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Abstract. Message Authentication Code (MAC) is one of most basic primitives in cryptography. After Biham
(EUROCRYPT 1993) proposed related-key attacks (RKAs), RKAs have damaged MAC’s security. To relieve
MAC of RKA distress, Bellare and Cash proposed pseudo-random functions (PRFs) secure against multiplica-
tive RKAs (EUROCRYPT 2010). They also proposed PRFs secure against additive RKAs, but their reduction
requires sub-exponential time. Since PRF directly implies Fixed-Input Length (FIL) MAC, their PRFs result in
MACs secure against multiplicative RKAs.
In this paper, we proposed Variable-Input Length (VIL) MAC secure against additive RKAs, whose reductions
are polynomial time in the security parameter. Our construction stems from MACs from number-theoretic as-
sumptions proposed by Dodis, Kiltz, Pietrzak, Wichs (EUROCRYPT 2012) and public-key encryption schemes
secure against additive RKAs proposed by Wee (PKC 2012).

1 Introduction

Message Authentication Code (MAC) is one of most basic primitive in cryptography. It generates a tag,
denoted by τ, on a message, denoted by m, of arbitrary length by using a secret key, denoted by κ. A
sender and receiver share key κ and verify integrity of the message with τ. It is required that any PPT
adversary, who does not know κ, cannot produce a message m and a consistent tag τ.

In the area of secret-key cryptography, we often consider related-key attacks (RKAs). This attack
captures correlation between two secret keys κ1 and κ2, which may be stemmed from low entropy of
PRG, and a part of side-channel attacks and fault-injection attacks. Hence, we have been motivated to
construct MACs secure against RKAs from the theoretical and practical views.

Secret-key primitives based on the number-theoretic assumptions: Meanwhile, for provable security, we
often construct secret-key primitives based on the number-theoretic assumptions, e.g., Pseudo-Random
Functions (PRFs) based on the decisional Diffie-Hellman (DDH) assumption [NR04] and those based
on the factoring assumption [NRR02]. Since PRFs directly implies Fixed-Input Length (FIL) MACs, we
have secure MACs based on the number-theoretic assumptions, which require costly computations.

When we allow MAC to be probabilistic, more efficient constructions are proposed by Dodis, Kiltz,
Pietrzak, Wichs [DKPW12]. They proposed MACs from the DDH, gap-CDH, DCR, LWE, and factoring
assumptions. Unfortunately, they are vulnerable under RKAs. Let us exemplify a simple RKA against a
UF-CMVA secure MAC scheme based on the DDH assumption in Dodis et al. [DKPW12, Section 4.2].

Definition 1.1 (Dodis et al. [DKPW12]). Let G be a finite group of prime order q. Let g1, g2 be a
generator of G. Let H : {0, 1}∗ → Zq be a collision-resistant hash function.

Key Generation: Choose κ = (x1, y1, x2, y2)← Z4
q uniformly at random.

MAC: Let m ∈ {0, 1}∗ be a message: sample r ← Zq and compute

τ = (c1, c2, k) = (gr
1, g

r
2, c

x1ℓ+y1
1 · cx2ℓ+y2

2 ),

where ℓ = H(c1, c2,m). 1 Output tag τ = (c1, c2, k).
1 In the 20121029:031553 version of Cryptology ePrint Archive: Report 2012/059, the label is m itself. We can attack this

version.



Verification: On input m and τ = (c1, c2, k) ∈ G3, set ℓ = H(c1, c2,m), compute k′ = Λℓt (c1, c2) =
cx1ℓ+y1

1 · cx2ℓ+y2
2 , and output acc if k = k′; otherwise, output rej.

For secret key t = (x1, x2, y1, y2) ∈ Z4
q and difference ∆ = (δ1, δ2, η1, η2) ∈ Z4

q, we define related-key
derivation function ϕ∆(t) = (x1 + δ1, x2 + δ2, y1 + η1, y2 + η2). We can mount a simple related-key attack
as follows:

1. Let m ∈ {0, 1}∗ be a target message for forgery.
2. Choose non-zero difference ∆ = (δ1, δ2, η1, η2) ∈ Z4

q.
3. Query ϕ∆ and m to the related-key tag-generation oracle, which makes a tag on m under the key
ϕ∆(κ).

4. Receive τ′ = (c1, c2, k′) = (c1, c2, c
(x1+δ1)ℓ+(y1+η1)
1 · c(x2+δ2)ℓ+(y2+η2)

2 ), where c1 = gr
1, c2 = gr

2, and
ℓ = H(c1, c2,m).

5. Compute k = k′ · c−(δ1ℓ+η1)
1 · c−(δ2ℓ+η2)

2 = cx1ℓ+y1
1 · cx2ℓ+y2

2 .
6. Output m and τ = (c1, c2, k).

This RKA exploits the algebraic structure of MAC.

RKA-secure secret-key primitives based on the number-theoretic assumptions: Since Bellare and
Cash [BC10]’s breakthrough, several researchers have studied RKA-secure primitives. Bellare and
Cash [BC10] proposed PRFs (thus, FIL-MACs) secure against multiplicative RKAs based on the DDH
assumption. They also proposed a DDH-based PRF secure against additive RKAs whose reduction re-
quires exponential time.

Goyal, O’Neil, and Rao [GOR11] RKA-secure weak PRFs based on q-Diffie-Hellman Inversion
assumption (q-DHI assumption, in short).

Under the decisional bilinear Diffie-Hellman (DBDH) assumption, Bellare, Paterson, and Thom-
son [BPT12] proposed symmetric-key encryption scheme which is CPA and CCA secure against RKAs
with respect to Φ = {ϕa,b : x 7→ ax + b | a ∈ Z∗q, b ∈ Zq}. Symmetric-key encryption scheme turns into
FIL-MAC. Therefore, we already have a Φ+-RKA-secure FIL-MAC based on the DBDH assumption.

Summarizing the above, we have RKA-secure MAC schemes based on the assumptions related to
discrete logarithm.

1.1 Our Contribution

We provide MAC schemes secure against additive RKAs based on the factoring, DDH, and DBDH
assumptions.

We take two approaches following Dodis et al. [DKPW12]. Dodis et al. constructed MACs from
labeled Hash Proof System (HPS) and labeled CCA2-secure (public-key or symmetric-key) encryption
schemes. (The example appeared in the above is a MAC from a symmetric-key version of the DDH-
based labeled HPS.)

The key technique to enhance the security is putting a public key into the labels, where a public
key can be considered as a key fingerprint of the secret key. Notice that in the above example, the label
ℓ is set as H(c1, c2,m). We replace it with H(µ(t), c1, c2,m), where µ(t) is a public key corresponding
to t. This simple patch has already appeared in the context of key-substitution attacks and rouge-key
attacks [BWM99,MS04], in which an adversary, given a user’s verification key vk and signature σ on
a message m, and generates its verification key vk′ (and signing key if possible) such that (vk′, σ,m)
passes the verification. (See e.g., [MS04, Section 4].) In addition, this technique is already exploited by
Bellare and Cash [BC10] and Wee [Wee12].

Notes: The extended abstract of this paper appeared at SCIS 2013 (January, 2013). In the accepted pa-
pers list of FSE 2013, I found a similar paper titled as “Secure Message Authentication against Related-
Key Attack” and written by Bhattacharyya and Roy [BR13]. Our paper is an independent result.
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2 Definitions

Hereafter, λ denotes the security parameter.

2.1 Message Authentication Codes

A MAC scheme, MAC, consists of four algorithms; the setup algorithm Setup that, on input 1λ, outputs
public parameters π, the key-generation algorithm KG that, on input π, outputs key κ, the tag-generation
algorithm TAG that, on input π, κ, and message m ∈ {0, 1}∗, outputs tag τ, and the verification algorithm
VRFY that, on input π, κ, m, and τ, outputs acc or rej.

We say that the MAC scheme is correct if for any π and κ generated by Setup and KG, for any
message m, we have

VRFY(π, κ,m,TAG(π, κ,m)) = acc.

Standard security: Let us recall the security notion, unforgeability against chosen-message verification
attack, UF-CMVA security, in short. Roughly speaking, we say the scheme is UF-CMVA secure if any
PPT adversary cannot forge (m∗, τ∗) even if it is allowed to access to a tag-generation oracle, denoted by
Tag. We follow the definition in Bellare, Goldreich, and Mityagin [BGM04].

Definition 2.1 (UF-CMVA security). Define experiment Exptuf-cmva
MAC,A (λ) between adversary A and the

challenger as follows:

Initialization: Generate π← Setup(1λ) and κ∗ ← KG(π). Initialize L← ∅, which will store the queries
of A and corresponding answers. Run the adversary by feeding π.

Learning: The adversary could query to the tag-generation and verification oracles defined as follows:
Tag: It receives m, returns τ← TAG(π, κ∗,m), and updates L← L ∪ {(m, τ)}.
Vrfy: It receives m and τ. It returns dec← VRFY(π, κ∗,m, τ).

Finalization: The adversary stops with output (m∗, τ∗). Output 1 if (m∗, ∗) < L and VRFY(π, κ∗,m∗, τ∗) =
acc. Output 0 otherwise.

We define the advantage of A as Advuf-cmva
MAC,A (λ) = Pr

[
Exptuf-cmva

MAC,A (λ) = 1
]
. We say that MAC is UF-CMVA

secure if for any PPT adversary A, its advantage Advuf-cmva
MAC,A (·) is negligible.

We can define strong unforgeability under chosen message and verification attacks (sUF-CMVA security
in short) in a similar fashion by relaxing the conditions with (m∗, τ∗) < L and VRFY(π, κ∗,m∗, τ∗) = acc.
(The adversary can query m∗ to the tag-generation oracle, Tag.)

RKA Security: We next define UF-CMVA security under related-key attacks and we call it as Unforge-
ability against related-key and chosen-message verification attack, UF-RK-CMVA security in short. We
follow the RKA-security definition for PRFs in Bellare and Khono [BK03] and that for signatures in
Bellare, Cash, and Miller [BCM11] rather than Goyal, O’Neill, and Rao [GOR11]. The UF-RK-CMVA
security is defined as follows:

Definition 2.2 (UF-RK-CMVA security). Define experiment Exptuf-rk-cmva
MAC,A,Φ (λ) between adversary A

and the challenger as follows:

Initialization: Generate π ← Setup(1λ) and κ∗ ← KG(π). Initialize L ← ∅. Run the adversary by
feeding π.

Learning: The adversary could query to the tag-generation and verification oracles defined as follows:
RK-Tag: It receives ϕ ∈ Φ and m ∈ {0, 1}∗. It returns τ ← TAG(π, ϕ(κ∗),m). If ϕ(κ∗) = κ∗ then it

updates L← L ∪ {(ϕ,m, τ)}.
RK-Vrfy: It receives ϕ ∈ Φ, m ∈ {0, 1}∗, and τ. It returns dec← VRFY(π, ϕ(κ∗),m, τ).

3



Finalization: The adversary stops with output (m∗, τ∗). Output 1 if (ϕ,m∗, ∗) < L and
VRFY(π, κ,m∗, τ∗) = acc. Output 0 otherwise.

We define the advantage of A as Advuf-rk-cmva
MAC,A,Φ (λ) = Pr

[
Exptuf-rk-cmva

MAC,A,Φ (λ) = 1
]
. We say that MAC is Φ-

UF-RK-CMVA secure if for any PPT adversary A, its advantage Advuf-rk-cmva
MAC,A,Φ (·) is negligible.

As strong UF-CMVA security, we can define strongΦ-sUF-RK-CMVA security; we define it by relaxing
the conditions with (id,m∗, τ∗) < L and VRFY(π, κ∗,m∗, τ∗) = acc. (The adversary can query (id,m∗) to
the tag-generation oracle, RK-Tag.)

2.2 One-Time Signature

A one-time signature scheme, OTS, consists of three algorithms; the key-generation algorithm ots.gen
that, on input 1λ, outputs a key pair (ovk, osk), the signing algorithm ots.sign that, on input osk and
message m ∈ {0, 1}∗, outputs signature σ, and the verification algorithm ots.vrfy that, on input ovk, m,
and σ, outputs acc or rej.

We say that the one-time signature scheme is correct if for any λ and (ovk, osk) generated by ots.gen,
for any message m, we have

ots.vrfy(ovk,m, ots.sign(osk,m)) = acc.

Definition 2.3 (sEUF-OTCMA security). Define experiment Exptseuf-otcma
OTS,A (λ) between adversary A

and the challenger as follows:

Initialization: (ovk, osk)← ots.gen(1λ). Initialize L← ∅. Run the adversary by feeding ovk.
Learning: The adversary could query to the signing oracle only at once.

OT-Sign: It receives m. Return σ← ots.sign(osk,m) and update L← L ∪ {(m, σ)}.
Finalization: The adversary stops with output (m∗, σ∗). Output 1 if (m∗, σ∗) < L and

ots.vrfy(ovk,m∗, σ∗) = acc. Output 0 otherwise.

We define the advantage of A as Advseuf-otcma
OTS,A (λ) = Pr

[
Exptseuf-otcma

OTS,A (λ) = 1
]
. We say OTS is

sEUF-OTCMA secure if for any PPT adversary A, its advantage Advseuf-otcma
OTS,A (·) is negligible.

2.3 Hash Functions

A family of hash functions consists of two algorithms: the setup algorithm Setup takes 1λ as input and
outputs hk; the evaluation algorithm H takes hk and message m ∈ {0, 1}∗ and outputs digest h.

Definition 2.4 (Collision resistance). Define experiment Exptcoll
A,Hash(λ) between adversary A and the

challenger as follows:

Initialization: hk ← Setup(1λ), Run the adversary with hk.
Finalization: The adversary stops with output m,m′ ∈ M. Output 1 if m , m′ and H(hk,m) = H(hk,m′);

output 0 otherwise.

We define the advantage of A as Advcoll
Hash,A(λ). = Pr

[
Exptcoll

Hash,A(λ) = 1
]
. We say Hash is collision resis-

tant if for any PPT adversary A, its advantage Advcoll
Hash,A(·) is negligible.

Remark 2.1. To make presentation simple, we often write “we choose a hash function H” instead of “we
choose a hash function hk ← Setup(1λ).”
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2.4 Enhancement of Security

Here, we show by using sEUF-OTCMA-secure signature scheme, we can transform UF-CMVA-
secure MAC into sUF-CMVA-secure MAC. This technique was proposed by Huang, Wong, Li, and
Zhao [HWLZ08] and related papers [BSW06,TOO08,SPW07] to enhance security of signature. e note
that this transformation preserves RKA security.

Definition 2.5 (Transfomation).

Setup(1λ): output π = π← Setup(1λ).
KG(π): output κ = κ ← Setup(π).
TAG(π, κ,m): generate (ovk, osk)← ots.gen(1λ); generate a tag τ← TAG(π, κ, ovk); generate a signa-

ture σ← ots.sign(osk, (m, τ)); output τ = (ovk, τ, σ).
VRFY(π, κ,m, τ): parse (ovk, τ, σ) ← τ; verify ots.vrfy(ovk, (m, τ), σ) = acc and VRFY(π, κ, τ) = acc.

If both are accepted, output acc. Otherwise, output rej.

Lemma 2.1. Let MAC be a Φ-UF-RK-CMVA-secure MAC scheme. Let OTS be a sEUF-OTCMA-
secure signature scheme. Then, MAC is Φ-sUF-RK-CMVA secure.

3 Construction from Labeled Hash Proof System

In this section, we proposed Φ+-RKA-secure MAC scheme based on the Labeled Hash Proof Systems
(L-HPSs).

3.1 Labeled Hash Proof System

Let us recall L-HPS, which is called extended HPS originally [CS02].
Let C and K be finite sets. ConsiderV ⊂ C, which is a valid ciphertext space. The space of labels is

denoted byL. The secret- and public-key space is denoted by T and F , respectively. Let Λt : C×L → K
be a hash function indexed by secret t ∈ T .

We can summarize the properties of labeled hash function as follows:

Projective: We say a labeled hash function Λℓt (·) = Λt(·, ℓ) is projective if there exists µ : T → F which
uniquely determines the action of Λℓt : C → K overV.

Universal1: We say that a projective labeled hash function is ϵ1-almost universal1 if for all c ∈ C \ V
and ℓ ∈ L,

∆
(
( f , Λℓt (C)), ( f , k)

) ≤ ϵ1
where f = µ(t) for t ← T and k ← K . If ϵ1 = 0, then we often omit “ϵ1-almost.”

Universal2: We say that a projective labeled hash function is ϵ2-almost universal2 if for all c, c∗ ∈ C\V
and ℓ, ℓ∗ ∈ L with ℓ , ℓ∗,

∆
(
( f , Λℓt (c), Λℓ

∗
t (c∗)), ( f , Λℓt (c), k)

) ≤ ϵ2
where f = µ(t) for t ← T and K ← K . If ϵ2 = 0, then we often omit “ϵ2-almost.”

Extracting: We say that a projective labeled hash function is ϵext-almost extracting if for any c ∈ C and
ℓ ∈ L,

∆
(
Λℓt (c), k

) ≤ ϵext

where t ← T and K ← K .
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Syntax: A labeled hash proof system HPS = (SetupHPS,SampR,Pub,Priv) consists of four algorithms:

– Setup is a setup algorithm that, on input 1λ, output public parameters π, which define C, V, F , T ,
{Λt : C × L → K | t ∈ T , ℓ ∈ L}, and µ : T → F .

– SampR is a sampling algorithm that, on input π and randomness r, outputs c ∈ V ⊆ C.
– Pub is a public evaluation algorithm that, on input π, µ(t), label ℓ, and r used to generate c, and

outputs k = Λℓt (c).
– Priv is a private evaluation algorithm that, on input π, t, ℓ, and c, outputs k = Λℓt (c).

Finally, we recall the subset membership problem.

Definition 3.1 (The subset-membershp problem assumption). Define experiment Exptsmp
HPS,A(λ) be-

tween adversary A and the challenger as follows:

Initialization: π ← Setup(1λ). Choose b ← {0, 1}, c0 ← C, c1 ← V. Run the adversary by feeding π
and cb.

Finalization: The adversary stops with output b′. Output 1 if b = b′. Output 0 otherwise.

We define the advantage of A as Advsmp
HPS,A(λ) =

∣∣∣∣Pr
[
Exptsmp

HPS,A(λ) = 1
] − 1

2

∣∣∣∣. We say that the subset

membership problem is hard if for any PPT adversary A, its advantage Advsmp
HPS,A(λ) is negligible in λ.

As a concrete example, we will take the DDH-based L-HPS. See Section 3.5 for details.

3.2 Our Additional Requirements

In addition, we define the properties of L-HPS as follows:

K’s commutativity: We say that a labeled hash function isK-commutative ifK is a commutative group.
µ’s homomorphism: We say that a labeled hash function is µ-homomorphic if its projection function µ is

a homomorphism from T to F . Hereafter, we assume that T is an additive finite group.
Key-Homomorphism: We say that a labeled hash function is key-homomorphic if Λℓt is homomorphic

with respect to t ∈ T . Specifically, for any ℓ, c ∈ C, µ(t), and ∆, we can efficiently compute k′ =
Λℓt+∆(c) from k = Λℓt (c). For example, Λℓt+∆(c) = Λℓt (c) · Λℓ

∆
(c).

µ’s Φ-collision resistance: We say that a labeled hash function is Φ-collision-resistant if the problem
on µ’s collision with respect to Φ, defined later, is hard.

Definition 3.2 (µ’sΦ-collision resistance). Define experiment Exptµ-coll
HPS,A,Φ(λ) between adversary A and

the challenger as follows:

Initialization: π← Setup(1λ). t ← T . Run the adversary by feeding π, µ(t), and trapdoor t.
Finalization: The adversary stops with output ϕ ∈ Φ. Output 1 if ϕ(t) , t and µ(ϕ(t)) = µ(t). Output 0

otherwise.

We define the advantage of A as Advµ-coll
HPS,A,Φ(λ) = Pr

[
Exptµ-coll

HPS,A,Φ(λ) = 1
]
. We say that the subset mem-

bership problem is hard if for any PPT adversary A, its advantage Advµ-coll
HPS,A,Φ(λ) is negligible in λ.

3.3 Our Construction

Before describing our construction, let us explain the intuition.
We recall the MAC construction from L-HPS by Dodis et al. [DKPW12]. The key generation algo-

rithm outputs κ = t ← T . The tag is k = Λℓt (c) ∈ K , where c← V and ℓ = H(c,m). 2 The verification is
done by checking whether k = Λℓt (c) or not.

2 In the 20121029:031553 version of Cryptology ePrint Archive: Report 2012/059, the label is m itself. We can attack this
version.
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We explicitly employ f = µ(t) as a key-fingerprinting. In our construction, the label is computed as
ℓ = H( f , c,m). This slight modification prevents an adversary tamper a secret key. Intuitively speaking,
even if the adversary obtains a tag τ′ = (c, k′) produced by ϕ(t), here ℓ′ is H(µ(ϕ(t)), c,m). Hence, this
(c, k′) is independent from the tag produced with t and the adversary cannot exploit this tag.

Let (SetupHPS,SampR,Pub,Priv) be a L-HPS. Our MAC, MACHPS, is defined as follows:

Setup(1λ): π← Setup(1λ). Define a hash function H : {0, 1}∗ → K . Output public parameters (π,H).
KG(π,H): Choose t ← T . Output key κ = t.
TAG(π,H, κ,m): On input key κ = t and message m ∈ {0, 1}∗,

1. compute f ← µ(t),
2. choose r uniformly at random,
3. compute c← SampR(r),
4. compute label ℓ ← H( f , c,m),
5. compute k ← Priv(t, ℓ, c),
6. set τ← (c, k),
7. and output tag τ.

VRFY(π,H, κ,m, τ): On input κ = t, m ∈ {0, 1}∗, and tag τ = (c, k),
1. compute f ← µ(t),
2. compute ℓ′ ← H( f , c,m),
3. compute k′ ← Priv(t, ℓ′, c),
4. and output acc if k = k′; otherwise, output rej.

3.4 Security

Theorem 3.1. Suppose that L-HPS HPS is universal2 and extracting, and the subset membership prob-
lem is hard. Let T be an additive commutative group and define Φ+ = {ϕ∆ : t 7→ t + ∆ | ∆ ∈ T }.
Moreover, suppose that HPS is K-commutative, µ-homomorphic, key-homomorphic, and Φ+-collision
resistant. Then, MAC is Φ+-UF-RK-CMVA secure.

We adopt a game-hopping proof. We mainly follow the sequence of games in [DKPW12], but in
some case, there are differences.

Let us show the details.

Exptreal: This is the original experiment. Therefore, we have that

Advuf-rk-cmva
MAC,A,Φ+(λ) = Pr[Exptreal = 1].

Expt′real: In this game, the challenger outputs ⊥ if the adversary queries ϕ such that t + ∆ , t but
µ(t + ∆) = µ(t). We note that there is no non-zero ∆ which makes t + ∆ = t.

Claim. There exists a PPT adversary B such that

|Pr[Exptreal = 1] − Pr[Expt′real = 1]| ≤ Advµ-coll
HPS,B,Φ+(λ).

Proof. The two games differ when the adversary queries ∆i , 0 to the oracles which makes t + ∆i , t
and µ(t + ∆i) = µ(t). It is obvious that this contradicts µ’s Φ+-collision-resistance property. ⊓⊔

Expt′′real: Next, the challenger outputs ⊥ if there exists a collision on computation of ℓ. Note that we now
eliminate the collision of µ and ℓ.

Claim. There exists a PPT adversary B such that

|Pr[Expt′real = 1] − Pr[Expt′′real = 1]| ≤ Advcoll
Hash,B(λ).

Proof. It is obvious that this contradicts the collision-resistance property of Hash. ⊓⊔
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Expti, j: We next change the two oracles repeatedly. For i ∈ [QT ] and j ∈ {0, 1, 2, 3, 4}, we define games
Expti, j as follows:

Expti,0: In this game, RK-Tag is defined as follows: On the first i−1 queries, answer with random
(c, k)← C ×K . On the rest queries, it answers the tag as the original.

Expti,1: In this game, RK-Tag is defined as follows: On the first i − 1 queries, answer with
random (c, k) ← C × K as in Expti,0. On i-th query, the oracle chooses c ← C, computes
ℓ ← H(µ(t+∆), c,m), computes k ← Priv(t+∆, ℓ, c), and answers (c, k). On the rest queries,
it answers the tag as the original.

Expti,2: We next change the oracle RK-Vrfy. It rejects if c ∈ C \ V.
Expti,3: We again change behaviour of RK-Tag. On i-th query, the oracle chooses c ← C, com-

putes ℓ ← H(µ(t + ∆), c,m), computes k ← K ,
Expti,4: We reset the verification oracle. Oracle RK-Vrfy answers as in the original.

The following table summarizes the difference on the i-th answer from RK-Tag and the behavior of
RK-Vrfy.

The i-th answer from RK-Tag RK-Vrfy
Expti,0 c←V, ℓ ← H(µ(t + ∆), c,m), k ← Priv(t + ∆, ℓ, c). Real
Expti,1 c← C, ℓ ← H(µ(t + ∆), c,m), k ← Priv(t + ∆, ℓ, c). Real
Expti,2 c← C, ℓ ← H(µ(t + ∆), c,m), k ← Priv(t + ∆, ℓ, c). Reject if c ∈ C \ V
Expti,3 c← C, ℓ ← H(µ(t + ∆), c,m), k ← K . Reject if c ∈ C \ V
Expti,4 c← C, ℓ ← H(µ(t + ∆), c,m), k ← K . Real

Claim. For all i ∈ [QT ], there exists a PPT adversary B such that

|Pr[Expti,0 = 1] − Pr[Expti,1 = 1]| ≤ Advsmp
HPS,B(λ).

Proof. The difference between Expti,0 and Expti,1 is the answer for i-th query to RK-Tag. In Expti,0, the
oracle computes a tag

c←V, ℓ ← H(µ(t + ∆), c,m), k ← Priv(t + ∆, ℓ, c), and τ← (c, k).

In Expti,1, the oracle computes a tag

c← C, ℓ ← H(µ(t + ∆), c,m), k ← Priv(t + ∆, ℓ, c), and τ← (c, k).

Therefore, it is easy to show that this contradicts the hardness of the subset membership problem. ⊓⊔

Claim. For all i ∈ [QT ], we have that |Pr[Expti,1 = 1] − Pr[Expti,2 = 1]| ≤ QV/#K .

Proof. The two games differ if the adversary queries ∆ j, m j, and τ j = (c j, k j) to the related-key verifi-
cation oracle such that c j ∈ C \ V and k j = Λ

ℓ j

t+∆ j
(c j) with ℓ j = H(µ(t + ∆ j), c j,m j). Otherwise, the two

games are equivalent.
We first note that the adversary can learn such an inconsistent tag only from i-th tag-generation

query, c∗ and k∗ with label ℓ∗ = H(µ(sk + ∆∗), c∗,m∗), which is valid in Expti,1 but invalid in Expti,2. We
next note that, in order to run Expti,2, one should have trapdoor information on C denoted by w.

From the hypothesis on the adversary’s verification queries, we have that (c∗, k∗,m∗, ∆∗) ,
(c j, k j,m j, ∆ j) for any j ∈ [QV ]. We can classify the j-th query into two cases:

– (c∗,m∗, ∆∗) = (c j,m j, ∆ j): In this case, k∗ , k j holds. Hence, the j-th verification query is rejected in
Expti,1. Since this query is also rejected in Expti,2, the adversary learns nothing.
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– (c∗,m∗, ∆∗) , (c j,m j, ∆ j): Recall that ℓ∗ , ℓ j, since we have eliminated the label reuse at Expt′′real.
Here, the adversary knows the tag k∗ with (c∗, k∗,m∗, ∆∗), where k∗ = Λℓ

∗

t+∆∗(c
∗). By the universal2

property, a bad k j = Λ
ℓ j

t+∆ j
(c j) = Λ

ℓ j
t (c j) ·Λ

ℓ j

∆ j
(c j) is uniform at random even after seeing f = µ(t) and

Λℓ
∗

t (c∗). Hence, we upper-bound the probability that such an event occurs as we want.

This completes the proof. ⊓⊔

Claim. For all i ∈ [QT ], we have that |Pr[Expti,2 = 1] − Pr[Expti,3 = 1]| ≤ 1/#K .

Proof. By the similar argument to the proof of the previous claim, the bound follows from universal2
property. ⊓⊔

Claim. For all i ∈ [QT ], we have that |Pr[Expti,3 = 1] − Pr[Expti,4 = 1]| ≤ QV/#K .

Proof. By the same argument to that in order to bound Expti,1 and Expti,2, the bound follows from
universal2 property.

Claim. For all i ∈ [QT ], we have that Pr[Expti,4 = 1] = Pr[Expti+1,0 = 1].

Proof. From the definitions of games, the statement follows. ⊓⊔

Exptfinal: In the final game, RK-Vrfy rejects all queries.

Claim. We have that |Pr[ExptQT ,4 = 1] − Pr[Exptfinal = 1]| ≤ QV/#K .

Proof. We note that the adversary obtains no information about sk until it makes the first verifi-
cation query. Therefore, from the universal1 property of HPS, a query (m1, c1, k1, ∆1) hits the right
k1 = Λ

ℓ1
t+∆1

(c1) = Λℓ1t (c1) · Λℓ1
∆1

(c1) is at most 1/#K . By the hybrid argument, the distance is upper-
bounded by QV/#K . ⊓⊔

Claim. We have that |Pr[Exptfinal = 1]| ≤ 1/#K .

Proof. Since, in the game, the tag-generation oracle returns random elements and the verification oracle
rejects any attempts, now, the challenger need not to know t and f = µ(t). Hence, the adversary cannot
learn even the projective key f . From the universal1 property of HPS, the forge (m∗, c∗, k∗) produced by
the adversary is valid at most probability 1/#K . ⊓⊔

3.5 Instantiation from DDH

We review the DDH assumption and a labeled HPS in Cramer and Shoup [CS02].

The DDH assumptions: GroupGDDH outputs (G, q, g), where G be a cyclic group of prime order q and
g is a generator of G.

Definition 3.3 (DDH assumption). For an adversary, A, we define its advantage as

Advddh
GroupGDDH,A

(λ) = Pr[(G, q, g)← GroupGDDH(1λ), a, b← Zq : A(G, q, g, ga, gb, gab) = 1]

− Pr[(G, q, g)← GroupGDDH(1λ), a, b, c← Zq : A(G, q, g, ga, gb, gc) = 1].

We say that A (t, ϵ)-solves the DDH problem if A runs in time t and its advantage is larger than ϵ. We
say that the DDH assumption (w.r.t. GroupGDDH) holds if for any PPT adversary A, its advantage is
negligible in λ.
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Labeled hash functions: Cramer and Shoup proposed the DDH-based labeled hash functions defined as
follows: Let g1 and g2 be generators of G. Let C = G2, K = G, andV = {(gr

1, g
r
2) : r ∈ Zq}. Let L = Z∗q,

T = Z4
q, and F = G2. For t = (x1, x2, y1, y2) ∈ Z4

q, we define a projection function as

µ : T → F : (x1, x2, y1, y2) 7→ (X,Y) = (gx1
1 gx2

2 , g
y1
1 gy2

2 ).

For t = (x1, x2, y1, y2) ∈ Z4
q, c = (c1, c2) ∈ G2, ℓ ∈ Zq, we define a labeled hash function as

Λℓt (c1, c2) = cx1ℓ+y1
1 · cx2ℓ+y2

2 .

L-HPS: Let us review the labeled hash proof system in [CS02].

SetupHPS: (G, q, g) ← GroupGDDH(1λ), w ← Zq, g1 ← g, g2 ← gw. Choose a hash function H :
{0, 1}∗ → Z∗q. Output π = (G, q, g1, g2,H). (We implicitly set w as the language trapdoor for V =
{(gr

1, g
r
2)}.)

Pub: On input f = (X, Y) ∈ G2, ℓ ∈ Zq, r ∈ Zq, which defines (c1, c2) = (gr
1, g

r
2), the public evaluate

algorithm computes Pub( f , ℓ, c, r) = (XℓY)r.
Priv: The private evaluate algorithm, on input (c1, c2) ∈ G2 and ℓ ∈ Zq, computes Priv(sk, ℓ, c) =

cx1ℓ+y1
1 cx2ℓ+y2

2 .

We verify that the above L-HPS satisfies our requirements.

µ’s homomorphism: We have that, for any t = (x1, x2, y1, y2) ∈ Z4
q and ∆ = (δ1, δ2, η1, η2) ∈ Z4

q,

µ(t + ∆) = (gx1+δ1
1 gx2+δ2

2 , gy1+η1
1 gy2+η2

2 ) = (gx1
1 gx2

2 , g
y1
1 gy2

2 ) · (gδ11 gδ22 , g
η1
1 gη2

2 ) = µ(t) · µ(∆)

as we want.

Key homomorphism of Λ: We have that for any t = (x1, x2, y1, y2) ∈ Z4
q, ∆ = (δ1, δ2, η1, η2) ∈ Z4

q, ℓ ∈ Z∗q,
c = (c1, c2) ∈ G2,

Λℓt+∆(c1, c2) = c(x1+δ1)ℓ+y1+η1
1 · c(x2+δ2)ℓ+y2+η2

2 = cx1ℓ+y1
1 cx2ℓ+y2

2 · cδ1ℓ+η1
1 cδ2ℓ+η2

2 = Λℓt (c1, c2) · Λℓ∆(c1, c2)

as we want.

µ’s collision resistance: It is easy to show it from the discrete logarithm assumption on (g1, g2).

4 Construction from Tag-based Adaptive Trapdoor Relations

Kiltz, Mohassel, and O’Neill proposed a new notion for constructing public-key encryption, (tag-based)
adaptive trapdoor functions (T-ATDF) [KMO10]. Roughly speaking, the tag-based trapdoor functions
are adaptive if the T-ATDFs remain one-way y = ftag∗(r) even if the adversary is allowed to access to an
inversion oracle f −1

tag,tag∗(·) on distinct tags.
Wee weakened this notion into (tag-based) adaptive trapdoor relations (T-ATDR) [Wee10]. In the

TDFs, the trapdoor should invert the original. But, in ATDR definition, the sender and receiver shares
the intermediate value s rather than the original randomness r.

4.1 (Tag-based) Adaptive Trapdoor Relations

Let us recall T-ATDR [Wee10]. Let Y, R, and S be finite sets. The space of tags is denoted by TS.
The secret- and public-key space is denoted by T and F , respectively. The key space is denoted by K .
Let F f (tag, ·) : S → Y be a (tagged) injective function indexed by public information f ∈ F with tag
tag ∈ TS.
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Syntax. A tag-based adaptive trapdoor relation system ATDR = (Setup,TrapGen,Samp, Inv,G) con-
sists of five algorithms:

– Setup is a setup algorithm that, on input 1λ, outputs public parameters π, which define Y, R, S, T ,
F , TS, K , and {F f : S × TS → Y | f ∈ F }.

– TrapGen is a key-generation algorithm that, on input π, outputs a pair of keys ( f , t) ∈ F × T .
– Samp is a public sampling algorithm that, on input π, f , tag tag, and randomness r ∈ R, outputs

session randomness s and y = F f (tag, s).
– Inv is an inversion algorithm that, on input π, t, tag, and y, outputs s = F−1

f (tag, y).
– G is an extracting algorithm that, on input s, outputs k ∈ K .

Security. Intuitively speaking, we say that tag-based ATDR ATDR is adaptively pseudorandom if any
PPT adversary cannot distinguish (y,G(s)) and (y, k), where y = Ftag

∗

f (s) and k ← K on the tag tag∗

chosen by the adversary at the beginning of the game, even if it is allowed to access the inversion oracle
for any tag , tag∗.

Definition 4.1 (Adaptive Pseudorandomness). Define experiment Exptadapt-pr
ATDR,A (λ) between adversary

A and the challenger as follows:

Initialization: Run the adversary with 1λ and obtain tag∗. Generate π ← Setup(1λ), ( f ∗, t∗) ←
TrapGen(π), and (s∗, y∗) ← Samp(π, f ∗, tag∗). Flip a coin b∗ ← {0, 1}. Extract k0 ← G(s∗) and
generate k1 ← K . Run the adversary by feeding (π, f ∗, y∗, kb∗).

Learning: The adversary could query to the inversion oracle defined as follows:
Inv: It receives tag and y. If tag = tag∗ then it returns ⊥. Otherwise, it returns s← Inv(π, t∗, tag, y).

Finalization: The adversary stops with output b. Output 1 if b = b∗. Output 0 otherwise.

We define the advantage of A as

Advadapt-pr
ATDR,A (λ) =

∣∣∣∣∣Pr
[
Exptadapt-pr

ATDR,A (λ) = 1
]
− 1

2

∣∣∣∣∣ .
We say that ATDR is adaptive pseudorandom if for any PPT adversary A, its advantage Advadapt-pr

ATDR,A (·) is
negligible.

4.2 Wee’s Additional Requirements

Wee [Wee12] defined two properties on ATDR.
One is Φ-key homomorphism. Intuitively speaking, if one can convert y under the public key µ(t)

and tag tag into y′ under the derived public key µ(ϕ(t)) by ϕ and the same tag tag keeping the seed s
unchanged.

Definition 4.2 (Φ-key homomorphism [Wee12]). We say that ATDR is Φ-key homomorphic if there
exists a PPT algorithm T such that for all ϕ ∈ Φ, for any π, t, tag, y, Inv(π, ϕ(t), tag, y) =
Inv(π, t, tag, T (π, ϕ, tag, y)) holds.

This property is a weak variant of key malleability in [BC10] and key homomorphism in [AHI11].
The other is Φ-fingerprinting property defined as follows:

Definition 4.3 (Φ-fingerprinting [Wee12]). Define experiment ExptfpATDR,A,Φ(λ) between adversary A
and the challenger as follows:

Initialization: Generate π ← Setup(1λ). Run the adversary with π and receive tag∗. Generate
( f ∗, t∗) ← TrapGen(π). Generate (s, y) ← Samp(π, f ∗, tag∗). Run the adversary by feeding
(π, f ∗, t∗, y).
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Finalization: The adversary stops with output ϕ ∈ Φ. Output 1 if Inv(π, ϕ(t∗), tag∗, y) , ⊥, ϕ(t∗) , t∗,
and µ(ϕ(t∗)) = µ(t∗). Output 0 otherwise.

We define the advantage of A as

Advfp
ATDR,A,Φ(λ) = Pr

[
ExptfpATDR,A,Φ(λ) = 1

]
.

We say that ATDR admits Φ-fingerprinting if for any PPT adversary A, its advantage Advfp
ATDR,A,Φ(·) is

negligible.

4.3 Our Additional Requirements
K’s commutativity: We say that ATDR is K-commutative if K is a commutative group.
µ’s homomorphism: We say that ATDR is µ-homomorphic if there exists homomorphism µ : T → F

such that TrapGen can be written in the form as follows: t ← T , f ← µ(t). Key-generation function
µ is a homomorphism from T to F . Hereafter, we assume that T is an additive finite group.

µ’s Φ-collision resistance: As in the previous definition on labeled hash functions, we require that µ is
collision resistant with respect to Φ even if we know a trapdoor. See the following definition.

Definition 4.4 (µ’s Φ-collision resistance). Define experiment Exptµ-coll
ATDR,A,Φ(λ) between adversary A

and the challenger as follows:

Initialization: Generate π ← Setup(1λ) and ( f ∗, t∗) ← TrapGen(π). Run the adversary by feeding
(π, f ∗, t∗).

Finalization: The adversary stops with output ϕ ∈ Φ. Output 1 if ϕ(t∗) , t∗ and µ(ϕ(t∗)) = µ(t∗). Output
0 otherwise.

We define the advantage of A as

Advµ-coll
ATDR,A,Φ(λ) = Pr

[
Exptµ-coll

ATDR,A,Φ(λ) = 1
]
.

We say that ATDR is µ is Φ-collision resistant if for any PPT adversary A, its advantage Advµ-coll
ATDR,A,Φ(·)

is negligible.

We note that µ’s Φ-CR property is stronger than Φ-finger printing.

4.4 Our Construction

Let ATDR be a tag-based ATDR system associative with Y, R, S, T , F , TS, K , and {F f : S × TS →
Y | f ∈ F }. Let OTS = (ots.gen, ots.sign, ots.vrfy) be a one-time signature scheme.

We define our MAC(ATDR,OTS) as follows:

Setup(1λ): π← SetupATDR(1λ). Output public parameters π.
KG(π,H): Generate ( f , t) ← TrapGen(π). (Here, we note that f = µ(t).) Choose p ← K . Output
κ = (t, p).

TAG(π, κ,m): On input key κ = (t, p) and message m ∈ {0, 1}∗,
1. compute f ← µ(t),
2. generate (ovk, osk)← ots.gen(1λ),
3. compute (s, y)← Samp(π, f , ovk),
4. compute c← G(s) + p,
5. generate σ← ots.sign(osk, ( f , y, c,m)),
6. set τ← (ovk, y, c, σ), and
7. output tag τ.

VRFY(π, κ,m, τ): On input key κ = (t, p), message m ∈ {0, 1}∗, and tag τ = (ovk, y, c, σ),
1. compute f ← µ(t),
2. If ots.vrfy(ovk, ( f , y, c,m)) = acc then go next, otherwise, stop with outputting rej.
3. Compute s← Inv(π, t, ovk, y).
4. If p = c − G(s) then output acc; otherwise, output rej.
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4.5 Security

Theorem 4.1. Let ATDR be a K-commutative tag-based ATDR system. Suppose T ×K be a commuta-
tive group and let Φ+ = {ϕδ,η : (t, p) 7→ (t + δ, p + η) | (δ, η) ∈ T ×K}. Suppose that ATDR is adaptively
pseudorandom and key homomorphic. Moreover, suppose that ATDR is µ-homomorphic and µ-collision
resistant with respect to Φ+. Then, MAC(ATDR,OTS) is Φ+-UF-RK-CMVA secure.

The proof is obtained by combining those of Dodis et al. and Wee. We employ game-based proof.
Hereafter, without loss of generality, we suppose that the adversary never query a verification query
(ϕ,m, τ) if τ is generated by RK-Tag on query (ϕ,m). The adversary specifies ϕ by (δ, η) ∈ T × K .

Exptreal. This is the original experiment. Hence, we have that

Advuf-rk-cmva
MAC,A,Φ (λ) = Pr[Exptreal = 1].

Expt′real. We next eliminate unexpected ϕi = (δi, ηi) which makes a bad collision. For simplicity, we let
(δ0, η0) = (0, 0). The oracles reject if t∗ + δi , t∗ + δ j and µ(t∗ + δi) = µ(t∗ + δ j) for δi , δ j.

Claim. There exists a PPT algorithm B that
∣∣∣Pr[Exptreal = 1] − Pr[Expt′real = 1]

∣∣∣ ≤ Advµ-coll
ATDR,B,Φ+(λ).

Proof. The two games differ when the adversary queries (δi, ηi) and (δ j, η j) to the oracles satisfying
δi , δ j, t∗ + δi , t∗ + δ j, and µ(t∗ + δi) = µ(t∗ + δ j). But, it is obvious that this contradicts µ’s collision-
resistance property. ⊓⊔

Expt′′real. We next eliminate reuse of ovk. At the initialization phase, the challenger picks up
(ovki, oski) ← KG(1λ) for i ∈ [QT ] to use them in the oracle RK-Tag. If the oracle RK-Vrfy receives a
query including ovk = ovki then the oracle rejects it anyway.

Claim. There exists a PPT algorithm B that
∣∣∣Pr[Expt′real = 1] − Pr[Expt′′real = 1]

∣∣∣ ≤ QT ·Advseuf-otcma
OTS,B (λ).

Proof. Let ϕi = (δi, ηi) and mi be the i-the RK-tagging query and let τi = (ovki, yi, ci, σi) be the answer
to the query. The difference occurs when, the adversary queries to the RK-verification oracle ϕ = (δ, η),
m, and τ = (ovk, y, c, σ) such that ovk = ovki for some i ∈ [QT ] which accepts the RK-verification
oracle. Let us check the difference:

– (δ, η) = (0, 0): In this case, we have m , mi or (y, c, σ) , (yi, ci, σi); otherwise, it makes no differ-
ences. In the both cases, we obtain a forgery.

– δ , δi: In this case, we have that µ(t + δi) = fi , f ′ = µ(t + δ), since we already cut this event.
Therefore, σ is a forgery of a new message ( f ′, y, c,m) and this contradicts sEUF-OTCMA-security
of OTS.

– δ = 0 but η , 0: In this case, we have the sub-cases as follows:

• (m, y, c, σ) = (mi, yi, ci, σi): Notice that in this case, the RK-verification query is rejected. This
is because p + η, which is correct, never equals to p + η, which cannot pass 4-th check.

• Otherwise, we have the one of m, y, c, or σ differs from the one in the i-th query. therefore, we
get a forgery.

Summarizing the above, this contradicts to the sEUF-OTCMA security of the one-time signature scheme
OTS. ⊓⊔
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Expti and Expt′i for i ∈ [0,QT ]. We next change the RK-tagging oracle as follows:

Expti: On the first i queries, RK-Tag replaces p with 0. The rest QT − i queries, it does the
original.

Expti’: On the first i − 1 queries, RK-Tag replaces p with 0. On the i-th query, it used c chosen
uniformly at random. The rest QT − i queries, it does the original.

For the summary, see the table.

The answer of RK-Tag on the i-th query
Expti c← G(s) + p + η
Expt′i c← K

Expti+1 c← G(s) + η

We note that Expt0 = Expt′0 = Expt′real.
In the following, we claim that Expti and Expt′i are computationally indistinguishable and Expt′i and

Expti+1 are also.

Claim. For all i ∈ [QT ], there exists a PPT algorithm B that
∣∣∣Pr[Expti = 1] − Pr[Expt′i = 1]

∣∣∣ ≤
Advadapt-pr

ATDR,B (λ).

Proof. We construct an adversary B for the adapt-pr game from the adversary A which distinguishes
Expti−1 and Expti as follows:

Initialization: On input 1λ, B generates (ovk∗, osk∗) ← Gen(1λ) and declares ovk∗ as a target tag. It
then receives (π, f ∗, y∗, kb∗) from its challenger, where π ← Setup(1λ), ( f ∗, t∗) ← TrapGen(π),
(s∗, y∗) ← Samp(π, f ∗, ovk∗), b∗ ← {0, 1}, k0 ← G(s∗), and k1 ← K . It chooses p ← K uniformly
at random. Run the adversary A with π.

Learning Phase: B simulates the oracles as follows:
– RK-Tag: It receives ϕ = (δ, η) and m.
• (On the first i − 1 queries:) compute f ′ = f ∗ · µ(δ) = µ(t∗ + δ) from µ’s homomorphism,

generate (ovk, osk)← ots.gen(1λ), compute (s, y)← Samp(π, f ′, ovk), compute c← G(s)+
η, generate σ← ots.sign(osk, ( f ′, y, c,m)), set τ← (ovk, y, c, σ). and return τ to A.

• compute f ′ = f ∗ · µ(δ) = µ(t∗ + δ) from µ’s homomorphism, compute y′ ←
T (π, ϕ(t∗), ovk∗, y∗), compute c ← kb∗ + η, generate σ ← ots.sign(osk∗, ( f ′, y, c,m)), set
τ← (ovk∗, y, c, σ). and return τ to A.

• (On the last QT − i queries:) compute f ′ = f ∗ · µ(δ) = µ(t∗ + δ) from µ’s homomorphism,
generate (ovk, osk)← ots.gen(1λ), compute (s, y)← Samp(π, f ′, ovk), compute c← G(s)+
p + η, generate σ← ots.sign(osk, ( f ′, y, c,m)), set τ← (ovk, y, c, σ). and return τ to A.

– RK-Vrfy: B receives ϕ, m, and τ = (ovk, y, c, σ). If ovk = ovk∗, then it returns ⊥. Else
it can use its inversion oracle since ovk , ovk∗: B computes f ′ = f · µ(δ) and verifies
ots.vrfy(ovk, ( f ′, y, c,m)). If it passes the verification, B computes y′ = T (π, η, ovk, y) and query
y′ to its decryption oracle with tag ovk. Then, B receives s′ = Inv(π, t+δ, ovk, y) Finally, B checks
c = G(s′) + p + η or not.

Finalization: Finally, A outputs m and τ = (ovk, y, c, σ). Since ovk , ovk∗ again, B can check the
validity of m and τ as in the simulation of RK-Vrfy. If A wins, B outputs 1. Otherwise, B outputs 0.

By the definition of B, B perfectly simulates Expti if b∗ = 0 and Expt′i if b∗ = 1, since c∗ in τi is
uniformly at random. ⊓⊔

Claim. For all i ∈ [0,QT − 1], there exists a PPT algorithm B that
∣∣∣Pr[Expt′i = 1] − Pr[Expti+1 = 1]

∣∣∣ ≤
Advadapt-pr

ATDR,B (λ).

Since the proof is the same as the previous proof, we omit it.
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Exptfinal: In this final game, the oracle RK-Vrfy rejects all queries. Hence, the adversary has no chance
to obtain any information on k in the learning phase by RK-tagging oracle. Therefore, it gains informa-
tion only from RK-Vrfy.

We show the following two claims.

Claim. We have that
∣∣∣Pr[ExptQT

= 1] − Pr[Exptfinal = 1]
∣∣∣ ≤ QV/#K .

Proof. The games differ if the adversary queries ϕ j, m j, and τ j = (ovk j, y j, c j, σ j) to the RK-verification
oracle, which is correct in ExptQT

. Notice that even in ExptQT
, the adversary cannot obtain information

of p from the RK-tagging oracle. Therefore, the first RK-verification query is correct with probability at
most 1/#K . The above upper bound follows from the hybrid argument. ⊓⊔

Claim. We have that Pr[Exptfinal = 1] ≤ 1/#K .

Proof. In this game, the challenger does not give the adversary any information about p. Therefore, the
advantage is at most 1/#K .

4.6 Instantiation from Factoring

Let us briefly recall the properties of the signed quadratic residues [HK09a,HK09b]. Fix a Blum integer
N = PQ for safe primes P = 2p + 1 and Q = 2q + 1 such that P,Q ≡ 3 (mod 4). Let JN be a set of
elements whose Jacobi symbol is 1. For x ∈ ZN , let |x| ∈ ZN be the absolute value of x, where x is in
{−(N − 1)/2, . . . , (N − 1)/2}. Let QRN be the quadratic residue group. Notice that −1 < QRN . Finally,
we define

QR+N = {|x| | x ∈ QRN}.

This is the signed quotient group QR+N = JN/(±1), a cyclic group of order (p−1)(q−1)/4, and efficiently
recognizable by computing Jacobi symbol, sinceQR+N = J

+
N := {|x| | x ∈ JN}. Let g be a random generator

of QR+N .

Definition 4.5 (Factoring assumption). For an adversary, A, we define its advantage as Advfact
InstG,A(λ) =

Pr[(N, p, q) ← InstG(1λ) : A(N) ∈ {p, q}]. We say that A (t, ϵ)-factors composite integers if A runs in
time t and its advantage is larger than ϵ. We say that the factoring assumption (w.r.t. InstG) holds if for
any PPT adversary A, its advantage is negligible in λ.

We suppose that InstG always output a Blum integer N, that is, P,Q ≡ 3 (mod 4) and they are safe
primes.

Tag-based ATDR. For easiness of notation, we let Ω = 2ω and Λ = 2λ. The space of labels is [0, Ω − 1]
and the space of extracted key is [0, Λ − 1].

Setup(1λ): Generate two strong primes P,Q whose bit lengths are λ. Compute N = PQ and generate a
random generator g of QR+N . Output π = (N, g).

TrapGen(π): On input (N, g), choose t ← [(N − 1)/4]. Compute f ← gΛΩt and output ( f , t).
Samp( f , tag; r): On randomness r ←?, compute (s, u) ← (gΩr, gΛΩr). Compute w = ( f · gtag)r. Output

s and y = (u,w).
Inv(t, tag, y): On y = (u,w),

1. verify u,w ∈ QR+N ; otherwise, output ⊥ and stop;
2. verify wΛΩ = utag+ΛΩt; otherwise, output ⊥ and stop;
3. compute a, b, c ∈ Z such that 2c = a · tag + b · ΛΩ in Z,
4. compute s′ ← (wa · ub−a·t)2tag−c

,
5. and output s′.
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G(s): This is the Blum-Blum-Shub PRG. On input s ∈ QR+N , output(
lsbN(s), lsbN(s2), lsbN(s4), . . . , lsbN(s2λ−1

)
)
∈ {0, 1}λ,

where lsbN(u) is the least significant bit of u ∈ [−(N − 1)/2, (N − 1)/2].

Let us verify that the above tag-based ATDR system satisfies Wee’s and our requirements.

Φ+-key homomorphism: Wee observed this property [Wee12]. For completeness, we prove it again. Let
us fix δ ∈ Z, t ∈ [(N − 1)/4], and tag ∈ [0, Λ − 1]. We have that Fµ(t)(ℓ, s) = (u,w) = (gΛΩr, gΛΩtr · gtagr),
where s = gΩr. We have that

Fµ(t+δ)(ℓ, s) = (gΛΩr, (gΛΩ(t+δ) · gtag)r) = (gΛΩr, (gΛΩt · gtag)r · gΛΩrδ) = (u,w · uδ)

as we want. Hence, T is defined as follows: On input π = (N, g), δ ∈ Z, f ∈ QR+N , tag ∈ [0, Λ − 1], and
y = (u,w) ∈ QR+N , T outputs (u,w · uδ).

µ’s Φ+-collision resistance: Suppose that there exists non-trivial function ϕ : [(N − 1)/4] → [−N,N]
which yields f = gΛΩt = gΛΩ·ϕ(t) mod N. Since the order of g is ϕ(N)/4 = pq and ΛΩ = 2λ+ℓ is coprime
with pq, this implies t ≡ ϕ(t) (mod pq). Thus, ϕ(t)− t reveals non-trivial divisor of pq and we can factor
N. This contradicts the factoring assumption (on the Blum integers).

K’s commutativity: If we treat {0, 1}λ as GF(2)λ, it is a commutative group.

µ’s homomorphism: For any ∆ ∈ Z and t ∈ [(N − 1)/4], we have that

µ(t + ∆) = gΛΩ(t+∆) = gΛΩt · gΛΩ∆ = µ(t) · µ(∆).

4.7 Instantiation from DBDH

Let GroupGDBDH be a PPT algorithm that on input a security parameter 1λ outputs (G,GT , e, q, g) such
that; G and GT are two cyclic groups of prime order q, g is a generator of G, and a map e : G×G→ GT

satisfies

– (Bilinear:) for any g, h ∈ G and any a, b ∈ Zq, e(ga, hb) = e(g, h)ab,
– (Non-degenerate:) e(g, g) has order q in GT , and
– (Efficiently computable:) e is efficiently computable.

Definition 4.6 (DBDH assumption). For an adversary, A, we define its advantage as

Advdbdh
GroupGDBDH,A

(λ)

= Pr[(G,GT , q, g, e)← GroupG(1λ), a, b, c← Zq : A(G,GT , q, g, e, ga, gb, gc, e(g, g)abc) = 1]

− Pr[(G,GT , q, g, e)← GroupG(1λ), a, b, c, d ← Zq : A(G,GT , q, g, e, ga, gb, gc, e(g, g)d) = 1]

We say that A (t, ϵ)-solves the DBDH problem if A runs in time t and its advantage is larger than ϵ.
We say that the DBDH assumption (w.r.t. GroupG) holds if for any PPT adversary A, its advantage is
negligible in λ.

16



Tag-based ATDR. The space of labels is Z∗q. GT is a key space.

Setup(1λ): Generate bilinear pairing group (G,GT , q, e, g). Choose v, h← G. Output public parameters
π = (G,GT , q, e, g, v, h).

TrapGen(π): On input π = (G,GT , q, e, g, v, h), choose t ← Zq and compute f ← gt. Output ( f , t).
Samp( f , tag; r): On randomness r ∈ Zq, compute (s, u) ← (vr, gr) and w = ( f · vtag)r. Output s and

y = (u,w).
Inv(t, tag, y): On y = (u,w),

1. verify u,w ∈ G; if not, output ⊥ and stop;
2. compute s′ ← (w · u−t)tag

−1
,

3. verify e(g, s′) = e(v, u); if not, output ⊥ and stop;
4. output s′.

G(s): On input s ∈ G, output e(s, h) ∈ GT .

Let us verify that the above tag-based ATDR system satisfies Wee’s and our requirements.

Φ+-key homomorphism: Wee [Wee12] showed Φ+-key homomorphism. For completeness, we prove it
again. For any ∆ ∈ Zq, t ∈ Zq, and tag ∈ Zq, we have Fµ(t)(ℓ, s) = (u,w) = (gr, ( f ·vtag)r) = (gr, (gtvtag)r),
where we set s = vr. We have that

Fµ(t+∆)(ℓ, s) = (gr, (gt+∆ · v)r) = (gr, (gtv)r · g∆r) = (u,w · u∆)

as we want.

µ’s Φ+-collision resistance: Suppose that there exists non-trivial function ϕ : Zq → Zq which yields
f = gt = gϕ(t). This implies t = ϕ(t).

K’s commutativity: GT is a multiplicative commutative group.

µ’s homomorphism: For any ∆ ∈ Zq and t ∈ Zq, we have that

µ(t + ∆) = gt+∆ = gt · g∆ = µ(t) · µ(∆).
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