds
to generate a bilinear group (G1,G2,GT ) with g2 and g1 as generators of G1 and G2 respectively.
Assume that G1 and G2 are of order q, and let e be a bilinear pairing on G1×G2. It picks ∆1, ∆2,
∆3, ∆4, b, c, d, e, z randomly from Zq, and computes:

v1 = g−∆1·b+d
1 , v2 = g−∆2·b+e

1 , v3 = g−∆3·b+c
1 , v4 = g−∆4·b+z

1

Consider the language:

L = {〈C1, C2, C3, i,tag, h〉 | ∃s : C1 = gs1, C2 = gbs1 , C3 = vs1 · v
i ·s
2 · v

tag·s
3 · vh·s4 }

It generates a QA-NIZK CRS ψL for the language L (which uses tags i, tag and h). It also
fixes a 1-1, or Universal One-Way Hash function (UOWHF) H. Finally, it picks ∆5 and u randomly
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from Zq and publishes the following public key:

PK :=





g1, gb1, f = gc2,
v1, v2, v3, v4,

k = e(g1,g2)
−∆5·b+u, ψL, H





The authority retains the following master secret key:

MSK := (g2, f , ∆1, ∆2, ∆3, ∆4, ∆5, d, e, u, z)

Encrypt(PK, i , M): The encryption algorithm chooses s and tag at random from Zq. It then
computes:

C0 =M · ks, C1 = gs1, C2 = gb·s1 ,
h = H(C0, C1, C2,tag, i),

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · vh·s4 .

The ciphertext is then C = 〈C0, C1, C2, C3, tag, p1,p2〉, where 〈p1,p2〉 is a QA-NIZK proof that
〈C0, C1, C2, C3, i,tag, h〉 ∈ L.

KeyGen(MSK, i): The authority chooses r at random from Zq and creates the following secret
key for identity i :

Ki :=

(

R = gr2, S1 = gr·c2 , S2 = gr·z2 , T = g
u+r·(d+i ·e)
2 ,

W1 = g
−∆5−r·(∆1+i ·∆2)
2 , W2 = g−r·∆3

2 , W3 = g−r·∆4

2

)

Decrypt(Ki , C): Let C be parsed as 〈C0, C1, C2, C3, tag, p1,p2〉. Let h = H(C0, C1, C2,tag, i).
First (publicly) check that (p1,p2) verifies as a QA-NIZK proof of 〈C0, C1, C2, C3, i,tag, h〉 ∈ L.
If the QA-NIZK does not verify, output ⊥. This public-verifiability of the consistency test is
informally called the publicly-verifiable CCA2 security.

If the public verification succeeds, then obtain

κ =
e(C1, S

tag

1 · Sh2 · T ) · e(C2,W1 ·W
tag

2 ·W h
3 )

e(C3, R)

and output C0/κ.

Theorem 13 Under the SXDH Assumption, the above scheme is a CCA2 fully-secure IBE scheme.

Proof:
We will just show that ks (as used in blinding the plaintext M) is distributed randomly in the

view of an adaptive Adversary, who after obtaining the public key, adaptively obtains secret keys
for multiple identities i1, i2, ..., in, and a challenge ciphertext for identity i (where all the identities
are chosen adaptively by the Adversary, and i is different from the secret key identities). Moreover,
the Adversary is allowed to make decryption queries for identity i as long as the ciphertext in the
query is different from the challenge ciphertext. The challenge ciphertext can be obtained by the
Adversary at any stage.
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We will consider a sequence of games, and show that the Adversary’s view is either statistically
or computationally indistinguishable between any two consecutive games. Game G0 is same as the
actual adaptive security CCA2-IBE game above.
Game G1: In this game the challenger behaves exactly like the authority while publishing the
PK, and while generating the secret keys, as well as generating the ciphertext (for identity i). It
also behaves the same for serving decryption requests, except that if the QA-NIZK verification fails
then the the challenger wins.

The probability of the Adversary winning in game G′0 is no less than the probability of the
Adversary winning in game G0 since the Adversary can itself check that a proof is not going to
verify, and hence just not make such a query. Moreover, in game G0 the adversary gets no additional
information from the challenger when the verification (and hence decryption) fails. Thus, the view
of an Adversary which does not make such calls is identical to the view of an adversary that makes
such a call in game G0.
Game G2: Recall that in the real world (and game G1), the challenger wins (outright) if the
Adversary supplies a ciphertext for decryption which is identical to the ciphertext output by the
challenger, and if the identity is also the same. In game G2 the challenger wins if the hash h
computed (usingH as above) on the the Adversary supplied ciphertext is same as the hash computed
on the ciphertext output by the challenger, and the identity is same. The probability of the
Adversary winning in game G2 is no less than the probability of the Adversary winning in game
G1 since if the hash is same, and the identify is same, and the QA-NIZK verifies, then it implies
that C3 is also identical in the two ciphertexts. This further implies that the proofs are identical,
as the proof is uniquely determined once the language components are set11.

Game G3: Recall that the decryption requests for identity j are served by obtaining

κ =
e(C1, S

tag

1 · Sh2 · T ) · e(C2,W1 ·W
tag

2 ·W h
3 )

e(C3, R)

where

R = gr2, S1 = gr·c2 , S2 = gr·z2 , T = g
u+r·(d+i ·e)
2 , W1 = g

−∆5−r·(∆1+i ·∆2)
2 ,W2 = g−r·∆3

2 ,W3 = g−r·∆4

2

is fixed for identity j by choosing r at random. However, in game G3, each decryption request is
served by choosing this r freshly at random. This is identical to the real world game, since the
decryption oracle first verifies the QA-NIZK, which guarantees that C1, C2, C3 are of the correct
form. This ensures that κ is independent of the value of r, and hence a fresh value r can be chosen
for each decryption request. Thus, the view of the Adversary in games G2 and G3 is identical.
Game G4: In this game the challenger behaves exactly like in game G3, except that it picks another
random value s′ from Zq, and outputs the following as ciphertext (for identity i):

C0 =M · ks · e(g1,g2)
u·s′ ,

C1 = gs+s
′

1 , C2 = gb·s1 ,

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · vh·s4 · g

(d+i ·e+tag·c+h·z)s′

1 (3)

The tag tag is chosen randomly as in game G0 (and G1).

11This property can be proved by checking the structure of the CRS for prover and verifier in the tag based system
also.
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The view of the Adversary in games G3 and G4 is computationally indistinguishable by employ-
ing the DDH assumption in group G2 on the tuples 〈g1,g

b
1,g

bs
1 ,g

s
1〉, and 〈g1,g

b
1,g

bs
1 ,g

s+s′

1 〉. The
former tuple is used in game G3 and the latter in game G4.
Game G5: In this game the challenger chooses ∆′1, ∆

′
2, ∆

′
3, ∆

′
4,∆
′
5 at random and sets ∆1 =

(∆′1 + d)/b, ∆2 = (∆′2 + e)/b, ∆3 = (∆′3 + c)/b, ∆4 = (∆′4 + z)/b, ∆5 = (∆′5 + u)/b. Thus, the PK
is now output as

g1, g
b
1, v1 = g

−∆′

1

1 , v2 = g
−∆′

2

1 , v3 = g
−∆′

3

1 , v4 = g
−∆′

4

1 , and k = e(g1,g2)
−∆′

5 .
Further, the secret keys are output as

R = gr2, S1 = gr·c2 , S2 = gr·z2 , T = g
u+r·(d+i ·e)
2 ,

W1 = g
[−∆′

5−u−r·(∆
′

1+d+i ·(∆′

2+e))]/b
2 ,

W2 = g
−r·(∆′

3+c)/b
2 ,W3 = g

−r·(∆′

4+z)/b
2 . (4)

The computation of κ in decryption requests is similarly changed.
The view of the Adversary in games G5 and G4 is statistically identical.

Game G6: This game is actually a sequence of several hybrid games, with the j-th hybrid game
G6,j changing the simulation of the j-th secret key generation. Game G6,0 is just the same as game
G5.

In game G6,j the challenger modifies the output of the j-th secret key as follows (assume that
the identity requested by the Adversary is i j): it chooses rj , r

′
j and r

′′
j at random and sets

R = g
rj
2 , S1 = g

rj ·c
2 g

r′j
2 , S2 = g

rj ·z
2

T = g
r′′j +rj ·(d+i j ·e)
2 ,

W1 = g
[−∆′

5−r
′′

j −rj ·(∆
′

1+d+i j ·(∆′

2+e))]/b

2 ,

W2 = g
(−r′j−rj ·(∆

′

3+c))/b

2 ,W3 = g
(−rj ·(∆

′

4+z))/b
2 .

Note that u has completely vanished from the j-th (and earlier) secret key simulation.

Lemma 14 The view of the Adversary in game G6,j is computationally indistinguishable from the
view of the Adversary in game G6,j−1.

Proof of this lemma is identical to the proof of the corresponding lemma (Lemma 12) in the plain
IBE proof.
Game G7: This game is again a sequence of several hybrid games, with the j-th hybrid game G7,j

changing the simulation of the j-th decryption request. Game G7,0 is just the game G6,n (where n
is the number of secret key requests).

In game G7,j the challenger chooses rj , r
′
j , r
′′
j at random and uses the following in computation

of κ (w.l.o.g.12 let the identity for the decryption request be same as i . Let tagj be the tag

12Although the Adversary might as well request the keys for identities different from i , it may not want to do that
before the identity i is chosen. Thus strictly speaking, we should allow decryption requests for different identities,
but our proof extends as we have already shown earlier in game G6 how to handle giving keys to the Adversary for
other identities.
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supplied and hj be the hash computed on the given ciphertext):

R = g
rj
2 ,

S
tagj

1 · T · S
hj
2 = g

rj ·(tagj ·c+hj·z+d+i ·e)+r′j+r′′j
2 ,

and

W1 ·W
tagj

2 ·W
hj
3 =g

[−∆′

5−r
′′

j −rj ·(∆
′

1+d+i ·(∆′

2+e))]/b

2 ·

g
(−rj ·tagj ·(∆′

3+c)−tagj ·r′j)/b

2 ·

g
(−rj ·hj ·(∆′

4+z))/b
2

Lemma 15 The view of the Adversary in game G7,j is computationally indistinguishable from the
view of the Adversary in game G7,j−1.

Proof: Let H0 be same as the game G6,j−1. In game H1, the challenger chooses z = z1 + c · z2,
d = d1 + c · d2, and tag tag in the ciphertext as −(d2 + h · z2). where c, z1, z2, d1 and d2 are
random and independent values from Zq. It is easy to see that c, z, d, and tag are random and
independent, and hence the view of the Adversary in games H0 and H1 is statistically identical.
Note that with this value of tag, C3 (in the ciphertext) can be generated by the challenger as

C3 = vs1 · v
i ·s
2 · v

tag·s
3 · vh·z4 · g

(d1+i ·e+h·z1+(d2+h·z2)·c+tag·c)s′

1

= vs1 · v
i ·s
2 · v

tag·s
3 · vh·z4 · g

(d1+i ·e+h·z1)s′
1

As a consequence c is not used at all in the simulation of the ciphertext (whose elements are all in
group G2). The simulation of PK (without using c) is unchanged from game G5.

In game H2, the challenger generates the components in j-th decryption request by choosing rj
and r′j uniformly and independently and setting

R = g
rj
2 , S

tagj

1 · T · S
hj
2 = g

u+rj ·((tagj+hj ·z2)·c+hj ·z1+d1+c·d2+i ·e)+r′j(d2+tagj+hj ·z2)

2 ,

and

W1 ·W
tagj

2 ·W
hj
3 =g

[−∆′

5−u−rj ·(∆
′

1+d1+d2·c+i ·(∆′

2+e))]/b
2

· g
(−rj ·tagj ·(∆′

3+c)−tagj ·r′j)/b

2

· g
(−rj ·hj ·(∆

′

4+z)−hj ·z2·r
′

j)/b

2 · g
−r′j(d2+tagj+hj ·z2)/b

2

Recall that in game H1, the secret key is being generated as in Equation (4), with d = d1 +
c · d2. The view of the Adversary in games H2 and H1 is computationally indistinguishable,
and this is shown by employing the DDH assumption on the two tuples 〈g2,g

c
2,g

rj
2 ,g

crj
2 〉 and

〈g2,g
c
2,g

rj
2 ,g

crj+r
′

j

2 〉, where the first tuple is employed in simulating game H1 and the second tuple
is used in simulating game H2.
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In game H3, the challenger generates the components in the j-th decryption as

R = g
rj
2 , S

tagj

1 · T · S
hj
2 = g

u+rj ·(tagj ·c+hj·z+d+i ·e)+r′j ·r′′j
2 ,

and

W1 ·W
tagj

2 ·W
hj
3 =g

[−∆′

5−u−rj ·(∆
′

1+d+i ·(∆′

2+e))]/b
2

· g
(−rj ·tagj ·(∆

′

3+c))/b
2

· g
(−rj ·hj ·(∆

′

4+z))/b
2 · g

−r′j ·r
′′

j /b

2

where rj, r
′
j and r′′j are chosen randomly and independently (and independently from all other

variables). Note that d and z are also chosen independently and randomly (back as in game H0).
Moreover, tag is also chosen at random, and C3 output just as in game H0.

The view of the Adversary in game H3 and H2 is statistically identical by noting that d =
d1 + c · d2, z = z1 + c · z2, tag = −(d2 + h · z2) and r′′j = d2 + tagj + hj · z2 are all random and
independent (since hj 6= h). This can be seen by noting that the four by four matrix of coefficients
of d, z,tag, r′′j in their linear representation in terms of d1, d2, z1, z2 is non-singular.

In game H4, the challenger generates d, z and tag at random (instead of d1 + c · d2 etc.), and
also chooses r′′′j at random (and independent of rj , r

′
j and other variables) and uses the following

in decryption

R = g
rj
2 , S

tagj

1 · T · S
hj
2 = g

r′′′j +rj ·((tagj+hj ·z2)·c+hj ·z1+d1+c·d2+i ·e)
2 ,

and

W1 ·W
tagj

2 ·W
hj
3 = g

[−∆′

5−r
′′′

j −rj ·(∆
′

1+d1+d2·c+i ·(∆′

2+e))]/b

2

· g
(−rj ·tagj ·(∆

′

3+c))/b
2

· g
(−rj ·hj·(∆

′

4+z))/b
2

Game H4 is statistically identical to game H3, as ( = u + r′j · r
′′
j ) in game H3 is random and

independent of r′j , and hence is distributed same as a random r′′′j as in game H4. Now note that
game H4 is identical to the game G7,j as described above the Lemma 14 statement. �

Game G8 is just the game G7,n where n is the number of decryption queries. Note that in
game G8 the only place that u is used is in the ciphertext component C0 which is simulated by
the challenger as C0 = M · ks · e(g1,g2)

us′ (see equation (1)). Hence, C0 is completely random
and independent of M in the view of the Adversary in game G7 (note u is non-zero with high
probability). That completes the proof.

�
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framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, edi-
tors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes
in Computer Science, pages 129–147, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany. 1
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A Hardness Assumptions

Definition 16 (DDH [DH76]) Assuming a generation algorithm G that outputs a tuple (q,G,g)
such that G is of prime order q and has generator g, the DDH assumption asserts that it is compu-

tationally infeasible to distinguish between (g, a ·g, b ·g, c ·g) and (g, a ·g, b ·g, ab ·g) for a, b, c
$
←− Zq.

More formally, for all PPT adversaries A there exists a negligible function ν() such that

∣
∣
∣
∣

Pr[(q,G,g)← G(1m); a, b, c ← Zq : A(g, a · g, b · g, c · g) = 1]−
Pr[(q,G,g)← G(1m); a, b← Zq : A(g, a · g, b · g, ab · g) = 1]

∣
∣
∣
∣
< ν(m)

Definition 17 (XDH [BBS04]) Consider a generation algorithm G taking the security parame-
ter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups of prime
order q with generators g1,g2 and e(g1,g2) respectively and which allow an efficiently computable
Zq-bilinear pairing map e : G1 × G2 → GT . The eXternal decisional Diffie-Hellman (XDH) as-
sumption asserts that the Decisional Diffie-Hellman (DDH) problem is hard in one of the groups
G1 and G2.

Definition 18 (SXDH [BBS04]) Consider a generation algorithm G taking the security parame-
ter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups of prime
order q with generators g1,g2 and e(g1,g2) respectively and which allow an efficiently computable
Zq-bilinear pairing map e : G1 × G2 → GT . The Symmetric eXternal decisional Diffie-Hellman
(SXDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem is hard in both the
groups G1 and G2.

Definition 19 (DLIN [BBS04]) Assuming a generation algorithm G that outputs a tuple (q,G)

such that G is of prime order q and has generators g, f,h
$
←− G, the DLIN assumption asserts that

it is computationally infeasible to distinguish between (g, f,h, x1 · g, x2 · f, x3 · h) and (g, f,h, x1 ·

g, x2 · f, (x1 + x2) · h) for x1, x2, x3
$
←− Zq. More formally, for all PPT adversaries A there exists a

negligible function ν() such that

∣
∣
∣
∣
∣

Pr[(q,G)← G(1m);g, f,h
$
←− G;x1, x2, x3

$
←− Zq : A(g, f,h, x1 · g, x2 · f, x3 · h) = 1]−

Pr[(q,G)← G(1m);g, f,h
$
←− G;x1, x2

$
←− Zq : A(g, f,h, x1 · g, x2 · f, (x1 + x2) · h) = 1]

∣
∣
∣
∣
∣
< ν(m)

Definition 20 (k-linear [HK07, Sha07]) For a constant k ≥ 1, assuming a generation algo-
rithm G that outputs a tuple (q,G) such that G is of prime order q and has generators g1, · · · ,

gk+1
$
←− G, the k-linear assumption asserts that it is computationally infeasible to distinguish be-

tween (g1, ...,gk+1, x1 · g1, ..., xk+1 · gk+1) and (g1, ...,gk+1, x1 · g1, ..., (x1 + ... + xk) · gk+1) for
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x1, ..., xk+1
$
←− Zq. More formally, for all PPT adversaries A there exists a negligible function ν()

such that
∣

∣

∣

∣

∣

Pr[(q,G)← G(1m); g1, · · · , gk+1
$
←− G; x1, ..., xk+1

$
←− Zq : A(g1, ...,gk+1, x1 · g1, ..., xk+1 · gk+1) = 1]−

Pr[(q,G)← G(1m); g1, · · · ,gk+1
$
←− G;x1, ..., xk

$
←− Zq : A(g1, ...,gk+1, x1 · g1, ..., (x1 + ...+ xk) · gk+1) = 1]

∣

∣

∣

∣

∣

< ν(m)

B Proof of QA-NIZK under the k-Linear Assumption

Completeness: For a candidate ~x ·A (which is a language member), the LHS of the verification
equation is:

e
([

~l ~p
]

,CRSv

)

= e



~x · A ·

[

In×n
D

F

]

·





[
D

F

]

· E

−E



 ,g2





= e

(

~x ·A ·

( [
D

F

]

· E−

[
D

F

]

· E

)

,g2

)

= e(01×ks1 ,g2) = 01×ksT

Hence completeness follows.

Zero-Knowledge: The CRS is generated exactly as above. In addition, the simulator is given

the trapdoor

[
D

F

]

. Now, given a language candidate ~l , the proof is simply ~p := ~l ·

[
D

F

]

. If ~l is

in the language, i.e., it is ~x ·A for some ~x, then the distribution of the simulated proof is identical
to the real world proof. Therefore, the simulated NIZK CRS and simulated proofs of language
members are identically distributed as the real world. Hence the system is perfect Zero-Knowledge.

Soundness: We prove soundness by transforming the system over two games. Game G0 just
replicates the soundness security definition. In game G1 the CRS is generated using witness A and
its null-space, and this can be done efficiently by the challenger as the distribution is efficiently
witness samplable. After this transformation, we show that a verifying proof of a non-language
member implies breaking the k-linear assumption in group G2.

Game G0: This is just the original system.
Game G1: Since D is efficiently witness samplable, say using a PPT machineM, in this game

the challenger generates A = A · g1 usingM, and hence the challenger also gets A (the witness to
A in language Lpar). Next the challenger checks if the left most t columns of A are full-ranked. If
they are not full-ranked, the Challenger declares the Adversary as winner. We will also call this
event BAD. The probability of event BAD happening is negligible by definition as the distribution

D is robust. Otherwise, it computes a rank s matrix

[
Wt×s

Is×s

]

of dimension (t + s) × s whose

columns form a complete basis for the null-space of A, which means A ·

[
Wt×s

Is×s

]

= 0t×s. In this

game, the NIZK CRS is computed as follows: Generate matrix D′ t×ks with elements randomly

38



chosen from Zq and diagonal matrix Eks×ks as in the real CRS. Implicity set,

[
D

F

]

=

[
D′

0s×ks

]

+

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1

where Fs×ks
def
=
[
Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1. Therefore we have,

CRS
t×ks
p = A ·

[
D

F

]

= A ·





[
D

F

]

−

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

·E−1


 = A ·

[
D′

0s×ks

]

CRS
(n+ks)×ks
v =





[
D

F

]

· E

−E



 · g2 =







[
D′

0s×ks

]

· E+

[
W · · · W

Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

−E






· g2

Observe that D has identical distribution as in game G0 and the rest of the computations were
same. So game G1 is statistically indistinguishable from game G0.

Let W1 denote the event that Adversary wins game G1. Since event BAD implies event W1, it
follows that Pr[W1] ≥ Pr[W0]. Moreover,

Pr[W1] = Pr[W1 ∧ BAD] + Pr[W1 ∧ ¬BAD]

≤ Pr[BAD] + Pr[W1 ∧ ¬BAD]

Since probability of event BAD is negligible, if we can show Pr[W1 ∧ ¬BAD] to be negligible,
soundness would follow. We remark that the Challenger in game G1 is efficient (i.e. it can be
implemented by a PPT).

So conditioned on event BAD not happening, we show that if adversary B can produce a “proof”
~p for which the pairing test holds and yet the candidate ~l is not in LA, then it implies an efficient
adversary that can break the k-linear assumption in group G2.

So now suppose we are given a k-linear challenge distribution

(b1 · g2, · · · , bk · g2,g2, b1r1 · g2, · · · , bkrk · g2,χ)

in the group G2, where χ is either (
∑n

i=1 ri) · g2 or random. We generate the CRS using the
challenge components g2, b1 · g2, · · · , bk · g2.

Let us partition the Zq matrix A as
[
At×t0 At×s1

]
and the candidate vector~l as

[

~l
1×t

0
~l
1×s

1

]

.

Note that, since A0 has rank t, the elements of ~l0 are ‘free’ elements and ~l0 can be extended to a
unique n element vector ~l ′, which is a member of LA. This member vector ~l ′ can be computed as

~l ′ :=
[

~l0 −~l0 ·W
]

, where W = −A−10 A1. The proof of ~l ′ is computed as ~p ′ := ~l0 · D
′. Since

both (~l , ~p) and (~l
′
, ~p′) pass the verification equation, we obtain:

(~l
′

1 −
~l1) ·

[
Is×s · · · Is×s

]

︸ ︷︷ ︸

k times

= (~p′ − ~p) · E,
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where ~l
′

1 = −
~l0 ·W. If we represent the ks-element vector ~p as the sequence of k vectors: [~p1 · · · ~pk]

, then the above equation implies:

~l
′

1 −
~l1 = (~p′1 − ~p1)b1 = · · · = (~p′k − ~pk)bk

In particular there exists i ∈ [1, s], such that,

l ′1i − l1i = (p′1i − p1i)b1 = · · · = (p′ki − pki)bk 6= 01

This gives us a straightforward test for the k-linear challenge:

e(l ′1i − l1i,χ)
?
=

k∑

j=1

e(p′ji − pji, rjbj · g2)

This concludes our proof of soundness of the QA-NIZK.

C Proof of QA-NIZK for Tag Based Linear Subspaces

Completeness: We have,
[

~l
′

~p
]

=
[

~x ·Al ~x · (~a⊤1 + tag · ~a⊤2 ) ~x · (Al · D1 +Al · tag · D2 + (~a⊤1 + tag · ~a⊤2 ) · b
−1)

]

and

CRSv,1 + tag · CRSv,2 =





b · (D1 + tag · D2)
1
−b



 · g2

Therefore,

e
([

~l
′

~p
]

,CRSv,1 + tag · CRSv,2

)

= e









~x · Al · b · (D1 + tag · D2) +

~x · (~a⊤1 + tag · ~a⊤2 ) −

~x · (Al · D1 + Al · tag · D2 + (~a⊤1 + tag · ~a⊤2 ) · b
−1) · b



 ,g2



 = 0T

Zero-Knowledge: This is straight-forward with the simulator being given trapdoors D1,D2 and
b.

Soundness: As in the proof of Theorem 2, we compute the CRS’s in game G1 as follows. Let

Al = Al · g1, ~a1 = ~a1 · g1 and ~a2 = ~a2 · g1. Further, let

[
Wt×1

1

1

]

be the null-space of
[

Al ~a⊤1
]

and let

[
Wt×1

2

1

]

be the null-space of
[

Al ~a⊤2
]
. Then the CRS’s in game G1 are:

CRSp,1 :=
[

Al ~a⊤1
]
·

([
D′1
0

]

+

[
W1

1

]

· b−1
)

=
[

Al ~a⊤1
]
·

[
D′1
0

]

CRSp,2 :=
[

Al ~a⊤2
]
·

([
D′2
0

]

+

[
W2

1

]

· b−1
)

=
[

Al ~a⊤2
]
·

[
D′2
0

]

CRS
(t+2)×1
v,1 :=





b · D′1 +W1

1
−b



 · g2 CRS
(t+2)×1
v,2 :=





b · D′2 +W2

0
0



 · g2
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We now claim that ~w⊤
def
=

[
W1 + tag ·W2

1

]

is the null-space of A′
def
=
[

Al (~a⊤1 + tag ·~a⊤2 )
]
.

This is because ~w⊤ is a non-zero t× 1 matrix and satisfies:

A′ · ~w⊤ =
[

Al (~a⊤1 + tag ·~a⊤2 )
]
·

[
W1 + tag ·W2

1

]

= Al · (W1 + tag ·W2) + (~a⊤1 + tag ·~a⊤2 )

=
[

Al ~a⊤1
]
·

[
W1

1

]

+ tag ·
[

Al ~a⊤2
]
·

[
W2

1

]

= 0

The rest of the proof is similar to the rest of the proof of soundness in Theorem 2, since A′ defines
the tag-based language.

D Proof of Strong Split-CRS QA-NIZK for Affine Spaces

Completeness:

e
([

~l ~p
]

,CRSv

)

=
[
~x 1

]
· e



−

[

0t×n 0t×s

01×n ~d
1×s

]

· g1,





b · D
Is×s

−b · Is×s



 · g2





=
[
~x 1

]
·

[

0t×s

b · ~d
1×s

]

· e (g1, g2)

=~f

Zero-Knowledge: This is straight-forward with the simulator retaining trapdoors D, ~d, and b.
Note that the trapdoors do not depend on the language parameters. Further, the simulator only
uses the trapdoors and not the simulated prover CRS. Hence, this constitutes a strong split-CRS
QA-NIZK proof system.

Soundness: As in the proof of Theorem 2, we compute the CRS’s in game G1 as follows. Com-

pute

[
Wt×s

Is×s

]

of dimension (t+ s)× s whose columns form a complete basis for the null-space of

A, which means A ·

[
Wt×s

Is×s

]

= 0t×s.

Next, the NIZK CRS is computed as follows: The challenger generates matrix D′ t×s with
elements randomly chosen from Zq and element b randomly chosen from Zq (just as in the real
CRS). Now set,

[
D

b−1 · Is×s

]

=

[
D′

0s×s

]

+ b−1 ·

[
W

Is×s

]

Also choose ~d ′ at random and set

~d = ~d ′ + ~a · b−1 ·

[
W

Is×s

]
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Then, ~f can be computed as

e

(

g1, b ·
~d ′ · g2 −~a ·

[
W

Is×s

]

· g2

)

Further CRSp can be computed as

CRS
(t+1)×s
p =

[
A
t×n

~a1×n

]

·

[
D′

0s×s

]

−

[
0t×s

~d ′ 1×s

]

· g1

Rest of the proof is as in the proof of Theorem 2, but crucially noting that in the proof of Lemma 3
while employing DDH in group G2, the challenge value b · g2 suffices to simulate all occurences of
b in both the CRS-es (including ~f).
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