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Abstract. At Pairing 2010, Lauter et al’s analysis showed that Ate pair-
ing computation in affine coordinates may be much faster than projective
coordinates at high security levels. In this paper, we further investigate
techniques to speed up Ate pairing computation in affine coordinates.
We first analyze Ate pairing computation using 4-ary Miller algorithm
in affine coordinates. This technique allows us to trade one multiplication
in the full extension field and one field inversion for several multiplica-
tions in a smaller field. Then, we focus on pairing computations over
elliptic curves admitting a twist of degree 3. We propose new fast ex-
plicit formulas for Miller function that are comparable to formulas over
even twisted curves. We further analyze pairing computation on cubic
twisted curves by proposing efficient subfamilies of pairing-friendly el-
liptic curves with embedding degrees k = 9, and 15. These subfamilies
allow us not only to obtain a very simple form of curve, but also lead to
an efficient arithmetic and final exponentiation.
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1 Introduction

In recent years, the pairings have become extremely useful in public-key cryp-
tography. Pairings used in cryptography are efficiently computable bilinear maps
on torsion subgroups of points on a (hyper-)elliptic curve that map into the mul-
tiplicative group of a finite field. We call such a map a cryptographic pairing. Let
G1,G2 be finite abelian groups written additively, and let G3 be a finite abelian
group written multiplicatively. A cryptographic pairing is a map:

e : G1 ×G2 → G3.

The first pairing application to cryptography was introduced in Joux’ seminal
paper [17] describing a one-round tripartite Diffie-Hellman key exchange protocol
in 2000. Since then, the use of cryptographic protocols based on pairings has had
a huge success with some notable breakthroughs such as practical Identity-based
Encryption (IBE) schemes [7], and many other new cryptographic primitives.
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Due to the high cost of pairing operations, the efficiency of pairing computa-
tion and the construction of pairing-friendly curves have become an active field
of research. The former concerns many techniques having been exploited to dra-
matically improve the performance of the Miller algorithm, see [2][3][20][8][24].
The later focuses on constructing curves that are suitable for pairing-based cryp-
tosystems. Whereas standard elliptic curve cryptography can be implemented
using randomly generated elliptic curves, the elliptic curves required to imple-
ment pairing-based protocols must have a small embedding degree such that
pairings can be efficiently computed in extension finite fields. Many works on
constructing pairing-friendly elliptic curves have been presented in [27][9][4] and
this research is collected and extended in the recent paper [13].

Projective coordinates are usually preferred than affine coordinates for im-
plementing pairings. That is because point addition or doubling operations in
affine coordinates involve a field modular inversion that is much expensive than
one field multiplication in the base field Fp. However, recent analysis in [22]
showed that over Fpd , for larger d, the inversion-to-multiplication ratio is signif-
icant reduced. Ate pairing computation in affine coordinates is thus much faster
than that in projective coordinates at high security levels.

This work presents our optimizations to Miller loop using a 4-ary algorithm
with direct formulas to compute quadrupling of points and a multiplication of
two line functions in affine coordinates. Our techniques make a trade-off between
one multiplication in the full extension field Fpk , one inversion in the subfield
Fpe for some multiplications in Fpe , where k is the embedding degree of the
elliptic curve E over the finite field Fp, e = k/d, and d is the degree of the twist
admitted during pairing computation.

This work also focuses on pairing computations over pairing-friendly elliptic
curves admitting a cubic twist. Although, such a curve doesn’t provide a full
denominators elimination technique, but it allows a shorter Miller loop. We first
present new fast formulas in affine coordinates for doubling/addition steps of
Miller’s algorithm over cubic twisted curves. Then, we give a finer choice for
curves of embedding degrees k = 9, 15. By carefully choosing parameters, we
point out that the desired curve is always of form y2 = x3 + 1. Finally, we
present improvements for the hard part in final exponentiation for such curves.

The rest of the paper is organized as follows: Section 2 briefly recalls some
basic knowledges about Ate pairing and its computation. Section 3 presents our
improvements for the curves with even twisted degree. Section 4 presents new
explicit formulas to speed up pairing computation on curves with cubic twisted
degree. We conclude in Section 5.

2 Background on Pairings

For p prime and p > 3, an elliptic curve defined over a finite field Fp in short
Weierstrass form is the set of solutions (x, y) to the equation

E : y2 = x3 + ax+ b,
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where a, b ∈ Fp such that the discriminant ∆ = 4a3 + 27b2 is non-zero. We
denote by O the point at infinity on E, and by #E(Fp) the number of points
on E defined over Fp. We have n = #E(Fp) = p+ 1− t, where t is the trace of
Frobenius, which satisfies |t| ≤ 2

√
p (Hasse’s theorem). Let r be a prime number

that divides the number of points n and is co-prime to the characteristic p.
Let k be the embedding degree of the elliptic curve E with respect to r, i.e., k
the smallest positive integer such that r|pk − 1. By this setting, we can define
subgroups of points of prime order r on E and a multiplicative group of order r
in the extension field F∗pk = Fpk\{0}, i.e., F∗pk contains the group µr of r-roots
of unity.

2.1 The Ate pairing

We denote subgroups of points of prime order r on E(Fpk) by E[r]. Let m ∈
Z, P ∈ E[r] and fm,P be a rational function on E with divisor div(fm,P ) =
m(P ) − (mP ) − (m − 1)(O). Let πp be the p-power Frobenius endomorphism
on E, πp : E → E given by πp(x, y) = (xp, yp). Let T = t − 1. We denote by
G1 = E[r]∩Ker(πp−[1]) = E(Fp)[r], G2 = E[r]∩Ker(πp−[p]) ⊆ E(Fpk)[r]. For
Q ∈ G2 and P ∈ G1, the Ate pairing is defined as [16] (so with the arguments
swapped in comparison to Tate pairing):

aT = G2 ×G1 → µr, (Q,P ) 7→ fT,Q(P )(p
k−1)/r. (1)

The length of Miller loop during Ate pairing computation is determined by the
trace of Frobenius t. The Ate pairing is thus particularly suitable for pairing-
friendly elliptic curves with small values of t. Usually, when implementing Tate
pairing and its variants, instead of inputing the point Q on the curve G2 ⊆
E(Fpk)[r], one can take Q′ ∈ G′2 ⊆ E′(Fpk/d)[r], where E′ is a twist of E, and
d|k is the degree of the twist. Points on the twisted curve are defined over a
smaller field, and are thus obviously much faster for computation.

Let ψ : E′ → E,Q′ 7→ Q be an isomorphism mapping points of the twisted
curve to that of the original curve. The computation of aT (ψ(Q′), P ) consists
of two parts: evaluation of the function fT,Q at P and final exponentiation en-
suring a unique result of the pairing. The first part is computed using Miller’s
algorithm [26] that is described in Algorithm 1.

Input: T =
∑l−1
i=0 ti2

i (radix 2), ti ∈ {0, 1}, Q′ ∈ G′2 not a multiple of P ∈ G1.
Output: fT,ψ(Q′)(P ) representing a class in F∗pk/(F

∗
pk )r

R′ ← Q′, f ← 1, ;
for i = l − 2 to 0 do

f ← f2gψ(R′),ψ(R′)(P ) , R′ ← [2]R′ ;
if ri = 1 then

f ← fgψ(R′),ψ(Q′)(P ) , R′ ← R′ +Q′ ;

end
return f

Algorithm 1: Miller’s algorithm for Ate-like pairings
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3 Improvements for the even twisted curves

Pairing-friendly elliptic curves with an even embedding degree k are preferred in
implementing Tate pairing and its variants. That is because the denominators
elimination techniques can be used (see [2][14]) on such curves. Furthermore,
such curves can admit a high-degree twist, e.g., twists of degree 4 or 6 such that
the points on the twisted curve E′ can be represented in a smaller finite field.

Lauter et al. analyzed the costs of Miller’s algorithm in affine coordinates
over curves with even embedding degrees [22, Table 1, 2]. They pointed out
that when implementing one of the optimal Ate pairings [34] in high security
levels, affine coordinates could be much faster than projective coordinates. This
is because the ratio of the computational costs of inversions to multiplications
for point doubling/addition operations is drastically reduced in extension fields.

3.1 4-ary Miller algorithm

In this subsection, we present our optimizations of Miller loop using a 4-ary
algorithm with direct formulas in affine coordinates. Usually, Miller’s algorithm
computes pairings using the double-and-add method. In [6], Blake et al. present
the idea to compute the pairing using a 4-ary algorithm for the purpose of elim-
ination vertical lines (i.e., denominators) in Miller’s algorithm. Their algorithm
can be applied on any curves (i.e., curves don’t admit a twist and thus there
isn’t any denominators elimination technique), and has advantage if the binary
expansion of the trace t has many zeros. Costello et al. [10] also addressed this
problem by introducing a new algorithm so-called the Miller 2n-tuple-and-add
algorithm. They also presented explicit formulas in projective coordinates for
cases of n = 2, 3.

Direct computation of `R,R × `[2]R,[2]R: We assume that E′, twisted curve of E
defined in § 2, is given by an equation E′ : y2 = x3 + (a/α4)x+ (b/α6) for some
α ∈ Fpk with an isomorphism ψ : E′ → E, (x, y) 7→ (α2x, α3y). Furthermore,
we assume that Fpk = Fpe(α), and we have αd = ω ∈ Fpe , where d is the degree
of the twist. Each element in Fpk is given by a polynomial of degree d− 1 in α
with coefficients in Fpe .

Let P ∈ E(Fp), R′ ∈ E′(Fpe) and R = ψ(R′). Let R3 = [2]R = (xR3
, yR3

).
Let `1 = `R,R(P ), and `2 = `R3,R3

(P ). In the following computation, we use the
abscissas of the point −R3 instead of that of the point R in the line function
`1 passing points R and −R3. We also compute `1·`2

xP−xR3
instead of `1 · `2. Note

that, for even twisted curves, the factor xP − xR3
is in the proper subfield, thus

we can make this division without changing the final result of Tate pairing. Two
consecutive doubling steps are performed as follows:
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` =
`1 · `2

xP − xR3

=
(yP + yR3 − λ1(xP − xR3))(yP − yR3 − λ2(xP − xR3))

xP − xR3

=
y2P − y2R3

xP − xR3

− λ1(yP − yR3)− λ2(yP + yR3) + λ1λ2(xP − xR3)

= x2P + xPxR3 + x2R3
+ a− λ1(yP − yR3)− λ2(yP + yR3) + λ1λ2(xP − xR3),

where λ1, λ2 are slopes when computing [2]R and [4]R. Let R′3 = [2]R′ =
(xR′3 , yR′3). The details of computations is as follows:

` = `1 · `2 = `ψ(R′),ψ(R′)(P ) · `ψ([2]R′),ψ([2]R′)(P ) = x2P + α2xR′3xP + α4x2R′3

+ a− αλ′1(yP − α3yR′3)− αλ′2(yP + α3yR′3) + α2λ′1λ
′
2(xP − α2xR′3)

= x2P + a− α(λ′1 + λ′2)yP + α2(xR′3 + λ′1λ
′
2)xP + α4(x2R′3 + (λ′1 + λ′2)yR′3 + λ′1λ

′
2xR′3),

where λ1 = αλ′1, and λ2 = αλ′2. Since P is fixed throughout the computation, we
assume that value x2P is precomputed, the costs of updating ` are summarized
in the following table. Note that, we use the same notations for field arithmetic
costs as in [22]. Notations Ipe , Mpe , Spe , addpe , subpe , negpe denote the costs
for inversion, multiplication, squaring, addition, subtraction, and negation in the
field Fpe , where e = k/d. The cost for a multiplication by a constant ω is denoted
by M(ω).

Table 1. Number of operations for updating two consecutive line function values

Mp Mpe Spe M(ω) addpe negpe

d = 2 k 3 1 2 6 1

d = 4 k/2 3 1 1 5 1

d = 6 k/3 3 1 - 4 1

Fast quadrupling. Let R′4 = [4]R′ = (xR′4 , yR′4). Traditionally, R′4 can be obtained
using two repeated doublings that require 2 field inversions. In [23], Le introduced
fast algorithms for quadrupling a point on elliptic curves in affine coordinates.
His algorithm requires 1Ipe + 8Spe + 8Mpe , and is better than two repeated
doublings whenever Ipe > 4Mpe + 4Spe . It performs even better for curves that
allow “a = 0” speedup (found in pairing-friendly elliptic curves admitting twists
of degrees 2, 3, or 6) as [4]R′ in affine coordinates can be computed just using
only 1Ipe + 5Spe + 6Mpe . This section presents the revised formula for point
quadrupling that requires fewer additions in comparison to that in [23] for pairing

computation over curves with a = 0. Let d = y4R′ + 18by2R′ − 27b2, I =
3x2

R′
2yR′d

,

and ` is the product of two consecutive line function values as described above.
One also can precompute and cache values s = 18b and t = 27b2.
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λ1 = I · d, λ2 = I(y2R − 9b)2/2
xR′3 = λ2

1 − 2xR, yR′3 = λ1(xR − xR′3)− yR,
xR′4 = λ2

2 − 2xR′3 , yR′4 = λ2(xR′3 − xR′4)− yR′4 ,
` = `1 · `2 = `ψ(R′),ψ(R′)(P ) · `ψ(R′3),ψ(R′3)

(P ),

A = y2R′ , B = A2, C = 3x2R′ , d = B + sA+ t,
D = 2dyR′ , E = D−1, I = C · E, λ1 = I · d,

xR′3 = λ2
1 − 2xR′ , yR′3 = λ1(xR′ − xR′3)− yR′ , λ2 = (B−sA+3t)I

2
,

xR′4 = λ2
2 − 2xR′3 , yR′4 = λ2(xR′3 − xR′4)− yR′3 ,

` = `1 · `2 = `ψ(R′),ψ(R′)(P ) · `ψ(R′3),ψ(R′3)
(P )

This quadrupling formula only requires 1Ipe +6Mpe +5Spe +eMp+8addpe +
9subpe . If an inversion in Fpe is more than 2Mpe + 1Spe + eMp + 1subpe , then
the new quadrupling formula is faster than two repeated doublings. In the case
of curves with a twist of degree 4 (i.e., y2 = x3 + ax), a similar quadrupling can
be performed by 1Ipe + 9Mpe + 5Spe + 14addpe + 10subpe .

Table 2 summarizes and compares the costs of our technique to those from [22]
in affine coordinates and [10] in projective coordinates. Again, we assume that
all values that depend only on fixed parameters, are precomputed and cached,
and small multiples are computed by additions.

Table 2. Operation counts for two doubling steps in the Ate-like Miller loop

d Technique Mp Mpk Ipe Mpe Spe M(·) addpe subpe negpe

2 Ours 5k/2 1 1 9 6 2 14 9 1
(a = 0) Lauter et al. [22] k 2 2 6 4 2 8 12 -

Costello et al. [10] 2k 1 - 14 16 4 60 24 2

4 Ours k 1 1 12 6 1 19 10 1
(b = 0) Lauter et al. [22] k/2 2 2 6 4 - 8 10 2

Costello et al. [10] k 1 - 11 20 3 55 27 2

6 Ours 5k/6 1 1 9 6 - 12 9 1
(a = 0) Lauter et al. [22] k/3 2 2 6 4 - 8 10 2

Costello et al. [10] 2k/3 1 - 14 16 4 60 24 2

As showed in Table 2, the costs of two doubling steps on curves having a twist
of degree d = 2 requires 5k

2 Mp + 1Mpk + 1Ipk/2 + 9Mpk/2 + 6Spk/2 + 2M(ω) +
14addpk/2 + 9subpk/2 + 1negpk/2 , while analysis in [22] require kMp + 2Mpk +
2Ipk/2 + 6Mpk/2 + 4Spk/2 + 2M(ω) + 8addpk/2 + 12subpk/2 . If 1Mpk + 1Ipk/2 >
3Mpk/2 + 2Spk/2 + 3addpk/2 + negpk/2 , then our technique is better.
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4 Improvements for the cubic twisted curves

4.1 Updating Miller function

Pairing computation over cubic twisted curves with embedding degrees 9 or 15
were investigated in papers [25][12][11]. Although such curves only admit a cubic
twist d = 3, and there exists no full denominators elimination technique, but they
provide a shorter Miller loop. In [30], Scott pointed out that in the contexts
of multi-pairings in conjunction with fixed arguments, these curves have more
advantages than curves admitting a higher twist (i.e., 4 or 6). This section gives
the first analysis about the costs of Miller’s algorithm in such curves in affine
coordinates.

Recall that cubic twisted curves have the form y2 = x3 + b. In [25], Lin et al.
proposed a denominators elimination trick during Ate pairing computation on a
k = 9 curve due to the following observation about the factor 1/vR+Q(P ):

1

vR+Q(P )
=

1

xP − xR+Q
=

x2P + xPxR+Q + x2R+Q

(yP − yR+Q)(yP + yR+Q)

Since (yP − yR+Q)(yP + yR+Q) lies in a subfield when the curve admits a
cubic twist, f function can be updated by multiplying by x2P +xPxR+Q +x2R+Q

instead of dividing it by vR+Q(P ). The updated factor is :

`′R,Q(P ) = (yP − λ(xP − xR+Q)− yR+Q) · (x2P + xPxR+Q + x2R+Q) (2)

where λ is the slope of the line function passing points R and Q. This formula
needs one full extension field multiplication than the full denominators elimina-
tion technique of Barreto et al [2]. The following lemma allows us to save one
multiplication in the full extension field in comparison to the analysis in [25].

Lemma 1. For elliptic curves admitting a cubic twist, the rational function
gR,Q(P ) in Miller’s algorithm can be rewritten as follows:

gR,Q(P ) =
`R,Q(P )

vR+Q(P )
=
x2R+Q + xR+QxP + x2P − λ(yP + yR+Q)

yP − yR+Q
(3)

Proof. For the line function `R,Q(P ), using the coordinates of the point −(R+Q)
instead of that of R, we have:

`R,Q(P )

vR+Q(P )
=
yP − λ(xP − xR+Q) + yR+Q

xP − xR+Q

= −λ+
y2P − y2R+Q

(xP − xR+Q)(yP − yR+Q)
= −λ+

x3P − x3R+Q

(xP − xR+Q)(yP − yR+Q)

=
−λ(yP − yR+Q) + x2R+Q + xR+QxP + x2P

yP − yR+Q
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The factor (yP − yR+Q) lying in a proper subfield of Fpk can be cancelled
out. The actual updated factor is x2R+Q + xR+QxP + x2P − λ(yP − yR+Q). The
computation of this updated factor doesn’t require one more multiplication in
the full extension field and it is much faster than that given in [25].

Doubling step. Let the notations be described in Section 3. Let e = k/3, and let
ν ∈ Fpk be not a cubic residue but a quadratic residue over Fpe , and ν1/2 = ω ∈
Fpe . Furthermore, we assume that Fpk = Fpe(ν1/6), i.e., each element in Fpk can

be represented by a polynomial A + Bν1/6 + Cν1/3, where A,B,C ∈ Zpe . Let
the twisted curve is of the form E′ : y2 = x3 + b/ν. There exists an isomorphism
ψ : E′(Fpe) → E(Fpk), (x, y) 7→ (ν1/3x, ν1/2y). Let P ∈ G1, R′, Q′ ∈ G′2, and
let R = ψ(R′), Q = ψ(Q′), where G1,G2,G′2 are defined as in Section 2.1.

As showed in Lemma 1, the computation of the line functions need squarings
of x-coordinates. This implies that a new coordinate (x, y, z), where z = x2

matches the computation. Let R′3 = [2]R′. Doubling steps can be computed as
follows:

`R,R(P ) = ν2/3x2R′3 + ν1/3xR′3xP + x2P − λ(yP − ν1/2yR′3)

= zP − ν1/6λ′yp + ν1/3xR′3xP + ν2/3(zR′3 + λ′yR′3)

= zP + ν1/6(ω(zR′3 + λ′yR′3)− λ′yp) + ν1/3xR′3xP ,

where xR′3 = λ′2 − 2xR′ , yR′3 = λ′(xR′ − xR′3) − yR′ and zR′3 = x2R′3
. We have

λ′ = 3x2R′/2yR′ = 3zR′/2yR′ and λ = 3x2R/2yR = ν1/6λ′.
The double of R′ needs Ipe + 2Mpe + 2Spe + 3addpe + 4subpe , where the

computation of the slope λ′ need Ipe + Mpe + 3addpe . Assume that the multi-
plication of elements in Fpe with a small constant (e.g., 3zR′ , 2yR′) is computed
by additions. Then, we need 2eMp + Mpe + M(ω) + addpe + subpe to compute
the line function value. In total, our new formula requires 2eMp + Ipe + 3Mpe +
2Spe + M(ω) + 4addpe + 5subpe for each doubling step.

Addition step. The line function is computed similarly as in doubling steps.

`R,R(P ) = zP + ν1/6(ω(zR′3 + λ′yR′3)− λ′yp) + ν1/3xR′3xP ,

where R′3 = R′ + Q′, and xR′3 = λ′2 − xR′ − xQ′ , yR′3 = λ′(xR′ − xR′3) − yR′
and zR′3 = x2R′3

. The slope λ′ = (yR′ − yQ′)/(xR′ − xQ′). We have λ = (yR −
yQ)/(xR − xQ) = ν1/6λ′.

Computation of the line function in addition steps has the same cost as in
the doubling steps. It needs Ipe +Mpe + 2subpe for computing the slope λ′ and
Mpe + 2Spe + 4subpe for computing the addition of R′ and Q′ from the slope
λ′. In total, we need 2eMp + Ipe + 3Mpe + 2Spe + M(ω) + addpe + 7subpe for
each addition step.

We summarize the number of operations required by the Miller loop over
cubic twisted curves in Table 3. We also make a comparison on the number of
operations between affine coordinates and projective coordinates taken from [11].
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Table 3. Number of operations in the Ate-like Miller loop over cubic twisted curves

coord. Mp Ipe Mpe Spe M(·) addpe subpe negpe

DBL
affine 2k/3 1 3 2 M(ω) 4 5 -
proj. [11] k - 6 7 M(b/ω) 11 10 1

ADD
affine 2k/3 1 3 2 M(ω) 1 7 -
proj. [11] k - 13 3 - 6 8 3

The above analysis showed that the number of operations in doubling steps
over cubic twisted curves is similar to that over even twisted curves as analyzed
in [22]. Addition steps require only 1Spe + 1M(ω) more than that for even
twisted curves. Table 3 also showed that the doubling steps in affine coordinates
are better than that in projective coordinates [11] if:

Ipe ≤ eMp + 3Mpe + 5Spe + 7addpe + 5subpe + negpe , (4)

where e = k/3.

Example 1. In the case of k = 9, we can obtain pairing-friendly elliptic curves of
form y2 = x3 + b admitting a cubic twist [25]. During Ate pairing computation,
point operations are performed over Fp3 (i.e., e = 3). Analysis in [21, §5.1] showed
that inversion over Fp3 needs 12 multiplications and one inversion over Fp. If the
inversion-to-multiplication ratio is around 13 as benchmarks in [22] and is used in
this analysis, the cost of one inversion over Fp3 is around 25 multiplications over
Fp. Obviously, this cost is much less than 3Mp + 3Mp3 + 5Sp3 ≈ 21Mp + 30Sp

(from Eq. 4). Note that using Karatsuba algorithm, Mp3 ≈ 6Mp and Sp3 ≈ 6Sp.

4.2 Choice of curves

In this section, we present efficient subfamilies of pairing-friendly elliptic curves
with embedding degrees k = 9, 15 presented in [25] and [12].

The family of curves with k = 9 is described by the following polynomials:

p(x) = ((x+ 1)2 + ((x− 1)2(2x3 + 1)2)/3)/4,

r(x) = (x6 + x3 + 1)/3,

n(x) = (x− 1)2(x6 + x3 + 1)/3, (5)

t(x) = x+ 1,

where t(x) is the trace of Frobenius, p(x) represents the field size and r(x)
represents the pairing-friendly subgroup. In comparison to BN curves at 128-bit
security level [4], this family supports a shorter Miller loop. But, BN curves
provide a much more efficient tower extension field arithmetic.

El Mrabet et al. [12] introduced a family of pairing-friendly elliptic curve of
embedding degree k = 15 and compared its performance with KSS curves [18]
at 192-bit security level. Their family of curves is described as follows:
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p(x) = (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x+ 1)/3,

r(x) = x8 − x7 + x5 − x4 + x3 − x+ 1, (6)

n(x) = (x− 1)2(x2 + x+ 1)(x8 − x7 + x5 − x4 + x3 − x+ 1)/3,

t(x) = x+ 1.

For both families of curves, the ρ-value is equal to 4/3 and the elliptic curves are
of the form y2 = x3 + b. By using the above parameters when x0 ≡ 1 (mod 3),
one is able to get all involved parameters being integers and construct a curve.
The following theorem show that by choosing x ≡ 1 (mod 6), we always choose
the curve constant b equal to 1. That means that the multiplications with b is
free.

Lemma 2. Let E : y2 = x3 + b be an elliptic curve defined over Fp where p
prime and p ≡ 1 (mod 6). Let #E(Fp) = n. If 2 | n and 3 | n, then b is both a
square and a cube in Fp.

Proof. The proof of Lemma 2 can be found in Appendix A.

Theorem 1. By choosing x0 ≡ 1 (mod 6) for both above families of curves with
embedding degrees k = 9 or 15, the desired curve is always of form E(Fp) : y2 =
x3 + 1.

Proof. In [33, §X.5], Silverman showed that an curve defined over Fp with the j
invariant j(E) = 0 (i.e. the curves of the form y2 = x3 + b) will only have six
possible curve orders. More precisely, the CM construction only ensures that the
order of a curve satisfying the norm equation 3y2 = 4p − t2 has one of the six
forms {p+ 1± t, p+ 1± (t± 3y)/2}. Moreover, assume that γ be both quadratic
and cubic non-residue modulo p, these possible group orders occur as the order
of one of the 6 twists with b ∈ {1, γ, γ2, γ3, γ4, γ5}.

For x0 ≡ 1 (mod 6) in (5) (and (6), resp.), is is easy to see that n0 =
(x0−1)2(x60+x30+1)/3 (n0 = (x0−1)2(x20+x0+1)(x80−x70+x50−x40+x30−x0+1)/3,
resp.) is congruent to 0 modulo 6, i.e., 2|n0 and 3|n0. It is also easy to verify
that p(x0) ≡ 1 (mod 6). From Lemma 2, b must be both a square and a cube in
Fp, it follows that b = 1 is the only option.

4.3 Final exponentiation

After the main Miller loop, the Tate pairing (and its variants) must carry out
the final exponentiation to ensure a unique result of the pairing. The output of
the Miller loop f must be raised to be power of (pk − 1)/r to obtain a result
of order r. Scott et al. [32] introduced an efficient algorithm to compute such a
computation. Their algorithm splits the final exponentiation into two parts: the
first part is “easy” as raising to the power of p is an almost free application of the
Frobenius operator; the second so-called “hard” is to power of Φk(p)/r ∈ Fp[x].
The exponent of the hard part can be expanded to the base p as an−1p

n−1 +
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· · ·+ a1p+ a0, where n = ϕ(k), the Euler-phi function. We refer readers to [32]
for more details about this computation.

In this section, we give an efficient version of the hard part in final exponen-
tiation for curves of embedding degrees k = 9. In the case of k = 15, readers can
see in Appendix B.

In the case of k = 9. By setting x = 6u+ 1, we obtain the new explicit polyno-
mials as follows :

t(u) = 6u+ 2,

p(u) = 559872u8 + 559872u7 + 233280u6 + 54432u5 + 7776u4 + 648u3 + 36u2 + 6u+ 1,

r(u) = 15552u6 + 15552u5 + 6480u4 + 1512u3 + 216u2 + 18x+ 1.

The cost of the final exponentiation for the Ate pairing on curves with

k = 9 was analyzed by Lin et al. [25]. Let the hard part p(u)6+p(u)3+1
r(u) =∑5

i=0 ai(u)p(u)i, where ai(u) are following explicit polynomials (see in [25, §6.1]):

a5 = 36u2,

a4 = 216u3 + 36u2 = a5(6u+ 1),

a3 = 1296u4 + 432u3 + 36u2 = a4(6u+ 1), (7)

a2 = 7776u5 + 3888u4 + 648u3 + 72u2 = a3(6u+ 1) + a5,

a1 = 46656u6 + 31104u5 + 7776u4 + 1080u3 + 72u2 = a2(6u+ 1),

a0 = 279936u7 + 233280u6 + 77760u5 + 14256u4 + 1512u3 + 72u2 + 3 = a1(6u+ 1) + 3.

Their calculation requires 65Mp9 + 375Sp9 + 45Mp for computing this hard
part (see [25, Section 6.2]). The following computation allows us to save 15Mp9 +
66Sp9 + 45Mp.

Let T = t− 1, where t = 6u+ 2 is the trace of Frobenius. Furthermore, let f
be the output of Miller algorithm, and m = fp

3−1 (i.e., easy part). We compute
the hard part as follows:

m
p(u)6+p(u)3+1

r(u) = µ0 · µp
1 · µ

p2

2 · µ
p3

3 · µ
p4

4 · µ
p5

5 ,

where µi can be computed as follows:

µ5 = (mT−1)T−1, µ4 = (µ5)T , µ3 = (µ4)T ,

µ2 = (µ3)T · µ5, µ1 = (µ2)T , µ0 = (µ1)T ·m3.

This part requires 7 exponentiations by T or T −1, 8 multiplications and one
squaring in Fp9 , and 5 p-power Frobenius operations. Let T be a number of 44
bits length and Hamming weight of T is 7 (as the example given in [25]). This part
requires 2(44Sp9 + 6Mp9) + 5(44Sp9 + 6Mp9) + 8Mp9 + 1Sp9 = 309Sp9 + 50Mp9 .
We save 66Sp9 + 15Mp9 + 45Mp in comparison to computations in [25].
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4.4 Discussion

At 128-bit security level, the current public-key security recommendations, Barreto-
Naehrig curves [4] lead a very efficient implementation. Many results have been
reported in papers [28][5][29][1]. That is because BN curves can exploit a sex-
tic twist and there exist efficient algorithms for squarings in Fp12 [15][19]. The
former allows us to work on points of the twisted curve whose coordinates are
in Fp2 instead of Fp12 during Miller loop computation. The later provides an
efficient speedup for the final exponentiation step.

In [25] the authors consider curves with k = 9 at 128-bit security level. One
advantage of such a curve compared with BN curve is that it will have an Ate
pairing with 2/3 Miller loop length compared with the BN equivalent. With
many optimizations in both Miller loop and the final exponentiation, BN curves
are perfectly suited for implementing a single pairing. However, when we need to
compute several pairings in parallel, where only one final exponentiation required
to compute, curves with shorter Miller loop may offer a good choice. Our above
analysis allowing to speed up pairing computation over cubic twisted curves in
affine coordinates for both Miller loop and final exponentiation, are helpful for
this case.

5 Conclusion

In this paper we further analyzed techniques to speed up Ate pairing computa-
tion in affine coordinates using 4-ary Miller algorithm. We focused on pairing
computations over pairing-friendly elliptic curves admitting a cubic twist and
presented the first and fast explicit formulas in affine coordinates for such curves.
We also gave a finer choice for curves of embedding degrees k = 9, 15, and show
that this choice leads to an efficient arithmetic and final exponentiation.
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A Proof of Lemma 2

Proof. Assume that 2 | n, then the elliptic curve E : y2 = x3 + b contains points
of order 2. Let P = (x1, y1) ∈ E be a point having order 2. The tangent at P

meets O and hence
(

dy
dx

)
P

= ∞ or y1 = 0. We have y21 = x31 + b, and hence

b = −x31 or b is a cube in Fp.
When 3 | n, E contains points of order 3. Assume that P = (x1, y1) has order

3, that means 3P = O or 2P = −P . Let Q = [2]P = (x2, y2). Then we have
x2 = x1 which implies λ2 − 2x1 = x1, where λ = 3x21/2y1. Therefore, we obtain
9x1(y21 − b) = 12x1y

2
1 , so that x1 = 0 or y21 = −3b.

In the former case x1 = 0, it is easy to verify that the point 0, δ has order
3 for some δ, and b = δ2 or b is a square in Fp. For the later case −3b = y21 , to
prove b square in Fp we need to show that −3 is a square in Fp. We consider the
Legendre symbol:(

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2 × (−1)b

p+1
6 c.

– If p ≡ 1 (mod 12), we have (
−3

p

)
= 1× 1 = 1.

– If p ≡ 7 (mod 12), we have(
−3

p

)
= (−1)× (−1) = 1.

In the other words, −3 is a square in Fp.

B Final exponentiation for curves with k = 15

We present the first analysis for the hard part during Tate pairing computation
over elliptic curves with embedding degree k = 15. By setting x = 6u + 1, we
obtain the new explicit polynomials as follows :

t(u) = 6u+ 2,

p(u) = 725594112u12 + 1209323520u11 + 906992640u10 + 403107840u9 + 117573120u8

+ 23607936u7 + 3343680u6 + 336960u5 + 23760u4 + 1080u3 + 36u2 + 6u+ 1,

r(u) = 1679616u8 + 1959552u7 + 979776u6 + 279936u5 + 50544u4 + 6048u3

+ 504u2 + 24x+ 1.

Once again, assume that the hard part p(u)10+p(u)5+1
r(u) of the final exponentia-

tion can be expanded as
∑9

i=0 ai(u)p(u)i. It is easy to verify ai(u) to be following
explicit polynomials.
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a9 = 432u4 + 216u3 + 36u2,

a8 = 2592u5 + 1728u4 + 432u3 + 36u2 = a9T,

a7 = 15552u6 + 12960u5 + 4320u4 + 648u3 + 36u2 = a8T,

a6 = 93312u7 + 93312u6 + 38880u5 + 8208u4 + 864u3 + 36u2 = a7T,

a5 = 559872u8 + 653184u7 + 326592u6 + 88128u5 + 13392u4 + 1080u3 + 36u2 = a6T,

a4 = 3359232u9 + 4478976u8 + 2612736u7 + 855360u6 + 168480u5 + 20304u4 + 1512u3

+ 72u2 = a5T + a9,

a3 = 20155392u10 + 30233088u9 + 20155392u8 + 7744896u7 + 1866240u6 + 290304u5

+ 29376u4 + 1944u3 + 72u2 = a4T, (8)

a2 = 120932352u11 + 201553920u10 + 151165440u9 + 66624768u8 + 18942336u7

+ 3608064u6 + 466560u5 + 41040u4 + 2376u3 + 72u2 + 1 = a3T + 1,

a1 = 120932352u11 + 201553920u10 + 147806208u9 + 62705664u8 + 16982784u7 + 3063744u6

+ 375840u5 + 31536u4 + 1728u3 + 36u2 + 1 = a2 − a4 + a5 − a7 + a8,

a0 = 120932352u11 + 181398528u10 + 120932352u9 + 47029248u8 + 11757312u7 + 1975104u6

+ 228096u5 + 18144u4 + 864u3 + 1 = a1 − a3 + a4 − a6 + a7 − a9,

where T = 6u+1. Similarly, we assume that f is the output of Miller algorithm,
and m = fp

3−1. The hard part can be performed as follows:

m
p(u)10+p(u)5+1

r(u) =

9∏
i=0

µpi

i ,

where µi can be computed as follows:

µ9 = ((mT−1)(T−1)/3·mT−1·m)(T−1)2 , µi = (µi+1)T for i ∈ {3, 5, 6, 7, 8}, µ4 = (µ5)T ·µ9,

µ2 = (µ3)T ·m, µ1 = µ2 · µ5 · µ8 · (µ4 · µ7)−1, µ0 = µ1 · µ4 · µ7 · (µ3 · µ6 · µ9)−1.

This part requires 11 exponentiations by T , T−1 or (T−1)/3, 22 multiplications,
two inversions in Fp15 , and 9 p-power Frobenius operations. Note that inversions
in Fp15 can be computed for free using a simple conjugation [31]. Assume that
we apply this family of curves for pairing computation at 192-bit security level.
The sizes in bits of r, and T are 384 and 64, respectively. By carefully choosing
parameters, we can get a value of T with low Hamming weight (e.g., H(T ) = 7).
This final exponentiation will require 88Mp15 + 528Sp15 .


