
SAND 2013-1418 C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Speed Optimized Implementations of the QUAD Algorithm

Jason Hamlet and Robert Brocato

Sandia National Laboratories

jrhamle@sandia.gov, rwbroca@sandia.gov

Abstract

We present several software and hardware implementations of QUAD, a recently introduced stream

cipher designed to be provably secure and practical to implement. The software implementations target

both a personal computer and an ARM microprocessor. The hardware implementations target field

programmable gate arrays. The purpose of our work was to first find the baseline performance of QUAD

implementations, then to optimize our implementations for throughput. Our software implementations

perform comparably to prior work. Our hardware implementations are the first known implementations

to use random coefficients, in agreement with QUAD’s security argument, and achieve much higher

throughputs than prior implementations.

Keywords: QUAD, stream cipher, throughput optimization, hardware acceleration

1. Introduction

The QUAD algorithm is a stream cipher proposed by Berbain, Gilbert, and Patarin and is intended to be

provably secure and practical to implement [1]. QUAD’s security is derived from the difficulty of solving

the multi-variate quadratic (MQ) problem. That is, the security of the QUAD cipher is provably reducible

to the NP-hard problem of finding a solution to a multivariate quadratic system of m quadratic

equations in n variables over a finite field, GF(q). In this paper, we report on our efforts to measure

computational performance of the QUAD algorithm on a personal computer (PC), an ARM Cortex A8

embedded microprocessor, and an Altera Cyclone V field programmable gate array (FPGA). We

implemented the QUAD algorithm with a number of different variations on each platform in an effort to

optimize performance on each. The standard measure of performance that we seek to optimize

throughout these tests is the rate of keystream production, measured in bits/second.

Each equation in the system of kn multivariate quadratic equations used in QUAD is written as

 () ∑ ∑ (1)

In this work we consider only n=128, k=2, and coefficients in GF(2). While implementations of QUAD for

fields larger than GF(2) are possible, they have been shown to be insecure [2]. The solution to equation

(1) is the m=256 bit value S(x)=(Q1(x), …,Q256(x)). Values Sout(x)=(Q129(x),…,Q256(x)) are output as the

keystream, and values Sit(x)=(Q1(x),…,Q128(x)) are used to update the internal state. The and 

coefficients are random but public values. There are ((

)) bits of , which we term

nonlinear coefficients, bits of linear coefficients , and 256 bits of , for a total of

2,113,792 bits. QUAD’s security argument requires these coefficients to be chosen randomly, and its

designers state that “bad” choices of coefficients are unlikely, though this has not been proven [1]. The

coefficients used in our implementations were generated using the random number generator in

OpenSSL [3].

2. Software Implementations

Using the C programming language, we implemented four different software versions of QUAD. Each

version used the same random coefficients. For each version we targeted both a personal computer and

an ARM microprocessor and measured the resulting throughputs, which vary significantly between

implementations. In this section we describe each of the implementations and our results.

2.1. Software Implementation: Overview

The initialization used in all of our software and hardware implementations of the QUAD algorithm

differs from that presented in [1]. The original Eurocrypt paper describes an initialization procedure that

uses two different multivariate quadratic systems, S0 and S1, of n equations in n unknowns. The internal

state x, which has been set to an initial value K, is used to select either the output of S0(x) or of S1(x),

depending on the sequentially selected value of the internal state. However, this approach is non-

standard and has been removed from cryptographic standards that include QUAD [4]. For our software

implementations we simply make a call to the Unix function /dev/random to provide an entropy source

to seed the internal state of the algorithm. In practice, one might concatenate the output of an entropy

source with a personalization string and then apply a cryptographic hash function to the result to seed

the internal state of the algorithm. For the purpose of this work initialization approaches are

inconsequential, since we have removed the effects of that delay from our throughput time

measurements. Consequently, the initialization can be viewed as an initial delay that is identical

between implementations and whose impact decreases as the length of the generated keystream

increases.

Each of our software implementations uses a 256-bit internal state with a 128-bit keystream output for

each update cycle. We tested these programs on both a PC and an ARM microprocessor. The PC used

for testing has a 3.0GHz Intel Core 2 Duo processor with 6 Mbytes of cache memory and 8 Gbytes of

random access memory (RAM) running Red Hat Enterprise Linux version 5. We compiled our code with

the Gnu compiler version 4.1.2. We also ran each program on a Cortex A8 ARM core that is part of a

DaVinci DM3730 microprocessor. The ARM microprocessor is almost certainly the most commonly used

microprocessor in the world, operating in 95% of all smartphones, 90% of all hard disk drives, and 40%

of all digital televisions and set-top boxes [5]. The DM3730 microprocessor has an additional C64x

digital signal processor (DSP) core. We attempted to compile our programs to run on the DSP core, but

we had insufficient development time to replace the key C language functions used to measure

algorithm execution times. Consequently, our reported speeds are limited to the PC and the ARM

microprocessor.

2.2. Software Implementation: Results

2.2.1. QUAD1

Our first software implementation, QUAD1, computes the internal state value and keystream output by

means of the most computationally simplistic approach. It was used to derive test vectors for the other

software implementations. In this version, separate computations are performed to update the 128-bit

internal state register and the 128-bit keystream output register. That is, the 256-bit internal state is

treated as two separate registers in QUAD1. Computations for the nonlinear, linear, and constant terms

are performed separately. No effort was made to streamline computations in QUAD1, and the bit-wise

computations required for the QUAD algorithm are not well suited to the register-based computations

of a PC running a C program. Due to these factors, this first software version of QUAD achieves an

average speed of only 4.7 kbits/sec on the PC and 970 bits/sec on the ARM microprocessor.

2.2.2. QUAD2

Our second version, QUAD2, was created in an effort to speed up the implementation of the algorithm

by performing block matrix-vector multiplication. Most of the computations required in the algorithm

take place in the quadratic, αijxixj, terms. To speed up these computations, the arithmetic in QUAD2 is

performed on words sized to fit the register size in the microprocessor, which is 32 bits for the ARM and

64 bits for the Intel Duo. This version was also designed to be easily implemented on a smaller

microprocessor with 8-bit or 16-bit registers. A set of appropriately sized Hadamard transform functions

were created that implement a parity popcount to count the number of ones in the input register. The

arithmetic is then performed using these and a bitwise logical AND function. QUAD2 achieved an

average speed of 34.6 kbits/sec on the PC and 5.1 kbits/sec on the ARM processor.

2.2.3. QUAD3

A third software version, QUAD3, was created as a specialization of QUAD2. This version targets the 32-

bit architecture found on the ARM processor. In this version, all of the computations are routed through

a parity function that can be implemented in a DSP hardware instruction for a 32-bit parity popcount.

This version ran at an average speed of 111 kbits/sec on the PC and 16.2 kbits/sec on the ARM

processor.

2.2.4. QUAD4

Our fourth software version of QUAD, named QUAD4, was created by moving as much computation as

possible outside of the loops that are used to compute each coefficient. It makes use of a custom logical

XOR inline function to XOR all bits in a register. The basic version of QUAD4 generated an average of

1.25 Mbits/sec of keystream output on the PC and 163 kbits/sec on the ARM. Versions of the QUAD4

implementation, named QUAD4_pc_32bit and QUAD4_pc_64bit, were created with relatively minor

changes to C function implementations. These provided little speed improvement over the basic

QUAD4 program.

Versions of QUAD4 named QUAD4_dsp, QUAD4_dsp2, and QUAD4_dsp3 were created to progressively

remove more high level C-language functions and replace them with low-level implementations. This

was done to enable the QUAD algorithm to run on the C64x digital signal processor core that is present

in the DM3730 microprocessor, along with the ARM microprocessor. It was possible to get the program

to execute on the C64x core; however, the C-language function time, used to benchmark program

performance, does not function in the C64x. No suitable replacement for this function was able to be

created in the available development time. As a result, the DSP optimized versions of QUAD were only

tested on the PC and on the ARM processor.

In QUAD4_dsp the coefficient table was moved directly into program memory from the external file that

was used in previous versions. Also, the entropy source used for initialization was hard-coded into

program memory. These two actions approximately tripled the throughput to 3.30 Mbits/sec on the PC

and 547 kbits/sec on the ARM. QUAD4_dsp2 incorporates minor changes to output data handling. It

achieves only minor performance improvements over QUAD4_dsp. In QUAD4_dsp3, the bit test used to

decide the condition of the state bit was performed using a look-up table. This decreased throughput to

2.19 Mbits/sec in the PC and 451 kbits/sec in the ARM processor.

Throughput results for our software implementations are summarized in Table I. Our fastest performing

version uses a custom, inline, register-based XOR function with coefficients stored in program memory

and some high level C language functions replaced by low level operations. Implementation differences

between the best version for the PC and the best version for the ARM microprocessor are minimal. Our

fastest speeds on the PC were slightly slower than those reported in [1]. This is to be expected since

that implementation uses a 160-bit internal state with 80-bit output versus our 256-bit internal state

with 128-bit output. Adjusting for the size difference in internal state and output, the speed of our

fastest implementation of QUAD is roughly equal to that reported in [1].

Table I. Throughput results for our software implementations of QUAD

 Linux PC (Mb/s) ARM P (Mb/s)

QUAD1 0.0047 0.00097

QUAD2 0.0364 0.0051

QUAD3 0.111 0.0162

QUAD4 1.21 0.163

QUAD4_pc_32bit 0.845 0.132

QUAD4_pc_64bit 1.25 N/A

QUAD4_dsp 3.302 0.547

QUAD4_dsp2 3.298 0.582

QUAD4_dsp3 2.190 0.451

3. Hardware Implementations

3.1. Hardware Implementation: Overview

There has been some previous work on area efficient hardware implementations of QUAD [4, 5], but

that work abandons the formal security proof of [1] by generating the function S pseudo-randomly.

Additionally, while area efficient, the designs in [4, 5] provide maximum throughput of 4.1Mbps, which

is not significantly faster than our software implementations. In this work, we present hardware FPGA

implementations of QUAD that retain random functions S and that achieve much higher throughput in a

reasonable physical area.

We describe two FPGA implementations of QUAD. To achieve high-throughput, area-efficient

implementations, both of these hardware designs are tailored specifically for the Cyclone V FPGA

architecture [6]. The target device primarily impacts memory layout and the specifics of look-up table

(LUT) based combinatorial logic. Similar results could be achieved with other FPGA architectures, and

suggestions for those architectures are provided. Though it results in less portable hardware

development language (HDL) code, attention to FPGA architecture allows faster, smaller designs.

As with the software implementations, the hardware implementations of QUAD that we describe do not

include the key initialization procedure described in [1]. Instead, the state is initialized to a constant. Our

hardware designs are over GF(2) with key length n=128 and k=2, resulting in a set of m=kn=256

equations. Other key lengths in GF(2) would have similar designs. Implementations over larger finite

fields are possible, but are much less secure and so are of less practical interest [2]. We do not consider

them here.

The Q(x) in equation (1) have a regular structure that allows many different hardware implementations.

For instance, the Q(x) could be solved serially. If a serial design requires  cycles to compute one of the

Q(x) then such an approach would need cycles to generate the nk-bit result. If  of the Q(x)

are computed in parallel then



 cycles would be needed, but the hardware cost would also

increase roughly by a factor of .

In our designs we divide the Q(x) terms into a nonlinear portion ∑ and a linear

portion ∑ that are computed separately and then combined with . Our first design splits

computation of the Q(x) equations into two stages. In each stage, 128 of the Q(x) terms are computed in

parallel. The same combinatorial logic and memory resources are used in the two stages. As such, the

processing units described in hardware design sections each appear 128 times in the first design. The

second design computes all 256 of the Q(x) in parallel and requires 256 instantiations of the processing

units. Since logic reuse is not possible in this design, it is larger, but it has a greater throughput. The

basic structure of these designs is shown in Figure 1, which depicts the data path for computing one of

the Q(x) terms. Duplication of the linear and nonlinear processing units is required to compute the Q(x)

terms in parallel.

2.1. Nonlinear Computation: Combinations of State

Computation of the nonlinear portion requires generation of the (

) (

) combinations of the

current state, x, multiplying each of these combinations by the appropriate i,j, and finally performing a

summation of these (

) values to a single bit. First, we consider generating the combinations of the

current state, that is, generating xixj, 1≤i≤j≤n. For state size n, a straightforward approach is to generate

n bits per cycle. This can be accomplished with two registers. Initially, one register holds the current

state, x, and the second register holds x rotated by one bit. The contents of the two registers are pair-

wise ANDed to produce the combinations xixj. Then the second register is rotated by a single bit and the

operation is repeated. For n=128, it will take 64 cycles to generate the (

) combinations. On the last

cycle, the upper 64 bits of the result will hold the same combinations as the lower 64 bits. This can be

corrected by masking the duplicate combinations with zeros in the i,j coefficients. By making the

registers smaller than n bits wide, fewer combinations can be generated each cycle, although this

requires the two registers to be periodically updated with new portions of the current state. More than

n bits can be generated in each cycle by using more registers. For instance, we could use three registers,

two of them initially containing x and the third containing x rotated by n/2 bits. We could then generate

2n combinations in each cycle. In this approach the second and third registers would each be rotated by

one bit each cycle. Straightforward extensions to this scheme would allow more combinations to be

generated each cycle. Our FPGA designs both have 128-bit data paths. They use two 128-bit registers,

and so require 64 cycles to generate all of the combinations.

Figure 1. At the top level, our design has separate linear and nonlinear processing units that operate on the
function as the current state. The design is readily parallelized by replicating these processing units.

2.2. Nonlinear Coefficients

Each of the Q(x) equations requires (

) i,j values. It is convenient to store these either in a

ROM with output word width equal to the number of combinations of xixj, generated each cycle, or in a

collection of ROMs whose combined output word width equals this number of combinations. A more

detailed discussion of ROM geometries appears in Section 2.5. Just as generation of the xixj

combinations will generally produce some redundant combinations, the chosen ROM geometries are

likely to store more than 8128 bits. The unused bits should be set to zeros so that they will mask the

redundant xixj. Additionally, the i,j should be permuted prior to storage to compensate for the ordering

of the generated sequence of xixj combinations.

2.3. Combining the Nonlinear Coefficients and Combinations of State

The (

) combinations of state and nonlinear coefficients have to be bitwise multiplied and

then summed to produce a single bit. In the straightforward approach, during each clock cycle the

combinations of state generated by the registers are ANDed with the nonlinear coefficients. The results

are then input to an XOR tree. This XOR tree will generally be several layers deep, so it can be pipelined

to improve throughput. While simple, this approach does not consider the FPGA architecture or

resources. More efficient designs are possible by tailoring the bitwise AND multiplication and wide XOR

summation to the available FPGA resources.

Modern FPGAs consist of an array of reconfigurable units, each containing look-up tables (LUTs),

memory elements, routing, and other resources such as multiplexors or adders. The particulars of these

units vary by manufacturer and device family. The LUTs are used to implement user-defined logic

functions. Area efficient designs should attempt to make full use of the LUTs. For example, if a device

provides 4-1 LUTs then 1, 2, 3, and 4-input, 1-output functions all require one LUT. Partitioning the

design into functions of fewer than 4 inputs makes inefficient use of the LUTs and wastes resources.

The Cyclone V devices targeted in this work contain 8 input fracturable LUTs [6]. Each of these LUTs can

be configured to implement one 6-input function, any two 4-input functions, any combination of one 3-

input function and one 5-output function, or various more complicated configurations with functions

having shared inputs. To make efficient use of the FPGA resources, we organize our design to make full

use of these LUTs. An overview of our nonlinear processing unit is shown in Figure 2a, which we will refer

to for the remainder of this discussion. The AND-XOR LUT blocks each consist of a 6-1 LUT and each

implement three of the multiplications and two of the summations required for the nonlinear

processing. That is, each AND-XOR block in the nonlinear portion computes () ∑

where each of the xi is the previously computed pairwise AND of two bits of state and the i are the

corresponding nonlinear coefficients. Since our designs have a 128-bit data path there are 42 of these 6-

input AND-XOR functions and one 4-input AND-XOR in each non-linear processing unit. The result is a

43-bit value that must be XORed down to 1 bit. For this, we have a pipelined architecture that again

makes full use of the available LUT resources. The first stage of the XOR tree consists of seven 6-input

LUTs, each of which computes a 6-bit wide XOR. Finally, the seven output bits from the first stage of the

XOR tree, the 43rd input to the XOR tree, and the previous output from the XOR tree are combined by a

Figure 2. Detailed depiction of our pipelined, LUT-based nonlinear (top) and linear (bottom) processing units.

9-input XOR. The feedback path is required because each of the Q(x) terms requires operations on

(

)combinations of state and nonlinear coefficients, and we have a 128-bit data path. Consequently, it

takes 64 rounds of this processing flow for the nonlinear processing unit to generate a single output bit.

Now, we briefly consider implementation of the nonlinear processing in Virtex-4 devices, which were

used in previous FPGA implementations [4]. Each Virtex-4 slice contains two 4-input LUTs [7]. To

accommodate this structure, the AND-XOR LUTs in Figure 2a would be redesigned to implement

 () ∑ where each of the xi is a previously computed pairwise AND of two bits of state

and the i are the corresponding nonlinear coefficients. For our 128-bit data path, 64 AND-XOR LUTs

would be required. The first stage of the XOR tree would consist of 16 4-input XOR LUTs. The second

stage of the XOR tree would then combine these 16 bits, or a third stage could be added.

2.4. Linear Computation

The linear portion of QUAD is more easily computed than the nonlinear portion. Since we require 64

cycles to calculate the non-linear portion and there are 128 terms in the summation of the linear

portion, we operate on two bits of state and two linear coefficients each clock cycle. In Figure 2a the

AND-XOR LUT computes () ∑ where the xi are taps off the shifted version of the

current state. Our design uses the leftmost (127th) and 63rd bits of this register, but any two bits

separated by 64 positions would be acceptable. As with the linear coefficients, the i coefficients should

be permuted prior to storage to compensate for the utilized sequence of i. In our designs the ROMS

that store the  coefficients are designed to make efficient use of the available memory resources. The

details are provided in Section 2.5.

Virtex-4 devices could implement the AND-XOR LUT in Figure 2b in a single 4-input LUT. This would

make more efficient use of the device resources than the Cyclone V design, which uses only four of the

six available LUT inputs.

2.5. Memory layout

For QUAD implementations with state size n=128 and k=2 there are ((

))coefficients

that must be stored. Given this large number of coefficients, it is important to choose ROM geometries

that efficiently store the coefficients while allowing the full set of coefficients to be accessed in the

number of cycles required by the pipelined architecture and throughput constraints. For designs

targeting large throughputs many memories are required so that many coefficients can be accessed

concurrently. Dual and quad-port memories are also useful in this regard.

Cyclone V devices contain two types of memory blocks [8]. The relevant features of these blocks are

summarized in Table II. Each of the nk=256 equations Q(x) requires storing (

) nonlinear

coefficients, i,j 1≤i≤j≤n, so a single M10K block is large enough to store the i,j for one of the Q(x).

However, with a maximum configuration width of 40 bits, a dual port design would require at least 102

cycles to access all of the i,j. To increase throughput several M10K blocks can be used. Unfortunately,

this increase in throughput causes inefficient memory usage and increased resource consumption. Due

to their small size, the MLAB memory resources in Cyclone V devices are not an attractive option for

storing these coefficients.

Each of the Q(x) equations also requires storing 128 linear coefficients, i 1≤i≤n. Four M10K blocks could

be used to store all of the i. Using a dual port configuration, such an approach would require at least

103 cycles to access all of the i coefficients. Greater throughputs could be achieved by using more

M10K blocks, but this would also result in inefficient use of the memories. MLAB resources are another

option for storing the i. In the 32 x 16 configuration each MLAB can store the i coefficient for four of

the Q(x) equations. This makes efficient use of the memory resources, and requires 32 cycles to read all

of the i.

Since the i,j are used in calculating the nonlinear portion of the Q(x) terms, the i coefficients are used

in finding the linear portion, and the results of these distinct portions are combined with the  to

produce Q(x), it is desirable for the linear and nonlinear portions to be calculated in parallel and for

these calculations to take the same amount of time. To achieve this goal, the i,j and i coefficients

should be stored so that it takes the same number of cycles to access them, and they should be stored in

a manner that makes efficient use of the memory resources.

Table II. Memory resources available in Cyclone V devices

 M10K MLAB

Configuration
(depth x width)

256 x 32, 256 x 40, 512 x 16, 512
x 20, 1k x 8, 1k x 10,

2k x 4, 2k x 5,
4k x 2, 8k x 1

32 x 16, 32 x 18, 32 x 20

fmax (MHz) 315 450

Memory modes Single port, true dual port, ROM Single port, simple dual port, ROM

Our first design splits the calculation of the Q(x) equations into two rounds. The first 128 of the Q(x) are

solved in the first round, and the remaining 128 are solved in the second. This permits the same memory

resources to be used in each round. This design uses 128 memories to store the i,j coefficients. Each of

these memories is composed of four M10K blocks, each 32 bits wide and 256 words deep. This was

necessary to achieve the 128 bit wide memories necessary to support our pipeline, which requires 128

bits of new i,j values in each clock cycle. Unfortunately, this leaves half of each M10K block empty.

Switching to a true dual port configuration does not improve the memory usage, as a 128 bit wide, 256

word deep dual-port ROM requires 8 M10K blocks. The memory layout for the 128  coefficient

memories is shown in Table III. This design uses 16 memories to store the i coefficients. Each memory is

16 bits wide by 128 words deep, completely fills four MLAB resources, and stores the i coefficients for

16 of the Q(x) equations. The memory layout is also shown in Table III. We chose this configuration so

that the  memories could be addressed identically to the  memories. This design requires 512 MLABs

and 512 M10K blocks.

Our second design solves all 256 of the Q(x) terms in parallel. In this design, we can no longer reuse

memories, so the layouts are changed so that each memory holds half as many values as in the first

design. As before, we store the i coefficients in MLABs. Here, each memory consists of two MLABs

configured to be 16 bits wide x 64 words deep and holds the i coefficient for eight of the Q(x)

equations.

The  coefficients are stored in M10K memories. Each memory stores the  for a single Q(x) equation

and consists of four M10K blocks configured as 64 bits wide x 256 words deep. These memories are true

dual-port ROMs with addresses n and n+64 read simultaneously to permit the 128-bit reads necessary to

support our pipeline. Half of the words are unused. As with the first design, the  and  memories share

address signals, and all of the coefficients can be read in 64 cycles. This design requires 512 MLABs and

1024 M10K blocks.

Table III. The memory layout used in our first design. The subscripts on α and β indicate which of the Q(x) terms the
coefficients are associated with.

 4 MLABs (16 bits wide x 128 words deep)  4 M10K (128 bits wide
x 256 words deep)

addr 0 n(1..0) n+1(1..0) … n+7(1..0)  n

addr 63 n(127..126) n+1(127..126) ... n+7(127..126)  n

addr 64 n+128(1..0) n+129(1..0) … n+135(1..0)  n+128

addr 128 n+128(127..126) n+129(127..126) … n+135(127..126)  n+128

addr129     

     
addr 255     

Table IV. The memory layout used in our second design. The subscripts on α and β indicate which of the Q(x) terms the
coefficients are associated with.

 2 MLABs (16 bits wide x 64 words deep)  4 M10K (64 bits wide
x 256 words deep)

addr 0 n(1..0) n+1(1..0) … n+7(1..0)  n

addr 63 n(127..126) n+1(127..126) ... n+7(127..126)  n

addr 64  n+128

addr 128  n+128

addr129     

     
addr 255     

In Virtex 4 devices, two block RAMs can be configured in a single-port configuration 128 bits wide and

256 words deep. In our first design, half of these words could be used to store the nonlinear coefficients

for two of the Q(x). Alternatively, a true dual-port configuration 64 bits wide by 512 words deep could

also be accommodated by two block RAMs. These configurations allow nonlinear coefficient storage in

the same manner as we have implemented in the Cyclone V devices. In both devices, half of the memory

words are unused. In Virtex 4 devices, the linear coefficients can be stored in block RAM or distributed

memory. For our first design, four block RAMs could be used to store all of the linear coefficients. They

could be arranged as a single 256 bit wide by 256 word deep memory or as two 128 bit x 256 word

memories. Half of the memory locations would be unused. For the second design eight block RAMs

could have been configured as a single 512 bit wide x 256 word deep memory or as two 256 bit x 256

word memories. In this case, 75% of the memories’ capacities would be unused. Alternatively, each slice

can be configured as a 64-bit memory. Then 32 slices could store the linear coefficients for 16 of the Q(x)

equations in the configuration from Table III and 16 slices could store the coefficients for 8 of the Q(x)

equations in the configuration from Table IV.

2.6. Timing Optimization

The QUAD algorithm has a regular structure that is readily parallelizable. The processing consists of

simple combinatorial logic that is easily pipelined to maintain fast clock frequencies. To ensure fast

clocks in parallel QUAD implementations, it is important to floorplan the design to keep the logic and

memories associated with each Q(x) equation close together. Due to the structure of the FPGAs, the

dedicated memory resources storing the nonlinear coefficients will generally be spread across the

device and will dictate placement of the processing logic. Due to this and the large fanouts of some

signals, such as memory addresses and the combinations of state, it is also helpful to duplicate some of

these signals.

Table V. Comparison of our results to previous FPGA implementations. Note that QUAD low and QUAD medium replace S with
a pseudorandom function.

 Freq. (MHz) Area Thru. (Mb/s) Thru./Area

QUAD 1 (Cyclone V) 164 8723 ALUTs
2,097,152 mem. bits

157.3 18.0kbps/ALUT

QUAD 2 (Cyclone V) 143 15612 ALUTS
2,129,920 mem. bits

265.2 17.0kbps/ALUT

QUAD low (Virtex-4) [2, 7] 267 85 slices 0.016 0.2 kbps/slice

QUAD med. (Virtex-4) [2, 7] 262 406 slices 4.1 10.1 kbps/slice

2.7. Results

A comparison of our results to previously published designs is shown in Table V. Note that the previous

designs, QUAD low and QUAD medium, replace the random coefficients with pseudorandom functions.

This violates the security argument in [1] but greatly reduces the circuit area. Cyclone-V ALUTs and

Virtex-4 slices are not equivalent structures, although they are similar. Using order of magnitude

estimates, our first Cyclone-based design is about 100x larger in physical area than the QUAD low,

Virtex-based design, but it has over 1000X greater throughput, measured in bits-per-second of

keystream generated. It is more than 10x larger than the QUAD medium, Virtex-based design, but its

throughput is about 40x higher. Our second Cyclone-based design is about 1000X larger in physical area

than the QUAD low, Virtex-based design, but it has a throughput over 15,000x greater. It is also about

40x larger and 60x faster than the QUAD medium, Virtex-based design.

2.8. Increasing Throughput

The throughput can be further increased, at the cost of additional hardware, by further parallelizing the

computation. As described in the section on computations of state, generating more than 128

combinations of state per cycle is straightforward. For instance, our second design could be adapted to

have a 256-bit data path. This would eliminate 32 cycles from the pipeline, but would also require 256

additional linear and nonlinear processing units and modifications to the memories. The area and

throughput of the design would both approximately double, although the increased logic complexity

would likely reduce the achievable clock frequency and limit the throughput increase to a factor less

than two.

3. Conclusion

We have demonstrated a variety of different implementations of the QUAD stream cipher algorithm,

including software implementations in a PC and an ARM microprocessor, and hardware

implementations on the Cyclone V FPGA. All of our implementations are over GF(2) and output 128

keystream bits per cycle from a 256-bit internal state. Our fastest implementations are over

3.3Mbits/sec on the PC, 580kbits/sec on the ARM processor, and 265Mbits/sec on the Cyclone V FPGA.

We investigated design variations to improve the speed of the implementations, and we discussed

methods for further improving the software and hardware approaches in future work.

References

1. C. Berbain, H. Gilbert, and J. Patarin, “QUAD: A practical stream cipher with provable security,”
in Advances in Cryptology - EUROCRYPT 2006 (S. Vaudenay, ed.), vol. 4004 of Lecture Notes in
Computer Science, pp. 109–128, Springer Berlin / Heidelberg, 2006.

2. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. Pages 290--308 in Fast

software encryption: 14th international workshop, FSE 2007, Luxembourg, Luxembourg, March
26--28, 2007, revised selected papers, edited by Alex Biryukov. Lecture Notes in Computer
Science 4593, Springer, 2007. ISBN 978-3-540-74617-1.

3. OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.org/ Accessed Jan. 28,2013.

4. International Organization for Standardization, ISO/IEC 18031:2011, Random bit generation.
2011.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54945
Accessed Jan. 28,2013.

5. Morgan, T.P., “ARM Holdings Eager for PC and Server Expansion,” The Register, Feb.1, 2011.

6. D. Arditti, C. Berbain, O. Billet, and H. Gilbert, “Compact fpga implementations of quad,” in
Proceedings of the 2nd ACM symposium on Information, computer and communications security,
ASIACCS ’07, (New York,NY, USA), pp. 347–349, ACM, 2007.

7. D. Arditti, C. Berbain, O. Billet, H. Gilbert, and J. Patarin, “QUAD: Overview and recent

developments,” in Symmetric Cryptography (E. Biham, H. Handschuh, S. Lucks, and V. Rijmen,
eds.), no. 07021 in Dagstuhl Seminar Proceedings, (Dagstuhl, Germany), Internationales
Begegnungsund Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

8. Altera, Cyclone V Device Handbook, http://www.altera.com/literature/lit-cyclone-v.jsp,

accessed 12/18/2012.

9. Xilinx, Virtex-4 FPGA User Guide UG070 (v2.6) Dec. 1, 2008.
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf Accessed 12/20/2012.

http://www.openssl.org/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54945
http://www.altera.com/literature/lit-cyclone-v.jsp

