
Tamper Resilient Cryptography Without Self-Destruct

Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi

Aarhus University∗

Abstract

We initiate a general study of schemes resilient to both tampering and leakage attacks. Tamper-
ing attacks are powerful cryptanalytic attacks where an adversary can change the secret state
and observes the effect of such changes at the output. Our contributions are outlined below:

1. We propose a general construction showing that any cryptographic primitive where the
secret key can be chosen as a uniformly random string can be made secure against bounded
tampering and leakage. This holds in a restricted model where the tampering functions
must be chosen from a set of bounded size after the public parameters have been sampled.
Our result covers pseudorandom functions, and many encryption and signature schemes.

2. We show that standard ID and signature schemes constructed from a large class of Σ-
protocols (including the Okamoto scheme, for instance) are secure even if the adversary
can arbitrarily tamper with the prover’s state a bounded number of times and/or obtain
some bounded amount of leakage. Interestingly, for the Okamoto scheme we can allow also
independent tampering with the public parameters.

3. We show a bounded tamper and leakage resilient CCA secure public key cryptosystem
based on the DDH assumption. We first define a weaker CPA-like security notion that
we can instantiate based on DDH, and then we give a general compiler that yields CCA-
security with tamper and leakage resilience. This requires a public tamper-proof common
reference string.

4. Finally, we explain how to boost bounded tampering and leakage resilience (as in 2. and 3.
above) to continuous tampering and leakage resilience, in the so-called floppy model where
each user has a personal floppy (containing leak- and tamper-free information) which can
be used to refresh the secret key (note that if the key is not updated, continuous tamper
resilience is known to be impossible). For the case of ID schemes, we also show that if the
underlying protocol is secure in the bounded retrieval model, then our compiler remains
secure, even if the adversary can tamper with the computation performed by the device.

In some earlier work, the implementation of the tamper resilient primitive was assumed to
be aware of the possibility of tampering, in that it would switch to a special mode and, e.g.,
self-destruct if tampering was detected. None of our results require this assumption.

∗The authors acknowledge support from the Danish National Research Foundation and The National Science
Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Compu-
tation, and also from the CFEM research center (supported by the Danish Strategic Research Council) within which
part of this work was performed. Pratyay Mukherjee was partly supported by a European Research Commission
Starting Grant (no. 279447).

Contents

1 Introduction 3
1.1 Previous Work . 4
1.2 Our Results . 6
1.3 Roadmap . 10

2 Preliminaries 10
2.1 Notation . 10
2.2 Information Theory Basics . 11
2.3 Hard Relations . 11
2.4 Signature Schemes . 12
2.5 True Simulation Extractibility . 13
2.6 A Note on Deterministic vs Probabilistic Tampering 14

3 Semi-Adaptive BLT Security for General Primitives 14
3.1 Abstract Games with Tampering . 14
3.2 A General Transformation . 16
3.3 Outline of the Proof . 17
3.4 Proof of Lemma 3.3 . 19
3.5 Proof of Theorem 3.1 . 21
3.6 Extensions . 23

4 ID Schemes with BLT Security 25
4.1 Σ-protocols are Tamper Resilient . 26
4.2 Concrete Instantiation with more Tampering . 29
4.3 Some Attacks . 30
4.4 BLT-Secure Signatures . 31

5 IND-CCA PKE with BLT Security 31
5.1 IND-CPA BLT Security . 32
5.2 A General Transformation . 33
5.3 Instantiation from BHHO . 35

6 Updating the Key in the iFloppy Model 36
6.1 ID Schemes in the iFloppy Model . 36
6.2 PKE Schemes in the iFloppy Model . 40

A Necessity of Update/Self-Destruct, Revisited 45

B Tampering with Computation 46

C Proof of Lemma 3.1 48

D Proof of the Chaining Lemma 49

2

1 Introduction

Side-channel attacks against cryptographic implementations can have devastating consequences
for the security of a cryptographic scheme. Such attacks often exploit the physical nature of an
implementation by, e.g., measuring the power consumption of a cryptographic device or inducing
faults into the computation. In the last years a large and continuously growing body of work has
successfully strengthened cryptographic security models to incorporate such powerful attacks, and
designed new schemes that can be proven secure within these models. While most such models
consider passive attacks, where the adversary observes leakage emitting from the cryptographic
computation, only few works (some examples are mentioned below) study the active counterpart of
a leakage attack – the so-called tamper or fault attack. In contrast to the passive leakage adversary,
a tampering adversary can change the secret state or the cryptographic computation and observes
the effect of such changes at the output. In practice, tampering attacks can be carried out, e.g.,
by heating up the device or altering the internal power supply or clock [3, 6], and may have severe
consequences for the security of a cryptographic implementation.

An important type of a tampering attack considers an adversary that changes the secret key
into some related key and observes the effect of such changes at the output [22, 18, 26, 5, 4]. To
illustrate such key tampering, consider a digital signature scheme Sign with public/secret key pair
(pk , sk). The tampering adversary obtains pk and can replace sk with T (sk) where T is some
arbitrary tampering function. Then, the adversary gets access to an oracle Sign(T (sk), ·), i.e., to
a signing oracle running with the tampered key T (sk). As usual the adversary wins the game by
outputting a valid forgery with respect to the original public key pk . Notice that T may be the
identity function, in which case we get the standard security notion of digital signature scheme as
a special case.

A common method to protect against key tampering attacks is to integrate into the imple-
mentation a mechanism to detect faulty keys. In case of detection the cryptographic scheme is
assumed to switch to a “tampered” mode that protects the confidentiality of the original key by,
e.g., outputting a special symbol or self-destructing its state. For illustration consider again the
example of a digital signature scheme. For many common signature schemes the validity of a se-
cret/public key pair can be efficiently checked. Hence, a possibility to detect tampering uses the
current (potentially tampered) secret key and checks its validity against the public key. Of course,
this requires that the adversary cannot tamper with the public key.

While tamper detection is an effective countermeasure against key tampering attacks, it un-
fortunately suffers from two drawbacks. First, it puts additional overhead on the implementation.
Notice that the detection procedure needs to be executed each time the scheme is run, and hence
such checks may result into significant slow-downs of the cryptographic computation. This matters
in particular for lightweight cryptographic schemes as in such settings the detection mechanism
will be at least as costly as the cryptographic algorithm itself.1 Second, and more importantly,
standard cryptographic schemes and implementations do not come with built-in tamper detec-
tion. This makes the design of cryptographic implementations more cumbersome as the standard
cryptographic scheme has to carefully be combined with a tamper detection mechanism.

The above drawbacks raise the question whether there exist standard cryptographic schemes

1The simplest detection procedure we can think of is checking the current key against its hash value. Notice that
releasing the hash of the secret key may violate the security of the underlying cryptographic scheme, and hence does
not work in general.

3

where neither the construction, nor the implementation need to be specially engineered to achieve
tamper resilience. In this work we answer this question affirmatively. We show that any crypto-
graphic scheme can be made tamper resilient at a relatively low price and without relying on tamper
detection mechanisms. Our techniques can be used, for instance, to protect the AES block-cipher
against key tampering attacks. We also show that certain common cryptographic schemes naturally
provide good level of tamper resilience, or can be made so by putting additional (non-standard)
assumptions on the security of the underlying cryptographic scheme. We elaborate on our results
in more detail in Section 1.2.

We note that the model of key tampering does not include an adversary that tampers with the
computation. In other words for most of our results we assume that the circuitry that computes
the cryptographic algorithm using the potentially tampered key runs correctly and is not subject
to tampering attacks. While this is a clear restriction of our results, security against key tampering
is important in its own right:

1. It is the natural first step towards techniques to protect the entire computation against
tampering attacks. Clearly, any scheme that achieves security against tampering with the
computation must also protect against key tampering.

2. Key tampering attacks can be devastating. Many cryptographic schemes are prone to related
key attacks or suffer from “weak keys”. It is indeed easy to make (albeit contrived) examples
where already a simple change of the key totally breaks the security guarantees.

3. Our model can be motivated by practice in cases where the secret key is stored in one physical
device, but is used elsewhere. This could be the case, for instance, when a key is transported
over an insecure channel from one secure device to another.

Finally, we notice that the important question of how to protect the circuitry against tampering
attacks has been addressed in several recent works [25, 19, 11]. Current techniques consider limited
tampering attacks (e.g., setting individual bits of the computation while large parts of the compu-
tation remain tamper free) and make strong assumptions on the way in which the computation is
carried out (typically the computation must be described as a Boolean circuit). In our work we do
not make these assumptions.

Below, we first discuss some previous work and then present an outline of our results and
techniques.

1.1 Previous Work

Below we review different approaches that have been proposed to counteract tampering with the
secret key.

Tamper resilient encodings. A generic method to protect a cryptographic primitive against
tampering with the state has been put forward by Gennaro et al. [22]. The authors propose a
general “compiler” that transforms any cryptographic device CS with secret state st, e.g., a block
cipher, into a “transformed” cryptoscheme CS′ running with state st′ that is resilient to arbitrary
tampering with st′. The compiler essentially signs the secret state st and stores as part of the
transformed st′ the signature together with the original state. When CS′(st′, ·) is run on some
input X, then CS′ first checks the validity of the signature and in case of failure self-destructs

4

and overwrites the secret state. In [22] the authors also show that self-destruct and additionally
tamper proof public parameters (in [22] the public key for the signature scheme is tamper proof)
are necessary to construct such generic compilers.

While the above works for any tampering function, it is limited to settings where CS does not
change its state as it would need access to the secret signing key to authenticate the new state.
Dziembowski et al. [18] overcome this drawback with an un-keyed solution by introducing the
concept of non-malleable codes. Inspired by techniques from error detecting codes, they propose
an information-theoretic encoding that protects against bit-wise independent tampering. That is,
for each bit of the encoded state, the tampering function can decide whether to keep it, to flip
it, or to set it to 0/1. A recent work of Liu and Lysyanskaya [29] significantly broadens the class
of tampering attacks and shows non-malleable codes in the split-state model. Here, the encoding
consists of two parts A and B and the adversary can independently apply tampering functions to
A and B. The later construction heavily relies on NIZKs and requires a tamper proof CRS. We
point out that constructions based on non-malleable codes require tamper detection mechanism
to guarantee tamper resistance of the underlying primitive. Moreover, the primitive that uses the
non-malleable code must be aware of the coding scheme as the key must be decoded before each
usage.

The work of Kalai et al. [26]. Most relevant for us is the work of Kalai et al. [26] who design
new involved schemes for public key encryption and digital signatures with resistance to tampering
and leakage attacks. The results of [26] are shown in the so-called continuous leakage and tampering
model (CLT), where the adversary can continuously apply attacks to the secret state as opposed to
a model where the adversary tampers only a single (or bounded number of) times. As in our work
the constructions in [26] do not require to detect the presence of tampering attacks, and circumvent
the impossibility result of Gennaro et al. [22] by refreshing the key after each usage.2

The CLT model generalizes the continual leakage model of [12, 8] as it allows the adversary
between each update of the secret key to make a leakage query L and additionally a tampering
query T . Here, L and T are both efficiently computable functions, where the range of L is smaller
than its domain. When the adversary applies a leakage query it obtains the leakage L(sk) while for a
tampering query the current secret key sk is replaced with a tampered secret key T (sk). Informally,
a scheme is said to be secure in the CLT model if even after a polynomial number of tampering and
leakage queries the adversary cannot break the security with respect to the original public key pk .
For a digital signature scheme, for instance, that means that the adversary cannot forge a signature
with respect to pk . We emphasize that continual tamper resilience does not trivially follow from
continual leakage resilience. While the leakage that is given to the adversary before updating the
key must be shorter than the length of the secret key, the adversary may learn potentially a large
amount of information from running the cryptoscheme on a tampered key. This is in particular
true when the scheme is executed a large number of times before the key gets refreshed (and the
adversary can apply its next tampering attack). Clearly, such a large amount of information cannot
be simulated in general by a short amount of leakage. Based on ideas from earlier construction
in the leakage realm, Kalai et al. propose a non-standard construction of a signature scheme and
public key encryption with CLT security under the bilinear assumption. The constructions require

2Gennaro et al. show that continuous tamper resistance is impossible to achieve without tamper detection. Indeed,
there is an easy attack that, e.g., breaks any signature scheme with a linear (in the length of the secret key) number
of tampering queries.

5

Tampering Model ID Schemes IND-CCA PKE Any Primitive
Σ-Protocols Okamoto BHHO RKA Transformation

Secret Key (semi-adaptive) X X X X (X)
Public Parameters n.a. X n.a. n.a. n.a.
Continuous Tampering iFloppy X X X n.a. n.a.

Key Length log |X | ` log p ` log p n n
Tampering Queries blog |X |/ log |Y|c − 2 `− 2 `− 3 O(3

√
n) O(3

√
n)

Table 1: An overview of our results for bounded leakage and tamper resilience. All parameters |X |,
|Y| `, p and n are a function of the security parameter k. For the case of Σ-protocol, the set X is
the set of all possible witnesses and the set Y is the set of all possible statements for the language;
we can achieve a better bound depending on the conditional average min-entropy of the witness
given the statement (cf. Section 4).

a public tamper proof common reference string (CRS).

Key tampering vs. related key security. In related key security [5] we require, e.g., from a
PRF, that the output is pseudorandom even when running on the faulty key. Clearly, this is a
stronger requirement than security against key tampering attacks as the scheme has to achieve its
security properties even using the faulty key. However, such strong security requirements necessarily
limit the type of tampering attack that can be carried out. For instance, no scheme can be related
key secure if the adversary changes the key into a weak or low-entropy key. Indeed, most works on
related key security consider rather simple tampering functions that, e.g., can be described by an
affine function [33].

Related key security is mostly studied in the context of secret key primitives, while so far we
mainly discussed key tampering security for public key primitives, e.g., for a signature scheme. We
emphasize that also in the secret key setting our security notion is meaningful. In this setting we
guarantee that even after seeing the output of, e.g., a PRF, on a faulty key does not violate the
security of the PRF with respect to the original secret key. To illustrate, consider, for instance,
an adversary that injects faults into a smart-card implementing a block-cipher. Such an adversary
may try to learn information about the original key K by interacting with the faulty device, and use
this information later to decrypt messages (e.g., ciphertexts collected over the internet) encrypted
under the original key K.

1.2 Our Results

In this paper we initiate a general study of schemes resilient to both bounded tamper and leakage
attacks. We call this model the bounded leakage and tampering model (BLT) model. In contrast
to [26], the concrete schemes we propose are proven secure under standard assumptions (DL or
the black-box security of the underlying block cipher) and are efficient and simple. Moreover, we
show that some of our constructions can easily be extended to the continual setting by putting an
additional simple assumption on the hardware. We elaborate more on our main contributions in
the following paragraphs (see also Table 1 for an overview of our results). Importantly, none of our
results require any kind of tamper detection mechanism.

6

Bounded tamper resilience for any scheme. We show that any cryptographic primitive
where the secret key can be chosen as a uniformly random string can be made secure in the BLT
model by a simple and efficient transformation. Our results therefore cover pseudorandom functions
(PRF), block ciphers and many encryption and signature schemes. The result holds in a restricted
model of tampering: the adversary first selects an arbitrary set of tampering functions of bounded
size. As he interacts with the scheme he must choose every tampering function from the set that
was specified initially. We call this the semi-adaptive BLT model.

We believe this is a meaningful and interesting result despite the limitation on the adaptivity.
First, there seems to be a trade-off between the generality of the result and the tampering model.
In fact, we can give (albeit contrived) schemes that become insecure in the adaptive model. On the
other hand, when we analyze specific constructions we often get adaptivity for free (see below for
more details on this). Second and perhaps more importantly, in practice the physical implementa-
tion would typically put strong restrictions on the tampering functions the adversary can use, and
thus our model of semi-adaptive tampering may not be very far from reality. Finally, the results
extends to the standard (fully adaptive) tampering model assuming the underlying primitive has
an additional security property, namely a form of related key attacks (RKA) security that would
be meaningful to assume for, e.g., certain block ciphers.

While the proof of our result is quite involved, the basic idea and intuition behind the construc-
tion is easy to explain. We use a random string X0 as secret key, and a universal hash function h as
public (and tamper proof) parameter. The construction then computes K0 = h(X0) and uses K0

as secret key for the original primitive. The intuitive reason why one might hope this would work is
as follows: each tampering query changes the key, so we get a sequence of keys X0, X1, . . . , Xt for t
queries, where each Xi is a function of Xi−1. If all Xi have high min-entropy, then we can show that
with a suitable choice of h, all the hash values K0 = h(X0),K1 = h(X1), . . . , are statistically close
to uniformly and independently chosen keys. Since the adversary only gets to interact with the
Ki’s, the independence means that the tampering queries are useless to him. On the other hand, if
some Xj has small entropy, it seems we should be able to reveal the value of Xj to the adversary
as the Xi’s with i < j should still have high entropy and hence hash to independent values. On
the other hand the Xi’s with i ≥ j can be computed from Xj , so those tampering queries can be
simulated.

However, things get more complicated for at least a couple of reasons. The first issue is that
the tampering functions are chosen after the adversary has seen the public hash function. However,
known results for universal hash functions typically require that they are chosen independently
of the variables they are applied to. We circumvent this problem using the assumption that the
tampering functions are chosen from a sufficiently small set. Any polynomial size set works, and
for schemes with superpolynomial security even larger sets can be allowed.

Secondly, even if, say, X1 = T (X0) has very low min-entropy, it is not true that the average
entropy of X0 is large when given X1. It is easy to give examples of functions T where, for instance,
H∞(X1) = 1 while the entropy of X0 given X1 is 0 half the time. We get around this problem by
giving a characterization of what such “bad T ’s” must look like, which allows us to handle them by
a rather complicated cases analysis. The by-product of this analysis is a general technical lemma
showing that given an arbitrary chain of random variables X0, . . . , Xt (such that X0 is uniform),
for an appropriate choice of values t and β there exists a point j ∈ [t] in the chain such that all
random variables before j have average min-entropy at least β even conditioned on Xj+1, . . . , Xt.
We believe the above “chaining lemma” is interesting in its own right (and can indeed be very

7

useful in the context of tamper resilience).
Due to its generality the above result suffers from two limitations. First, as already mentioned

above (without making non-standard assumptions) the tampering has to satisfy a somewhat limited
form of adaptivity. Second, the number of tampering queries one can tolerate is upper bounded
by the length n of the secret key. While this is true in general for schemes without key update,
for our general result the limitation is rather strong. More concretely, with appropriately chosen
parameters our transformation yields schemes that can tolerate up to O(3

√
n) tampering queries.

We can improve some of the parameters by modeling the hash function as a random oracle. We
leave it as an important open question to further improve these parameters without the random
oracle assumption.

As a second contribution, we follow Kalai et al. and show how some of these limitations can
be circumvented by looking at specific cryptographic schemes. We show that for large classes of
schemes we can obtain fully adaptive BLT security under a larger number of tampering queries.
Moreover, by making an additional simple assumption on the hardware our results easily extend
to the continuous tampering and leakage setting and achieve CLT security. We elaborate on this
below.

Identification schemes. It is well known that the Generalized Okamoto identification scheme [32]
provides security against bounded leakage from the secret key [2, 27]. In Section 4, we show that
additionally it provides strong security against tampering attacks. While in general the tampered
view may contain a polynomial number of faulty transcripts that may potentially reveal a large
amount of information about the secret key, we can show that fortunately this is not the case for
the Generalized Okamaoto scheme. More concretely, we are able to identify a short amount of in-
formation that for each tampering query allows us to simulate the corresponding faulty transcripts.
Hence, BLT security of the Generalized Okamoto scheme is implied by its leakage resilience.

Our results on the Okamoto identification can be further generalized to a large class of iden-
tification schemes (and signature schemes based on the Fiat Shamir heuristic). More concretely,
we shows that Σ-protocols where the secret key is significantly longer than the public key are BLT
secure for a large number of tampering queries. We can instantiate our result with the generalized
Guillou-Quisquater ID scheme [24], and its variant based on factoring [21] yielding tamper resilient
identification based on factoring. We give more details in Section 4.

Interestingly, for Okamoto identification security still holds in a stronger model where the
adversary is allowed to tamper not only with the secret key of the prover, but also with the
description of the public parameters (i.e., the generator g of a group G of prime order p). The
only restriction is that tampering with the public parameters is independent from tampering with
the secret key. We also show that the latter restriction is necessary, by presenting explicit attacks
when the adversary can tamper jointly with the secret key and the public parameters.

Public key encryption. We show how to construct IND-CCA secure public key encryption
in the BLT model. To this end, we first introduce a weaker CPA-like security notion, where an
adversary is given access to a restricted (faulty) decryption oracle. Instead of decrypting adversarial
chosen ciphertexts such an oracle accepts inputs (m, r), encrypts the message m using randomness
r under the original public key, and returns the decryption using the faulty secret key. This notion
includes IND-CPA security as a special case when the tampering function is the identity function.
Our notion allows the adversary to tamper adaptively with the secret key; intuitively this allows him

8

to learn faulty decryptions of ciphertexts for which he already knows the corresponding plaintext
(under the original public key). We show how to instantiate our extended security notion under
DDH. More concretely, we prove that the BHHO cryptosystem [7] is BLT and CPA secure. The
proof uses similar ideas as in the proof of the Okamoto identification scheme.

We then show how to transform our extended CPA-like notion to CCA security in the BLT
model. To this end, we follow the classical paradigm to transform IND-CPA security into IND-CCA
security by adding an argument of “plaintext knowledge” π to the ciphertext. Our transformation
requires a public tamper-proof common reference string similar to the work of Kalai et al. [26]. Intu-
itively this works because the argument π enforces the adversary to submit to the faulty decryption
oracle only ciphertexts for which he knows the corresponding plaintext (and the randomness used
to encrypt it). The pairs (m, r) can then be extracted from the argument π, allowing to reduce
IND-CCA BLT security to our extended IND-CPA security notion.

Updating the key in the iFloppy model. As mentioned earlier, if the key is not updated
BLT security is the best we can hope for. We show a generalization of an attack by Gennaro et
al. [22] extending it to security notions which do not have the “verifiability” property required by
the original attack [22]. This allows complete key recovery after < |sk | tampering queries even for
primitives such as weak PRFs or symmetric encryption.

To go beyond the bound of |sk | tampering queries we may regularly update the secret key with
fresh randomness, which renders information that the adversary has learned about earlier keys
useless. The effectiveness of key updates in the context of tampering attacks has first been used
in the important work of Kalai et al. [26]. We follow this idea but add an additional hardware
assumption that allows for much simpler and more efficient key updates. More concretely, we
propose the iFloppy model which is a variant of the floppy model proposed by Alwen et al. [2]
and recently studied in depth by Agrawal et al. [1]. In the floppy model a user of a cryptodevice
possesses a so-called floppy that stores an update key. The floppy is leakage and tamper proof and
the update key that it holds is solely used to refresh the actual secret key kept on the cryptodevice.
One may think of the floppy as a particularly secure device that the user keeps at home, while the
cryptodevice, e.g., a smart-card, runs the actual cryptographic task and is used out in the wild
prone to leakage and tampering attacks. We consider a variant called the iFloppy model (here
“i” stands for individual). While in the floppy model of [1, 2] all users can potentially possess an
identical floppy, in the iFloppy model we require that each user has an individual floppy storing
some secret key related data. We note that from a practical point of view the iFloppy model is
incomparable to the original floppy model. It may be more cumbersome to produce personalized
floppies, but on the other hand, in practice one would not want to distribute floppies that all
contain the same global update key as this constitutes a single point of failure: the device needs to
be secure against attacks by its own user since once the update key is known, all bets are off.

We show in the iFloppy model a simple compiler that “boosts” any ID scheme with BLT security
into a scheme with continuous leakage and tamper resilience (CLT security). Similarly, we show
how to extend IND-CCA BLT security to the CLT setting for the BHHO cryptosystem (borrowing
ideas from [1]). We emphasize that while the iFloppy model puts additional requirements on the
way users must behave in order to guarantee security, it greatly simplifies cryptographic schemes,
and allows us to base the security proof on standard assumptions in a very strong tampering model.

9

Tampering with the computation via the BRM. Finally, we make a simple observation
showing that if we instantiate the above ID compiler with an ID scheme that is secure in the
bounded retrieval model [10, 16, 2] we can provide security in the iFloppy model even when the
adversary can replace the original cryptoscheme with an arbitrary adversarial chosen functionality,
i.e., we can allow arbitrary tampering with the computation. While easy to prove, we believe this
is nevertheless noteworthy: it seems to us that results in the BRM naturally provide some form
of tamper resilience and leave it as an open question for future research to explore this direction
further.

1.3 Roadmap

After recalling some basic notation in Section 2, we describe our main technical lemma and our
generic transformation for semi-adaptive BLT security in Section 3. The BLT model and the results
for ID schemes and IND-CCA PKE are presented in Section 4 and 5. Section 6 defines security in
the iFloppy model for both ID schemes and PKE. Our variant of the attack from [22] is described
in Appendix A. The results about tampering with the computation in the BRM can be found in
Appendix B.

2 Preliminaries

We review the basic terminology used throughout the paper.

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s ← S to denote that element s is
sampled uniformly from S. If A is an algorithm, y ← A(x) denotes an execution of A with input x
and output y; if A is randomized, then y is a random variable. Vectors are denoted in bold. Given
a vector x = (x1, . . . , x`) and some integer a, we write ax for the vector (ax1 , . . . , ax`). The inner
product of x = (x1, . . . , x`) and y = (y1, . . . , y`) is 〈x,y〉 =

∑`
i=1 xi · yi.

We denote with k the security parameter. A function δ(k) is called negligible in k (or simply
negligible) if it vanishes faster than the inverse of any polynomial in k. A machine A is called
probabilistic polynomial time (PPT) if for any input x ∈ {0, 1}∗ the computation of A(x) terminates
in at most poly(|x|) steps and A is probabilistic (i.e., it uses randomness as part of its logic).
Random variables are usually denoted by capital letters. We sometimes abuse notation and denote
a distribution and the corresponding random variable with the same capital letter, say X. We write
sup(X) for the support of X. Given an event E, we let X|E be the conditional distribution of X
conditioned on E happening. The statistical distance of two random variables X and Y , defined
over a common set S is ∆(X;Y) = 1

2

∑
s∈S |Pr [X = s] − Pr [Y = s]|. Given a random variable Z,

the statistical distance of X and Y conditioned on Z is defined as ∆(X;Y |Z) = ∆((X,Z); (Y, Z)).
A decision problem related to a language L ⊆ {0, 1}∗ requires to determine if a given string y

is in L or not. We can associate to any NP-language L a polynomial-time recognizable relation
R ⊆ {0, 1}∗ × {0, 1}∗ defining L itself, i.e. L = {y : ∃x s.t. (y, x) ∈ R} for |x| ≤ poly(|y|). The
string x is called a witness for membership of y ∈ L.

10

2.2 Information Theory Basics

The min-entropy of a random variable X over a set X is defined as H∞(X) := − log maxx
Pr [X = x], and measures how X can be predicted by the best (unbounded) predictor. The condi-
tional average min-entropy [14] of X given a random variable Z (over a set Z) possibly dependent
on X, is defined as

H̃∞(X|Z) := − logEz←Z [2−H∞(X|Z=z)] =
∑
z∈Z

Pr [Z = z] · 2−H∞(X|Z=z).

Following [2], sometimes we rephrase the notion of conditional min-entropy in terms of predic-
tors A that are given some information Z (presumably correlated with X), so H̃∞(X|Z) =
− log(maxA Pr [A(Z) = X]). The above notion of conditional min-entropy can be generalized to
the case of interactive predictors A, which participate in some randomized experiment E . An ex-
periment is modeled as interaction between A and a challenger oracle E(·) which can be randomized,
stateful and interactive. Now the predictor AE(·) can act arbitrarily in the experiment with the
challenger in order to predict X.

Definition 2.1 ([2]). The conditional min-entropy of a random variable X, conditioned on the
experiment E is H̃∞(X|E) = − log(maxA Pr

[
AE(·)() = X

]
). In the special case that E is a non-

interactive experiment which simply outputs a random variable Z, then H̃∞(X|Z) can be written
to denote H̃∞(X|E) abusing the notion.

We will rely on the following basic properties (see [14, Lemma 2.2]).

Lemma 2.1. For all random variables X,Z and Λ over sets X , Z and {0, 1}λ such that H̃∞(X|Z) ≥
α, we have that

H̃∞(X|Z,Λ) ≥ H̃∞(X|Z)− λ ≥ α− λ.

The above lemma can be easily extended to the case of random variables Λ with bounded
support, i.e., H̃∞(X|Z,Λ) ≥ H̃∞(X|Z)− log |sup(Λ)|.

Lemma 2.2. For any ε > 0, H∞(X|Z = z) is at least H̃∞(X|Z) − log(1/ε) with probability at
least 1− ε over the choice of z.

2.3 Hard Relations

Let R be a relation for some NP-language L. We assume the existence of a probabilistic polynomial
time algorithm Setup, called the setup algorithm, which on input 1k outputs the description of public
parameters pp for the relation R. Furthermore, we say that the representation problem is hard for
R if for all PPT adversaries A there exists a negligible function δ : N→ [0, 1] such that

Pr
[
x? 6= x; (y, x), (y, x?) ∈ R : (y, x, x?)← A(pp); pp ← Setup(1k)

]
≤ δ(k).

11

Representation problem based on discrete log. Let Setup be a group generation algorithm
that upon input 1k outputs (G, g, p), where G is a group of prime order p with generator g. The
Discrete Log assumption states that for all PPT adversaries A there exists a negligible function
δ : N→ [0, 1] such that

Pr
[
y = gx : x← A(G, g, p, y), y ← G, (G, g, p)← Setup(1k)

]
≤ δ(k).

Let ` ∈ N be a function of the security parameter. Given a vector α ∈ Z`p, define gα =

(g1, . . . , g`) and let x = (x1, . . . , x`)← Z`p. Define y =
∏`
i=1 g

xi
i ; the vector x is called a representa-

tion of y. We let RDL be the relation corresponding to the representation problem, i.e. (y,x) ∈ RDL

if and only if x is a representation of y with respect to (G, g, gα). We say that the `-representation
problem is hard in G if for all PPT adversaries A there exists a negligible function δ : N → [0, 1]
such that

Pr
[
x? 6= x; (y,x), (y,x?) ∈ RDL : (y,x,x?)← A(G, g, gα); (G, g, gα)← Setup(1k)

]
≤ δ(k).

The `-representation problem is equivalent to the Discrete Log problem [2, Lemma 4.1].

Decisional Diffie Hellman. Let Setup be a group generation algorithm that upon input 1k

outputs (G, g, p), where G is a group of prime order p with generator g. The Decisional Diffie
Hellman (DDH) assumption states that for all PPT adversaries A there exists a negligible function
δ : N→ [0, 1] such that∣∣∣Pr

[
A(g, gx, gy, gxy) = 1 : x, y ← Zp, (G, g, p)← Setup(1k)

]
− Pr

[
A(g, gx, gy, gz) = 1 : x, y, z ← Zp, (G, g, p)← Setup(1k)

] ∣∣∣ ≤ δ(k).

2.4 Signature Schemes

A signature scheme is a triple of algorithms SIG = (KGen,Sign,Vrfy) such that: (1) KGen takes the
security parameter k as input and outputs a key pair (pk , sk); (2) Sign takes as input a message m
and the secret key sk , and outputs a signature σ; (3)Vrfy takes as input a message-signature pair
(m,σ) together with the public key pk and outputs a decision bit (indicating whether (m,σ) is a
valid signature with respect to pk).

We require that for all messages m and for all keys (pk , sk)← KGen(1k), algorithm Vrfy(pk ,m,
Sign(sk ,m)) outputs 1 with all but negligible probability. A signature scheme SIG is existentially
unforgeable against chosen message attacks (EUF-CMA), if for all PPT adversaries A there exists
a negligible function δ : N→ [0, 1] such that Pr [A wins] ≤ δ(k) in the following game:

1. The challenger samples (pk , sk)← KGen(1k) and gives pk to A.

2. The adversary is given oracle access to Sign(sk , ·).

3. Eventually A outputs a forgery (m?, σ?) and wins if Vrfy(pk , (m?, σ?)) = 1 and m? was not
asked to the signing oracle before.

12

2.5 True Simulation Extractibility

We recall the notion of true-simulation extractable (tSE) NIZKs [13]. This notion is similar to
the notion of simulation-sound extractable NIZKs [23], with the difference that the adversary has
oracle access to simulated proofs only of true statements (and not of arbitrary ones).

Let R be an NP relation on pairs (y, x) with corresponding language L = {y : ∃x s.t. (y, x) ∈
R}. A tSE NIZK proof system for R is a triple of algorithm (Gen,Prove,Verify) such that: (1)
Algorithm Gen takes as input 1k and generates a common reference string ω, a trapdoor tk and
an extraction key ek; (2) Algorithm Proveω takes as input a pair (y, x) and produces an argument
π which proves that (y, x) ∈ R; (3) Algorithm Verifyω takes as input a pair (y, π) and checks the
correctness of the argument π with respect to the public input y. Moreover, the following properties
are satisfied:

Completeness. For all pairs (y, x) ∈ R, if (ω, tk, ek) ← Gen(1k) and π ← Proveω(y, x) then
Verifyω(y, π) = 1.

Soundness. For any PPT adversary A, there exists a negligible function δ : N→ [0, 1] such that

Pr
[
Verifyω(y, π?) = 1 ∧ y /∈ L : (y, π?)← A(ω); (ω, tk, ek)← Gen(1k)

]
≤ δ(k).

Composable non-interactive zero knowledge. There exists a PPT simulator S such that, for any
PPT adversary A, there exists a negligible function δ : N→ [0, 1] such that |Pr [A wins]− 1

2 | ≤
δ(k) in the following game:

1. The challenger samples (ω, tk, ek)← Gen(1k) and gives (ω, tk) to A.

2. A chooses (y, x) ∈ R and gives these to the challenger.

3. The challenger samples π0 ← Proveω(y, x), π1 ← S(y, tk), b ∈ {0, 1} and gives πb to A.

4. A outputs a bit b′ and wins iff b′ = b.

True simulation extractability. Define a simulation oracle S′tk(·, ·) that takes as input a pair (y, x),
checks if (y, x) ∈ R and then it either outputs a simulated argument π ← S(y, tk) (ignoring
x) in case the check succeeds or it outputs ⊥ otherwise. There exists a PPT algorithm
Ext(y, π, ek) such that, for all PPT adversaries A, there exists a negligible function δ : N →
[0, 1] such that |Pr [A wins]− 1

2 | ≤ δ(k) in the following game:

1. The challenger samples (ω, tk, ek)← Gen(1k) and gives ω to A.

2. AS′tk(·) can adaptively access the simulation oracle S′tk(·, ·).
3. Eventually A outputs a pair (y?, π?).

4. The challenger runs x? ← Ext(y?, π?, ek).

5. A wins if: (a) (y?, π?) 6= (y, π) for all pairs (y, π) returned by the simulation oracle; (b)
Verifyω(y?, π?) = 1; (c) (y?, x?) 6∈ R.

13

2.6 A Note on Deterministic vs Probabilistic Tampering

In this paper we assume the tampering functions chosen by the adversary to be deterministic. This
is without loss of generality as the adversary can always hard-wire the “best” randomness into
the function. Here, the best randomness refers to some specific choice of the random coins which
would maximize the adversary’s advantage. Moreover, in this work we model tampering functions
by polynomial size circuits with an identical input/output domain.

3 Semi-Adaptive BLT Security for General Primitives

We show that “any” primitive (e.g., any PRF or signature scheme) can be made tamper resilient
by combining it with a universal hash function (or by assuming that the primitive has some form
of RA security). We put forward a notion of semi-adaptive BLT security for general primitives
in Section 3.1. In Section 3.2 we describe our transformation based on universal hashing and
state our main theorem (Theorem 3.1). Section 3.3 contains an high-level overview of the proof of
Theorem 3.1; a formal proof appears in Section 3.4 and 3.5. Finally, in Section 3.6 we discuss a
few extensions of our main theorem.

Notation for this section. In this section n = poly(k) denotes the length of the key unless
explicitly mentioned otherwise, where k is the security parameter. We say that a distribution
X over a set X of size |X | = 2n is (α, n)-good if H∞(X) ≥ α and Pr [X = x] ≥ 2−n for all
x ∈ sup(X). Given some event E we write H̃∞(X|Y1, Y2, . . . , E) to denote that every random
variable is conditioned on the event E.

3.1 Abstract Games with Tampering

We start by defining a general security definition for abstract security games of cryptographic
scheme CS. Similarly to [15], we consider an experiment played between an adversary A and a
challenger C that is defined by the security game.

Definition 3.1 (Abstract security game). The security of a cryptographic scheme CS is defined via
an interactive game GameCSC,A between a probabilistic attacker A and a probabilistic challenger C(·),
where C(·) is fixed by the definition of CS. For security parameter k the security game GameCSC,A(1k)
is given below.

1. At the beginning of the game, we sample public parameter pp and a uniformly chosen secret
key X ← X . Notice that in case of a public key primitive, pp contains the public key that
depends on X. The public parameters pp are given to A and (pp, X) is given to C.

2. The game can have an arbitrary structure but at the end C(pp, X) outputs a bit that specifies
the output of the game, where 1 indicates that A has won the game.

For unpredictability security games we say that a scheme is δ(k)-secure if for any PPT adversary
A the advantage of A is

Pr[GameCSC,A(1k) = 1] ≤ δ(k).

14

Experiment GameCSA,Ct,λ,v

The experiment features a challenger Ct,λ,v, defined as follows:

1. Ct,λ,v takes inputs (pp, X) from the game and obtains a description of a leakage function L : X → {0, 1}λ
and a set of tolerated tampering functions T from A. It gives pp, L(X) to the adversary.

2. The adversary can interact with the underlying challenger C(pp, X) in an arbitrary way as specified in
Definition 3.1.

3. The adversary submits a set of tampering functions (T1, . . . , Tt) ∈ T to the challenger Ct,λ,v.

4. For all i ∈ [t] let X(i) = Ti(X
(i−1)) where X(0) = X. Challenger Ct,λ,v instantiates t challengers

C(pp, X(1)), . . . ,C(pp, X(t)) and allows A to interact with each of these oracles.

5. At the end C(pp, X) outputs a bit b indicating whether A has won the game against C(pp, X). Let b
denote the output of Ct,λ,v.

Figure 1: A description of experiment GameCSA,Ct,λ,v , modeling semi-adaptive BLT security

For indistinguishability games we say that a scheme is δ(k)-secure if for any PPT adversary A the
advantage of A is

Pr[GameCSC,A(1k) = 1]− 1/2 ≤ δ(k).

For indistinguishability games, we assume wlog. that the challenger C internally keeps a bit b and
A submits as its last message to C a bit b′. If b = b′ then the challenger returns 1; otherwise 0. In
the following, we will usually omit the parameter δ(k) and just say that a scheme is secure if δ(k)
is negligible in k.

We now extend the above definition to model an adversary A that is allowed to leak a certain
amount of information (say λ bits) about the original key X and also to tamper with X for a
bounded number of times (say some value t ∈ N). The adversary has to commit to the entire
sequence of tampering functions (T1, . . . , Tt); however the particular sequence of functions to use
can be chosen adaptively (from some set T of possible sequences) after seeing the public parameters
and interacting with the challenger C(pp, X). We refer to this model as the semi-adaptive model.

Let λ, t, v be parameters and let T := {(T1, . . . , Tt) : Ti : X → X} be some set of t-tuples of
functions with |T | = v. We define a special type of challenger, Ct,λ,v, that models semi-adaptive
tampering and leakage attacks on the secret key and can be based on any standard challenger C
from Definition 3.1. Challenger Ct,λ,v runs in GameCSA,Ct,λ,v , as described in Figure 1. Below we

define security of a cryptosystem CS in the presence of (semi-adaptive) bounded tampering and
leakage attacks (semi-adaptive BLT security).

Definition 3.2 (Semi-adaptive BLT security of CS). We say that a cryptographic scheme CS is
(λ(k), t(k), δ(k), v(k))-secure in the semi-adaptive BLT model if for all PPT adversaries A we have
Pr[GameCSA,Ct,λ,v(1

k) = 1] ≤ negl(k). Here, |T | = v and each element of T is a tuple (T1, . . . , Tt) of
tampering functions.

Some remarks are in order to explain GameCSA,Ct,λ,v . First, A’s view now includes the leakage as
well as the view that the adversary obtains by interacting with tampered keys. Second, A wins if
he breaks the security notion of CS with respect to the original key. For public key primitives this

15

implies that the adversary has to break the security of the scheme with respect to the public key.
For secret key primitives such as PRFs or symmetric encryption it says that A has to break the
security notion with respect to the initial secret key X. Finally, we emphasize that A can interact
with the tampered challenge oracles in any given order, i.e., A may interact first with C(pp, X(i+1))
before calling C(pp, X(i)). Moreover, he may jump back and forth between these oracles.

3.2 A General Transformation

We now describe a general transformation to leverage security of a cryptographic scheme CS (as
per Definition 3.1) to semi-adaptive BLT security (as per Definition 3.2). The transformation is
based on a family H = {hS : X → Y} of (2t + 1)-wise independent hash functions. Recall that H
is called t-wise independent if for any sequence of distinct elements X(1), . . . , X(t) ∈ X the random
variables hS(X(1)), . . . , hS(X(t)) are uniform, where hS ← H.3

The transformation. Consider a cryptographic scheme CS running a cryptographic algorithm
CS that operates on some public parameters pp, a uniformly chosen key K ← Y and takes some
additional input M ∈ M to compute the output Z ← CS(pp,K,M). For instance, CS may be
a block cipher and CS the associated encryption algorithm with M being the message and Z the
corresponding ciphertext. We transform CS into CS ′ as follows. Let H = {hS : X → Y}S∈S be
a family of 2(t + 1)-wise independent hash functions. At setup we sample the public parameters
pp according to CS, choose a hash function key S ← S and sample a key X ← X uniformly at
random. Notice here the difference between the key space Y for CS and X for the transformed
scheme CS ′. We will discuss the relation between these two sets in further detail below. To compute
the cryptographic algorithm CS′ on some input M , we run Z ← CS(pp, hS(X),M). Notice that
we first map the key X for CS ′ to the key K for the underlying cryptoscheme CS by applying the
hash function.

The theorem below states that the above transformation is secure in the semi-adaptive BLT
model whenever CS is secure in the standard sense.

Theorem 3.1. If CS is secure and H = {hS : X → Y}S∈S is a family of 2(t+ 1)-wise independent
hash functions with |X | = 2n and |Y| = 2`, then we have that CS ′ is (λ, t, δ, v)-secure in the
semi-adaptive BLT model, where

λ = O(3
√
n) t = O(3

√
n) δ ≤ negl(k) v = O(nd) ` = O(4

√
n),

for some constant d > 0.

Concretely, we can think of CS being a PRF (or a signature scheme) with security in the
standard sense, i.e., the adversary has negligible advantage when playing against the underlying
challenger. The Theorem 3.1 says that, for sufficiently large n, the transformed PRF CS ′ achieves
semi-adaptive BLT security against adversaries tampering O(3

√
n) times and leaking O(3

√
n) bits

from the original key. Notice that the hash function compresses the n-bit input to O(4
√
n) bits and

the set of admissible (sequences of) tampering functions has size O(nd) for some constant d > 0.
Notice that if the underlying primitive is super-polynomial secure than we can increase the size of

3A concrete construction is given by the following function hS : Zp → Zp: Sample S by choosing t random elements
s0, s1, . . . , st−1 ← Ztp and define hS(X) = s0 + s1 ·X + . . .+ st−1 ·Xt−1 mod p.

16

admissible tampering functions. In the extreme case when the underlying primitive has exponential
security, the size of T may be sub-exponentially large.

We emphasize that we can obtain stronger leakage resilience as we inherit the security properties
from the underlying cryptoscheme CS. Hence, if CS is secure against adaptive leakage attacks from
the key K, then also CS ′ is secure against adaptive leakage attacks from the key hS(X) used by
the actual cryptographic scheme.

3.3 Outline of the Proof

We explain the intuition and the main ideas behind the proof of Theorem 3.1. The proof is by
reduction: Given an adversary A with non-negligible advantage in the semi-adaptive BLT game for
CS ′ (cf. Definition 3.2), we build an adversary B against standard security of CS (cf. Definition 3.1).
The main difficulty is that B has only access to a challenger C(pp,K) (for some uniform K), so it
is not a priori clear how B can answer A’s tampering queries and simulate the oracle Ct,λ,v.

The idea is to let B sample the initial key X(0) independently of the target key K (which is
anyway not known to B) and compute the keysX(1), . . . , X(t) as specified by the tampering functions
Ti in order to simulate the tampered view of A. To give a first hint why this may indeed be a good
strategy, consider the simple case where all tampered keys have high min-entropy (say higher than
some threshold β). In this case, we can rely on a property of 2(t + 1)-wise independent hashing,
namely for a uniformly sampled hash function hS the tuple (hS(X(0)), hS(X(1)), . . . , hS(X(t))) is
statistically close to uniform and thus B’s simulation of A’s view is indistinguishable from the real
view. The exact property we need from H is formalized in the following lemma. The proof is a
straightforward extension of [28, Lemma 3.2] and is deferred to Appendix C.

Lemma 3.1. Let (X1, X2, . . . , Xt) ∈ X t be t (possibly dependent) random variables such that
H∞(Xi) ≥ β and (X1, . . . , Xt) are pairwise different. Let H = {hS : X → Y} be a family of 2t-wise
independent hash functions, with |Y| = 2`. Then for random hS ← H we have that

∆((hS , hS(X1), hS(X2), . . . , hS(Xt)); (hS , UY , . . . , UY︸ ︷︷ ︸
t times

)) ≤ t

2
· 2(t·`−β)/2.

Of course, in our general tampering model nothing guarantees that all keys have high min-
entropy, and hence we cannot immediately apply Lemma 3.1. At this point, a careful reader may
object that at the end this does not matter too much: if the compression of the hash function is high
enough (as it is the case for our choice of ` ≈ 4

√
n in Theorem 3.1) the hashed keys are short anyway,

and thus the entropy of X(0) given the hash of the tampered keys remains high. At this point it
looks tempting to apply the leftover hash lemma, and argue that hS(X(0)) is statistically close to
uniform even given the hashed tampered keys. The leftover hash lemma, however, requires that the
key S can be sampled uniformly and independently from the distribution of X(0). Unfortunately,
the conditional distribution of X(0) (given the tampered hashed keys) may now depend on S, and
we cannot apply the leftover hash lemma directly.

To deal with low min-entropy keys we prove a technical lemma stating that given an arbitrary

chain of random variables X(0) T1−→ X(1) T2−→ . . .
Tt−→ X(t) (such that X(0) has high min-entropy) for

any t arbitrary functions Ti : X → X , for an appropriate choice of values t and β there exists a
point i ∈ [t] in the chain such that all random variables before i have average min-entropy at least
β even conditioned on X(i+1), . . . , X(t). We state the lemma below. The proof is quite involved
and is given in Appendix D.

17

Experiment Real vs. Sim

1. Experiment Real(X, (T1, . . . , Tt), L): Let X(0) be a random variable with distribution X and hS ← H a
uniformly sampled hash function. For i ∈ [t] denote by X(i) = Ti(X

(i−1)), then

Real := (D0, . . . , Dt+2) =
(
hS(X(0)), . . . , hS(X(t)), L(X(0)), S

)
2. Experiment Sim(X, (T1, . . . , Tt), L): Let X(0) be a random variable with distribution X and hS ← H a

uniformly sampled hash function. For i ∈ [t], denote by X(i) = Ti(X
(i−1)), and proceed as follows

Sample D0 ← UY .
For i ∈ [t] compute:

If X(i) 6= X(0) then Di = hS(X(i))
Else Di = D0

Output Sim = (D0, . . . , Dt, L(X(0)), S).

Figure 2: Experiment Real denotes the real tampering experiment and Sim our simulation.

Lemma 3.2. For n ∈ N>1 let α, β, t, ε be some parameters where t ∈ N, 0 < α ≤ n, β > 0, ε ∈ (0, 1]
and t ≤ α−β

β+2
√
n

. Let X be some set of size |X | = 2n and let X(0) be a (α, n)-good distribution over

X . For i ∈ [t] let Ti : X → X be arbitrary functions and X(i) = Ti(X
(i−1)). There exists an event

E such that:

(i) If Pr [E] > 0, for all i ∈ [t], H∞(X
(i)
|E) ≥ β.

(ii) If Pr
[
E
]
≥ ε there exists an index j ∈ [t] such that

H̃∞(X
(j−1)
|E |X(j)

|E) ≥ β − log
t

ε
.

Instead of the real experiment we can now turn to a mental experiment where at some point in
the chain we reveal an entire sourceX(i). By Lemma 3.2 we are guaranteed thatX(0), X(1), . . . , X(i−1)

individually all have high min-entropy even given X(i), which allows us to apply Lemma 3.1 and
conclude that hS(X(0)), . . . , hS(X(i−1)) are jointly close to uniform. Notice that in the mental
experiment clearly the remaining sources X(0), X(1), . . . , X(i−1) remain independent from S even
given X(i). At this point we are almost done except for two technical difficulties: (1) Lemma 3.2
requires that all X(j) (for j < i) are pairwise distinct, and (2) the adversary picks its tampering
choice adaptively from a fixed set T after seeing the key for the hash function S and after interact-
ing with the original challenger (the so-called semi-adaptive model). We solve the first by changing
the above mental experiment and eliminate all sources that appear multiple times in the source
chain. We then show that given a short advice we can re-sample the complete X(0), . . . , X(t) from
the reduced chain. To complete the proof, we address the semi-adaptivity mentioned in (2) by a
counting argument as the size of the set of potential tampering queries T is not too big (polynomial
in the security parameter).

We conclude the above outline by defining two experiments that describe how the keys X(0), X(1)

, . . . , X(t) are sampled in the real game and in the simulation. For t, λ ∈ N and any set of functions
T1, . . . , Tt : X → X , L : X → {0, 1}λ consider the two experiments as given in Figure 2.
In the lemma below we show that for a distribution X with a sufficient amount of min-entropy

18

and certain set of carefully chosen parameters the distance between Real(X, (T1, . . . , Tt), L) and
Sim(X, (T1, . . . , Tt), L) is statistically close. We will in the following omit to explicitly mention the
inputs to the experiments.

Lemma 3.3. Let k ∈ N be the security parameter and n, t, λ, ε, `, α be functions in k such that
λ, t < α ≤ n and ε ∈ (0, 1]. Let H = {hS : X → Y} be a family of 2(t + 1)-wise independent hash
functions. Let |X | = 2n, |Y| = 2` and X be an (α, n)-good distribution over X . For any set of
functions T1, . . . , Tt : X → X , L : X → {0, 1}λ as specified above:

∆(Real;Sim) ≤ t · 2((t+1)·`−c)/2 + 4ε,

where c := β − 2 log t/ε− λ− 2t log(t) and β := α−2t
√
n

t+1 .

3.4 Proof of Lemma 3.3

We start by describing a distribution D1 that together with a short advice Z allows to sample Real.
Distribution D1 is defined exactly as Real except that it only contains distinct values (in particular
notice that D1 can contain less values than Real). More precisely, D1 is sampled as follows:

1. Let X(0) be distributed according to X and compute X(i) = Ti(X
(i−1)) (this is exactly as in

Real).

2. For all i ∈ [t] output hS(X(i)) if for all j < i we have X(i) 6= X(j). Denote these outputs by
D1. We also output (L(X(0)), S).

The advice Z (depending on X(0) and the functions T1, . . . , Tt) describes where the values from D1

appear in Real. An easy way to describe such an advice Z requires t2/2 bits. A more thorough
analysis shows that one can encode the information necessary to map from D1 to Real by 2t log(t)
bits.4 In the following we denote the mapping algorithm that maps (D1, Z) to Real as Samp(D1, Z).
Clearly, Samp(D1, Z) and Real are identically distributed and all values in D1 are distinct. For ease
of notation we will reuse the parameter t to denote the number of elements in D1.

Claim 1. Let β = α−2t
√
n

t+1 . There exists an i ∈ [t] and an event Good such that Pr[Good] ≥ 1− ε
and

H̃∞(X(i)|X(i+1), L(X(0)), S, Z,Good) ≥ β − log t/ε− λ− 2t log(t). (1)

In the above X(t+1) denotes a random variable that is chosen uniformly and independently from X .

Proof. Recall that by putting Good in the condition of (1) we denote that all random variables are
conditioned on the fact that Good happens. We prove this statement by relying on Lemma 3.2 which
shows that each X(i) has average min-entropy at least β− log t/ε. Lemma 3.2 puts a constraint on
β:

β ≤ α− 2t
√
n

t+ 1

Clearly, our choice of β satisfies the above constraint. As X(0) is (α, n)-good, we can now apply
Lemma 3.2:

4This can be done by first describing for each element in D1 how often it appears in Real and then by defining a
mapping that maps each element to its position in Real. Each of these steps require at most t log(t) bits.

19

1. If Pr [E] > 0, for all i ∈ [t]: H∞(X
(i)
|E) ≥ β,

2. If Pr[E] ≥ ε then there exists i ∈ [t] such that : H̃∞(X
(i−1)
|E |X(i)

|E) ≥ β − log t
ε .

Consider now the setting when Pr [E] > 0. Hence we know by Step (1) from above that for all

i ∈ [t]: H∞(X
(i)
|E) ≥ β, and in particular H∞(X

(t)
|E) ≥ β. As X(t+1) is uniformly and independently

chosen from all other variables, we get in this case that

H̃∞(X
(t)
|E |X

(t+1)
|E) ≥ β ≥ β − log t/ε. (2)

Again if Pr[E] ≥ ε then by Step (2) from above there exists an i ∈ [t] such that

H̃∞(X
(i−1)
|E |X(i)

|E) ≥ β − log t/ε. (3)

We define Good as follows: Good = E if Pr[E] < ε and Good = Ω if Pr[E] ≥ ε where Ω denotes the
whole probability space. We can bound the probability of the event Good considering two cases:

• When Pr
[
E
]
≥ ε, then Pr [Good] = 1.

• When Pr
[
E
]
< ε then, Pr [Good] = Pr [E] > 1− ε.

So clearly Pr [Good] > 1− ε.
We conclude that there must exist an i ∈ [t] such that

H̃∞(X(i)|X(i+1), L(X(0)), S, Z,Good) ≥ H̃∞(X(i)|X(i+1), S,Good)− λ− 2t log(t) (4)

= H̃∞(X(i)|X(i+1),Good)− λ− 2t log(t) (5)

≥ β − log t/ε− λ− 2t log(t). (6)

Eq. (4) follows from the chain rule for conditional average min entropy (cf. Lemma 2.1). Eq. (5)
holds because S is chosen uniformly and independently from all other variables. Finally, as either
E or E must happen and we condition on Good , we get from Eq. (2) and Eq. (3) that Eq. (6) holds.
This concludes the proof of the claim.

By using the union bound and Lemma 2.1, we can now restate Claim 1 in terms of min-entropy
and condition all random variables on event Good happening. Thus we get that there exists an
i ∈ [t] such that with probability at least 1− 2ε the following holds:

H∞(X(i)|(X(i+1), L(X(0)), S, Z) = r) ≥ β − 2 log t/ε− λ− 2t log(t).

Recall that X(i) can be computed as a (deterministic) function from X(j) where j < i. Hence,
the above holds for all X(j) where j ≤ i, i.e.,

H∞(X(j)|(X(i+1), L(X(0)), S, Z) = r) ≥ β − 2 log t/ε− λ− 2t log(t) =: c.

As with probability at least 1− 2ε all X(j) individually have min-entropy c and by assumption all
X(j) are distinct, we can apply Lemma 3.1:

∆((D1, Z); (

i+1 times︷ ︸︸ ︷
UY , . . . , UY , X

(i+1), L(X(0)), S︸ ︷︷ ︸
D2

, Z)) ≤ t2((t+1)·`−c)/2−1 + 2ε =: ε′.

20

As Samp is a deterministic algorithm, the above implies:

∆(Samp(D1, Z);Samp(D2, Z)) ≤ ε′.

Notice that in Samp(D2, Z) the first i + 1 values are now sampled uniformly and independently
from UY . Consider now a distribution D3 where only the first element is replaced by UY and the
following i elements are computed correctly as the output of the hash function hS . By a standard
argument, we get

∆(Samp(D1, Z);Samp(D3, Z)) ≤ 2ε′.

To conclude the proof notice that Real and Sim are identically distributed except for the effect
that the first element has on the two distributions.5 Hence, Samp(D3, Z) and Sim are identically
distributed. As moreover Samp(D1, Z) and Real are identically distributed this concludes the
proof.

Some comments are in order to explain the mechanics of the parameters defining the statistical
distance between Real and Sim in Lemma 3.3. To obtain a negligible quantity (as we will need for
the proof of Theorem 3.1 in Section 3.5), the value c must be chosen to be sufficiently larger than
the value (t + 1) · `; this shows a clear trade-off between the value of t and the value of `. We
instantiate Lemma 3.3 with concrete values in the following corollary. It shows a setting where we
try to maximize the number of tampering queries we can tolerate by using a very high compression
factor.

Corollary 1. For sufficiently large n, if we set ` = O(4
√
n), λ = O(3

√
n), α = n−O(3

√
n) and ε =

exp(−Θ(3
√
n)) in Lemma 3.3 we get t = O(3

√
n) for which the distance ∆(Real;Sim) ≤ exp(−Ω(3

√
n))

in n.

3.5 Proof of Theorem 3.1

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose there exists an adversary A and a polynomial p(.) such that A
breaks the (λ, t, v) semi-adaptive BLT security of CS ′ with advantage at least 1/p(k) for infinitely
many k. Then, we construct an adversary B that breaks the security of CS according to the challenge
oracle C(pp,K) for some uniform key K ← Y with advantage at least 1/p′(k) for some polynomial
p′(.). To this end, adversary B needs to simulate the environment specified by Ct,λ,v to A given only
access to its target oracle C(pp,K). At a high-level this simulation is carried out as follows: B uses
its target oracle C(pp,K) to simulate the interaction of A with the cryptoscheme running on the
original key hS(X(0)), and simulates the tampered view with keys that are sampled uniformly and
independently. The simulation closely follows the structure of the tampering challenger as specified
in Section 1 and is given below:

1. In the first step B receives a leakage function L : X → {0, 1}λ and a set of tolerated tampering
functions T from A. It also receives the public parameters pp from its own target game. B
chooses uniformly at random an index j∗ ∈ [v]. Recall that v = |T | = O(nd) for some
constant d.

5In both cases we start with an element sampled from X and apply the functions T1, . . . , Tt to it.

21

2. B samples a random key S for the hash function and uniformly at random an initial key X(0)

from X . It forwards L(X(0)) and pp ′ = (pp, S) as the public parameters to A.

3. B uses its challenge oracle C(pp,K) to simulate A’s interaction with the original (un-tampered)
key.

4. B receives a tuple of tampering functions Vj = (T1, . . . , Tt) ∈ T from A. If j 6= j∗ then we
proceed as follows:

(a) If B runs an unpredictability game, then it aborts.

(b) If B runs an indistinguishability game, then it samples a random bit b and submits b as
its last message to its challenge oracle C.

5. B computes X(i) = Ti(X
(i−1)) and simulates interactions with the oracles as follows:

(a) For all i ≥ 1 withX(i) 6= X(0), it usesX(i) to simulate A’s interaction with the challengers
C(pp′, hS(X(i)). As X(i) is known to B this can be done efficiently.

(b) For all i ≥ 0 with X(i) = X(0), it uses its target oracle to simulate A’s view. Notice
that this includes the case when A interacts with the scheme running on the original key
X(0).

We argue that when A wins the tampering game with advantage at least 1/p(k), then B wins the
underlying game against challenger C with advantage 1/p′(k). To this end, we first show that
conditioned on j = j∗ the view of the adversary in the simulation and the adversary’s view in the
real experiment are statistically close. If j = j∗ the simulation above is identically distributed to
the simulation given in Sim from Figure 2. This follows from the following observations:

1. In the simulation A is committed to the tampering option j∗ before he starts to interact with
the challenge oracles as otherwise B will abort the simulation. Notice that this commitment
is in particular before seeing the hash key S, and the view with the original key. Hence, B’s
simulation corresponds to the non-adaptive case as given in Sim.

2. B uses its own challenge oracle running with a uniform key to simulate A’s un-tampered view.
This is exactly as in the simulation Sim from Figure 2, where we replace the first output of
the hash function with a uniformly and independently sampled value (independently of S and
the first input to the hash function).

3. B simulates the tampering queries by using an initial input X(0) for the hash function that
is chosen independently from the un-tampered view. That is exactly what happens in Sim.

The above concludes that the simulation of B and the simulation given in Sim are identical if j = j∗.
By Lemma 3.3 and Corollary 1 we get for the choice of parameters given in the theorem’s statement
(notice that this choice corresponds to the parameters of Corollary 1) that for j = j∗

∆(GameCS
′

Ct,λ,v ,A
;Game

CS′
Ct,λ,v ,A

) ≤ exp(−Ω(3
√

(n)), (7)

where Game
CS′
Ct,λ,v ,A

is the game where A runs in the experiment as defined by B. To complete the
proof we need to lower bound the advantage of B when running against challenger C. We discuss
how to handle unpredictability and indistinguishability games separately.

22

1. Unpredictability security notion: For unpredictability games B aborts in Step 4 if j 6= j∗.
Hence, we get:

Pr[GameCSC,B(1k) = 1] = Pr[GameCSC,B(1k) = 1|j = j∗] Pr[j = j∗]

+ Pr[GameCSC,B(1k) = 1|j 6= j∗] Pr[j 6= j∗]

≥Pr[GameCSC,B(1k) = 1|j = j∗] Pr[j = j∗]

≥
(

Pr[GameCS
′

Ct,λ,v ,A
(1k) = 1]− exp(−Ω(3

√
n)
) 1

v
(8)

>
1

p′(k)
. (9)

(8) follows from Eq. (7) and the fact that conditioned on j = j∗ B wins against challenger
C when A wins against challenger Ct,λ,v. Recall that if A wins then the underlying oracle
C running with the original key has to output 1. Finally, (9) holds because v = O(nd) (for
some constant d) and by assumption Pr[GameCS

′

Ct,λ,v ,A
(1k) = 1] ≥ 1/p(k). Clearly, (9) yields a

contradiction.

2. Indistinguishability security notion: For indistinguishability games B aborts and sends a
random bit b to the challenger. As above we need to lower bound the advantage of B when
playing against the challenge oracle C.

Pr[GameCSC,B(1k) = 1]− 1

2
= Pr[GameCSC,B(1k) = 1|j = j∗] Pr[j = j∗]

+ Pr[GameCSC,B(1k) = 1|j 6= j∗] Pr[j 6= j∗]− 1

2

≥Pr[GameCSC,B(1k) = 1|j = j∗] Pr[j = j∗] +
Pr[j 6= j∗]

2
− 1

2
(10)

≥

(
Pr[GameCS

′

Ct,λ,v ,A
(1k) = 1]− exp(−Ω(3

√
n))
)

v
+
v − 1

2v
− 1

2
(11)

>
1

p′(k)
. (12)

(10) holds because Pr[GameCSC,B(1k) = 1|j 6= j∗] = 1/2. (11) follows from Eq. (7) and the fact
that conditioned on j = j∗ B wins against challenger C when A wins against challenger Ct,λ,v.

Finally, (12) holds because v = O(nd) (for some constant d) and Pr[GameCS
′

Ct,λ,v ,A
(1k) = 1] ≥

1/2 + 1/p(k) for some polynomial p(.).

The above yields a contradiction as for both game types the adversary B has a non-negligible
advantage against the underlying challenger C. Hence, we get

Pr[GameCS
′

Ct,λ,v ,A
(1k) = 1] ≤ negl(k)

as claimed in the theorem. This concludes the proof.

3.6 Extensions

We discuss some extensions of the main result from this section.

23

Beyond semi-adaptivity. Notice that since T is a set of tuples of functions, Definition 3.2
clearly implies non-adaptive security where the adversary commits to a single chain of tampering
functions (T1, . . . , Tt). We further notice that we can obtain a stronger form of semi-adaptivity by
paying a higher price in the security loss. In this model, after committing to a set of functions
T = {Ti : X → X} (in Step 1 of Figure 1), the adversary can adaptively choose individual functions
from T (in Step 4 of Figure 1). The loss in security however increases by a factor vt (instead of
just v as in Theorem 3.1). Finally, observe that we can replace the 2(t+ 1)-wise independent hash
function with any cryptographic hash function and model it in the security proof of Theorem 3.1 as
a random oracle. As long as the tampering function cannot query the random oracle, the tampering
choice may now be fully adaptively. Notice also that the random oracle allows us to improve some
of the parameters from the theorem – in particular, the compression rate `.

In Section 4 and Section 5 we show that fully adaptive BLT security can be achieved for free if
we consider specific constructions. It is an interesting question if also for general primitives stronger
adaptivity security notions in the BLT model can be obtained. The following simple example shows,
however, that this question may be hard — at least in its most general form.

Example 3.1. Consider a PRF ψ(K,M) that is a function of a d-key K and input M and is secure
in the standard sense (without tampering or leakage). We also assume that the function can be
broken if one learns a constant fraction of the key bits. We turn this into a new scheme with a
public parameter x1, . . . , xd chosen from a large finite field of characteristic 2. The secret key is
now a random polynomial f of degree at most d− 1. To evaluate the function on input M , we first
compute K = (lsb(f(x1)), . . . , lsb(f(xd))) where lsb denotes the least significant bit, and output
ψ(K,M). If there is no tampering, this is still secure, since K is random, even given the xi’s.

However, a fully adaptive tampering function that has full information on the xi’s can interpolate
a polynomial that takes any set of desired values in the xi’s. It can therefore tamper freely with
individual bits of K, and use a generic attack to learn t bits of K using t tampering queries and
break the function.

On the other hand, a non-adaptive tampering function is not allowed to depend on the public
parameters. Assume it replaces the polynomial by f ′ 6= f . Then if f − f ′ is constant, either K is
not changed or all bits of K are flipped. We can reasonably assume that ψ is secure against such a
related-key attack. If f − f ′ is not constant, then (f − f ′)(xi) is close to uniform for all i because
the degree of f − f ′ is at most d and this is much smaller than the size of the field. Although the
values (f − f ′)(xi) are not independent, it is certainly not possible to change only one or a small
number of key bits. So assuming ψ has some form of related-key security, non-adaptive tampering
cannot break the function.

Avoid hashing by assuming RKA security. We discuss a simple extension of our result from
Theorem 3.1 which allows to lift the statement to a fully adaptive setting, in case one is willing
to assume the underlying cryptographic scheme has an additional security property (essentially
a form of related-key attack security [4]). The scheme CS should remain secure even against an
adversary which is allowed to see outputs Z ′ produced with keys related to X but that still retain
high enough min-entropy. In this case, we can avoid entirely the transformation based on hashing
and apply directly this assumption in the proof of Lemma 3.3.

One natural question to ask is whether one can hope to prove that all primitives are secure in
the non-adaptive BLT model, without necessarily using our transformation. The question to this
answer is negative. Consider for instance the Naor-Reingold construction of a PRF [30]. For a group

24

G of prime order p with generator g, let NR : (Z∗p)n+1 × {0, 1}n → G be defined as NR(x,m) =

gx0·
∏n
i=1 x

mi
i . The following is a simple non-adaptive attack on NR. Before the public parameters

are sampled, commit to tampering function T , such that T (x0, . . . , xn) = (x0, x2, x1, x3 . . . , xn)
(i.e., T just swap x1 and x2). Query the function on input m′ = (1, 0, . . . , 0); this yields the
value y′ = gx0·x2 . Now, run the challenge phase using input m′′ = (0, 1, 0, . . . , 0). This is clearly
distinguishable from random, as y′′ = y′ for NR.

4 ID Schemes with BLT Security

In an identification scheme a prover tries to convince a verifier of its identity (corresponding to its
public key pk). Formally, an identification scheme is a tuple of algorithms ID = (Setup,Gen,P,V)
defined as follows:

pp ← Setup(1k): Algorithm Setup takes the security parameter as input and outputs public
parameters pp. The set of all public parameter is denoted by PP.

(pk , sk) ← Gen(1k): Algorithm Gen outputs the public key and the secret key corresponding to
the prover’s identity. The set of all possible secret keys is denoted by SK.

(P,V): We let (P(pp, sk)� V(pp))(pk) denote the interaction between prover P (holding sk and
using public parameters pp) and verifier V on common input pk . Such interaction outputs a
result in {accept , reject}, where accept means P’s identity is considered as valid.

Definition 4.1. Let λ = λ(k), t = t(k) and δ = δ(k) be parameters and let T be some set of
functions such that T ∈ T has a type T : SK × PP → SK × PP. We say that ID is (λ, t, δ)-
bounded leakage and tamper secure (in short BLT-secure) against impersonation attacks with
respect to T if the following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k) and (pk , sk) ← Gen(1k) we have that (P(pp, sk) �
V(pp))(pk) outputs accept .

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk , sk)← Gen(1k), and gives (pp, pk) to A.

2. The adversary is given oracle access to P(pp, sk), modeled as an oracle that outputs
polynomially many proof transcripts with respect to secret key sk .

3. The adversary may adaptively ask t tampering queries. During the ith query, A chooses a
function Ti ∈ T and gets oracle access to P(p̃pi, s̃k i), where (s̃k i, p̃pi) = Ti(s̃k i−1, p̃pi−1)

and (s̃k0, p̃p0) = (sk , pp). The adversary can interact with the oracle P(p̃pi, s̃k i) a
polynomially number of times, where it uses the tampered secret key s̃k i and the public
parameter p̃pi.

4. The adversary may adaptively ask leakage queries. In the jth query, A chooses a function
Lj : {0, 1}∗ → {0, 1}λj and receives back the output of the function applied to sk .

5. The adversary loses access to all other oracles and interacts with an honest verifier V
(holding pk). We say that A wins if (A� V(pp))(pk) outputs accept and

∑
j λj ≤ λ.

25

Notice that in the above definition the leakage is from the original secret key sk . This is without
loss of generality as our tampering functions are modeled as deterministic circuits.

In a slightly more general setting, one could allow A to leak on the original secret key also in
the last phase where it has to convince the verifier. In the terminology of [2] this is reminiscent of
so-called anytime leakage attacks. Our results can be generalized with respect to this more general
definition, however we stick to Definition 4.1 for simplicity.

The rest of this section is organized as follows. In Section 4.1 we prove that a large class of
Σ-protocols are secure in the BLT model, where the tampering function is allowed to modify the
secret state of the prover but not the public parameters. In Section 4.2 we look at a concrete
instantiation based on the Okamoto ID scheme, and prove that this construction is secure in a
stronger model where the tampering function can modify both the secret state of the prover and
the public parameters (but independently). Finally, in Section 4.3 we illustrate that the latter
assumption is necessary, as otherwise the Okamoto ID scheme can be broken by (albeit contrived)
attacks.

4.1 Σ-protocols are Tamper Resilient

We start by considering ID schemes based on Σ-protocols [9]. Σ-protocols are a special class of
interactive proof systems for membership in a language L, where a prover P = (P0,P1) wants to
convince a verifier V = (V0,V1) (both modelled as PPT algorithms) that a shared string y belongs
to L. Denote with x the witness corresponding to y and let pp be public parameters. The protocol
proceeds as follows: (1) The prover computes a← P0(pp) and sends it to the verifier; (2) The verifier
chooses c← V0(pp, y) uniformly at random and sends it to the prover; (3) The prover answers with
z ← P1(pp, (a, c, x)); (4) The verifier outputs a result V1(pp, y, (a, c, z)) ∈ {accept , reject}. We call
this a public-coin three round interactive proof system. A formal definition of Σ-protocols follows.

Definition 4.2 (Σ-protocol). A Σ-protocol (P,V) for a relation R is a three round public-coin
interactive proof system with the following properties.

Completeness. Whenever P and V follow the protocol on common input y, public parameters pp
and private input x to P such that (y, x) ∈ R, the verifier V accepts with all but negligible
probability.

Special soundness. From any pair of accepting conversations on public input y, namely (a, c, z),
(a, c′, z′) such that c 6= c′, one can efficiently compute x such that (y, x) ∈ R.

Perfect Honest Verifier Zero Knowledge (HVZK). There exists a PPT simulator M, which on
input y and a random c outputs an accepting conversation of the form (a, c, z), with exactly
the same probability distribution as conversations between the honest P, V on input y.

Note that Definition 4.2 requires perfect HVZK, whereas in general one could ask for a weaker
requirement, namely that the HVZK property holds only computationally.

It is well known that Σ-protocols are a natural tool to design ID schemes. The construction is
depicted in Figure 3. Consider now the class of tampering functions Tsk ⊂ T such that T ∈ Tsk
has the following form: T = (T sk , IDpp) where T sk : SK → SK is an arbitrary polynomial time
computable function and IDpp : PP → PP is the identity function. This models tampering with
the secret state of P without changing the public parameters (these must be hard-wired into the
prover’s code). We prove the following:

26

ID Scheme from Σ-Protocol

Let ((P0,P1), (V0,V1)) be a Σ-protocol for a relation R.

Setup(1k): Sample public parameters pp ← PP for the underlying relation R.

Gen(1k): Output a pair (y, x) ∈ R, where x ∈ X and y ∈ Y and |x| is polynomially bounded by |y|.
(P(pp, x)� V(pp))(y): The protocol works as follows.

1. The prover sends a← P0(pp) to the verifier.

2. The verifier chooses a random challenge c← V0(pp, y) and sends it to the prover.

3. The prover computes the answer z ← P1(pp, (a, c, x)).

4. The verifier accepts iff V1(pp, y, (a, c, z)) outputs accept .

Figure 3: ID scheme based on Σ-protocol for relation R

Theorem 4.1. Let k ∈ N be the security parameter and let (P,V) be a Σ-protocol for relation R
with |Y| = O(klog k), such that the representation problem is hard for R (cf. Section 2). Assume
that conditioned on the distribution of the public input y ∈ Y, the witness x ∈ X has high average
min entropy β, i.e., H̃∞(X|Y) ≥ β. Then, the ID scheme of Figure 3 is (λ(k), t(k),negl(k))-BLT
secure against impersonation attacks with respect to Tsk, where

λ ≤ β − t log |Y| − k and t ≤
⌊

β

log |Y|

⌋
− 1.

Proof. Assume that there exists a polynomial p(.) and an adversary A that succeeds in the BLT
experiment (cf. Definition 4.1) with probability at least δ(k) := 1/p(k), for infinitely many k ∈ N.
Then, we construct an adversary B (using A as a subroutine) such that:

Pr
[
x? 6= x; (y, x), (y, x?) ∈ R : (y, x, x?)← B(pp); pp ← Setup(1k)

]
≥ δ2 − |Y|−1 − 2−k.

Since |Y| is super-polynomial in k, this contradicts the assumption that the representation problem
is hard for R (cf. Section 2).

Adversary B works as follows. It first samples (y, x) ← Gen(1k), then it uses these values to
simulate the entire experiment for A. This includes answers to the leakage queries, and access to
the oracles P(pp, x̃i) for all i ∈ [t]. During the impersonation stage, B chooses a random challenge
c which results in a transcript (a, c, z). At this point B rewinds A to the point after it chose a,
and selects a different challenge c′ resulting in a transcript (a, c′, z′). Whenever the two transcripts
are accepting and c′ 6= c, the special soundness property ensures that adversary B has extracted
successfully some value x? such that (y, x?) ∈ R. Let us call the event described above E1. And
the event x = x? is denoted by E2. Clearly,

Pr [B succeeds] = Pr
[
x? 6= x; (y, x), (y, x?) ∈ R : (y, x, x?)← B(pp); pp ← Setup(1k)

]
= Pr [E1 ∧ ¬E2] .

(13)

Claim 2. The probability of event E1 is Pr [E1] ≥ δ2 − |Y|−1.

Proof. The proof is identical to the proof of [2, Claim 4.1] and is therefore omitted.

27

Claim 3. The probability of event E2 is Pr [E2] ≤ 2−k.

Proof. We prove the claim holds even in case the adversary is unbounded. Consider an experiment
E0 which is similar to the experiment of Definition 4.1, except that now the adversary does not
get access to the leakage oracle. Consider an adversary A trying to predict the value of x given
the view in a run of E0; such view contains polynomially many transcripts (for the initial secret
key and for each of the tampering queries) together with the original public input y and the public
parameter pp (which are tamper-free), i.e., viewE0A = {Ψ,Ψ1, . . . ,Ψt} ∪ {y, pp}. The vector Ψ and
each of the vectors Ψi contains polynomially many transcripts of the form (a, c, z), corresponding
(respectively) to the original key and to the ith tampering query.

We now move to experiment E1, which is the same as E0 with the modification that we add
(for each tampering query) the tampered public values ỹi to A’s view. Hence, viewE1A = viewE0A ∪
{(ỹ1, . . . , ỹt)}. Note that we have

H̃∞(X|E0) ≥ H̃∞(X|E1). (14)

Next, we consider experiment E2 where A is given only the tampered public values (ỹ1, . . . , ỹt),
i.e., viewE2A = {ỹ1 . . . , ỹt}∪{y, pp}. We claim that conditioning on E1 or on E2 has the same effect on
the min-entropy of X. This is because the values {Ψ,Ψi}i∈[t] can be computed as a deterministic
function of (y, ỹ1, . . . , ỹt) as follows: For all challenges c run the HVZK simulator M upon input
(pp, ỹi, c) and append the output (a, c, z) to Ψi. (The same can be done to simulate Ψ using y.)
It follows from perfect HVZK that this generates an identical distribution to that of experiment E1
and thus

H̃∞(X|E1) = H̃∞(X|E2). (15)

Since the public parameters are tamper-free and are chosen independently of X, we can remove
them from the view and write

H̃∞(X|E2) = H̃∞(X|Ỹ1, . . . , Ỹt, Y) ≥ H̃∞(X|Y)− |(Ỹ1, . . . , Ỹt)| ≥ β − t log |Y|, (16)

where we used Lemma 2.1 together with the fact that the joint distribution (Ỹ1, . . . , Ỹt) can take
at most (|Y|)t values and our assumption on the conditional min-entropy of X given Y .

Consider now the full experiment described in Definition 4.1 and call it E3. Note that this
experiment is similar to the experiment E0, with the only addition that here A has also access to
the leakage oracle. Hence, we have viewE3A = viewE0A ∪view leak

A . Denote with Λ ∈ {0, 1}λ the random
variable corresponding to view leak

A . Using Lemma 2.1 and combining Eq. (14)–(16) we get

H̃∞(X|E3) = H̃∞(X|E0,Λ) ≥ H̃∞(X|E0)− λ ≥ β − t log |Y| − λ ≥ k,

where the last inequality comes from the value of λ in the theorem statement. We can thus bound

the probability of E2 as Pr [E2] ≤ 2−H̃∞(X|E3) ≤ 2−k. The claim follows.

Combining Claim 2 and Claim 3 together with Eq. (13) yields

Pr [B succeeds] = Pr [E1 ∧ ¬E2] ≥ Pr [E1]− Pr [E2] ≥ δ2 − |Y|−1 − 2−k,

which contradicts our assumption on the hardness of the representation problem for R. This finishes
the proof.

28

Generalized Okamoto ID Scheme

Let ` = `(k) be some function of the security parameter. Consider the following identification scheme.

Setup: Choose a group G of prime order p with generator g and a vector α← Z`p, and output pp = (G, g, gα)
where gα = (g1, . . . , g`).

Gen(1k): Select a vector x← Z`p and set y = pk =
∏`
i=1 g

xi
i and sk = x.

(P(pp, sk)� V(pp))(pk): The protocol works as follows.

1. The prover chooses a random vector r← Z`p and sends a =
∏`
i=1 g

ri
i to the verifier.

2. The verifier chooses a random challenge c← Zp and sends it to the prover.

3. The prover computes the answer z = (r1 + cx1, . . . , r` + cx`).

4. The verifier accepts if and only if
∏`
i=1 g

zi
i = a · yc.

Figure 4: Generalized Okamoto Identification Scheme

4.2 Concrete Instantiation with more Tampering

We extend the power of the adversary by allowing him to tamper not only with the witness, but
also with the public parameters (used by the prover to generate the transcripts). However the
tampering has to be independent on the two components. This is reminiscent of the so-called split-
state model (considered for instance in [29]), with the key difference that in our case the secret
state does not need to be split into two parts.

We model this trough the following class of tampering functions Tsplit: We say that T ∈ Tsplit if
we can write T = (T sk , T pp) where T sk : SK → SK and T pp : PP → PP are arbitrary polynomial
time computable functions. Recall that the input/output domains of T sk , T pp are identical, hence
the size of the witness and the public parameters cannot be changed. As we show in the next
section, this restriction is necessary. Note also that Tsk ⊆ Tsplit ⊆ T .

Generalized Okamoto. Consider the generalized version of the Okamoto ID scheme [32], de-
picted in Figure 4. The underlying hard relation here is the relation RDL and the representation
problem for RDL is the `-representation problem in a group G (cf. Section 2). As proven in [2], this
problem is equivalent to the Discrete Log problem in G.

Corollary 2. Let k ∈ N be the security parameter and assume the Discrete Log problem is hard in G.
Then, the generalized Okamoto ID scheme is (λ(k), t(k),negl(k))-BLT secure against impersonation
attacks with respect to Tsplit, where

λ ≤ (`− 1− t) log(p)− k and t ≤ `− 2.

Proof. We first show that the protocol is BLT-secure against impersonation attacks with respect
to Tsk. This follows immediately from Theorem 4.1 as the protocol of Figure 4 is a Σ-protocol
which satisfies perfect HVZK; moreover |Y| = p and the size of prime p is super-polynomial in k
to ensure hardness of the Discrete Log problem. The claimed values of λ and t follow by observing
that the secret key x conditioned on the public key y is uniform in a subspace of dimension `− 1,
i.e., H∞(X|Y) ≥ (`− 1) log p = β.

We now turn to prove security with respect to Tsplit; note that here PP = (p, g1, . . . , g`). To
do so, we modify the view of the adversary in the proof of Theorem 4.1 such that it contains also

29

the tampered public parameters p̃pi for all i ∈ [t]. In particular, the elements (a, c, z) contained in
each vector Ψi in the view of experiment E0 are now sampled from P(p̃pi, x̃i). We then modify E1
and E2 by appending the values of the tampered public parameters {p̃pi}i∈[t].

We claim that also in this case H̃∞(X|E1) = H̃∞(X|E2), in particular the view of A in E1 can

be simulated given only {p̃k i, p̃pi}i∈[t]. This follows from the fact that the generalized Okamoto
ID scheme maintains the completeness and perfect HVZK properties even when the transcripts are
computed using tampered public parameters p̃pi = (p̃, g̃1, . . . , g̃`). (Whereas of course in this case
the protocol is not sound.) The HVZK simulator M(p̃p, ỹ, c) works as follows: Choose z1, . . . , z`
at random in Zp̃ and if ỹ 6= 0 mod p̃, then compute a = (

∏`
i=1 g̃

zi
i)/ỹc mod p̃. In case ỹ = 0

mod p̃, then just set a = 0.6 For any (x̃, p̃p) = (T sk (x), T pp(pp)), the distributions M(p̃p, ỹ, c) and
(P(p̃p, x̃) � V(p̃p))(ỹ) are both uniformly random over all values (a, c, z = (z1, . . . , z`)) such that∏`
i=1 g̃

zi
i = aỹc mod p̃.

Therefore the simulation perfectly matches the honest conversation. This proves Eq. (15). Now
Eq. (16) follows from the fact that the tampering functions T pp cannot depend on sk .

4.3 Some Attacks

We show that for the Okamoto scheme it is hard to hope for BLT security beyond the class of
tampering functions Tsplit. We illustrate this by concrete attacks which work in case one tries to
extend the power of the adversary in two different ways: (1) Allowing A to tamper jointly with the
witness and the public parameters; (2) Allowing A to tamper independently with the witness and
with the public parameters but increase their size.

Tampering jointly with the public parameters. Consider the class of tampering functions
T introduced in Definition 4.1.

Claim 4. The generalized Okamoto ID scheme is not BLT-secure against impersonation attacks
with respect to T .

Proof. We show an attack using a single tampering query. Define the tampering function T (x, pp) =
(x̃, p̃p) to be as follows:

- The witness is unchanged, i.e., x = x̃.

- The value p̃ is some prime of size |p̃| ≈ |p| such that the Discrete Log problem is easy in the
corresponding group G̃. (This can be done efficiently by choosing p̃− 1 to be the product of
small prime (power) factors [34].)

- Let g̃ be a generator of G̃ (which must exists since p̃ is a prime) and define the new generators
as g̃i = g̃xi mod p̃.

Consider now a transcript (a, c, z) produced by a run of P(p̃p,x). We have a = g̃
∑`
i=1 xiri mod p̃

for random ri ∈ Zp̃. By computing the Discrete Log of a in base g̃ (which is easy by our choice

of G̃), we get one equation
∑`

i=1 xiri = logg̃(a) mod p̃. Asking for polynomially many transcripts,
yields ` linearly independent equations (with overwhelming probability) and thus allows to solve
for (x1, . . . , x`). (Note here that with high probability xi mod p = xi mod p̃ since |p| ≈ |p̃|.)

6Note that ỹ = 0 mod p̃ implies that for at least one of the generators gi’s we get g̃i = 0 mod p̃, so that a =∏`
i=1 g̃

ri
i = 0 mod p̃.

30

Tampering by “inflating” the prime p. Consider the following class of tampering functions
Tsplit ⊆ T ∗split: We say that T ∈ T ∗split if T = (T sk , T pp), where T sk : SK → {0, 1}∗ and T pp : PP →
{0, 1}∗.

Claim 5. The generalized Okamoto ID scheme is not BLT-secure against impersonation attacks
with respect to T ∗split.

Proof. We show an attack using a single tampering query. Consider the following tampering func-
tion T = (T sk , T pp) ∈ T ∗split:

- Choose p̃ to be a prime of size |p̃| = Ω(`|p|), such that the Discrete Log problem is easy in G̃.
(This can be done as in the proof of Claim 4.)

- Choose a generator g̃ of G̃; define g̃1 = g̃ and g̃j = 1 for all j = 2, . . . , `.

- Define the witness to be x̃ such that x̃1 = x1|| . . . ||x` and x̃j = 0 for all j = 2, . . . , `.

Given a single transcript (a, c, z) the adversary learns a = g̃r1 for some r1 ∈ Zp̃. Since the Discrete
Log is easy in this group, A can find r1. Now the knowledge of c and z1 = r1 + cx̃1, allows to
recover x̃1 = (x1, . . . , x`).

4.4 BLT-Secure Signatures

It is well known that every Σ-protocol can be turned into a signature scheme via the Fiat-Shamir
heuristic [20]. By applying the Fiat-Shamir transformation to the protocol of Figure 3, we get
efficient BLT-secure signatures in the random oracle model.

5 IND-CCA PKE with BLT Security

We start by defining IND-CCA public key encryption (PKE) with BLT security. A PKE scheme is
a tuple of algorithms PKE = (Setup,KGen,Enc,Dec) defined as follows. (1) Algorithm Setup takes
as input the security parameter and outputs the description of public parameters pp; the set of all
public parameters is denoted by PP. (2) Algorithm KGen takes as input the security parameter
and outputs a public/secret key pair (pk , sk); the set of all secret keys is denoted by SK and the
set of all public keys by PK. (3) The randomized algorithm Enc takes as input the public key pk ,
a message m ∈M and randomness r ∈ R and outputs a ciphertext c = Enc(pk ,m; r); the set of all
ciphertexts is denoted by C. (4) The deterministic algorithm Dec takes as input the secret key sk
and a ciphertext c ∈ C and outputs m = Dec(sk , c) which is either equal to some message m ∈ M
or to an error symbol ⊥.

Definition 5.1. Let λ = λ(k), t = t(k) and δ = δ(k) be parameters and let Tsk be some set
of functions such that T ∈ Tsk has a type T : SK → SK. We say that PKE is IND-CCA
(λ(k), t(k), δ(k))-BLT secure with respect to Tsk if the following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk , sk)← KGen(1k) we have that Pr [Dec(sk ,Enc(pk ,m)) = m] =
1 (where the randomness is taken over the internal coin tosses of algorithm Enc).

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ 1
2 + δ(k) in the following

game:

31

1. The challenger runs pp ← Setup(1k), (pk , sk)← KGen(1k) and gives (pp, pk) to A.

2. The adversary is given oracle access to Dec(sk , ·). This oracle outputs polynomially
many decryptions of ciphertexts using secret key sk .

3. The adversary may adaptively ask t tampering queries. During the ith query, A chooses
a function Ti ∈ Tsk and gets oracle access to Dec(s̃k i, ·), where s̃k i = Ti(s̃k i−1) and
s̃k0 = sk . This oracle outputs polynomially many decryptions of ciphertexts using
secret key s̃k i.

4. The adversary may adaptively ask polynomially many leakage queries. In the jth query,
A chooses a function Lj : {0, 1}∗ → {0, 1}λj and receives back the output of the function
applied to sk .

5. The adversary outputs two messages of the same length m0,m1 ∈M and the challenger
computes cb ← Enc(pk ,mb) where b is a uniformly random bit.

6. The adversary outputs a bit b′ and wins if b = b′ and
∑

j λj ≤ λ.

In case t = 0 we get the notion of leakage resilient IND-CCA from [31] as a special case.
We build an IND-CCA BLT-secure PKE scheme in two steps. In Section 5.1 we define a weaker

notion which we call IND-CPA BLT security. In Section 5.2 we show a general transformation from
IND-CPA BLT security to IND-CCA BLT security relying on tSE NIZK proofs [12] in the common
reference string (CRS) model. The CRS is supposed to be tamper-free and must be hard-wired into
the code of the encryption algorithm; however tampering and leakage can depend adaptively on
the CRS and the public parameters. Finally, in Section 5.3, we prove that a variant of the BHHO
encryption scheme [31] satisfies our notion of IND-CPA BLT security.

5.1 IND-CPA BLT Security

The main idea of our new security notion is as follows. Instead of giving A full access to a tampering
oracle (as in Definition 5.1) we restrict his power by allowing him to see the output of the (tampered)
decryption oracle only for ciphertexts c for which A already knows both the corresponding plaintext
m and the randomness r used to generate c (via the real public key). Essentially this restricts A
to submit to the tampering oracle only “well-formed” ciphertexts.

Definition 5.2. Let λ = λ(k), t = t(k) and δ = δ(k) be parameters and let Tsk be some set
of functions such that T ∈ Tsk has a type T : SK → SK. We say that PKE is IND-CPA
(λ(k), t(k), δ(k))-BLT secure with respect to Tsk if it satisfies property (i) of Definition 5.1 and
property (ii) is modified as follows:

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ 1
2 + δ(k) in the following

game:

1. The challenger runs pp ← Setup(1k), (pk , sk)← KGen(1k) and gives (pp, pk) to A.

2. The adversary may adaptively ask t tampering queries. During the ith query, A chooses
a function Ti ∈ Tsk and gets oracle access to Dec∗(s̃k i, ·, ·), where s̃k i = Ti(s̃k i−1) and
s̃k0 = sk . This oracle answers polynomially many queries of the following form: Upon
input a pair (m, r) ∈ M×R, compute c ← Enc(pk ,m; r) and output a plaintext m̃ =
Dec(s̃k i, c) using the current tampered key.

32

From IND-CPA BLT Security to IND-CCA BLT Security

Let PKE = (Setup,KGen,Enc,Dec) be a PKE scheme and consider a tSE NIZK argument system
(Gen,Prove,Verify) for the following relation:

RPKE = {(pk , c), (m, r) : c = Enc(pk ,m; r)} .

Define the following PKE scheme PKE ′ = (Setup′,KGen′,Enc′,Dec′).

Setup′: Sample pp ← Setup(1k) and (ω, tk, ek)← Gen(1k) and let pp′ = (pp, ω).

KGen′: Run (pk , sk)← KGen(1k) and set pk ′ = pk and sk ′ = sk .

Enc′: Sample r ←R and compute c← Enc(pk ,m; r). Output (c, π), where π ← Proveω((pk , c), (m, r)).

Dec′: Check that Verifyω((pk , c), π) = 1. If not output ⊥; otherwise, output m = Dec(sk , c).

Figure 5: How to transform IND-CPA BLT-secure PKE into IND-CCA BLT-secure PKE

3. The adversary may adaptively ask leakage queries. In the jth query, A chooses a function
Lj : {0, 1}∗ → {0, 1}λj and receives back the output of the function applied to sk .

4. The adversary outputs two messages of the same length m0,m1 ∈M and the challenger
computes cb ← Enc(pk ,mb) where b is a uniformly random bit.

5. The adversary outputs a bit b′ and wins if b = b′ and
∑

j λj ≤ λ.

We stress that A loses access to the decryption oracle Dec(s̃k , ·).

5.2 A General Transformation

We compile an arbitrary IND-CPA BLT-secure encryption scheme into an IND-CCA BLT-secure
one by appending to the ciphertext c an argument of “plaintext knowledge” π computed through a
tSE NIZK argument system (cf. Section 2). The same construction has been already used by Dodis
et al. [12] to go from IND-CPA security to IND-CCA security in the context of memory leakage.

The intuition why the transformation works is fairly simple: The argument π enforces the
adversary to submit to the tampered decryption oracle only ciphertexts for which he knows the
corresponding plaintext (and the randomness used to encrypt it). In the security proof the pair
(m, r) can indeed be extracted from such argument, allowing to reduce IND-CCA BLT security to
IND-CPA BLT security.

Theorem 5.1. Let k ∈ N be the security parameter. Assume that PKE is an IND-CPA (λ(k), t(k),
δ(k))-BLT secure encryption scheme and that (Gen,Prove,Verify) is a strong tSE NIZK argu-
ment system for relation RPKE. Then, the encryption scheme PKE ′ of Figure 5 is IND-CCA
(λ(k), t(k), δ′(k))-BLT secure for δ′ ≤ δ + negl(k).

Proof. We prove the theorem by a series of games. All games are a variant of the IND-CCA BLT
game and in all games the adversary gets correctly generated public parameters (pp, ω, pk). Leakage
and tampering queries are answered using the corresponding secret key sk . The games will differ
only in the way the challenge ciphertext is computed or in the way the decryption oracles work.

Game G1. This is the IND-CCA BLT game of Definition 5.1 for the scheme PKE ′. Note in
particular that all decryption oracles expect to receive as input a ciphertext of the form (c, π)

33

and proceed to verify the proof π before decrypting the ciphertext (and output ⊥ if such
verification fails). The challenge ciphertext is a pair (cb, πb) such that cb = Enc(pk ,mb; r)
and πb ← Proveω((pk , cb), (mb, r)), where mb ∈ {m0,m1} for a uniformly random bit b. By
assumption we have that

Pr [A wins in G1] ≤
1

2
+ δ′(k).

Game G2. In this game we change the way the challenge ciphertext is computed by replacing the
argument πb with a simulated argument πb ← S((pk , cb), tk). It follows from the composable
NIZK property of the argument system that G1 and G2 are computationally close. In particu-
lar there exists a negligible function δ1(k) such that |Pr [A wins in G1]−Pr [A wins in G2] | ≤
δ1(k).

Game G3. In this game we change the way decryption queries are handled. Queries (c, π) to
Dec(sk , ·) (such that π accepts) are answered by running the extractor Ext on π, yielding
(m, r)← Ext((pk , c), π, ek), and returning m.

Queries (c, π) to Dec(s̃k i, ·) (such that π accepts) are answered as follows. We first extract
(m, r) ← Ext((pk , c), π, ek) as above. Then, instead of returning m, we recompute c =
Enc(pk ,m; r) and return m̃ = Dec(s̃k i, c).

It follows from true simulation extractability that G2 and G3 are computationally close. The
reason for this is that A gets to see only a single simulated proof for a true statement (i.e., the
pair (pk , cb)) and thus cannot produce a pair (c, π) 6= (cb, πb) such that the proof π accepts
and Ext fails to extract the corresponding plaintext m. In particular there exists a negligible
function δ2(k) such that |Pr [A wins in G2]− Pr [A wins in G3] | ≤ δ2(k).

Game G4. In the last game we replace the ciphertext cb in the challenge with an encryption of
0|mb|, whereas we still compute the proof as πb ← S((pk , cb), tk).

We claim that G3 and G4 are computationally close. This follows from IND-CPA BLT-security
of PKE . Assume there exists a distinguisher D between G3 and G4. We build an adversary B
breaking IND-CPA BLT security for PKE . The adversary B uses D as a black-box as follows.

Reduction BD:

1. Receive (pp, pk) from the challenger, sample (ω, tk, ek) ← Gen(1k) and give pp′ =
(pp, ω) and pk ′ = pk to A.

2. Upon input a normal decryption query (c, π) from A, run the extractor to compute
(m, r)← Ext((pk , c), π, ek) and return m.

3. Upon input a tampering query Ti ∈ Tsk, forward Ti to the tampering oracle for PKE .
To answer a query (c, π), run the extractor to compute (m, r)← Ext((pk , c), π, ek).
Submit (m, r) to oracle Dec∗(s̃k i, ·, ·) and receive the answer m̃. Return m̃ to A.

4. Upon input a leakage query Lj , forward Lj to the leakage oracle for PKE .

5. When A outputs m0,m1 ∈ M, sample a random bit b′ and output (mb′ , 0
|mb′ |).

Let cb be the corresponding challenge ciphertext. Compute πb ← S((pk , cb), tk) and
forward (cb, πb) to A.

6. Output whatever D does.

34

Notice that the reduction perfectly simulates the environment for A; in particular cb is ei-
ther the encryption of randomly chosen message among (m0,m1) (as in G3) or an encryp-
tion of zero (as in G4). Since PKE is (λ, t, δ)-BLT secure, it must be |Pr [A wins in G3] −
Pr [A wins in G4] | ≤ δ(k).

As clearly Pr [A wins in G4] = 0, we have obtained

δ′ = |Pr [A wins in G1]− Pr [A wins in G4] |
≤ |Pr [A wins in G1]− Pr [A wins in G2] |+ |Pr [A wins in G2]

− Pr [A wins in G3] |+ |Pr [A wins in G3]− Pr [A wins in G4] |
≤ δ1(k) + δ2(k) + δ(k) = δ(k) + negl(k).

This concludes the proof.

5.3 Instantiation from BHHO

We show that the variant of the encryption scheme introduced by Boneh et al. [7] used in [31] is IND-
CPA BLT-secure. The proof relies on the simple observation that one can simulate polynomially
many decryption queries for a given tampered key by only leaking a bounded amount of information
from the secret key. Hence, security follows from leakage resilience.

The BHHO PKE scheme works as follows: (1) Algorithm Setup chooses a group G of prime
order p with generator g and let pp = (p, g); (2) Algorithm KGen samples random vectors x,α ∈ Z`p,
computes gα = (g1, . . . , g`) and let sk = x = (x1, . . . , x`) and pk = (h, gα) where h =

∏`
i=1 g

xi
i ;

(3) Algorithm Enc takes as input pk and a message m ∈ M, samples a random r ∈ Zp and
returns c = Enc(pk ,m; r) = (gr1, . . . , g

r
` , h

r ·m); (4) Algorithm Dec parses c = (gc0 , c1) and outputs
m = c1 · g−〈c0,x〉.

Proposition 5.1. Let k ∈ N be the security parameter and assume that the DDH assumption holds
in G. Then, the BHHO encryption scheme is IND-CPA (λ(k), t(k), δ(k))-BLT secure, where

λ ≤ (`− 2− t) log p− ω(log k), t ≤ `− 3 and δ = negl(k).

Proof. Naor and Segev [31, Section 5.2] showed that BHHO is IND-CPA leakage resilient up to
λ′ ≤ (` − 2) log p − ω(log k). Assume there exists an adversary A which breaks IND-CPA BLT
security, we build an adversary B which breaks IND-CPA leakage resilience of the scheme yielding
a contradiction. (We omit a formal definition of IND-CPA security in the presence of leakage and
refer the reader to [31, Definition 3.1] for the details.) Adversary B uses A as a black-box and is
described below.

Reduction BA:

1. Receive (pp, pk) from the challenger and forward there values to A.

2. Whenever A asks for a leakage query, submit this query to the leakage oracle and return
the answer to A.

3. Upon input a tampering query Ti ∈ Tsk, submit a leakage function L to the leakage

oracle such that h̃j =
∏`
j=1 g

−x̃j
j , where x̃i = Ti(Ti−1(· · ·T1(x))). When A asks for a

decryption query (m, r), compute m̃ = (hr ·m) · h̃ri .

35

4. Whenever A outputs m0,m1 ∈ M, forward m0,m1 to the challenger. Let cb be the
corresponding challenge ciphertext; give cb to A.

5. Output whatever A does.

Note that for each tampering query B has to leak one element in Zp. Using the value of λ′ above
this gives λ = λ′− t log p = (`− 2− t) log p−ω(log k). Moreover, B produces the right distribution
since

m̃ = (hr ·m) · h̃ri = c1 ·

(∏̀
i=1

g−x̃ii

)r
= c1 ·

∏̀
i=1

g−r·x̃ii = c1 · g−
∑`
i=1 rαi·x̃i = c1 − g〈c0,x̃i〉,

where (gc0 , c1) = ((grα1 , . . . , grα`), hr·m) is an encryption of m using randomness r and public key
h. This simulates perfectly the answer of oracle Dec∗(s̃k i, ·, ·). Hence, B has the same advantage as
A and we can conclude that the scheme is IND-CPA BLT secure.

6 Updating the Key in the iFloppy Model

We complement the results from the previous two sections by showing how to obtain security against
an unbounded number of tampering queries in the floppy model of [2, 1]. Recall that in this model
we assume the existence of an external tamper-free and leakage-free storage (the floppy), which is
required for refresh operations. An important difference between the floppy model considered in
this paper and the model of [1] is that in our case the floppy can contain “user-specific” information
(e.g., its secret key), whereas in [1] it contains a unique master key which in principle could be
equal for all users. To stress this difference, we refer to our model as the iFloppy model.

Clearly, the assumption of a unique master key makes production easier but it is also a single
point of failure in the system since in case the content of the floppy is published (e.g., by a malicious
user) the entire system needs to be re-initialized.7 A solution for this is to assume that each floppy
contains a different master key, resulting in a trade-off between security and production cost.

For simplicity, we consider a model with polynomially many updates where, between each
update, the adversary is allowed to leak and tamper only once. However, the schemes in this
section can be proven secure in the stronger model where between two key updates the attacker is
allowed to leak adaptively λ bits from the current secret key and tamper with it for some bounded
number of times.

6.1 ID Schemes in the iFloppy Model

An identification scheme ID = (Setup,Gen,P,V,Refresh) in the iFloppy model is defined as follows.
(1) Algorithm Setup is defined as in a standard ID scheme. (2) Algorithm Gen outputs an update
key uk together with an initial public/secret key pair (pk , sk). (3) Algorithms P and V are defined
as in a standard ID scheme. (4) Algorithm Refresh takes as input the update key uk and outputs
a new key sk ′ for the same public key pk .

Definition 6.1. Let λ = λ(k) and δ = δ(k) be parameters and let Tsk be some set of functions
such that T ∈ Tsk has a type T : SK → SK. We say that ID is (λ(k), 1, δ(k))-CLT secure against

7We stress that in the schemes of [1] making the content of the floppy public does not constitute a total breach of
security; however the security proof completely breaks down, leaving no security guarantee for the schemes at hand.

36

impersonation attacks with respect to Tsk in the iFloppy model, if the following properties are
satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk , sk , uk)← Gen(1k) we have that:

(P(pp, sk)� V(pp))(pk) = (P(pp,Refresh(uk))� V(pp))(pk) = accept .

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk , sk , uk) ← Gen(1k), and gives (pp, pk) to
A; let sk1 = sk .

2. The adversary is given oracle access to P(pp, sk1).

3. The adversary may adaptively ask leakage and tampering queries. During the ith query:

(a) A specifies a function Li : {0, 1}∗ → {0, 1}λ and receives back Li(sk i).

(b) A specifies a function Ti : SK → SK and is given oracle access to P(pp, s̃k i), where
s̃k i = Ti(sk i).

(c) The challenger updates the secret key, sk i+1 ← Refresh(uk).

4. The adversary loses access to all oracles and interacts with an honest verifier V (holding
public key pk). We say that A wins if (A� V)(pk) outputs accept .

Remark 1. One could also consider a more general definition where between two key updates A
is allowed to ask multiple leakage queries with output size λj , as long as

∑
j λj ≤ λ. Similarly, we

could allow A to tamper in each round for t times with the secret key sk i. The constructions in this
section can be proven secure in this extended setting, but we stick to Definition 6.1 for simplicity.

A general compiler. We now describe a compiler to boost any (λ, t)-BLT ID scheme (P,V), to
a (λ, t)-CLT ID scheme (P′,V′). The compiler is based upon a standard (not necessarily leakage or
tamper resilient) signature scheme SIG, and is described in Figure 6.

The basic idea is as follows. We generate the key pair (mpk ,msk) using the key generation
algorithm of the underlying signature scheme. We store msk in the floppy and publish mpk as
P’s identity. We also sample a key pair (pk , sk) for ID (which we call the temporary keys) and
we provide the prover with a value help which is a signature of pk under the master secret key
msk . Whenever P want to prove its identity, it first sends the temporary pk together with the
helper value and V verifies this signature using mpk .8 If the verification succeeds, P and V run an
execution of ID where P proves it knows the secret key sk corresponding to pk . At the end of each
authentication the prover updates its pair of temporary keys using the floppy, using the update key
msk to sign the new public key pk ′ that is freshly generated. We obtain the following result.

Theorem 6.1. Let k ∈ N be the security parameter. If SIG is EUF-CMA and ID is (λ, 1, δ)-BLT
secure against impersonation attacks with respect to Tsk, then the scheme ID′ output by the compiler
of Figure 6 is (λ, 1, δ′)-CLT against impersonation attacks with respect to Tsk in the iFloppy model,
where δ′ ≤ δ + negl(k).

8Alternatively P can send (pk , help) together with the first message of the identification scheme, in order to keep
the same round complexity as in ID.

37

iFloppy ID Compiler

Given as input an ID scheme ID = (Setup,Gen,P,V) and a signature scheme SIG = (KGen, Sign,Vrfy) outputs
an ID scheme ID′ = (Setup′,Gen′,P′,V′,Refresh), specified below.

Setup′: Run pp ← Setup(1k) and publish pp.

Gen′: Run the key generation algorithm of the underlying signature scheme, obtaining (mpk ,msk) ←
KGen(1k). Also, run (pk , sk) ← Gen(1k). The value mpk is the actual public key, whereas we refer
to the values (pk , sk) as the temporary keys. Compute and publish a helper value help← Sign(msk , pk).
The prover P′ holds (pk , sk , help), the verifier V′ holds mpk . The master key uk = msk is the update
key, which is stored in the floppy.

P′ � V′: The prover P′ first sends the pair (pk , help) to V′. The verifier verifies the signature, i.e. it checks that
Vrfy(mpk , (pk , help)) outputs accept . If the verification was successful, they run (P(pp, sk)� V(pp))(pk)
and V′ accepts if and only if the interaction leads to accept .

Refresh: Sample a fresh pair (pk ′, sk ′) ← Gen(1k) and update the helper value as in help′ ← Sign(msk , pk ′).
The prover now holds (pk ′, sk ′, help′).

Figure 6: Boosting BLT security to CLT security for ID schemes

Proof. We show that if there exists a PPT adversary A who wins the CLT security game against
ID′ with non-negligible probability, then we can build either of two reductions B or C violating
BLT security of ID or EUF-CMA of SIG (respectively) with non-negligible probability. Let us
assume that Pr [A wins] ≥ δ(k) for δ(k) = 1/p(k) for some polynomial p(.) and infinitely many k.
The CLT experiment for ID′ is specified below:

CLT Experiment:

1. The challenger runs pp ← Setup′(1k) and (mpk ,msk)← KGen(1k), and gives (pp,mpk)
to A.

2. For each i = 1, . . . , q(k) (where q(k) is some polynomial in the security parameter), the
challenger does the following:

- During round i sample (pk i, sk i)← Gen(1k) and compute helpi ← Sign(msk , pk i) .

- Give A oracle access to P′((pp, helpi, pk i), sk i).

- Answer the leakage and tampering query from A using key sk i.

3. During the impersonation stage, the challenger (playing now the role of the verifier V′)
receives the pair (pk?, help?) from A; if Vrfy(mpk , (pk?, help?)) outputs 0, the challenger
outputs reject . Otherwise, it runs (A� V(pp))(pk?) and outputs whatever V does.

Let Fresh be the following event: The event becomes true if the pair (pk?, help?) used by A during
the impersonation stage of the above experiment is equal to one of the pairs A has seen during the
learning phase (i.e., one of the pairs (pk i, helpi)). We have

Pr [A wins] = Pr [A wins ∧ Fresh] + Pr
[
A wins ∧ Fresh

]
, (17)

where all probabilities are taken over the randomness space of the CLT experiment and over the
randomness of A. We now describe a reduction B (using A as a black-box) which breaks BLT
security of ID.

38

Reduction BA:

1. Receive pp ← Setup(1k) from the challenger. Sample (mpk ,msk) ← KGen(1k) and
forward (pp,mpk) to A.

2. Choose an index j ← [q] uniformly at random.

3. For all i = 1, . . . , q, simulate the learning stage of A as follows.

(a) During all rounds i such that i 6= j:

- Sample (pk i, sk i)← Gen(1k) and compute helpi ← Sign(msk , pk i). Give A oracle
access to P′((pp, helpi, pk i), sk i).

- Simulate A’s leakage and tampering queries by using key sk i.

(b) During round j:

- Receive the public key pk from the challenger and use this key as the jth tem-
porary public key. Compute help← Sign(msk , pk).

- Simulate oracle P′((pp, help, pk), sk) by forwarding (pk , help) to A and using the
target oracle P(pp, sk).

- Simulate leakage query Lj and tampering query Tj by submitting the same
functions to the target oracle.

4. Simulate the impersonation stage for A as follows:

(a) Receive (pk?, help?) from A. If pk? 6= pk (i.e., B’s guess is wrong) abort the execution.
Otherwise, run Vrfy(mpk , (pk?, help?)) and output reject if verification fails.

(b) Run (A� V(pp))(pk?) and use the messages from A in the impersonation stage, to
answer the challenge from the target oracle.

Note that B’s simulation is perfect, since it simulates all rounds using random keys whereas round
j is simulated using the target oracle which allows for one tampering query and λ bits of leakage
from sk . Denote with Guess the event that B guesses the index j correctly. Since B wins whenever
A is successful and Fresh occurs, and moreover event Guess is independent of all other events,
we get

Pr [B wins] = Pr [B wins ∧Guess] + Pr
[
B wins ∧Guess

]
≥ Pr [B wins ∧Guess] =

1

q(k)
Pr
[
A wins ∧ Fresh

]
.

(18)

We now describe a second reduction C (using A as a black-box), breaking existential unforge-
ability of SIG.

Reduction CA:

1. Run pp ← Setup(1k), receive the public key mpk from the challenger and forward
(pp,mpk) to A. Denote with msk the secret key corresponding to mpk (which of course
is not known to C).

2. For all i = 1, . . . , q, simulate the learning stage of A as follows:

(a) Sample (pk i, sk i) ← Gen(1k). Forward pk i to the target signing oracle and receive
back the corresponding signature helpi ← Sign(msk , pk i). Simulate oracle access to
P′((pp, helpi, pk i), sk i).

39

(b) Simulate the leakage and tampering query using knowledge of key ski.

3. During the impersonation stage:

(a) Receive (pk?, help?) (which is a message-signature pair) from A and verify the sig-
nature with public key mpk . If verification fails, output some random guess and
abort. (In that case A loses and C can only win with negligible probability.)

(b) Otherwise, Run (A� V(pp))(pk?) and return to A whatever V does.

(c) Output forgery (m? = pk?, σ? = help?).

Whenever Fresh occurs, the pair (pk?, help?) returned by A is such that this pk? is different from
all the pk i’s it has seen during the learning phase. In this case, whenever A wins, the forgery
(m?, σ?) output by C is a valid forgery. Hence,

Pr [C wins] ≥ Pr [A wins ∧ Fresh] . (19)

Combining Eq. (17)-(19), we obtain:

q(k) ·Pr [B wins] + Pr [C wins] ≥ Pr
[
A wins ∧ Fresh

]
+ Pr [A wins ∧ Fresh] = Pr [A wins] ≥ δ(k).

Hence either Pr [B wins] ≥ δ/(2q) or Pr [C wins] ≥ δ/2, which are both non-negligible.

Remark 2. Assuming factoring or DL is hard, we can instantiate Theorem 6.1 with our schemes
from Section 4 resulting into tamper resilient identification schemes in the iFloppy model under
polynomial many tampering and leakage attacks.

6.2 PKE Schemes in the iFloppy Model

A PKE scheme PKE = (Setup,KGen,Enc,Dec,Refresh) in the iFloppy model is defined as follows.
(1) Algorithm Setup is defined as in a standard PKE scheme. (2) Algorithm KGen outputs an
update key uk together with an initial public/secret key pair (pk , sk). (3) Algorithm Enc and Dec
are defined as in a standard PKE scheme. (4) Algorithm Refresh takes as input the update key uk
and outputs a new key sk ′ for the same public key pk .

Definition 6.2. Let λ = λ(k) and δ = δ(k) be parameters and let Tsk be some set of functions
such that T ∈ Tsk has a type T : SK → SK. We say that PKE is IND-CCA (λ(k), 1, δ(k))-CLT
secure with respect to Tsk in the iFloppy model, if the following properties are satisfied.

(i) Correctness. For all pp ← Setup(1k), (pk , sk , uk)← Gen(1k) we have that:

Pr [Dec(Refresh(uk),Enc(pk ,m)) = m] = 1.

(ii) Security. For all PPT adversaries A we have that Pr [A wins] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk , sk , uk) ← Gen(1k), and gives (pp, pk) to
A; let sk1 = sk .

2. The adversary is given oracle access to Dec(sk1, ·).
3. The adversary may adaptively ask leakage and tampering queries. During the ith query:

(a) A specifies a function Li : {0, 1}∗ → {0, 1}λ and receives back Li(sk i).

40

(b) A specifies a function Ti : SK → SK and is given oracle access to Dec(s̃k i, ·), where
s̃k i = Ti(sk i).

(c) The challenger updates the secret key, sk i+1 ← Refresh(uk).

4. The adversary outputs two messages of the same length m0,m1 ∈M and the challenger
computes cb ← Enc(pk ,mb) where b is a uniformly random bit.

5. The adversary outputs a bit b′ and wins if b = b′.

The same considerations of Remark 1 hold here.

Construction from BHHO. As noted in [1], the BHHO PKE scheme (cf. Section 5.3) allows
for a very simple update mechanism. When we plug this encryption scheme in the construction of
Figure 5, we obtain the following scheme. (1) Algorithm Setup chooses a group G of prime order p
with generator g, runs (ω, tk, ek) ← Gen(1k) and lets pp = (p, g, ω). (2) Algorithm KGen samples
random vectors α,x ∈ Z`p and sets uk = (α,x); furthermore it chooses sk = x1 = x + β (where

β ← ker(α)) and lets pk = (h, gα) for h = g〈α,x〉. (3) Algorithm Enc takes as input pk and a
message m ∈ M, samples a random r ∈ Zp and returns c = (grα, hr · m) together with a proof
π ← Proveω((pk , c), (m, r)). (4) Algorithm Dec parses c = (gc0 , c1), runs Verifyω((pk , c), π) and
outputs m = c1 · g−〈c0,x1〉 in case the verification succeeds and ⊥ otherwise. (5) Algorithm Refresh
samples βi ← ker(α) and outputs xi = x + βi.

The theorem below shows that the above scheme is IND-CCA CLT-secure in the iFloppy model.
One would expect that a proof of this fact is simple, since the keys after each update are completely
fresh and independent (given the public key) and thus security should follow from BLT security of
the underlying scheme. However, it is easy to see that such a proof strategy does not work directly
(at least in a black-box way).9 Unfortunately this requires us to make the proof from scratch.
Since the proof relies on ideas already introduced in this paper or borrowed from [1], we give only
a sketch here.

Theorem 6.2. Let k ∈ N be the security parameter. Assume that the DDH assumption holds in
G. Then, the PKE scheme described above is IND-CCA (λ(k), 1,negl(k))-CLT secure with respect
to Tsk in the iFloppy model, where λ ≤ (`− 3) log p− ω(log k).

Proof (sketch). We define a series of games (starting with the original IND-CCA CLT game) and
prove that they are all close to each other.

Game G1. This is the IND-CCA CLT game. In particular the challenge ciphertext is a pair of the
form (c∗ = (grα, hr · mb), π

∗) where π∗ ← Proveω((pk , c∗), (mb, r)), for mb ∈ {m0,m1} and
b← {0, 1}. We assume that

Pr [A wins in G1] =
1

2
+ δ(k).

Game G2. In this game we change the way the challenge ciphertext is computed by replacing the
argument π∗ with a simulated argument π∗ ← S((pk , c∗), tk). It follows from the composable
NIZK property of the argument system that G1 and G2 are computationally close.

9We stress that in the PKE case we cannot apply the same trick as for the compiler of Figure 6, since that would
require to make the scheme interactive.

41

Game G3. In this game we change the way decryption queries are handled. Queries (c, π) to
Dec(xi, ·) (such that π accepts) are answered by running the extractor Ext on π, yielding
(m, r)← Ext((pk , c), π, ek), and returning m. Queries (c, π) to Dec(x̃i, ·) (such that π accepts)
are answered as follows. We first extract (m, r)← Ext((pk , c), π, ek) as above. Then, instead
of returning m, we recompute c = Enc(pk ,m; r) and return m̃ = Dec(x̃i, c).

As argued in the proof of Theorem 5.1, G2 and G3 are computationally close by the tSE
property of the argument system.

Game G4. In this game we change the way the secret keys are refreshed. The challenger first
chooses a random (` − 2)-dimensional subspace S ⊂ ker(α) and samples the new keys xi
from the affine subspace x + S. We prove that G3 and G4 are statistically close by a hybrid
argument. Assume there are q = poly(k) updates and define for each i = 0, . . . , q the following
hybrid distribution:

Game G3,i. Sample at the beginning a random (`−2)-dimensional subspace S ⊂ ker(α) and
modify the refreshing of the key as follows.

- For every 1 < j ≤ q − i, let xj = x + βj where βj ← ker(α).

- For every q − i < j ≤ q, let xj = x + sj where sj ← S.

Note that G3 = G3,0 and G4 = G3,q. As argued in [1, Theorem 13] it follows from the affine
version of the subspace hiding lemma (see [1, Corollary 8]) that as long as the leakage is
bounded an adversary cannot distinguish leakage on βi ← ker(α) from leakage on si ← S
(and this holds even if α is public and known at the beginning of the experiment and S
becomes known after the leakage occurs). We do loose an additional factor log p in the
leakage bound here, due to the fact that we use one additional leakage query to leak the
group element h̃i needed to simulate the tampered decryption oracle Dec(x̃i, ·) (as we do
in the proof of Proposition 5.1). This yields the bound λ ≤ (` − 3) log p − ω(log k) on the
tolerated leakage.

Game G5. In this game we compute the component c∗ of the challenge ciphertext (c∗, π∗) as

c∗ = (gc0 = grα, c1 = g〈c0,x〉 ·mb). (20)

This is only a syntactical change since g〈c0,x〉 ·mb = (g〈α,x〉)r ·mb = hr ·mb.

Game G6. In this game the challenger chooses α, x as before and in addition samples a vector
c0 ← Z`p and sets S to be the (` − 2)-dimensional subspace S = ker(α, c0). The secret keys
xi are chosen as in the previous game from S. The component c∗ of the challenge ciphertext
(c∗, π∗) is computed as in Eq. (20) using the above vector c0.

As shown in [1], G5 and G6 are computationally close by the extended rank-hiding assumption
(which is equivalent to DDH).

Game G7. In this game we change again the way the keys are refreshed, namely each key xi is
sampled from the full original (`− 1)-dimensional space x + ker(α). As before, the last two
games are close by the affine subspace hiding lemma.

42

Game G8. In the last game we change the way the challenge ciphertext is chosen. Namely, we
choose a random v ← Zp and let c∗ = (gc0 , gv). Game G8 and G7 are statistically close since
G7 does not reveal anything about x beyond 〈α,x〉 from the public key, and thus 〈c0,x〉 are
statistically close to uniform.

Note that the second element is now independent of the message. Hence, the probability that
A wins in G8 is 1/2.

Acknowledgments

The authors thank Krzysztof Pietrzak for helpful discussions and insights into the tamper resilience
of weak PRFs. We also thank Jesper Buus Nielsen for helpful suggestions.

References

[1] Shweta Agrawal, Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. On continual
leakage of discrete log representations. IACR Cryptology ePrint Archive, 2012:367, 2012.

[2] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

[3] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC’96: Pro-
ceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic
Commerce, pages 1–1, Berkeley, CA, USA, 1996. USENIX Association.

[4] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks
and tampering. In ASIACRYPT, pages 486–503, 2011.

[5] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: Rka-prps,
rka-prfs, and applications. In EUROCRYPT, pages 491–506, 2003.

[6] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating
errors in cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

[7] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision diffie-hellman. In CRYPTO, pages 108–125, 2008.

[8] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In
FOCS, pages 501–510, 2010.

[9] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis,
University of Amsterdam, November 1996.

[10] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password
protocols in the bounded retrieval model. In TCC, pages 225–244, 2006.

43

[11] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate tam-
pering. In CRYPTO, pages 533–551, 2012.

[12] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography
against continuous memory attacks. In FOCS, pages 511–520, 2010.

[13] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient
public-key cryptography in the presence of key leakage. In ASIACRYPT, pages 613–631,
2010.

[14] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139,
2008.

[15] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In TCC, pages 1–22, 2013.

[16] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model. In TCC, pages 207–
224, 2006.

[17] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing
functions. In TCC, pages 125–143, 2011.

[18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

[19] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to
trade leakage for tamper-resilience. In ICALP (1), pages 391–402, 2011.

[20] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1986.

[21] Marc Fischlin and Roger Fischlin. The representation problem based on factoring. In CT-RSA,
pages 96–113, 2002.

[22] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (atp) security: Theoretical foundations for security against hardware tampering.
In TCC, pages 258–277, 2004.

[23] Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. In ASIACRYPT, pages 444–459, 2006.

[24] Louis C. Guillou and Jean-Jacques Quisquater. A ”paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In CRYPTO, pages 216–231, 1988.

[25] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[26] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable
and leaky memory. In CRYPTO, pages 373–390, 2011.

[27] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience.
In ASIACRYPT, pages 703–720, 2009.

44

[28] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness extraction
paradigm for hybrid encryption. In EUROCRYPT, pages 590–609, 2009.

[29] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[30] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, 2004.

[31] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
pages 18–35, 2009.

[32] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In CRYPTO, pages 31–53, 1992.

[33] Krzysztof Pietrzak. Subspace lwe. In TCC, pages 548–563, 2012.

[34] Stephen Pohlig and Martin Hellman. An improved algorithm for computing logarithms over
and its cryptographic significance. IEEE Transactions on Information Theory, 24(1):106–110,
1978.

A Necessity of Update/Self-Destruct, Revisited

Having at hand some scheme which is resilient against a bounded number of tampering queries,
a natural question is whether it is possible to get unbounded tamper resilience in a cryptographic
setting where the key is never updated. This question has been already addressed by Gennaro et
al. [22]. They showed that for many natural primitives such as public key encryption and signatures,
there is a general attack which extracts the entire secret key, as long as the card never self-destructs
(or the key is never updated).

Assume that the functionality has a testing procedure Test-Dev which can test the device for
malfunctioning. Such a procedure enjoys two properties: (1) It always accepts a device whose secret
content sc is correct; (2) If it accepts a secret device with secret content sc′ with non-negligible
probability, then finding sc′ is a valid attack for the functionality the device is implementing. In
case of a signature scheme, Test-Dev would just store the public key corresponding to the original
secret key and run the verification algorithm on faulty signatures (i.e., signatures generated with a
tampered key). In this way it is possible to learn the secret key bit by bit. A similar attack works
in case of encryption schemes where one has access to a decryption oracle and, more generally, for
any cryptographic primitive with a Test-Dev procedure as described above.

Although very general, we point out that there are contexts in which the above attack does
not work. Consider for instance any weak pseudorandom function (wPRF). Security of a wPRF
F (sc, x) requires that it is hard to distinguish the output of the function from the output of a
random function on random inputs. Now an adversary A applying the above attack in the security
game of a wPRF would first query the challenge oracle once, obtaining a pair (x, y) where y is
either the output of a random function or the output of F (sc, x) for a random x. If A tampers with
the first bit of sc (i.e., by setting it to 0) and queries the oracle again, it will receive a pair (x′, y′)
for some value x′ which is chosen randomly and independently of x. In this case, it is not possible
for A to verify if its guess on the first bit of sc was correct or not. So Gennaro et al.’s attack does
not apply here.

45

Our attack. We define a different testing procedure (which we call Test-Dev’), such that it does
not suffer from the issue above. Test-Dev’ contains a description of the functionality F implemented
by the device at hand. Moreover, it takes (a subset) of the following values as inputs: (i) The public
content pc; (ii) Input-output pairs (x, y); (iii) A candidate secret key sc; (iv) Some auxiliary value
aux. Hence Test-Dev’ outputs 1 if and only if (x, y) is a consistent input-output pair for F with
respect to values pc, sc and aux.

Concretely, in case of a signature scheme the functionality F would consist of the signing and
verification algorithm of the underlying signature scheme and Test-Dev’ would take as input the
public content pc (i.e., the public key) together with a message-signature pair (m,σ) and some
candidate secret key sc′. Hence, Test-Dev’ can compute a new signature σ′ of m using sc and
output 1 provided that both signatures σ and σ′ verify correctly with respect to pc. For wPRFs,
the functionality F consists in the description of the wPRF. The adversary can input a candidate
key sc′ together with some input-output pair (x, y): Test-Dev’ outputs 1 if and only if y = F (sc′, x).
The key difference here, is that the adversary cannot run Test-Dev’ without choosing some key that
he wants to test.

Claim 6. No cryptographic device that can be efficiently test for malfunctioning can be made
tamper-proof without updating the key (or without the self-destruct capability).

Proof. Without loss of generality, assume the secret content is n bit long. We are given a device
which implements some functionality F (think of it as a wPRF or a signature scheme). We show
how to extract the key using n tampering queries. During the first query, we let T1(·) set the
first bit of sc to some value b1 ∈ {0, 1} and leave the remaining n − 1 bits of sc unchanged. In
other words, sc1 = (b1, sc[2], . . . , sc[n]). We now get from the oracle some pair (x1, y1), where
y1 is either random or computed as F (sc1, x1). Similarly, we set the second bit of the key to
b2 ∈ {0, 1} and obtain a second pair (x2, y2) where y2 is either random or computed as F (sc2, x2)
for sc2 = (b1, b2, sc[3] . . . , sc[n]).

After obtaining n− 1 pairs (x1, y1), . . . , (xn−1, yn−1) as above, we end-up with a tampered key
scn−1 = (b1, . . . , bn−1, sc[n]). We now guess the value b? and run Test-Dev’ upon input sc?n =
(b1, . . . , bn−1, b

?
n) and the pair (xn−1, yn−1): If the output is 1 we guess sc[n] = b?n and otherwise

sc[n] = b?n. (In case Test-Dev’ has only non-negligible probability of success we simply run it many
times and take majority of the outputs.) We thus recover the other bits of the secret key going
backwards: We sample b?n−1 ∈ {0, 1}, run Test-Dev’ upon input sc?n−1 = (b1, . . . , bn−2, b

?
n−1, sc[n])

and (xn−2, yn−2) and guess sc[n−1] = b?n−1 or sc[n−1] = b?n−1 depending on the output of Test-Dev’
and so on. In this way we can extract the entire key.

B Tampering with Computation

We allow the adversary A to tamper in an arbitrary way with the algorithm of the prover P as
long as the interfaces of the algorithm stay unchanged (input/output domain consistency) and
the adversary can run the tampered algorithm only a bounded number of times between two
key updates. To model the input/output consistency, we let A replace the algorithm P with an
arbitrarily different algorithm P′ as long as P and P′ have the same input/output domain. Formally,
we model such arbitrary tampering with the computation by an adversary that corrupts the prover
P, and we denote the adversarial controlled prover by P′. Of course, P cannot be corrupted by the
adversary A itself as this would enable A to learn the entire secret key and completely break security

46

of the identification scheme. We follow Dziembowski et al. [17] and consider a big adversary A and
a small adversary B, where we can think of B as a “virus” that corrupts the prover while A is the
adversary that observes (possibly corrupted) protocol executions with P′. Notice that the only way
in which B can “communicate” with the big adversary A is via the output of the tampered prover
P′. We formally describe security with respect to tampering with the computation in the definition
below. For simplicity, we assume that the adversary only gets a single protocol transcript after
each tampering query. This can be generalized to an arbitrary constant number but we omit the
details here.

Definition B.1. Let λ = λ(k) be the leakage parameter. We say that ID is a λ-continuous
leakage and tampering with computation (CLTC) secure identification scheme in the iFloppy model
if additionally to correctness (cf. Definition 6.1) the scheme satisfies the following property:

CLTC-Security: For all PPT adversaries A there exists a negligible function δ : N → [0, 1] such
that Pr [A wins] ≤ δ(k) in the following game:

1. The challenger runs pp ← Setup(1k) and (pk , sk , uk)← Gen(1k), and gives (pp, pk) to A. Let
sk1 = sk and uk be stored on the floppy.

2. We repeat the following steps a polynomial number of times, where the adversary may adap-
tively ask leakage and tampering queries and each round is completed with an update of the
secret key using the floppy. More precisely, in the ith round the following happens:

(a) A specifies a function Li : {0, 1}∗ → {0, 1}λ and receives back Li(sk i).

(b) A specifies a tampering algorithm Bi and obtains the faulty transcript (Bi(pp, sk i),V(pp))(pk).

(c) The challenger updates the secret key, sk i+1 ← Refresh(uk).

3. The adversary loses access to all oracles and interacts with an honest verifier V (holding pk).
We say that A wins if (A� V(pp))(pk) outputs accept .

In the theorem below we show that when we instantiate the general compiler from Figure 6
with an appropriate identification scheme with key size k � s (s is the length of the transcript)
and security against s bits of leakage, we can achieve security with respect to Definition B.1. Iden-
tification schemes that are secure in the Bounded Retrieval Model (BRM) satisfy these condition
and have been constructed by Alwen et al. [2] based on the Generalized Okamoto ID scheme.

Theorem B.1. Let SIG = (KGen, Sign,Vrfy) be an EUF-CMA secure signature scheme and ID =
(Setup,Gen,P,V) be an (s+ λ)-leakage and 0-tamper resilient identification scheme with transcript
length s. Then, ID′ from Figure 6 is a λ-CLTC secure identification scheme in the iFloppy model.

Proof (sketch). The proof is similar to the proof of Theorem 6.1. The only difference is in the
reduction to the security of the underlying identification scheme ID. While in Theorem 6.1 we
simulate the tampering with access to the tampering oracle, we here simulate the tampering queries
Bi, i.e., the faulty transcript (Bi(pp, sk i),V(pp))(pk) with access to the leakage oracle. As the
transcript has length s, we can learn the entire faulty transcript from the leakage oracle. This is
where we loose s bits in the leakage bound compared to the underlying identification scheme.

We note that the above result seemingly achieves a stronger security notion than Theorem 6.1
(tampering with the computation vs. tampering only with the state) while not requiring a bounded

47

tamper resilient identification scheme as the underlying primitive. The fundamental difference
between both theorems comes from the fact that in the theorem above we can only use the identi-
fication scheme a bounded number of times between each two key updates, while when we tamper
only with the secret state Theorem 6.1 does not set any such usage restriction.

C Proof of Lemma 3.1

Denote with d = log |H| the size of the set H. For random variables Z, Z ′ such that Z ′ is
an independent copy of Z we write Col(Z) = Pr [Z = Z ′] for the collision probability of Z. In
particular,

Col((hS , hS(X1), hS(X2), . . . , hS(Xt)))

= Pr
[
(hS , hS(X1), hs(X2), . . . , hS(Xt)) = (h′S , h

′
S(X ′1), h

′
s(X

′
2), . . . , h

′
s(X

′
t))
]

= Pr
[
hS = h′S

]
· Pr

[
(hS , hS(X1), hS(X2), . . . , hS(Xt)) = (h′S , h

′
S(X ′1), h

′
S(X ′2), . . . , h

′
S(X ′t)) | hS = h′S

]
= 2−d · Pr

[
(hS , hS(X1), hS(X2), . . . , hS(Xt)) = (hS , hS(X ′1), hS(X ′2), . . . , hS(X ′t))

]
(21)

where the probabilities above are over the choices of hS , (X1, X2, . . . , Xt) and h′S , (X
′
1, X

′
2, . . . , X

′
t).

We define an event E such that conditioning on E happening we can apply the assumption
that hS is 2t-wise independent, and thus bound the probability in Eq. (21) by 2−t·`. The event
E becomes true when X1, X2, . . . , Xt, X

′
1, X

′
2, . . . , X

′
t are pairwise different. Notice that there are(

2t
2

)
such pairs, however by assumption (X1, . . . , Xt) are pairwise different; this leaves us with(

2t
2

)
− 2
(
t
2

)
= t2 pairs. Hence, by the union bound

Pr
[
E
]

= Pr
[
X1 = X2 ∨X2 = X3 ∨ . . . ∨X ′t−1 = X ′t

]
≤ t2 · 2−β,

where the inequality comes from the assumption that all random variables have individually min-
entropy at least β and by applying the union bound.

Plugging the last expression in Eq. (21) and using the fact that hS is 2t-wise independent yields

Col((hS , hS(X1), hS(X2), . . . , hS(Xt)))

≤ 2−d ·
(
Pr
[
(hS , hS(X1), hS(X2), . . . , hS(Xt)) = (hS , hS(X ′1), hS(X ′2), . . . , hS(X ′t)) | E

]
+ Pr

[
E
])

≤ 2−d · (2−t·` + t2 · 2−β).

Let Z be a random variable with support Z and U be uniform over Z. Then ‖Z − U‖22 =
Col(Z)− |Z|−1. In particular,

‖(hS , hS(X1), hS(X2), . . . , hS(Xt))‖22 = Col((hS , hS(X1), hs(X2), . . . , hS(Xt)))− 2−d−t·`

≤ 2−d ·
(

2−t·` + t2 · 2−β
)
− 2−d−t·` = t2 · 2−d−β.

Finally, using that ‖Z‖1 ≤
√
|Z| · ‖Z‖2 for any random variable Z with support Z, we obtain

∆((hS , hS(X1), hs(X2), . . . , hS(Xt)); (hS , UY , . . . , UY︸ ︷︷ ︸
t times

))

=
1

2
‖(hS , hS(X1), hS(X2), . . . , hS(Xt))− (hS , UY , . . . , UY︸ ︷︷ ︸

t times

)‖1

≤ 1

2

√
2d+t·` ·

√
t2 · 2−d−β =

t

2
· 2(t·`−β)/2.

48

D Proof of the Chaining Lemma

Before coming to the actual proof, we state and prove two general lemmas.
The first lemma states that if the support of a distribution is sufficiently large then there always

exists an event E such that conditioned on E the conditional distribution has high min-entropy.

Lemma D.1. For n ∈ N>1 let c be some parameter such that
√
n < c < n. Let X be a set of size

2n = |X | and X be a distribution over X with |sup(X)| > 2c such that for all x ∈ sup(X) we have
Pr[X = x] ≥ 1

2n . There exists an event E such that:

1. H∞(X|E) > c− 2
√
n, and

2. |sup(X|E)| < |sup(X)|.

Proof. Intuitively, the lemma is proven by showing that if a distribution has sufficiently large
support, then over a large subset of the support the distribution must be “almost” flat. We will
describe below what it means for a distribution to be “almost flat”. We then define an event E
that occurs when X takes some value in the almost flat area. Clearly, X conditioned on E must
be “almost” uniformly distributed, and if furthermore the support of X conditioned on E is still
sufficiently large, we get that H∞(X|E) must be large. We proceed with the formal proof.

We introduce a parameter b which is a positive integer such that c > n/b. Later we fix b to its
optimal value. For ease of description we assume that n is a multiple of b. We start by defining
what it means for an area to be flat. For some probability distribution X we define k ∈ [2n/b − 1]
sets as follows:

1. For k ∈ [2n/b − 1] we have: Ik :=
{
x ∈ sup(X) : kb

2n ≤ Pr[X = x] < (k+1)b

2n

}
, and

2. I2n/b = {x ∈ sup(X) : Pr[X = x] = 1}.

These sets characterize the (potential) flat areas in the distribution X as the probability of all
values in some set Ik lie in a certain range that is bounded from below and above. Clearly, the sets
Ik are pairwise disjoint and cover the whole space between 1/2n and 1. Therefore, each x ∈ sup(X)
with some probability Pr[X = x] must fall into some unique set Ik.

We denote by Im the set that contains the most elements among all sets Ik, and define the
event E as the event that occurs when x ∈ sup(X) falls into Im, i.e., X takes a value that falls in
the largest set Im. We now lower bound the probability that E occurs.

Pr[E] ≥ |Im|
mb

2n
(22)

≥ 2c−n/b
mb

2n
(23)

Inequality (22) holds as for all x ∈ Im we have Pr[X = x] ≥ mb

2n . (23) follows from the fact that

Im must have size at least 2c−n/b, as there are 2n/b sets and there are at least 2c elements in the
support of X.

49

As H∞(X|E) = maxx Pr[X = x|E], we can give a lower bound for the min entropy of X|E by
upper bounding Pr[X = x|E]. More precisely,

Pr[X = x|E] =
Pr[X = x ∧ E]

Pr[E]

<
(m+ 1)b/2n

2(c−n/b)mb/2n
(24)

=

(
1 +

1

m

)b
2−c+n/b

≤ 2b−c+n/b (25)

Inequality (24) uses (23) and the fact that Pr[X = x∧E] < (m+1)b

2n by definition of Im. (25) follows
from m ≥ 1. This implies that H∞(X|E) > c− n/b− b as required in the lemma.

For the second requirement, it is easy to see from the definition of E that the support of the
conditional probability distribution X|E decreases by at least 2(c−n/b) points (as these points belong

to E). Clearly, |sup(X|E)| ≤ |sup(X)| − 2c−n/b < |sup(X)| as stated in the lemma.

Now, we observe that, the loss in min-entropy, given by (b + n/b) is minimum when b =
√
n.

Since b is a free parameter, we fix b :=
√
n (note that, since c >

√
n, the constraint c > n/b holds)

to get H∞(X|E) > n− 2
√
n as stated in the lemma.

In the following lemma we consider an arbitrary distribution X with sufficiently high min-
entropy and some arbitrary function T . We show that if the support of Y = T (X) is sufficiently
large, then there exists an event E such that one of the following happens:

(i) The min-entropy of Y conditioned on the event E is high, i.e., Y conditioned on E has an
almost flat area with large support;

(ii) If E happens, then the average min-entropy of X given Y is high. Intuitively, this means that
Y conditioned on E has small support as then it does not “reveal” too much about X.

We formalize this statement in the lemma below.

Lemma D.2. For n ∈ N>1 let c, α be some parameters such that
√
n < c < α ≤ n. Let X be some

set of size 2n = |X | and X be an (α, n)-good distribution over X . For any function T : X → X , let
Y = T (X) be such that |sup(Y)| > 2c. There exists an event E such that the following holds:

(i) H∞(Y|E) > c− 2
√
n.

(ii) H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

Proof. Intuitively, in the proof below we apply Lemma D.1 iteratively to the distribution Y to find
flat areas in Y . We “cut off” these flat areas until we have a distribution (derived from Y) which
has sufficiently small support. Clearly such restricted Y cannot reveal too much information about
X. To formalize this approach, we construct iteratively an event E by combining the events Ei
obtained by applying Lemma D.1 to Y . If E happens then Y takes values that lie in a large flat area.
On the other hand E characterizes only a relatively small support, and hence giving such Y does

50

Ω

E′1 E′′1

E′2 E′′2

E′3 E′′3

Ω

E′′
1E′

3

E′′
2E′′

3

Figure 7: Events covering the probability space in the proof of Lemma D.2 and Lemma 3.2.

not reveal much information (on average) about X. The formal proof with an explicit calculation
of the parameters follows. We will define the event E depending on events {Ei, E′i, E′′i }i∈{0,...,m−1}
(for some integer m) which we will specify later. These events partition the probability space as
follows (cf. Figure 7):

E′i :=
i∧

j=0

Ej = Ei ∧ E′i−1 E′′i := Ei ∧

i−1∧
j=0

Ej

 = Ei ∧ E′i−1. (26)

We will rely on some properties of the above partition. In particular, note that for all i ∈ {0, . . . ,m−
1} we have

E′i ∨ E′′i = E′i−1 E′i ∧ E′′i = ∅. (27)

We start by constructing the events {Ei, E′i, E′′i } and conditional probability distributions Y (i)

that are derived from Y by applying Lemma D.1. Lemma D.1 requires the following two conditions:

1. |sup(Y (i))| > 2c, and

2. for all y ∈ sup(Y (i)) we have Pr[Y (i) = y] ≥ 2−n.

Clearly these two conditions are satisfied by Y (0) = Y , since Y (0) is computed from X by applying
a function T and for all x ∈ sup(X) the statement assumes Pr[X = x] ≥ 2−n. Hence, Lemma D.1

gives us an event E0. We set and we define Y (1) = Y
(0)

|E0
. For all i ≥ 1 we proceed to construct

events Ei and conditional distributions Y (i+1) = Y
(i)

|Ei
as long as the requirements from above in 1

and 2 are satisfied. Notice that by applying Lemma D.1 to distribution Y (i) we get for each event
Ei:

1. H∞(Y
(i)
|Ei) > c− 2

√
n, and

2. |sup(Y (i+1))| < |sup(Y (i))|.

Clearly, there are only finitely many (say m) events before we stop the iteration as the size
of the support is strictly decreasing. At the stopping point we have |sup(Y (m−1))| > 2c and
|sup(Y (m))| ≤ 2c. We define E =

∨m−1
i=0 Ei =

∨m−1
i=0 E′′i and E =

∧m−1
i=0 Ei = E′m−1 and show in the

claims below that they satisfy the conditions of the lemma.

Claim 7. H∞(Y|E) > c− 2
√
n.

51

Proof. Recall that for each 0 ≤ i ≤ m− 1 we have

Y
(i)
|Ei = Y|Ei∧Ei−1...∧E0

(28)

= Y|E′′i (29)

Eq. (28) follows from the definition of the conditional probability distribution Y
(i)
|Ei . Eq. (29) from the

definition of the constructed events. From Eq. (29) and Lemma D.1 we have for each 0 ≤ i ≤ m−1
that H∞(Y|E′′i) > c− 2

√
n. As for each 0 ≤ i ≤ m− 1 we have |sup(Y|E)| ≥ |sup(Y|E′′i)| we get that

H∞(Y|E) > c− 2
√
n. This concludes the proof of this claim.

Claim 8. H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

Proof. We first lower bound H∞(X|E).

H∞(X|E) = − log

(
max
x

Pr[X = x ∧ E]

Pr[E]

)
(30)

≥ − log

(
1

Pr[E]
max
x

Pr[X = x]

)
(31)

≥ H∞(X)− log
1

Pr[E]
≥ α− log

1

1− Pr[E]
. (32)

Eq. (30) follows from the definition of min-entropy and the definition of conditional probability.
Eq. (31) follows from the basic fact that for two event Pr[E ∧E′] ≤ Pr[E]. Finally, we get Eq. (32)
from our assumption that H∞(X) ≥ α. To conclude the claim we compute:

H̃∞(X|E |Y|E) ≥ H∞(X|E , Y|E)− log |sup(Y|E)| (33)

= H∞(X|E)− log |sup(Y|E)| (34)

≥ α− log
1

1− Pr[E]
− c = α− c− log

1

1− Pr[E]
. (35)

Eq. (33) follows from Lemma 2.1 and (34) from the fact that Y|E is computed as a function

from X|E . Inequality (35) follows from (32) and the fact that the size of sup(Y|E) is at most

c. The latter follows from the definition of the event E = E′m−1 which in turn implies that

|sup(Y|E)| = |sup(Y|E′m−1
)| = |sup(Y

(m−1)
|Em−1

)| = |sup(Y (m))| ≤ 2c, which concludes the proof.

The above two claims finish the proof.

We now turn to the proof of the chaining lemma.

Lemma 3.2. For n ∈ N>1 let α, β, t, ε be some parameters where t ∈ N, 0 < α ≤ n, β > 0, ε ∈ (0, 1]
and t ≤ α−β

β+2
√
n

. Let X be some set of size |X | = 2n and let X(0) be a (α, n)-good distribution over

X . For i ∈ [t] let Ti : X → X be arbitrary functions and X(i) = Ti(X
(i−1)). There exists an event

E such that:

(i) If Pr [E] > 0, for all i ∈ [t], H∞(X
(i)
|E) ≥ β.

52

(ii) If Pr
[
E
]
≥ ε there exists an index j ∈ [t] such that

H̃∞(X
(j−1)
|E |X(j)

|E) ≥ β − log
t

ε
.

Proof of Lemma 3.2. Consider the chain of random variables X(0) T1−→ X(1) T2−→ . . .
Tt−→ X(t). Given

a pair of random variables in the chain, we refer to X(i−1) as the “source distribution” and to
X(i) as the “target distribution”. The main idea is to consider different cases depending on the
characteristics of the target distribution. In case the min-entropy of X(i) is high enough to start
with, we get immediately property (i) of the statement and we can immediately move to the next
pair of random variables in the chain. In case the min-entropy of X(i) is small, we further consider
two different sub-cases depending on some bound on the support of the variable. If the support
of X(i) happens to be “small”, intuitively we can condition on the target distribution since this
cannot reveal much about the source; roughly this implies property (ii) of the statement. On the
other hand, if the support happens to be not small enough, we are not in a position which allows
us to condition on X(i).

In the latter case, we will invoke Lemma D.2. Roughly this guarantees that there exists some
event such that, conditioned on this event happening, the target lies in a large “flat” area and the
conditional distribution has high min-entropy; this yields property (i) of the statement. If instead
the event does not happen, then conditioning on the event not happening we get a “restricted”
distribution with small enough support which leads again to property (ii) of the second statement.

Whenever we are in those cases where (possibly conditioning on some event) the target distri-
bution has high min-entropy, we move forward in the chain by considering X(i) as the source and
X(i+1) as the target. However, when we reach a situation where we can “reveal” the target distri-
bution we do not proceed further, since the remaining values can be computed as a deterministic
function of the revealed distribution and, as such, do not constrain the min-entropy further. We
now proceed with the formal proof.

Similar to Lemma D.2, we will define the event E depending on events {Ei, E′i, E′′i }i∈[t] which
we will specify later. These events partition the probability space as follows (cf. Figure 7):

E′i :=
i∧

j=1

Ej = Ei ∧ E′i−1 E′′i := Ei ∧

i−1∧
j=1

Ej

 = Ei ∧ E′i−1. (36)

We will rely on some properties of the above partition. In particular, note that for all i ∈ [t] we
have

E′i ∨ E′′i = E′i−1 E′i ∧ E′′i = ∅. (37)

For all i ∈ [t+ 1], define the following parameters:

si = (t− i+ 1)(β + 2
√
n) (38)

αi−1 = β + si. (39)

Note that using the bound on t from the statement of the lemma, we get α ≥ α0; moreover, it is
easy to verify that αi−1 > si >

√
n for all i ∈ [t].

In the next claim we construct the events {Ei, E′i, E′′i }i∈[t].

Claim 9. For all i = 0, . . . , t− 1, there exist events E′i+1 and E′′i+1 (as given in Eq. (37)) such that
the following hold:

53

(*) If Pr
[
E′i+1

]
> 0, H∞(X

(i+1)
|E′i+1

) ≥ αi+1.

(**) If Pr
[
E′′i+1

]
≥ ε′, H̃∞(X

(i)
|E′′i+1
|X(i+1)
|E′′i+1

) ≥ β − log 1
ε′ . where 0 < ε′ ≤ 1.

Proof. We prove the claim by induction.

Base Case: In this case we let E0 denote the whole probability space and thus Pr [E0] = 1. note

that H∞(X
(0)
|E0

) = H∞(X(0)) = α ≥ α0. The rest of the proof for the base case is almost the same
to that of the inductive step except the use of above statement instead of induction hypothesis.
Therefore we only prove the induction step in detail here. The proof-details for the base case would
be a straightforward extension of the induction step with some notational changes.

Induction Step: The following holds by induction hypothesis:

(*) If Pr [E′i] > 0, then H∞(X
(i)
|E′i

) ≥ αi.

(**) If Pr [E′′i] ≥ ε′ then, H̃∞(X
(i−1)
|E′′i
|X(i)
|E′′i

) ≥ β − log 1
ε′ where 0 < ε′ ≤ 1.

By construction of events, E′i is partitioned into two sub-events E′i+1 and E′′i+1 (cf. Eq. 37). From
the statement of the claim, we observe that: since we are assuming Pr

[
E′i+1

]
> 0 in (*) and

Pr
[
E′′i+1

]
≥ ε′ > 0 in (**), in both cases we have Pr [E′i] > 0. Then (*) from the induction

hypothesis holds: H∞(X
(i)
|E′i

) ≥ αi which we use to prove the inductive step. We will define the

events E′i+1 and E′′i+1 differently depending on several (complete) cases. For each of these cases we
will show that property (*) and (**) hold.

The case where H∞(X
(i+1)
|E′i

) ≥ αi+1. In this case we define E′i+1 to be E′i, which implies

E′′i+1 = ∅ by Eq. (37). Moreover property (*) holds since, if Pr
[
E′i+1

]
> 0, then Pr [E′i] > 0

and H∞(X
(i+1)
|E′i+1

) = H∞(X
(i+1)
|E′i

) ≥ αi+1; as for property (**) there is nothing to prove, since

Pr
[
E′′i+1

]
= 0 in this case.

The case where H∞(X
(i+1)
|E′i

) < αi+1. Here we consider two sub-cases, depending on the support

size of X(i+1).

1. |sup(X
(i+1)
|E′i

)| ≤ 2si+1 . We define E′′i+1 = E′i, which implies E′i+1 = ∅ by Eq. (37). As for

property (*) there is nothing to prove, since Pr
[
E′i+1

]
= 0. To prove property (**) we

observe the following:

If Pr
[
E′′i+1

]
≥ ε′ > 0, then Pr [E′i] > 0. Hence,

H̃∞(X
(i)
|E′′i+1
|X(i+1)
|E′′i+1

) = H̃∞(X
(i)
|E′i
|X(i+1)
|E′i

) (40)

≥ H∞(X
(i)
|E′i
, X

(i+1)
|E′i

)− log(|sup(X
(i+1)
|E′i

)|) (41)

≥ αi − si+1 (42)

= β + si+1 − si+1 = β.

54

Eq. (40) follows as E′′i+1 = E′i. Eq. (41) follows from Lemma 2.1. Eq. (42) follows from

two facts: (i) X(i+1) is a deterministic function of X(i), which means H∞(X
(i+1)
|E′i

, X
(i+1)
|E′i

) =

H∞(X
(i)
|E′i

) ≥ αi (plugging-in the value from induction hypothesis), and (ii) |sup(X
(i+1)
|E′i

)| ≤
2si+1 .

2. |sup(X
(i+1)
|E′i

)| > 2si+1 . Here using induction hypothesis: H∞(X
(i)
|E′i

) ≥ αi, we invoke Lemma D.2

on the distribution X
(i+1)
|E′i

(recall that αi > si+1 >
√
n), to obtain the event Ei+1 such that:

H∞(X
(i+1)
|E′i∧Ei+1

) > si+1 − 2
√
n (43)

H̃∞(X
(i)

|E′i∧Ei+1
|X(i+1)

|E′i∧Ei+1
) > αi − si+1 − log

1

1− Pr [Ei+1]
. (44)

Note that by our definitions of the events E′i, E
′′
i (cf. Eq. (36)), we have E′i ∧ Ei+1 = E′i+1

and E′i ∧ Ei+1 = E′′i+1.

Now, to prove (*) we have: if Pr
[
E′i+1

]
> 0, then Pr [E′i] > 0 and Pr [Ei+1] > 0. Plugging

the values of αi and si+1 from Eq. (39) and (38) into Eq. (43), we get

H∞(X
(i+1)
|E′i+1

) > si+1 − 2
√
n

= (t− i)(β + 2
√
n)− 2

√
n

= β + (t− i− 1)(β + 2
√
n)

= β + si+2 = αi+1,

Similarly, to prove (**) we have: if Pr
[
E′′i+1

]
≥ ε′, then Pr [E′i] ≥ ε′ > 0 and Pr

[
Ei+1

]
≥ ε′.

Using Eq. (44), we obtain:

H̃∞(X
(i)
|E′′i+1
|X(i+1)
|E′′i+1

) > αi − si+1 − log
1

Pr
[
Ei+1

]
= β − log

1

Pr
[
Ei+1

]
≥ β − log

1

ε′
,

This concludes the proof of the claim.

We define the event E to be E = E′t =
∧t
i=1Ei =

∧t
i=1E

′
i. It is easy to verify that this implies

E =
∨t
i=1E

′′
i . We distinguish two cases:

• If Pr [E] > 0, by definition of E we get that Pr [E′i] > 0 for all i ∈ [t]. In particular, Pr [E′t] > 0.

Hence, H∞(X
(t)
|E) = H∞(X

(t)
|E′t

) ≥ αt = β, where the last inequality follows from (*) of Claim 9

putting i = t− 1. Also, we observe that for all i ∈ [t], H∞(X
(i−1)
|E) ≥ H∞(X

(i)
|E). This proves

property (i) of the lemma.

55

• If Pr
[
E
]
≥ ε, then we get

Pr

[
t∨
i=1

E′′i

]
≥ ε. (45)

t∑
i=1

Pr
[
E′′i
]
≥ ε. (46)

Eq. 45 follows from the definition of E and Eq. 46 follows applying union bound. Clearly,

from Eq. 46, there must exists some j such that Pr
[
E′′j

]
≥ ε/t.

Hence, putting i = j − 1 and ε′ = ε/t in (**) of Claim 9, we get:

H̃∞(X
(j−1)
|E′′j

|X(j)
|E′′j

) ≥ β − log
t

ε
.

From the definition of E, E′′j implies E and hence property (ii) of the lemma follows.

56

	Introduction
	Previous Work
	Our Results
	Roadmap

	Preliminaries
	Notation
	Information Theory Basics
	Hard Relations
	Signature Schemes
	True Simulation Extractibility
	A Note on Deterministic vs Probabilistic Tampering

	Semi-Adaptive BLT Security for General Primitives
	Abstract Games with Tampering
	A General Transformation
	Outline of the Proof
	Proof of Lemma 3.3
	Proof of Theorem 3.1
	Extensions

	ID Schemes with BLT Security
	-protocols are Tamper Resilient
	Concrete Instantiation with more Tampering
	Some Attacks
	BLT-Secure Signatures

	IND-CCA PKE with BLT Security
	IND-CPA BLT Security
	A General Transformation
	Instantiation from BHHO

	Updating the Key in the iFloppy Model
	ID Schemes in the iFloppy Model
	PKE Schemes in the iFloppy Model

	Necessity of Update/Self-Destruct, Revisited
	Tampering with Computation
	Proof of Lemma 3.1
	Proof of the Chaining Lemma

