
A Conditional Proxy Broadcast Re-Encryption
Scheme Supporting Timed-Release

Kaitai Liang1, Qiong Huang2?, Roman Schlegel1, Duncan S. Wong1, and
Chunming Tang3

1 Department of Computer Science, City University of Hong Kong, China
kliang4@student.cityu.edu.hk, rschlegel@gmx.ch, duncan@cityu.edu.hk

2 College of Informatics, South China Agricultural University, Guangzhou, China
csqhuang@alumni.cityu.edu.hk

3 School of Mathematics and Information Science, Guangzhou University, China
ctang@gzhu.edu.cn

Abstract. To allow a delegator not only to delegate the keyword-controlled
decryption rights of a broadcast encryption to a set of specified recipi-
ents, but also to control when the decryption rights will be delegated, in
this paper, for the first time, we introduce a new notion called Timed-
Release Conditional Proxy Broadcast Re-Encryption (TR-CPBRE). We
also propose a concrete construction for TR-CPBRE which can be proven
selective identity adaptive CCA secure under the (P,Q, f)-general de-
cisional Diffie-Hellman exponent assumption, and chosen-time period
chosen-ciphertext secure under the bilinear Diffie-Hellman assumption.
When compared with the existing CPBRE and Timed-Release Proxy
Re-Encryption (TR-PRE) schemes, our scheme achieves better efficiency,
and enables the delegator to make a fine-grained delegation of decryption
rights to multiple delegatees.

Keywords: timed-release encryption, unidirectional conditional proxy
broadcast re-encryption, bilinear map.

1 Introduction

Introduced by May [24] and further elaborated by Rivest et al. [26], Timed-
Release Encryption (TRE) is a kind of time-dependent encryption where even
a designated recipient cannot decrypt a ciphertext before a semi-trusted time
server releases a trapdoor associated with the release time of the encryptor’s
choice. It has been found to have many real-world applications, such as sealed-
bid auctions [11] and electronic-voting. To date, there have been some pa-
pers [12,13,21,23,25] that have proposed different variants of TRE.

? Q. Huang is supported by the National Natural Science Foundation of China (No.
61103232), the Research Fund for the Doctoral Program of Higher Education of
China (No. 20114404120027), and the Foundation for Distinguished Young Talents
in Higher Education of Guangdong, China (No. LYM11033).

2

The traditional TRE only supports single recipient that seems undesirable
in practice as a message might be intended for several recipients simultaneously.
In 2005, Cathalo et al. [10] proposed an efficient TRE scheme, in which an
encryptor is allowed to encrypt a message to multi-recipient with the same release
time. The scheme is applicable to many network applications. Suppose there is
an international programming contest, such as ACM-ICPC4 and Google Code
Jam5. The participating teams that are located all over the world are managed
by different universities. All teams will be granted access to the problem set in a
specified time. To prevent some unfair issues incurred by the network congestion
or delivery delay, the contest organizer might prefer to allow all universities and
teams to receive the problem set before the beginning of the contest, but not to
open the set prior to the pre-specified time.

The above problem can be solved by using [10] as follows. The organizer first
specifies a release time RT for a semi-trusted time server. With knowledge of the
public keys of all registered universities and teams, the organizer encrypts the
problem set m (as well as RT) (e.g., Enc(PKA,m,RT), Enc(PKG1,m,RT)),
and further sends the resulting ciphertexts to each university. Upon receiving the
ciphertexts from the organizer, the university keeps its own ciphertext locally,
and then forwards the rest of ciphertexts to the corresponding teams (whose
identities are recorded in the register list). When the release time has arrived,
the time server will release a trapdoor τ (corresponding to RT) such that the
universities and teams can access the problem set simultaneously (See Fig. 1).

Fig. 1. Timed-Release Encryption for International Programming Contest

4 http://icpc.baylor.edu/
5 http://code.google.com/codejam/

3

The above solution, however, comes at a price that the organizer has to
perform n1 × (n2 + 1) encryptions; meanwhile, (n2 + 1) ciphertexts are needed
to be sent from the organizer to each university, where n1 is the total number of
university, and n2 is the maximum number of team supervised by each university.
This might be undesirable in practice due to the incurred linear communication
complexity and computation cost.

To reduce the complexity, we might employ some existing cryptographic
primitives in the above scenario. Intuitively, Broadcast Encryption (BE) that
addresses the problem of confidentially broadcasting a message to a group of
recipients might be one of candidates. Despite there exist some BE schemes
(e.g., [5,6,19]) in the literature, it is unknown that whether these schemes can
be extended to support timed-release property or not.

Proxy Re-Encryption (PRE) proposed by Blaze, Bleumer and Stauss [3],
which increases the flexibility of data sharing, allows a semi-trusted proxy to
transform a ciphertext intended for Alice into another ciphertext intended for
Bob. The proxy, however, can learn nothing of the plaintext. PRE is applicable to
many network applications, such as secure distributed files systems [1] and email
forwarding encryption [3]. Since its introduction, many classic PRE schemes
(e.g., [8,22,20]) have been proposed.

To employ PRE in the context of TRE, Emura et al. [18] proposed the first
Timed-Release Proxy Re-Encryption (TR-PRE) that might be another candi-
date to solve the linear complexity problem. In TR-PRE, the proxy is allowed
to re-encrypt a ciphertext with a release time under a public key to the one with
the same release time under another public key by using a re-encryption key
given by the delegator. Here we use University A as an example. By upload-
ing n2 re-encryption keys (e.g., rkA→Group 1, ..., rkA→Group S) and its ciphertext
Enc(PKA,m,RT) to the cloud (i.e. the proxy), University A (i.e. the delegator)
can request the proxy to re-encrypt the ciphertext to the ones intended for the
teams under A’s control (denoted the team set as IA = {Group 1, ..., Group S}).

Despite TR-PRE allows the proxy to fulfill the re-encryption so as to re-
lieve the workload of the organizer (who does not need to generate (n1 × n2)
ciphertexts), the organizer still needs to generate n1 encryptions for universities,
and each university has to construct n2 re-encryption keys. Moreover, without
supporting any keyword (conditional) control on re-encryption, once given a re-
encryption key (e.g., rkA→Group 1), the proxy can re-encrypt all ciphertexts of
University A to Group 1. This will incur the potential risk for access control.

Conditional Proxy Broadcast Re-Encryption (CPBRE), which was proposed
by Chu et al. [14], can further reduce the cost incurred by TR-PRE. Specifi-
cally, CPBRE allows a delegator to delegate the decryption rights of a broadcast
encryption to a set of delegatees, and to specify a condition to control the re-
encryption power of the proxy. In CPBRE, only one (instead of n2) re-encryption
key is required to be generated by each university. Besides, the organizer only
needs to generate one (instead of n1) ciphertext for the university set (denoted
as IU = {University A, ..., University Z}). Thus CPBRE is an appropriate
primitive for solving the linearly complexity problem. Nevertheless, the existing

4

CPBRE6 cannot be trivially extended to support timed-release property due to
the limitation of its proof technique. In the security proof given in [14], the chal-
lenger outputs a valid challenge ciphertext with the help of the challenger of an
Hierarchical Identity-Coupling Broadcast Encryption (HICBE) [2]. To support
timed-release, the challenge ciphertext has to be modified accordingly. This is
out of the capability of the HICBE’s challenger, that is, the challenger cannot
output the corresponding challenge ciphertext. Therefore, a new CPBRE sup-
porting timed-release property (i.e. Timed-Release Conditional Proxy Broadcast
Re-Encryption (TR-CPBRE)) is desirable.

1.1 Our Contributions

In this paper, we formalize the definition and security models for TR-CPBRE.
Specifically, a release time is required as an auxiliary input to the encryption and
re-encryption key algorithms; meanwhile, this release time and its corresponding
timed-release key are required in the input to the decryption algorithms. Note
that a timed-release key is generated by a timed-release key generation algorithm
that takes in the secret key of a semi-trusted time server and a given release time.

For security models, we consider two different aspects: one is to allow the
adversary to get the timed-release key but not the secret key, that is, even if
given the timed-release key, the adversary cannot decrypt a ciphertext without
the appropriate secret key; the other is the inverse case, that is, even if given
the secret key, the adversary cannot decrypt a corresponding ciphertext without
the appropriate timed-release key. As of [14,18], we refer to the security of the
former and the latter as chosen ciphertext security and chosen-time-period and
chosen-ciphertext security, respectively.

Besides, we propose the first TR-CPBRE that is selective ID CCA (IND-sID-
CCA) secure (under the (P,Q, f)-general decisional Diffie-Hellman exponent as-
sumption), and is secure against chosen-time period chosen-ciphertext attacks
(CTCA) (under the bilinear Diffie-Hellman assumption) in the random oracle
model. In our scheme, the organizer is only needed to generate one ciphertext
(with a release time RT and some condition c) for the university set IU (i.e.
Enc(IU ,m,RT, c)). To delegate the decryption rights of the broadcast encryp-
tion to its team set IA, University A first specifies to which group’s broadcast
encryption it would like to delegate (IU), and next generates a re-encryption key
from itself to IA under c and RT (e.g., rkA→IA|c,RT) for the proxy. The proxy
then re-encrypts the ciphertext to the one (Enc(IA,m,RT, c)) that can be only
decrypted by the members of IA (See Fig. 2). Note that the release time is still
effective after the re-encryption. To the best of our knowledge, no TRE and PRE
scheme (in general) capture timed-release and broadcast encryption properties
simultaneously. TR-CPBRE is the first of its type.

Our scheme solves the limitations incurred by [18] in the sense that it only
requires one re-encryption key and one re-encryption ciphertext rather than

6 The only and available CPBRE due to Chu et al. is secure against Replayable Chosen
Ciphertext Attacks (RCCA) [9].

5

Fig. 2. Timed-Release Conditional Proxy Broadcast Re-Encryption

n2 copies of them for each set of teams; meanwhile, it supports conditional
control on re-encryption (i.e. conditional delegation). Thus our scheme enjoys
improvement in communication compared to [18].

We argue that TR-CPBRE has many other real world applications, such
as on-line learning systems (IXL7). For example, in an on-line learning system,
the service provider can broadcast the learning materials in terms of different
semesters with different release times to the universities which support on-line
teaching, such that each university can accordingly open the classes in different
semesters for its on-line learners.

We summarize the comparison of properties between our scheme, [14] and [18]
in Table 1. While conditional delegation, broadcast re-encryption and timed-
release property have been partially achieved by previous schemes, there is no
CCA-secure proposal that achieves such properties simultaneously. However, this
paper achieves the goal.

Table 1. Property Comparison

Schemes Security Selective Conditional Broadcast Timed-Release
Security Delegation Re-Encryption Property

CPBRE [14] RCCA ! ! ! #

TR-PRE [18] RCCA # # # !

Our TR-CPBRE CCA ! ! ! !

7 http://www.ixl.com/

6

2 Definition and Security Models

2.1 Definition of TR-CPBRE

Definition 1. A (single-hop unidirectional) Timed-Release Conditional Proxy
Broadcast Re-Encryption (TR-CPBRE) scheme consists of the following algo-
rithms:

1. (param,msk, skTS)← Setup(1λ, n): on input a security parameter λ and n,
which indicates the maximum allowable number of receivers, output a public
key param, a master secret key msk, a secret key skTS and a public key TP
of a Time Server. Note that TP is regarded as one part of param.

2. skID ← KeyGen(param,msk, ID): on input param, msk, and an identity
ID ∈ {0, 1}∗, output a secret key skID for identity ID.

3. τ ← TS(skTS , RT): on input skTS and a release time RT ∈ {0, 1}λ, output
a timed-release key τ .

4. rkIDi→S|RT,c ← ReKeyGen(param, IDi, skIDi , S, S, c, RT): on input param,
an identity IDi and the corresponding secret key skIDi , two identity sets S
and S, a condition c ∈ {0, 1}∗ and a release time RT , output a re-encryption
key rkIDi→S|RT,c, where IDi ∈ S.

5. C ← Enc(param, S, c, RT,m): on input param, an identity set S, c, RT
and a message m ∈ {0, 1}λ, output an original ciphertext C.

6. CR ← ReEnc(param, rkIDi→S|RT,c, IDi, S, S, c, RT,C): on input param, a
re-encryption key rkIDi→S|RT,c, an identity IDi, an identity set S such that

IDi ∈ S, an identity set S, c, RT and C, output a re-encrypted ciphertext
CR or ⊥ for failure.

7. m← Dec(param, skIDi , IDi, S, c, RT,C, τ): on input param, skIDi , IDi, S
such that IDi ∈ S, c, RT , an original ciphertext C and τ , output a message
m or ⊥ for failure.

8. m ← DecR(param, skIDi′ , IDi, IDi′ , S, S, c, RT,CR, τ): on input param, a
delegatee’s secret key skIDi′ , a delegator’s identity IDi, a delegatee’s identity

IDi′ , an identity set S such that IDi ∈ S, an identity set S such that
IDi′ ∈ S, c, RT , a re-encrypted ciphertext CR and τ , output a message m
or ⊥ for failure.

For simplicity, hereafter we omit param in the expression of the algorithms input.

Correctness: For any λ, n ∈ N, any identity sets S, S, any identities IDi, IDi′ ∈
{0, 1}∗ such that IDi ∈ S, IDi′ ∈ S, any condition c ∈ {0, 1}∗, any release
time RT ∈ {0, 1}λ and any message m ∈ {0, 1}λ, if (param,msk, skTS) ←
Setup(1λ, n), τ ← TS(skTS , RT), skID ← KeyGen(msk, ID), for all ID used in
the system, rkIDi→S|RT,c ← ReKeyGen(IDi, skIDi , S, S, c, RT), C ← Enc(S,

c, RT , m), and CR ← ReEnc(rkIDi→S|RT,c, IDi, S, S, c,RT,C), we have

Dec(skIDi , IDi, S, c, RT,C, τ) = m;

DecR(skIDi′ , IDi, IDi′ , S, S, c, RT,CR, τ) = m.

7

2.2 Security Models

There are two main security requirements for TR-CPBRE: IND-sID-CCA se-
curity and CTCA security. Here we only give the security notions of original
ciphertext. Note that the security notions of re-encrypted ciphertext can be
defined in the same manner, we hence omit the details. We start with the for-
malization of IND-sID-CCA security. For capturing timed-release feature, in the
model, we require that an adversary A is not able to win the game even if the
time server’s secret key skTS is known.

Definition 2. A (single-hop unidirectional) TR-CPBRE scheme is IND-sID-
CCA-secure at original ciphertext if no probabilistic polynomial time (PPT) ad-
versary A can win the game below with non-negligible advantage. In the game,
C is the game challenger, λ and n are the security parameter and the maximum
allowable number of receivers, respectively.

1. Initialization. A outputs a challenge identity set S∗ = {ID∗1 , ..., ID∗s},
where s ≤ n.

2. Setup. C runs Setup(1λ, n) and sends param, skTS to A.
3. Phase 1. A is given access to the following oracles.

(a) Osk(ID): on input an identity ID, output skID ← KeyGen(msk, ID).
If Extract(ID′) is queried, we say that ID′ is corrupted. One restriction
is that A cannot query Extract(ID) for any ID ∈ S∗.

(b) Ork(IDi, S, S, c, RT): on input an identity IDi, two sets S and S, a con-
dition c and a release time RT , output rkIDi→S|RT,c ← ReKeyGen(IDi,

skIDi , S, S, c,RT), where skIDi ← KeyGen(msk, IDi), IDi ∈ S.
(c) Ore(IDi, S, S, c, RT,C): on input an identity IDi, two sets S and S,

a condition c, a release time RT , and an original ciphertext C, output
CR ← ReEnc(rkIDi→S|RT,c, IDi, S, S, c, RT , C), where rkIDi→S|RT,c
← ReKeyGen (IDi, skIDi , S, S, c,RT), skIDi ← KeyGen(msk, IDi),
IDi ∈ S.

(d) Odec(IDi, S, c, RT,C): on input an identity IDi, an identity set S, a
condition c, a release time RT , and an original ciphertext C, output m←
Dec(skIDi , IDi, S, c, RT , C, τ), where skIDi ← KeyGen(msk, IDi),
τ ← TS(skTS , RT), IDi ∈ S.

(e) Odecr(IDi, IDi′ , S, S, c, RT , CR): on input two identities IDi and IDi′ ,
two identity sets S and S, a condition c, a release time RT , and a re-
encrypted ciphertext CR, output m← DecR(skIDi′ , IDi, IDi′ , S, S, c,

RT , CR, τ), where skIDi′ ← KeyGen(msk, IDi′), τ ← TS(skTS , RT),

IDi′ ∈ S, IDi ∈ S.
4. Challenge. A outputs two equal length messages m0, m1, a challenge con-

dition c∗ and a challenge release time RT ∗ to C. If the queries Ork(IDi, S
∗,

S, c∗, RT ∗) and Osk(IDi′) are never made, C returns C∗ = Enc(S∗, c∗,
RT ∗, mb) to A, where b ∈R {0, 1}, IDi ∈ S∗ and IDi′ ∈ S.

5. Phase 2. A continues making queries as in Phase 1 except the following:
(a) Osk(ID) for any ID ∈ S∗;

8

(b) Ork(IDi, S
∗, S, c∗, RT ∗) and Osk(IDi′) for any IDi ∈ S∗ and IDi′ ∈ S;

(c) Odec(IDi, S
∗, c∗, RT ∗, C∗) for any IDi ∈ S∗;

(d) Ore(IDi, S
∗, S, c∗, RT ∗, C∗) and Osk(IDi′) for any IDi ∈ S∗, IDi′ ∈ S;

(e) Odecr(IDi, IDi′ , S
∗, S, c∗, RT ∗, CR) for any CR, IDi ∈ S∗, IDi′ ∈ S,

where (S, c∗, RT ∗, CR) is a derivative of (S∗, c∗, RT ∗, C∗). As of [8],
the derivative of (S∗, c∗, RT ∗, C∗) is defined as follows.

i. (S∗, c∗, RT ∗, C∗) is a derivative of itself.
ii. If A has issued a re-encryption key query on (IDi, S

∗, S, c∗, RT ∗)
to obtain rkIDi→S|RT∗,c∗ , and CR ← ReEnc(rkIDi→S|RT∗,c∗ , IDi,

S∗, S, c∗, RT ∗, C∗), then (S, c∗, RT ∗, CR) is a derivative of (S∗,
c∗, RT ∗, C∗), where IDi ∈ S∗.

iii. If A has issued a re-encryption query on (IDi, S
∗, S, c∗, RT ∗, C∗)

and obtained CR, then (S, c∗, RT ∗, CR) is a derivative of (S∗, c∗,
RT ∗, C∗).

6. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, A wins.

The advantage of A is ε = AdvIND−sID−CCA−OrTR−CPBRE,A (1λ, n) = |Pr[b′ = b]− 1
2 |.

We now proceed to the IND-CTCA security.

Definition 3. A (single-hop unidirectional) TR-CPBRE scheme is IND-CTCA-
secure at original ciphertext if the advantage AdvIND−CTCA−OrTR−CPBRE,A (1λ, n) is negli-
gible for any PPT adversary A in the following experiment. Set O = {Osk, Ork,
Ots, Ore, Odec, Odecr}.

AdvIND−CTCA−OrTR−CPBRE,A (1λ, n) = |Pr[b′ = b : (param,msk, skTS)← Setup(1λ, n);

(m0,m1, S
∗, RT ∗, c∗, State)← AO(param); b ∈R {0, 1};C∗ ← Enc(S∗, c∗, RT ∗,

mb); b
′ ← AO(C∗, State)]− 1

2
|,

where State is the state information, Osk,Ork,Ore,Odec,Odecr are the oracles
defined in Definition 2. Ots is the timed-release key extraction oracle that takes
as input a release time RT (except for the challenge release time RT ∗) and
outputs a timed-release key τ . The constraints for Odec and Odecr remain the
same as those in Definition 2, while there is no restriction for Osk and Ork.
Besides, Ore outputs ⊥ if it is queried on a re-encrypted ciphertext.

3 Preliminaries

Bilinear Maps. Let BSetup be an algorithm that on input the security parame-
ter λ, outputs the parameters of a bilinear map as (q, g, h,G1,G2,GT ,GT ′ , e, ē),
where G1, G2, GT and GT ′ are multiplicative cyclic groups of prime order q,
where |q| = λ, and g, h are random generators of G1 and G2, respectively. The
mappings e : G1 × G2 → GT and ē : G1 × G1 → GT ′ have three properties:
(1) Bilinearity : for all a, b ∈R Z∗q , e(ga, hb) = e(g, h)ab, e(ga, gb) = e(g, g)ab; (2)
Non-degeneracy : e(g, h) 6= 1GT , e(g, g) 6= 1GT ′ , where 1GT and 1GT ′ are the unit

9

of GT and GT ′ ; (3) Computability : e and ē can be efficiently computed.

The General Decisional Diffie-Hellman Exponent Assumption. We re-
view the general decisional Diffie-Hellman exponent problem in the symmet-
ric case so that G1 = G2 = G as in [17]. Let (q, g,G,GT , e) ← BSetup(1λ),
and set g1 = e(g, g) ∈ GT , where G,GT are two multiplicative cyclic groups
with prime order q and g ∈ G is a generator. Let s, n be positive integers
and P,Q ∈ Fq[X1, ..., Xn]s be two s-tuples of n-variate polynomials over Fq.
We write P = (p1, ..., ps), Q = (q1, ..., qs) and set p1 = q1 = 1. For any
function h : Fq → Ω and vector (x1, ..., xn) ∈ Fnq , h(P (x1, ..., xn)) denotes
(h(p1(x1, ..., xn)), ..., h(ps(x1, ..., xn))) ∈ Ωs. Note that a similar notation can be
used for Q. Let f ∈ Fq[X1, ..., Xn]. If there exists the following linear decompo-

sition: f =
∑

1≤i,j≤s
ai,jpipj +

∑
1≤i≤s

biqi, where ai,j , bi ∈ Zq. We say that

f depends on (P,Q), i.e. f ∈ 〈P,Q〉. The (P,Q, f)-General Decisional Diffie-
Hellman Exponent ((P,Q, f)-GDDHE) problem [17] is defined as follows. Note
that we let P,Q be as above and f ∈ Fq[X1, ..., Xn].

Definition 4. (P,Q,f)-GDDHE Assumption. Given the tuple H(x1, ...,

xn) = (gP (x1,...,xn), g
Q(x1,...,xn)
1) ∈ Gs ×GsT and T ∈R GT , the (P,Q,f)-GDDHE

problem is to decide whether T = g
f(x1,...,xn)
1 . Define Adv

(P,Q,f)−GDDHE
A =

|Pr[A(H(x1, ..., xn), g
f(x1,...,xn)
1) = 0] − Pr[A(H(x1, ..., xn), T) = 0]| as the ad-

vantage of A in wining the (P,Q,f)-GDDHE problem. We say that the (P,Q, f)-
GDDHE assumption holds in G if no PPT algorithm has non-negligible advan-
tage.

Definition 5. Bilinear Diffie-Hellman (BDH) Assumption [4]. Given
the tuple (g, ga, gb, gc) ∈ G4, the BDH problem is to compute e(g, g)abc, where
a, b, c ∈ Z∗q . Define AdvBDHA = Pr[A(g, ga, gb, gc) = e(g, g)abc] as the advantage
of A in winning the BDH problem. We say that the BDH assumption holds in
G if no PPT algorithm has non-negligible advantage.

Target Collision Resistant Hash Function. Target Collision Resistant (TCR)
hash function was introduced by Cramer and Shoup [16]. A TCR hash function
H guarantees that given a random element x which is from the valid domain
of H, a PPT adversary A cannot find y 6= x such that H(x) = H(y). We let
AdvTCRH,A = Pr[(x, y) ← A(1λ) : H(x) = H(y), x 6= y, x, y ∈ DH] be the advan-
tage of A in successfully finding collisions from a TCR hash function H, where
DH is the valid input domain of H. If a hash function is chosen from a TCR
hash function family, AdvTCRH,A is negligible.

4 A New TR-CPBRE Scheme

In this section, we start with a new CPBRE scheme which is considered as a
basic scheme for constructing a TR-CPBRE. The new scheme has two building
blocks: an IBBE [17] and a TCR hash function [16] where we employ the CHK

10

technique [7] using a TCR hash function to make a “signature” on the ciphertext
and including a “verifying key” in the ciphertext. To extend the new scheme
to a TR-CPBRE, we employ Boneh and Franklin (BF) IBE scheme [4], and
regard a release time as an identity and a timed-release key as the secret key
corresponding to the identity. We then use IBE to re-encrypt the ciphertext
output such that the decryption of the underlying plaintext requires two pieces
of secret information: one is the secret key of the delegatee generated in our
CPBRE, the other is the secret key of an identity generated in the IBE scheme.

Our technique is different from that of [14]. We begin with an IBBE scheme
which is used to construct a new CCA-secure CPBRE, then we propose a TR-
CPBRE by combining the new CPBRE with an IBE. In [14], Chu et al. started
with an HICBE [2] and extended the HICBE to a RCCA-secure CPBRE. In the
following, we provide the details of our construction.

1. Setup(1λ, n). Let c ∈ {0, 1}∗ be a condition and RT ∈ {0, 1}λ be a release
time. Choose γ, r̄ ∈R Z∗q , three generators g, g′ ∈ G1, h ∈ G2 and hash

functions: H0 : {0, 1}2λ → Z∗q , H1 : {0, 1}∗ → Z∗q , H2 : GT → {0, 1}2λ,

H3 : {0, 1}∗ → G1, H4 : {0, 1}∗ → G1, H5 : {0, 1}λ → Z∗q , H6 : {0, 1}∗ →
G1, H7 : {0, 1}λ → G1, H8 : GT ′ → {0, 1}2λ, H9 : {0, 1}4λ → Z∗q , H10 :

{0, 1}2λ → {0, 1}2λ. The master secret key is msk = (g′, γ), the public key
is param = (g, h, w, v, hγ , . . ., hγ

n

, H0, H1, H2, H3, H4, H5, H6, H7, H8,
H9, H10, TP), and the secret key of time server is skTS = r̄, where w = g′γ ,
v = e(g′, h) and TP = gr̄. Hereafter let s and s′ be two maximum numbers
of receivers in two identity sets S and S, respectively, where s ≤ n, s′ ≤ n.

2. KeyGen(msk, ID). Given msk = (g′, γ) and an identity ID, output the

secret key skID = g
′ 1
γ+H1(ID) .

3. TS(skTS , RT). Given skTS and a release time RT , output a timed-release
key τ = H7(RT)r̄.

4. Enc(S, c,RT,m). Choose α ∈R {0, 1}λ, σ ∈R {0, 1}2λ, compute k = H0(m,α),

set C1 = w−k, C2 = h
k·
∏s

i=1
(γ+H1(IDi))8, C3 = (m||α) ⊕ H2(e(g′, h)k),

C̄3 = C3 ⊕ H10(σ), C4 = H3(c, S,RT)k, C5 = H4(C1, C̄3, C4, C6, C7)k,
C6 = gk̄, C7 = σ⊕H8(ē(H7(RT), TP)k̄), and output C = (RT , C1, C2, C̄3,
C4, C5, C6, C7), where k̄ = H9(σ,C3), IDi ∈ S, m ∈ {0, 1}λ.

5. ReKeyGen(IDi, skIDi , S, S, c, RT). Choose ρ ∈R Z∗q , {θ, α′} ∈R {0, 1}λ,

compute k′ = H0(θ, α′), rk0 = sk
H5(θ)
IDi

· (H3(c, S,RT)ρ), rk1 = w−k
′
, rk2 =

h
k′·

∏s′

i′=1
(γ+H1(IDi′))

, rk3 = (θ||α′)⊕H2(e(g′, h)k
′
), rk4 = H6(RT , c, rk1,

rk2, rk3)k
′
, rk5 = h

ρ·
∏s

i=1
(γ+H1(IDi))

, and output the re-encryption key
rkIDi→S|RT,c = (rk0, rk1, rk2, rk3, rk4, rk5), where IDi ∈ S, IDi′ ∈ S.

6. ReEnc(rkIDi→S|RT,c, IDi, S, S, c, RT,C).

8 The encryptor can compute C2 with knowledge of param, k and S.

11

(1) Verify the validity of original ciphertext C

e(w−1, C2)
?
= e(C1, h

∏s

i=1
(γ+H1(IDi))

),

ē(w−1, C4)
?
= ē(C1, H3(c, S,RT)),

ē(w−1, C5)
?
= ē(C1, H4(C1, C̄3, C4, C6, C7)), IDi

?
∈ S.

(1)

If Eq. (1) does not hold, output ⊥. Otherwise, proceed.

(2) Compute C ′2 = e(rk0, C2)/e(C4, rk5), output CR = (RT , C1, C ′2, C̄3,
C4, C6, C7, rk1, rk2, rk3, rk4).

7. Dec(skIDi , IDi, S, c, RT,C, τ).

(1) Verify Eq. (1). If the equation does not hold, output ⊥. Otherwise, pro-
ceed.

(2) Compute σ = C7 ⊕H8(ē(τ, C6)), C3 = C̄3 ⊕H10(σ), e(g′, h)k = (e(C1,
hBi,s(γ))e(skIDi , C2))β , and m‖α = C3 ⊕H2(e(g′, h)k), where

β = 1∏s

j=1,j 6=i
H1(IDj)

, and Bi,s(γ) = 1
γ · (

∏s

j=1,j 6=i
(γ +H1(IDj)) −∏s

j=1,j 6=i
H1(IDj))

9. If C6 = gH9(σ,C3) and C1 = w−H0(m,α), output

m. Otherwise, output ⊥.

8. DecR(skIDi′ , IDi, IDi′ , S, S, c, RT,CR, τ).

(1) Compute e(g′, h)k
′

= (e(rk1, h
Bi′,s′(γ))e(skIDi′ , rk2))β

′
, and θ‖α′ = rk3⊕

H2(e(g′, h)k
′
), where β′ = 1∏s′

j′=1,j′ 6=i′
H1(IDj′)

, and Bi′,s′(γ) = 1
γ ·

(
∏s′

j′=1,j′ 6=i′
(γ +H1(IDj′))−

∏s′

j′=1,j′ 6=i′
H1(IDj′)).

(2) Verify

rk1
?
= w−H0(θ,α′), rk2

?
= h

H0(θ,α′)·
∏s′

i′=1
(γ+H1(IDi′))

,

rk4
?
= H6(RT, c, rk1, rk2, rk3)H0(θ,α′), IDi′

?
∈ S.

(2)

If Eq. (2) does not hold, output ⊥. Otherwise, proceed.

(3) Compute σ = C7 ⊕ H8(ē(τ, C6)) and C3 = C̄3 ⊕ H10(σ). If IDi ∈
S, compute M = (e(C1, h

Bi,s(γ))(C ′2)H5(θ)−1

)β ,m||α = C3 ⊕ H2(M),

where β = 1∏s

j=1,j 6=i
H1(IDj)

, Bi,s(γ) = 1
γ · (

∏s

j=1,j 6=i
(γ +H1(IDj)) −∏s

j=1,j 6=i
H1(IDj)). If C1 = w−H0(m,α), C4 = H3(c, S,RT)H0(m,α), and

C6 = gH9(σ,C3), output m. Otherwise, output ⊥.

9 With knowledge of param, IDi and S, the decryptor is able to compute hBi,s(γ) .
More details can be found in [17].

12

Correctness: It is easy to verify that the underlying plaintexts of the original
and re-encrypted ciphertexts can be recovered correctly if the ciphertexts are
computed via the description above. We hence skip the details.

Theorem 1. Suppose (P,Q, f)-GDDHE assumption holds, our TR-CPBRE
scheme for n receivers is IND-sID-CCA-secure at original ciphertext in the
random oracle model. If there is a PPT adversary A, who issues at most qHi
queries to Hi and breaks the (t̄, qsk, qrk, qre, qd2, qd1, ε)-IND-sID-CCA-Or se-
curity of our TR-CPBRE scheme, then we can construct a PPT adversary C to
solve the (t′, ε′)-(P,Q, f)-GDDHE problem with

ε′ ≥ 1

qH2

(
ε

2ė(1 + qrk)
− qH0 + (qH0 + qH2)(qd1 + qd2)

22λ
− 2(qd1 + qd2) + qre

q
),

t′ ≤ t̄+O(1)(qHi + qsk + qrk + qre + qd2 + qd1) + te(qsk + qH0
(2qre + 2qd2

+ 8qd1) + (2n+ 9)qrk + (3n+ 8)qre + (n+ 2)qd2 + (2n+ 4)qd1)

+ tp(7qre + 7qd2 + 2qd1),

where ė denotes the base of the natural logarithm, te denotes the running time of
an exponentiation, tp denotes the running time of a pairing, qsk, qrk, qre, qd2, qd1

denote the total number of secret key extraction queries, re-encryption key ex-
traction queries, re-encryption queries, the original and re-encrypted ciphertexts
decryption queries, respectively, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Please refer to Appendix A for the proof of Theorem 1.

Theorem 2. Suppose the BDH assumption holds and H7, H8, H9, H10 are TCR
hash functions, our TR-CPBRE scheme for n receivers is IND-CTCA-secure
at original ciphertext.

Please refer to Appendix B for the proof of Theorem 2.

5 Comparison

In this section we compare our scheme with [14] and [18] in terms of property and
efficiency. Two tables are listed in the following: Table 2 shows the comparison
of computational cost, and Table 3 shows the comparison of communication
complexity. We first define the notations and parameters used in the Tables. Let
|GR| and |Gt| denote the bit-length of an element in group G1 or G2, GT or
GT ′ , |svk| and |σ| denote the bit-length of the verification key and signature
of one time signature, λ denote the security parameter, tp, te, tv, ts denote the
computation cost of a bilinear pairing, an exponentiation, one verification and
one signature of a one-time signature, respectively. Suppose [14], [18] and our
scheme share the same number (N) of delegatees for each delegation; meanwhile,
assume the release time and identity set of the above schemes are the public
information such that they could be precluded from the ciphertext.

Table 1 generally shows that our scheme achieves all properties with CCA se-
curity under the (P,Q, f)-GDDHE assumption. Specifically, [14] is RCCA secure

13

under the decisional n-BDHE assumption [5], whereas our scheme is CCA se-
cure and additionally supports timed-release property. Compared to [18], which
is secure against RCCA under the 3-QDBDH assumption [22], our scheme pro-
vides conditional delegation and broadcast re-encryption without losing CCA
security. In conclusion, our scheme enables the delegator to implement a more
fine-grained delegation of decryption rights in cloud storage systems where CCA
security is required, but its security relies on random oracles. The problem of
proposing a TR-CPBRE scheme with CCA security in the standard model re-
mains open.

Table 2. Computation Cost Comparison

Schemes
Computation Cost

Enc ReEnc Dec DecR ReKey

CPBRE [14] (N + 6)te + tp (N + 3)te + 6tp 2Nte + 8tp (4N − 1)te + 20tp (N + 7)te + tp

TR-PRE [18] ts + 10te + 4tp (4te + tv)N + 2Ntp 5te + tv + 5tp 5te + tv + 7tp Nte

Our scheme (N + 8)te + 2tp (N + 1)te + 8tp (2N + 4)te + 9tp (3N + 9)te + 4tp (2N + 9)te + tp

From Table 2, we see that [14] suffers from the largest number of pairings
and [18] suffers from O(N) complexity in pairings. Compared with [14], our
TR-CPBRE requires one additional tp in Enc and Dec, and 2tp in ReEnc,
respectively, but significantly reduces the number of pairings (16tp) in DecR
without requiring more pairings with regard to ReKey. As opposed to [18], our
scheme achieves a constant cost of parings in ReEnc, and has the same number
of pairings in the sum of cost of other metrics (except for ReKey). In conclusion,
our scheme requires less number of pairings when compared with [14] and [18].

Table 3. Communication Cost Comparison

Schemes
Ciphertexts and Re-Encryption Key Length

Re-Encrypted Ciphertext Original Ciphertext ReKey

CPBRE [14] 10|GR| + 2|Gt| 4|GR| + |Gt| 5|GR| + |Gt|

TR-PRE [18] (N + 4)|GR| + 3|Gt| + |svk| + |σ| 3|GR| + 3|Gt| + |svk| + |σ|) N|GR|

Our scheme 5|GR| + 2|2λ| 6|GR| + |Gt| + 3|2λ| 5|GR| + |2λ|

Table 3 shows that [14] achieves the smallest number of group elements in
ciphertext, while [18] suffers from linear cost in ciphertext and ReKey. When
compared with [14], our scheme reduces 3 elements in GR and Gt, respectively.
The number of group elements of our scheme in ciphertext is less than that
of [18]; meanwhile, the cost of our scheme is constant. In ReKey our TR-CPBRE

14

and [14] need one additional group of elements compared to [18]. It is worth
mentioning that, when compared with [18], [14] and our scheme enjoy better
efficiency in communication as N increases.

6 Concluding Remarks

In this paper, we introduced a new variant of PRE, named TR-CPBRE, which
achieves conditional delegation, broadcast re-encryption and timed-release prop-
erty simultaneously. To the best of our knowledge, our TR-CPBRE is the first
of its kind. We also showed that our scheme can be proved IND-sID-CCA secure
in the random oracle model under the (P,Q, f)-GDDHE assumption. Moreover,
when compared with the existing CPBRE and TR-PRE schemes, our scheme
not only requires less number of pairings and achieves better efficiency in com-
munication, but also enables the delegator to make a fine-grained delegation of
decryption rights to multiple delegatees without losing CCA security.

This paper also motivates some interesting open problems, for example, how
to construct a CCA-secure TR-CPBRE scheme in the adaptive identity model,
i.e. achieving IND-aID-CCA security.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM TISSEC 9(1), 1–30
(2006)

2. Attrapadung, N., Furukawa, J., Imai, H.: Forward-secure and searchable broadcast
encryption with short ciphertexts and private keys. In: ASIACRYPT ’06. LNCS,
vol. 4284, pp. 161–177. Springer (2006)

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: EUROCRYPT ’98. pp. 127–144. Springer (1998)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
CRYPTO ’01. LNCS, vol. 2139, pp. 213–229. Springer (2001)

5. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) Advances in Cryptology
CRYPTO 2005, LNCS, vol. 3621, pp. 258–275. Springer (2005), http://dx.doi.
org/10.1007/11535218_16

6. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM conference on Computer and com-
munications security. pp. 211–220. CCS ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1180405.1180432

7. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Eurocrypt ’04. LNCS, vol. 3027, pp. 207–222. Springer (2004)

8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM conference on Computer and communications secu-
rity. pp. 185–194. CCS ’07, ACM, New York, NY, USA (2007), http://doi.acm.
org/10.1145/1315245.1315269

9. Canetti, R., Krawczyk, H., Nielsen, J.: Relaxing chosen-ciphertext security. In:
CRYPTO ’03. LNCS, vol. 2729, pp. 565–582. Springer (2003)

http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/11535218_16
http://doi.acm.org/10.1145/1180405.1180432
http://doi.acm.org/10.1145/1315245.1315269
http://doi.acm.org/10.1145/1315245.1315269

15

10. Cathalo, J., Libert, B., Quisquater, J.J.: Efficient and non-interactive timed-release
encryption. In: Qing, S., Mao, W., Lpez, J., Wang, G. (eds.) Information and
Communications Security, LNCS, vol. 3783, pp. 291–303. Springer (2005), http:
//dx.doi.org/10.1007/11602897_25

11. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved anonymous timed-
release encryption. In: Biskup, J., Lpez, J. (eds.) Computer Security ESORICS
2007, LNCS, vol. 4734, pp. 311–326. Springer (2007), http://dx.doi.org/10.

1007/978-3-540-74835-9_21

12. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public
key encryption. ACM TISS. 11(2) (2008)

13. Chow, S.S., Yiu, S.: Timed-release encryption revisited. In: Baek, J., Bao, F., Chen,
K., Lai, X. (eds.) Provable Security, LNCS, vol. 5324, pp. 38–51. Springer (2008),
http://dx.doi.org/10.1007/978-3-540-88733-1_3

14. Chu, C.K., Weng, J., Chow, S.S., Zhou, J., Deng, R.H.: Conditional proxy broad-
cast re-encryption. In: ACISP ’09. LNCS, vol. 5594, pp. 327–342. Springer (2009)

15. Coron, J.S.: On the exact security of full domain hash. In: CRYPTO ’00. LNCS,
vol. 1880, pp. 229–235. Springer (2000)

16. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (January 2004)

17. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: ASIACRYPT ’07. LNCS, vol. 4833, pp. 200–215. Springer
(2007)

18. Emura, K., Miyaji, A., Omote, K.: A timed-release proxy re-encryption scheme.
IEICE Transactions 98-A(8), 1682–1695 (2011)

19. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D. (ed.) Advances in
Cryptology CRYPTO 93, LNCS, vol. 773, pp. 480–491. Springer (1994), http:
//dx.doi.org/10.1007/3-540-48329-2_40

20. Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R., Zhao, Y.:
Generic construction of chosen ciphertext secure proxy re-encryption. In: CT-RSA
’12. LNCS, vol. 7178, pp. 349–364. Springer (2012)

21. Kikuchi, R., Fujioka, A., Okamoto, Y., Saito, T.: Strong security notions for timed-
release public-key encryption revisited. In: Kim, H. (ed.) Information Security and
Cryptology - ICISC 2011, LNCS, vol. 7259, pp. 88–108. Springer (2012), http:

//dx.doi.org/10.1007/978-3-642-31912-9_7

22. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: PKC’08. PKC’08, vol. 4939, pp. 360–379. Springer (2008)

23. Matsuda, T., Nakai, Y., Matsuura, K.: Efficient generic constructions of timed-
release encryption with pre-open capability. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing-Based Cryptography - Pairing 2010, LNCS, vol. 6487, pp. 225–245.
Springer (2010), http://dx.doi.org/10.1007/978-3-642-17455-1_15

24. May, T.: Timed-release cryptography (February, 1993), unpublished manuscript,
available at http://www.hks.net.cpunks/cpunks-0/1560.html

25. Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A generic construction of timed-
release encryption with pre-open capability. In: Takagi, T., Mambo, M. (eds.) Ad-
vances in Information and Computer Security, LNCS, vol. 5824, pp. 53–70. Springer
(2009), http://dx.doi.org/10.1007/978-3-642-04846-3_5

26. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Tech. rep., Cambridge, MA, USA (1996)

http://dx.doi.org/10.1007/11602897_25
http://dx.doi.org/10.1007/11602897_25
http://dx.doi.org/10.1007/978-3-540-74835-9_21
http://dx.doi.org/10.1007/978-3-540-74835-9_21
http://dx.doi.org/10.1007/978-3-540-88733-1_3
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-642-31912-9_7
http://dx.doi.org/10.1007/978-3-642-31912-9_7
http://dx.doi.org/10.1007/978-3-642-17455-1_15
http://dx.doi.org/10.1007/978-3-642-04846-3_5

16

A Proof of Theorem 1

Proof. Suppose there exists an adversary A who can break the IND-sID-CCA-
Or security of TR-CPBRE. We then construct a reduction algorithm C to decide

whether T = g
f(x1,...,xn)
1 or T ∈R GT . C is given as input a (f, g, F)-GDDHE

instance, i.e., (g0, g
γ
0 , ..., gγ

t−1

0 , g
γ·f(γ)
0 , g

k·γ·f(γ)
0 , h0, h

γ
0 , ..., h

γ2n

0 , h
k·g(γ)
0) and T ∈

GT , where g0 is a generator of G1, h0 is a generator of G2, f and g are two
coprime polynomials with pairwise distinct roots, of respective orders t (which
is the number of the secret keys generated in the simulation) and n (which
is the maximum size of a set of receivers), T is either equal to e(g0, h0)k·f(γ)

or to T ′ ∈R GT . Here we define some notations for polynomials used in the

following proof. We denote f(X) =
∏t

i=1
(X + xi), g(X) =

∏t+n

i=t+1
(X + xi),

fi(x) = f(x)
x+xi

, gj(x) = g(x)
x+xj

, where i ∈ {1, ..., t}, j ∈ {t + 1, ..., t + n}, deg

fi(x) = t− 1 and deg gj(x) = n− 1.

1. Initialization. A outputs S∗ = {ID∗1 , ..., ID∗s}, where s ≤ n.

2. Setup. C sets g′ = g
f(γ)
0 (g′ cannot be computed by C), h = h

∏t+n

i=t+s+1
(γ+xi)

0 ,

w = g
γ·f(γ)
0 = g′γ and v = e(g0, h0)

f(γ)·
∏t+n

i=t+s+1
(γ+xi)

= e(g′, h), chooses
a generator g ∈R G1 and a r̄ ∈R Z∗q , computes TP = gr̄, and sends

param = (g, h, w, v, hγ , ..., hγ
n

, Hj , TP) and r̄ to A, where j ∈ {0, ..., 10}
and xi = H1(IDi), i ∈ {t + s + 1, ..., t + n}. At any time, A can adaptively
query the random oracles Hj (j ∈ {0, ..., 10}) which are controlled by C. C
maintains the lists HList

j (j ∈ {0, ..., 10}) which are initially empty (except

for HList
1) and answers the queries as follows.

(a) H0: on receipt of an H0 query on (m,α), if there is a tuple (m,α, k) in
HList

0 , C forwards the predefined value k to A, where k ∈ Z∗q . Otherwise,
C sets H0(m,α) = k, responds k to A and adds the tuple (m,α, k) to
HList

0 , where k ∈R Z∗q .
(b) H1: on receipt of an H1 query on IDi ∈ {0, 1}∗, if there is a tu-

ple (IDi, xi) in HList
1 , C forwards the predefined value xi to A, where

xi ∈ Z∗q . Otherwise, C sets H1(IDi) = xi, responds xi to A and adds

the tuple (IDi, xi) to HList
1 , where xi ∈R Z∗q . Note that H1 contains

{(∗, xi)}ti=1, {(ID∗i , xi)}
t+s
i=t+1 at the beginning, where ID∗i ∈ S∗, ∗ is an

empty entry in HList
1 .

(c) H2: on receipt of an H2 query on R ∈ GT , if there is a tuple (R, δ1)
in HList

2 , C forwards the predefined value δ1 to A, where δ1 ∈ {0, 1}2λ.
Otherwise, C sets H2(R) = δ1, responds δ1 to A and adds the tuple
(R, δ1) to HList

2 , where δ1 ∈R {0, 1}2λ.
(d) H3: on receipt of an H3 query on (c, S,RT), if there is a tuple (c, RT ,

S, coini1 , coini2 , δ2, ξ1) in HList
3 , C forwards the predefined value ξ1 to

A, where ξ1 ∈ G1. Otherwise, C uses the Coron’s technique [15] to flip
a biased coinij ∈ {0, 1} such that Pr[coinij = 0] = ϑ and Pr[coinij =

17

1] = 1 − ϑ, where j ∈ {1, 2}, ϑ will be determined later. If coini1 = 1

and coini2 = 1 (and S = S∗), set ξ1 = g
γ·f(γ)·δ2
0 ; otherwise, set ξ1 =

gδ20 , where δ2 ∈R Z∗q . Then, C responds ξ1 to A and adds the tuple

(c,RT, S, coini1 , coini2 , δ2, ξ1) to HList
3 .

(e) H4: on receipt of an H4 query on (C1, C̄3, C4, C6, C7), if there is a tuple
(C1, C̄3, C4, C6, C7, δ3, ξ2) in HList

4 , C forwards the predefined value ξ2
to A, where ξ2 ∈ G1. Otherwise, C sets ξ2 = g

γ·f(γ)·δ3
0 , responds ξ2 to A

and adds the tuple (C1, C̄3, C4, C6, C7, δ3, ξ2) to HList
4 , where δ3 ∈R Z∗q .

(f) H5: on receipt of an H5 query on θ ∈ {0, 1}λ, if there is a tuple (θ, δ4) in
HList

5 , C forwards the predefined value δ4 toA, where δ4 ∈ Z∗q . Otherwise,

C sets H5(θ) = δ4, responds δ4 to A and adds the tuple (θ, δ4) to HList
5 ,

where δ4 ∈R Z∗q .
(g) H6: on receipt of an H6 query on (RT, c, rk1, rk2, rk3), if there is a tuple

(RT, c, rk1, rk2, rk3, δ5, ξ3) in HList
6 , C forwards the predefined value ξ3

to A, where ξ3 ∈ G1. Otherwise, C sets ξ3 = gδ50 , where δ5 ∈R Z∗q .
Then, C responds ξ3 to A and adds the tuple (RT, c, rk1, rk2, rk3, δ5, ξ3)
to HList

6 .

(h) H7: on receipt of an H7 query on RT ∈ {0, 1}λ, if there is a tuple
(RT, δ6, ξ4) in HList

7 , C forwards the predefined value ξ4 to A, where
ξ4 ∈ G1. Otherwise, C sets ξ4 = gδ60 , where δ6 ∈R Z∗q , responds ξ4 to A
and adds the tuple (RT, δ6, ξ4) to HList

7 .

(i) H8: on receipt of an H8 query on R̄ ∈ GT ′ , if there is a tuple (R̄, δ7)
in HList

8 , C forwards the predefined value δ7 to A, where δ7 ∈ {0, 1}2λ.
Otherwise, C sets H8(R̄) = δ7, responds δ7 to A and adds the tuple
(R̄, δ7) to HList

8 , where δ7 ∈R {0, 1}2λ.

(j) H9: on receipt of an H9 query on (σ,C3), if there is a tuple (σ,C3, k̄) in
HList

9 , C forwards the predefined value k̄ to A, where k̄ ∈ Z∗q . Otherwise,

C sets H9(σ,C3) = k̄, responds k̄ to A and adds the tuple (σ,C3, k̄) to
HList

9 , where k̄ ∈R Z∗q .
(k) H10: on receipt of an H10 query on σ ∈ {0, 1}2λ, if there is a tuple (σ, δ8)

in HList
10 , C forwards the predefined value δ8 to A, where δ8 ∈ {0, 1}2λ.

Otherwise, C sets H10(σ) = δ8, responds δ8 to A and adds the tuple
(σ, δ8) to HList

10 , where δ8 ∈R {0, 1}2λ.

In addition, C also maintains the following lists which are initially empty.

(a) SKT : records the tuples (IDi, skIDi), which are the results of the queries
to Osk(IDi).

(b) RKT : records the tuples (RT , c, IDi, S, S, rk0, rk5, Cθ, θ, tag1, tag2,
tag3), which are the results of the queries to Ork(IDi, S, S, c, RT),
where tag1, tag2, tag3 denote that the re-encryption key is randomly cho-
sen, generated in Ore or in Ork, respectively. Note that rkIDi→S|RT,c =

(rk0, Cθ, rk5), where Cθ = (rk1, rk2, rk3, rk4).

(c) RET : records the tuples (CR, IDi, S, S, c, RT, tag1, tag2, tag3), which are
the results of the queries to Ore(IDi, S, S, c, RT , C), where tag1, tag2,
tag3 denote that CR is re-encrypted under a valid re-encryption key, un-

18

der a random re-encryption key or generated without any re-encryption
key.

3. Phase I. A issues a series of queries to which C responds as follows.
(a) Osk(IDi): C generates the secret key skIDi for A as follows:

– If IDi ∈ S∗, C aborts due to the restrictions defined in Definition 2.
– Otherwise,

i. If (IDi, skIDi) ∈ SKT , C returns skIDi to A.
ii. Otherwise, C checks whether there is a tuple (IDi, xi) in HList

1 .

If yes, C generates the secret key skIDi = g
fi(γ)
0 , and sends

skIDi to A. The secret key is valid since g
fi(γ)
0 = g

f(γ)
γ+xi
0 =

g
′ 1
γ+H1(IDi) . Then, C adds (IDi, skIDi) to SKT . Otherwise, C

first sets H1(IDi) = xi, next generates and sends the secret key
skIDi to A exactly as above, where xi ∈R Z∗q . Finally, C com-

pletes SKT and HList
1 for (IDi, skIDi) and (IDi, xi), respec-

tively.
(b) Ork(IDi, S, S, c,RT): If there is a tuple (RT, c, IDi, S, S, rk0, rk5,

Cθ, θ, ∗, 0, 1) in RKT , C returns rkIDi→S|RT,c to A. Otherwise, C first

recovers (c, RT , S, coini1 , coini2 , δ2, ξ1) from HList
3 , and proceeds:

– If (IDi, skIDi) ∈ SKT , C first checks whether there is a tuple (RT, c,
IDi, S, S, rk0, rk5, Cθ, θ, 0, 1, 0) in RKT , where IDi ∈ S. If
yes, C responds rkIDi→S|RT,c to A and sets tag1 = 0, tag2 = 0,

tag3 = 1. Otherwise, C first chooses θ ∈R {0, 1}λ, α′ ∈R {0, 1}λ,

ρ ∈R Z∗q , computes rk0 = g
fi(γ)·δ4
0 · ξρ1 and rk5 = h

ρ·
∏s̄

i=1
(γ+xi)

,

where δ4 = H5(θ), ξ1 = gδ20 , xi = H1(IDi) and s̄ = |S|. Here rk0

is valid since rk0 = g
fi(γ)·δ4
0 · gδ2·ρ0 = g

′ H5(θ)

(γ+H1(IDi)) · (H3(c, S,RT)ρ).
Then, C computes Cθ as in the real scheme, sends the re-encryption
key to A and adds (RT, c, IDi, S, S, rk0, rk5, Cθ, θ, 0, 0, 1) to RKT .

– If (IDi, skIDi) /∈ SKT ∧ coini1 = coini2 = 1:
i. If IDi ∈ S∗ ∧ (IDi′ , skIDi′) ∈ SKT , C aborts, where IDi′ ∈ S.

ii. If IDi ∈ S∗ ∧ (IDi′ , skIDi′) /∈ SKT , C checks whether there

is a tuple (RT, c, IDi, S, S, rk0, rk5, Cθ, θ, 1, 1, 0) in RKT .
If yes, C returns the key rkIDi→S|RT,c to A and sets tag1 = 1,

tag2 = 0, tag3 = 1. Otherwise, C chooses θ, α′ ∈R {0, 1}λ and
computes Cθ as in the real scheme. Then, C chooses a generator
ḡ1 ∈R G1 and a ρ ∈R Z∗q , computes δ4 = H5(θ) and rk0 = ḡ1

δ4ξρ1 ,

rk5 = h
ρ·
∏s̄

i=1
(γ+xi)

, where xi = H1(IDi), ξ1 = g
γ·f(γ)·δ2
0 and

s̄ = |S|. C sends the re-encryption key to A and adds (RT , c,
IDi, S, S, rk0, rk5, Cθ, θ, 1, 0, 1) to RKT .

iii. Otherwise, C generates the re-encryption key as above paragraph
except that rk0 = ḡ1

δ4 · gδ2·ρ0 .
(c) Ore(IDi, S, S, c, RT,C): C checks whether Eq. (1) holds. If not, output⊥.

Else, C recovers (c,RT, S, coini1 , coini2 , δ2, ξ1) from HList
3 and proceeds:

19

– If (coini1 = coini2 = 1∧ IDi ∈ S∗ ∧ (IDi′ , skIDi′) ∈ SKT) does not

hold, C constructs the re-encryption key as step (b) and proceeds.
i. If (IDi, skIDi) ∈ SKT , C adds (RT, c, IDi, S, S, rk0, rk5, Cθ,
θ, 0, 1, 0) and (CR, IDi, S, S, c, RT , 1, 0, 0) to RKT and RET ,
respectively.

ii. Otherwise, C adds (RT, c, IDi, S, S, rk0, rk5, Cθ, θ, 1, 1, 0) and
(CR, IDi, S, S, c, RT , 0, 1, 0) to RKT and RET , respectively.

– Otherwise, C checks whether there is a tuple (m, α, k) in HList
0 such

that C1 = w−k. If no such tuple exists, C outputs ⊥. Otherwise,
C checks whether there is a tuple (RT ∗, c∗, IDi, S

∗, S, ⊥, ⊥, Cθ,
θ, ⊥, 1, ⊥) in RKT . If no, C choses a new θ ∈R {0, 1}λ, gener-
ates Cθ under S as in the real scheme and computes C ′2 as C ′2 =

(vk·β
−1

e(g
−γ·f(γ)
0 ,h

Bi,s̄(γ))k
)H5(θ), where s̄ = |S|, β = 1∏s̄

j=1,j 6=i
H1(IDj)

. Fi-

nally, C outputs CR to A and adds (RT ∗, c∗, IDi, S
∗, S, ⊥, ⊥, Cθ,

θ, ⊥, 1, ⊥) and (CR, IDi, S, S, c, RT , 0, 0, 1) to RKT and RET ,
respectively.

(d) Odec(IDi, S, c, RT,C): C first verifies whether Eq. (1) holds. If not, C
outputs ⊥. Otherwise, C recovers the plaintext m as follows.
– If (IDi, skIDi) ∈ SKT , C recovers m using skIDi as in the real

scheme.
– Otherwise, C checks whether the tuple (m,α, k) is in HList

0 and the
tuple (R, δ1) is in HList

2 such that C1 = w−k, C̄3⊕H10(σ) = (m||α)⊕
δ1, and R = e(g′, h)k. Recall that C can compute τ , and recover
σ from C6, C7. If no such tuples exist, C outputs ⊥. Otherwise, C
returns m to A.

(e) Odecr(IDi, IDi, S, S, c, RT,CR): C recovers the plaintext m as follows:
– If (((CR, IDi, S, S, c, RT, 1, 0, 0) ∈ RET ∨ (CR, IDi, S, S, c, RT , 0,

0, 1) ∈ RET) ∧ (IDi′ , skIDi′) ∈ SKT), C recovers m using skIDi′ ,

where IDi′ ∈ S.
– If ((CR, IDi, S, S, c, RT, 1, 0, 0) ∈ RET ∧ (IDi′ , skIDi′) /∈ SKT) or
A generates CR using the re-encryption key which is generated cor-
rectly by itself, C checks whether there exist two tuples (m,α, k),
(θ, α′, k′) in HList

0 and two tuples (R, δ1), (R′, δ′1) in HList
2 , such that

C1 = w−k, C ′2 = (Rβ
−1

e(w−1,h
Bi,s̄(γ))k

)H5(θ), C̄3 ⊕H10(σ) = (m||α) ⊕ δ1,

C4 = H3(c, S,RT)k, rk1 = w−k
′
, rk2 = h

k′·
∏s′

i′=1
(γ+H1(IDi′))

,
rk3 = (θ||α′) ⊕ δ′1, rk4 = H6(RT , c, rk1, rk2, rk3)k

′
, R = e(g′, h)k

and R′ = e(g′, h)k
′
, where s̄ = |S|, s′ = |S|. Recall that C can com-

pute τ , and recover σ from C6, C7. If no such tuples exist, C outputs
⊥. Otherwise, C sends m to A.

– Otherwise, C recovers m as above paragraph except that C needs to
recover the random re-encryption key rkIDi→S|RT,c from RKT , and

verifies whether C ′2 is correctly constructed from rk0, rk5, C2 and

20

C4. Despite C2 is not included in CR, it can be reconstructed by C
with knowledge of k.

4. Challenge. When A decides that Phase I is over, it outputs m0,m1, c∗,
RT ∗ to C. C responds as follows.
(a) Recover (c∗, RT ∗, S∗, coini∗1 , coini∗2 , δ

∗
2 , ξ
∗
1) from HList

3 . If coini∗ 6= 1, and
coini∗2 6= 1, C aborts. Otherwise, C proceeds.

(b) Compute C∗1 = g
−k·γ·f(γ)
0 and C∗2 = h

k·g(γ)
0 .

(c) Flip a random coin b ∈ {0, 1}, choose α∗ ∈R {0, 1}λ, σ∗ ∈R {0, 1}2λ,

C̄3
∗ ∈R {0, 1}2λ, implicitly define C∗3 = C̄∗3⊕H10(σ∗),H2(T

∏t+n

i=t+s+1
xi
·

e(g
k·γ·f(γ)
0 , h

q(γ)
0)) = C∗3⊕(mb||α∗), where q(γ) = 1

γ ·(
∏t+n

i=t+s+1
(γ + xi)−∏t+n

i=t+s+1
xi) and xi = H1(IDi).

(d) Compute k̄∗ = H9(σ∗, C∗3), C∗6 = gk̄
∗

and C∗7 = σ∗⊕H8(ē(H7(RT ∗), TP)k̄
∗
).

(e) Define C∗4 = (g
k·γ·f(γ)
0)δ

∗
2 . Issue an H4 query on (C∗1 , C̄

∗
3 , C

∗
4 , C

∗
6 , C

∗
7) to

achieve the tuple (C∗1 , C̄
∗
3 , C

∗
4 , C

∗
6 , C

∗
7 , δ
∗
3 , ξ
∗
2), and define C∗5 = (g

k·γ·f(γ)
0)δ

∗
3 .

(f) Output the challenge ciphertext C∗ = (RT ∗, C∗1 , C
∗
2 , C̄

∗
3 , C

∗
4 , C

∗
5 , C

∗
6 , C

∗
7).

If T = e(g0, h0)k·f(γ), C∗ is a valid ciphertext. Implicitly lettingH0(mb, α
∗) =

k, one can verify that

C∗1 = g
−k·γ·f(γ)
0 = w−k, C∗2 = h

k·g(γ)
0 = h

k·
∏t+n

i=t+s+1
(γ+xi)·

∏t+s

i=t+1
(γ+xi)

0

= h
k·
∏t+s

i=t+1
(γ+H1(ID∗i))

,

C̄∗3 = C̄∗3 ⊕ (H10(σ∗)⊕ (mb||α∗))⊕ (H10(σ∗)⊕ (mb||α∗))

= H2(T

∏t+n

i=t+s+1
xi
· e(gk·γ·f(γ)

0 , h
q(γ)
0))⊕ (mb||α∗)⊕H10(σ∗)

= (mb||α∗)⊕H2(e(g′, h)k)⊕H10(σ∗),

C∗4 = (g
k·γ·f(γ)
0)δ

∗
2 = (g

γ·f(γ)·δ∗2
0)k = H3(c∗, S∗, RT ∗)k,

C∗5 = (g
k·γ·f(γ)
0)δ

∗
3 = (g

γ·f(γ)·δ∗3
0)k = H4(C∗1 , C̄

∗
3 , C

∗
4 , C

∗
6 , C

∗
7)k.

However, if T = T ′ ∈R GT , the challenge ciphertext is independent of the
bit b in the view of A.

5. Phase II. A continues issuing queries as in Phase I with the constraints
defined in Definition 2.

6. Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b, C outputs 1 (i.e. deciding
T = e(g0, h0)k·f(γ)); otherwise, C outputs 0 (i.e. deciding T = T ′).

The advantage of C against the (P,Q, f)-GDDHE assumption is at least

ε′ ≥ 1

qH2

(AdvTCRH∗2 ,A
)

≥ 1

qH2

(
ε

2ė(1 + qrk)
− qH0

+ (qH0
+ qH2

)(qd1
+ qd2

)

22λ
− 2(qd1

+ qd2
) + qre

q
),

21

and the running time of C is bounded by

t′ ≤ t̄+O(1)(qHi + qsk + qrk + qre + qd2 + qd1) + te(qsk + qH0
(2qre + 2qd2

+ 8qd1) + (2n+ 9)qrk + (3n+ 8)qre + (n+ 2)qd2 + (2n+ 4)qd1)

+ tp(7qre + 7qd2 + 2qd1).

This completes the proof of Theorem 1. 2

B Proof of Theorem 2

Proof. Suppose the BF IBE scheme [4] is CCA secure under the BDH assump-
tion. We use the challenger C′ of the BF IBE scheme in a black box man-
ner. Here we separate the ciphertext into two parts: one is the CPBRE part
(i.e. C1, C2, C3, C4, C5), and the other is the TRE part (i.e. RT, C̄3, C6, C7).
C is able to generate public parameters and secret keys (of CPBRE), and re-
sponse the queries to Osk, Ork and Ore correctly. When A issues a query to
Odec or Odecr, C first decrypts the ciphertext of CPBRE part using the corre-
sponding secret key, next forwards the result to C′ and receives σ which can
be used to recover the plaintext. For the queries of timed-release keys to Ots,
C can response with the help of C′. In the challenge phase, C first generates
((m0||α∗)⊕H2(e(g′, h)k

∗
), (m1||α∗)⊕H2(e(g′, h)k

∗
)) as the challenge messages

for C′. After receiving the challenge ciphertext of BF IBE scheme output by
C′, C adds the rest CPBRE part to the ciphertext, and outputs the resulting
ciphertext as challenge for A. Finally, C outputs whatever A outputs.

This completes the proof of Theorem 2. 2

	A Conditional Proxy Broadcast Re-Encryption Scheme Supporting Timed-Release

